
Under review as a conference paper at ICLR 2022

IIT-GAN: IRREGULAR AND INTERMITTENT TIME-
SERIES SYNTHESIS WITH GENERATIVE ADVERSARIAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-series data is one of the most popular data types in the field of machine
learning. For various reasons, there is a strong motivation to synthesize fake time-
series data. Several disparate settings for time-series synthesis have been previously
solved, ranging from synthesizing time-series without any missing values to time-
series of multiple signals with different frequencies. In this paper, we solve the
problem of synthesizing irregular and intermittent time-series where values can
be missing and may not have specific frequencies, which is far more challenging
than existing settings. To this end, we adopt various state-of-the-art deep learning
concepts, such as autoencoders (AEs), generative adversarial networks (GANs),
neural ordinary differential equations (NODEs), neural controlled differential
equations (NCDEs), and so on. Our contribution lies in carefully re-designing those
heterogeneous technologies and proposing our unified framework. Our method
achieves the state-of-the-art synthesis performance for the irregular and intermittent
time-series synthesis task.

1 INTRODUCTION

Time-series data occurs frequently in real-world applications (Reinsel, 2003; Fu, 2011; Li et al., 2018;
Yu et al., 2018; Wu et al., 2019; Guo et al., 2019; Bai et al., 2019; Song et al., 2020; Huang et al., 2020;
Ren et al., 2021; Tekin et al., 2021). Among many tasks related to time-series, synthesizing time-series
data is one of the most important tasks because real-world time-series data is frequently imbalanced
and/or insufficient. However, the problem of synthesizing time-series data is still under-explored
although the following couple of important problem settings had been studied previously (Yoon et al.,
2019; Alaa et al., 2021): i) time-series data does not have any missing values, and ii) time-series data
consists of various signals with different frequencies. However, these methods cannot be applied to
our case for the reasons which will be described shortly.

In this paper, we solve the problem of synthesizing irregular and intermittent time-series where i)
signals at some time-points can be missing and/or ii) signals do not have predetermined frequencies
— we focus on this specific problem setting although our method is able to process regular time-
series without any model changes. This type of data frequently happens in medical domains for data

Encoder

real
or
fake

Wiener process

 AE GAN Log-density Synthesis

Decoder

Disc.Generator

Figure 1: The overall design of the proposed method, IIT-GAN. Each color means each workflow.
The autoencoder and the GAN share the workload to synthesize irregular and intermittent time-series.

1

Under review as a conference paper at ICLR 2022

anonymization (Reyna et al., 2019), battery-powered Internet-of-things applications for elongate the
lifetime of battery-powered sensing devices (Ma et al., 2020), and so forth. It is known that neural
networks perform better after transforming time-series data into its frequency domain, i.e., the Fourier
transform (Alaa et al., 2021). In particular, however, the second characteristic prevents the Fourier
transform of time-series from being used as a pre-processing method since it is not easy to observe
pre-determined frequencies from highly irregular and intermittent time-series (Kidger et al., 2019).

Our irregular and intermittent time-series setting is different from existing ones. To achieve the
goal, therefore, we utilize a diverse set of technology ranging from generative adversarial networks
(GANs (Goodfellow et al., 2014)), and autoencoders (AEs) to neural ordinary differential equations
(NODEs (Chen et al., 2018)), neural controlled differential equations (NCDEs (Kidger et al., 2020)),
and continuous time flow processes (CTFPs (Deng et al., 2020)), which reflects the difficulty of the
problem. We show that existing approaches are not as good at synthesizing irregular and intermittent
time-series as our proposed method. Since observations are sparse in our setting, we need a sophisti-
cated model to synthesize. In particular our ablation studies in Appendix E justifies our sophisticated
design choices.

Decoder
(GRU-ODE)

Figure 2: An example of sampling two irregular time-series
from a fake continuous path represented by an ordinary dif-
ferential equation (ODE). In other words, we solve ODE
problems to sample irregular time-series.

Fig. 1 shows the overall design of
our proposed method. One of the key
points in our model design is that
we combine the adversarial training
of GANs and the exact maximum
likelihood training by the change of
variable theorem (Deng et al., 2020)
into a single framework. However, the
change of variable theorem is applica-
ble only to invertible mapping func-
tions whose input and output sizes are
the same. Therefore, we design an in-

vertible generator, and adopt an autoencoder, on whose hidden space our GAN performs the ad-
versarial training. In other words, i) the hidden vector size of the encoder is the same as the noisy
vector input size of the generator, ii) the generator produces a set of fake hidden vectors, iii) the
decoder converts the set into a fake continuous path, and we sample a human-readable (discrete)
fake time-series sample (cf. Fig. 2), and iv) the discriminator provides feedback after reading the
sampled fake sample. We note that in the third step, a fake continuous path is created by the decoder.
Therefore, we can sample any arbitrary irregular/regular time-series sample from the fake path, which
shows the flexibility in our method.

We conduct experiments with 4 datasets and 7 baselines. Since our method is able to support both the
regular and irregular time-series synthesis, we test for both of them. Our method outperforms them in
both environments. Our contributions can be summarized as follows:

1. We design a model based on various state-of-the-art deep learning technologies for time-
series. Our method is able to process any types of time-series data, ranging from regular
to irregular and intermittent. However, the main novelty lies in processing irregular and
intermittent time-series, which has not been solved yet.

2. Our experimental results and visualization prove the efficacy of the proposed model.

2 RELATED WORK AND PRELIMINARIES

GANs are one of the most representative generative technology. Ever since the first introduction in its
seminal research paper, GANs have been adopted to main different domains. Recently, researchers
focused on their synthesis for time-series data. Therefore, there have been proposed several GANs
for time-series synthesis.

C-RNN-GAN (Mogren, 2016) has a regular GAN framework that can be applied to sequential data
by using LSTM in its generator and discriminator. Recurrent Conditional GAN (RCGAN (Esteban
et al., 2017)) took a similar approach except that its generator and discriminator take conditional input
for better synthesis. WaveNet (van den Oord et al., 2016) also generates time-series data from the
conditional probability of previous data by using the dilated casual convolution. WaveGAN (Donahue

2

Under review as a conference paper at ICLR 2022

Encoder Decoder

Discriminator

Invertible Generator

real
or
fake

 AE GAN Log-density Synthesis

Wiener process

Figure 3: The detailed architecture of our proposed method. Neural CDEs (or NCDEs) are a recent
breakthrough for processing time-series. GRU-ODEs are a continuous interpretation of gated recurrent
units (GRUs) based on NODEs. CTFPs are a flow-based concept to convert an input time-series
process into a target process. CTFPs are not a GAN-based concept but we integrate them into our
framework, considering the challenging nature of the irregular and intermittent time-series synthesis.

et al., 2019) has a similar approach with DCGAN (Radford et al., 2016), where its generator is based
on WaveNet. We can modify the teacher-forcing (T-Forcing (Graves, 2014)) and professor-forcing
(P-Forcing (Lamb et al., 2016)) models to generate time-series data from noise vectors, although they
are not GAN models, by using the forecasting characteristic of those models.

TimeGAN (Yoon et al., 2019) is yet another model for time-series synthesis. This model aims mainly
at synthesizing fake regular time-series samples. They proposed a framework where the adversarial
training of GANs and the supervised training of predicting xi+1 from xi, where xi and xi+1 mean
two multivariate time-series values at time ti and ti+1, respectively.

FourierFlow (FF (Alaa et al., 2021)) significantly enhances the applicability of the time-series
synthesis technology toward the complicated case where multiple signals with different frequencies
are mixed into time-series samples. Some other models assume that all signals have the same
frequency whereas FF does not. With conventional deep learning models, it is not straightforward
to process signals with different frequencies and therefore, they propose to transform time-series
samples into their frequency domain and synthesize. This approach shows high synthesis performance
for their purposes.

Stochastic differential equations (SDEs) are preferred to mathematically model temporal dynamics in
some special cases. Neural SDEs were proposed to learn SDEs with continuous time from data (Kidger
et al., 2021) and after that, the fitted SDEs can be used to synthesize temporal dynamics. Although
some methods tried to overcome the limitation, it is still unknown that it can be used for a wide
variety of time-series data (Kidger et al., 2021).

3 PROPOSED METHOD

We describe our detailed design. Since our irregular and intermittent time-series synthesis is a
challenging task, the proposed design is much more complicated than other baselines.

3.1 OVERALL WORKFLOW

We first describe the overall workflow in our model design, which consists of several different data
paths (and several different training methods based on the data paths) as follows:

1. Autoencoder Path: Given an irregular time-series sample {(ti,xreal
i)}Ni=0, where xreal

i is
a vector denoting values at time ti, the encoder produces a set of hidden vectors {hreal

i }Ni=0.
The decoder recovers a continuous path X̂real, which enhances the flexibility of our proposed
method. From the path X̂real, we sample {(ti, x̂real

i)}Ni=0. We train the encoder and the
decoder using the standard autoencoder (AE) loss to match xreal

i and x̂real
i for all i.

2. Adversarial Path: Given a set of noisy vectors {zi}Ni=0, our generator produces a set of
fake hidden vectors {hfake

i }Ni=0. The decoder recovers a fake continuous path X̂fake from

3

Under review as a conference paper at ICLR 2022

{hfake
i }Ni=0. We sample {(tj ,xfake

j)}Mj=0 from X̂fake and feed it into the discriminator.
Given a time domain [0, T], we randomly sample tj to construct the irregular time-series
sample. We train the generator, the decoder, and the discriminator using the standard
adversarial loss.

3. Log-density Path: Given a set of hidden vectors {hreal
i }Ni=0 for an irregular time-series

sample {(ti,xreal
i)}Ni=0, the inverse path of the generator reproduces a set of noisy vectors

{ẑi}Ni=0. We feed {ẑi}Ni=0 into its forward path again to reproduce {ĥreal
i }Ni=0, where

ĥreal
i = hreal

i for all i. During the forward pass, we calculate the negative log probability
of − log p(ĥreal

i) for all i with the change of variable theorem and minimize it for training.

Being inspired by Flow-Gan (Grover et al., 2018), we also combine the adversarial training and the
exact likelihood training. In particular, we note that the dimensionality of the hidden space of the
autoencoder is the same as that of the latent input space of the generator, i.e., dim(h) = dim(z). This
is needed for the exact likelihood training in the generator — the change of variable theorem requires
that the input and output sizes are the same to estimate the exact likelihood. In addition to it, we let
the autoencoder and the generator share the workload to synthesize fake time-series by combining
them into a single framework, i.e., the generator synthesizes fake hidden vectors and the decoder
reproduces human-readable fake time-series from them.

3.2 AUTOENCODER

Encoder General NCDEs, which are considered as a continuous analogue to recurrent neural
networks (RNNs), are defined as follows:

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(t); θf)dX(t) = h(ti) +

∫ ti+1

ti

f(h(t); θf)
dX(t)

dt
dt, (1)

where X(t) is a continuous path created from a raw discrete time-series sample {(ti,xreal
i)}Ni=0 by

an interpolation algorithm — we note that X(ti) = (ti,x
real
i) for all i, and for other non-observed

time-points the interpolation algorithm fills out values. Note that NCDEs keep reading the time-
derivative ofX(t), denoted Ẋ(t)

def
= dX(t)

dt . In our case, we collect hreal
i for all i, denoted {hreal

i }Ni=0,
as follows:

hreal
i+1 = hreal

i +

∫ ti+1

ti

f(h(t); θf)
dX(t)

dt
dt, (2)

where hreal
0 = FCdim(x)→dim(h)(x

real
0) and FCinput size→output size is a fully-connected layer with

specific input and output sizes. We refer to Appendix for the ODE function f definition.

Therefore, the input time-series {(ti,xreal
i)}Ni=0 is represented by a set of hidden vectors

{(ti,hreal
i)}Ni=0. Because NCDEs are a continuous analogue to RNNs, it shows the best fit to

processing irregular time-series (Kidger et al., 2020).

Decoder Our decoder, which reproduces a time-series from its hidden representations, is based on
GRU-ODEs (Brouwer et al., 2019) and is defined as follows:

d̄(ti+1) = d(ti) +

∫ ti+1

ti

g(d(t), t; θg)dt, (3)

d(ti+1) = GRU(hi+1, d̄(ti+1)), (4)
(ti+1, x̂i+1) = (ti+1, FCdim(d)→dim(x)(d(ti+1))), (5)

where d(t0) = FCdim(h)→dim(d)(h0) and hi means either the i-th real or fake hidden vector, i.e.,
hreal
i or hfake

i — recall that in Fig. 3, the decoder is involved in both the autoencoder and the
synthesis processes. x̂ means a reproduced copy of x. GRU-ODEs uses the technology called neural
ordinary differential equations (NODEs) to continuously interpret GRUs and we refer to Appendix
for the ODE function g definition.

In particular, the gated recurrent unit (GRU) at Eq. 4 is called as jump which is known to be effective
in processing time-series with NODEs (Brouwer et al., 2019; Jia & Benson, 2019). We train the
encoder-decoder using the standard reconstruction loss between xreal

i and x̂real
i for all ti in all

training time-series samples.

4

Under review as a conference paper at ICLR 2022

3.3 GENERATIVE ADVERSARIAL NETWORK

......

Figure 4: An example of our generation

Generator Whereas generators typically read a noisy
vector to generate a fake sample in standard GANs, our
generator reads a continuous path (or time-series) sam-
pled from a Wiener process to generate a fake time-series
sample — this generation concept is known as continuous
time flow processes (CTFPs (Deng et al., 2020)). Fig. 4
shows an example of our generation process. The input
to our generation process is a random path sampled from
a Wiener process, which is represented by a time-series
of latent vectors {(ti, zi)}Ni=0 in the path, and the output
is a path of hidden vectors which is also represented by a
time-series of hidden vectors {(ti,hfake

i)}Ni=0. Therefore,
our generator can be written as follows:

hfake
i = wi(1) = wi(0) +

∫ 1

0

r(wi(τ), ai(t), t; θr)dτ, (6)

where wi(0) = zi, ai(0) = ti. Here, τ means a virtual time variable of the integral problem, and ti
is a real physical time contained in a time-series sample {(ti,xreal

i)}Mi=0. We note that this design
corresponds to a NODE model augmented with ai(t). We refer to Appendix for the ODE function r
definition.

Owing to the invertible nature of NODEs, we can calculate the exact log-density of hreal
i , i.e., the

probability that hreal
i is generated by the generator, using the change of variable theorem and the

Hutchinson’s stochastic trace estimator as follows (Grathwohl et al., 2019; Deng et al., 2020):

ŵ(0) = hreal
i +

∫ 0

1

r(w(τ), ai(τ), t; θr)dτ, (7)

log Pr(ĥreal
i) = log Pr(ŵ(0)) +

∫ 1

0

tr
(∂r(w(τ), ai(τ), t; θr)

∂w(τ)

)
dτ, (8)

where ŵ(0) means ẑreali in Fig. 3. ĥreal
i means a reproduced copy of hreal

i by our generator. Eq. 7
corresponds to “CTFP−1”, and Eqs. 6 and 8 to “CTFP” in Fig. 3. We note that in Eq. 7, the integral
time is reversed to solve the reverse-mode integral problem.

Therefore, we minimize the negative log-density, denoted − log Pr(ĥreal
i), for each ti, and our

generator is trained by the two different training paradigms: i) the adversarial training against the
discriminator, and ii) the maximum likelihood estimator (MLE) training with the log-density.

Discriminator We design our discriminator based on the GRU-ODE technology as follows:

c̄(ti+1) = c(ti) +

∫ ti+1

ti

q(c(t), t; θq)dt, (9)

c(ti+1) = GRU(xi+1, c̄(ti+1)), (10)

where c(t0) = FCdim(x)→dim(c)(x0), and xi means the i-th time-series value, i.e., xreal
i or xfake

i .
The ODE function q has the same architecture as g but with its own parameters θq. After that, we
calculate the real or fake classification y = σ(FCdim(c)→2(c(tN))), where σ is a softmax activation.

3.4 TRAINING METHOD

We use the mean squared reconstruction loss, i.e., the mean of ‖xreal
i − x̂real

i ‖22 for all ti of all
training samples, to train the encoder-decoder architecture. Then, we use the standard GAN loss to
train the generator and the discriminator. In our preliminary experiments, we found that the original
GAN loss is suitable for our task. Instead of other variations, such as WGAN-GP (Gulrajani et al.,
2017), therefore, we use the standard GAN loss. We train our model in the following sequence:

1. We pre-train the encoder-decoder networks the reconstruction loss for KAE iterations.

5

Under review as a conference paper at ICLR 2022

2. After the above pre-training step, we start to jointly train all networks in the following
sequence for KJOINT iterations: i) training the encoder-decoder networks with the re-
construction loss, ii) training the discriminator-generator networks with the GAN loss, iii)
training the decoder to improve the discriminator’s classification output with the discrimina-
tor loss and iv) the generator with the MLE loss every PMLE iteration. We found that too
frequent MLE training incurs mode-collapse so we use it every PMLE iteration.

In particular, the 2-ii step to train the decoder to help the discriminator out is one additional point
where the autoencoder and the GAN are integrated into a single framework. In other words, the
generator should deceive both the decoder and the discriminator.

The well-posedness1 of NCDEs and GRU-ODEs was already proved in (Lyons et al., 2007, Theorem
1.3) and (Brouwer et al., 2019) under the mild condition of the Lipschitz continuity. We show that
our NCDE layers are also well-posed problems. Almost all activations, such as ReLU, Leaky ReLU,
SoftPlus, Tanh, Sigmoid, ArcTan, and Softsign, have a Lipschitz constant of 1. Other common
neural network layers, such as dropout, batch normalization and other pooling methods, have explicit
Lipschitz constant values. Therefore, the Lipschitz continuity of ODE/CDE functions can be fulfilled
in our case. Therefore, it is a well-posed training problem. Therefore, our training algorithm solves a
well-posed problem so its training process is stable in practice.

4 EXPERIMENTAL EVALUATIONS

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.8.10,
PYTORCH 1.8.1, TENSORFLOW 2.5.0, CUDA 11.2, and NVIDIA Driver 417.22, i9 CPU, and
NVIDIA RTX 3090. The mean and variance of 10 different seeds are reported for model evaluation.

4.1 EXPERIMENTAL ENVIRONMENTS

Datasets We conduct experiments with 2 simulated and 2 real-world datasets. Sines has 5 fea-
tures where each feature is created with different frequencies and phases independently. For each
feature, i ∈ {1, ..., 5}, xi(t) = sin(2πfit+ θi), wherefi ∼ U [0, 1] and θi ∼ U [−π, π]. MuJoCo is
multivariate physics simulation time-series data with 14 features. Stocks is the Google stock price
data from 2004 to 2019. Each observation represents one day and has 6 features. Energy is a UCI
appliance energy prediction dataset with 28 values. To create the challenging irregular and intermittent
environments, 30, 50, 70% of observations from each time-series sample {(ti,xreal

i)}Ni=0 is randomly
dropped — in other words, N decreases to 0.7N, 0.5N, 0.3N , respectively. Therefore, we conduct
experiments with both the regular and the irregular environments.

Baselines We consider the following baselines for the regular time-series experiments: TimeGAN,
RCGAN, C-RNN-GAN, WaveGAN, WaveNet, T-Forcing, and P-Forcing. For the irregular experi-
ments, we exclude WaveGAN and WaveNet, which cannot handle irregular time-series, and redesign
other baselines by replacing their GRU with GRU-Decay (GRU-D). TimeGAN-D, RCGAN-D,
C-RNN-GAN-D, T-Forcing-D, and P-Forcing-D are those modified with GRU-D and can handle
irregular time-series.

Evaluation Metrics For quantitative evaluation of synthesized data, it is evaluated with the discrim-
inative score and the predictive score used in TimeGAN (Yoon et al., 2019). The discriminative score
measures the similarity between the original data and the synthesized data. After learning a model that
classifies the original data and the synthesized data using a neural network, it is tested whether the
original data and the synthesized data are classified well. The discriminative score is |Accuracy-0.5|,
and if the score is low, classification is difficult, so the original data and the synthesized data are
decided to be similar. The predictive score measures the effectiveness of the synthesized data using
the train-synthesis-and-test-real (TSTR) method. After training a model that predicts the next step
using the synthesized data, the mean absolute error (MAE) is calculated between the predicted values
and the ground-truth values in test data. If the MAE is small, the model trained using the synthesized
data is decoded to be similar to the original data. For qualitative evaluation, the synthetic data is

1A well-posed problem means i) its solution uniquely exists, and ii) its solution continuously changes as
input data changes.

6

Under review as a conference paper at ICLR 2022

Table 1: Regular time-series

Method Sines Stocks Energy MuJoCo

D
is

cr
im

in
at

iv
e

Sc
or

e IIT-GAN .012±.014 .077±.031 .221±.068 .245±.029
TimeGAN .011±.008 .102±.021 .236±.012 .409±.028
RCGAN .022±.008 .196±.027 .336±.017 .436±.012

C-RNN-GAN .229±.040 .399±.028 .499±.001 .412±.095
T-Forcing .495±.001 .226±.035 .483±.004 .499±.000
P-Forcing .430±.227 .257±.026 .412±.006 .500±.000
WaveNet .158±.011 .232±.028 .397±.010 .385±.025

WaveGAN .277±.013 .217±.022 .363±.012 .357±.017

Pr
ed

ic
tiv

e
Sc

or
e

IIT-GAN .097±.000 .040±.000 .312±.002 .055±.000
TimeGAN .093±.019 .038±.001 .273±.004 .082±.006
RCGAN .097±.001 .040±.001 .292±.005 .081±.003

C-RNN-GAN .127±.004 .038±.000 .483±.005 .055±.004
T-Forcing .150±.022 .038±.001 .315±.005 .142±.014
P-Forcing .116±.004 .043±.001 .303±.006 .102±.013
WaveNet .117±.008 .042±.001 .311±.005 .333±.004

WaveGAN .134±.013 .041±.001 .307±.007 .324±.006
Original .094±.001 .036±.001 .250±.003 .031±.003

Table 2: Irregular time-series (30% dropped)

Method Sines Stocks Energy MuJoCo

D
is

c.
Sc

or
e

IIT-GAN .363±.063 .251±.097 .333±.063 .249±.035
TimeGAN-D .496±.008 .411±.040 .479±.010 .463±.025
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .408±.087 .409±.051 .347±.046 .494±.004
P-Forcing-D .500±.000 .480±.060 .491±.020 .500±.000

Pr
ed

ic
tiv

e
Sc

or
e IIT-GAN .099±.004 .021±.003 .066±.001 .048±.001

TimeGAN-D .192±.082 .105±.053 .248±.024 .098±.006
RCGAN-D .388±.113 .523±.020 .409±.020 .361±.073

C-RNN-GAN-D .664±.001 .345±.002 .440±.000 .457±.001
T-Forcing-D .100±.002 .027±.002 .090±.001 .100±.001
P-Forcing-D .154±.004 .079±.008 .147±.001 .173±.002

Original .071±..004 .011±.002 .045±.001 .041±.002

−10 0 10

−10

0

10

Original
IIT-GAN

−10 0 10

−10

0

10

Original
TimeGAN

−10 0 10
−10

0

10

Original
IIT-GAN

−10 0 10
−10

0

10

Original
TimeGAN

0.0 0.5 1.0
Data Value

0

1

2

3

4

5

Da
ta

 D
en

sit
y

Es
tim

at
e Original

IIT-GAN

0.0 0.5 1.0
Data Value

0

1

2

3

4

5

Da
ta

 D
en

sit
y

Es
tim

at
e Original

TimeGAN

(a) Stocks

0.2 0.4 0.6
Data Value

0
2
4
6
8

10
12

Da
ta

 D
en

sit
y

Es
tim

at
e Original

IIT-GAN

0.2 0.4 0.6
Data Value

0
2
4
6
8

10
12

Da
ta

 D
en

sit
y

Es
tim

at
e Original

TimeGAN

(b) Energy

Figure 5: Visualizations and distributions of the regular time-series synthesized by IIT-GAN and
TimeGAN. Other visualizations are in Appendix.

visualized with the original data. There are two methods for visualization. One is to project original
and synthetic data in a two dimensional space using t-SNE (Van der Maaten & Hinton, 2008). The
other one is the kernel density estimation to draw data distributions.

4.2 EXPERIMENTAL RESULTS

Regular Time-series Synthesis In Table 1, we list the results of the regular time-series synthesis.
IIT-GAN shows better performance on most cases than TimeGAN, the previous state-of-the-art
model. As shown in the 1st row in Fig. 5, IIT-GAN covers original data areas better than TimeGAN.
In addition, the 2nd row in Fig. 5 is the distributions of the fake data generated by IIT-GAN and
TimeGAN. The synthesized data’s distributions from IIT-GAN are more similar to those of the
original data than TimeGAN, which shows the efficacy of the explicit likelihood training of IIT-GAN
against the implicit likelihood training of TimeGAN.

Irregular and Intermittent Time-series Synthesis In Tables 2, 3, and 4, we list the results of the
irregular and intermittent time-series synthesis. IIT-GAN shows better discriminative and predictive
scores than other baselines in all cases. In Table 2, where we drop random 30% of observations
from each time-series sample, IIT-GAN shows the best outcomes, outperforming TimeGAN by large
margins. In Table 3 (50% dropped), many baselines do not show reasonable synthesis quality, e.g.,
TimeGAN-D, RCGAN-D, and C-RNN-GAN-D have a discriminative score of 0.5. Surprisingly,
T-Forcing-D and P-Forcing-D work well in this case. However, our model clearly shows the best
performance in all datasets. Finally, Table 4 (70% dropped) shows the results of the most challenging

7

Under review as a conference paper at ICLR 2022

Table 3: Irregular time-series (50% dropped)

Method Sines Stocks Energy MuJoCo
D

is
c.

Sc
or

e
IIT-GAN .372±.128 .265±.073 .317±.010 .270±.016

TimeGAN-D .500±.000 .477±.021 .473±.015 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .430±.101 .407±.034 .376±.046 .498±.001
P-Forcing-D .499±.000 .500±.000 .500±.000 .500±.000

Pr
ed

ic
tiv

e
Sc

or
e IIT-GAN .101±.010 .018±.002 .064±.001 .056±.003

TimeGAN-D .169±.074 .254± .047 .339±.029 .375±.011
RCGAN-D .519±.046 .333±.044 .250±.010 .314±.023

C-RNN-GAN-D .754±.000 .273±.000 .438±.000 .479±.000
T-Forcing-D .104±.001 .038±.003 .090±.000 .113±.001
P-Forcing-D .190±.002 .089±.010 .198±.005 .207±.008

Original .071±.004 .011±.002 .045±.001 .041±.002

Table 4: Irregular time-series (70% dropped)

Method Sines Stocks Energy MuJoCo

D
is

c.
Sc

or
e

IIT-GAN .278±.022 .230±.053 .325±.047 .275±.023
TimeGAN-D .498±.006 .485±.022 .500±.000 .492±.009
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .436±.067 .404±.068 .336±.032 .493±.005
P-Forcing-D .500±.000 .449±.150 .494±.011 .499±.000

Pr
ed

ic
tiv

e
Sc

or
e IIT-GAN .088±.005 .020±.005 .076±.001 .051±.001

TimeGAN-D .752±.001 .228±.000 .443±.000 .372±.089
RCGAN-D .404±.034 .441±.045 .349±.027 .420±.056

C-RNN-GAN-D .632±.001 .281±.019 .436±.000 .479±.001
T-Forcing-D .102±.001 .031±.002 .091±.000 .114±.003
P-Forcing-D .278±.045 .107±.009 .193±.006 .191±.005

Original .071±..004 .011±.002 .045±.001 .041±.002

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15
Original
T-Forcing-D

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15
Original
T-Forcing-D

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15
Original
T-Forcing-D

(a) Stocks

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15

Original
T-Forcing-D

(b) Energy

Figure 6: Visualizations of the irregular time-series synthesized by IIT-GAN and T-Forcing-D (the 1st

row is for a dropping rate of 30%, and the 2nd row for a rate of 50%)

experiments in our paper. All baselines do not work well because of the high dropping rate. T-Forcing-
D and P-Forcing-D, which showed reasonable performance with a dropping rate no larger than 50%,
do not work well in this case. This shows that they are vulnerable to highly irregular and intermittent
time-series data. Other GAN-based baselines are vulnerable as well. Our method greatly outperforms
all existing methods, e.g., a predictive score of 0.051 by IIT-GAN vs. 0.114 by T-Forcing-D, the best
performing baseline, for MuJoCo. Figs. 6 and 7 visually compare our method and the best performing
baseline in each experiment.

Table 5: Ablation study. See Appendix E for other
ablation studies.

Method (Regular) Sines Stocks Energy MuJoCo

D
is

c. IIT-GAN .012 .077 .221 .245
w/o Eq. 8 .023 .159 .356 .278

w/o pre-training .046 .175 .312 .290

Pr
ed

. IIT-GAN .097 .040 .312 .055
w/o Eq. 8 .097 .043 .315 .057

w/o pre-training .096 .038 .299 .052

Ablation & Sensitivity Analyses IIT-
GAN is characterized by the MLE training
with the negative log-density in Eq. 8, and
the pre-training step of the encoder and de-
coder. Table 5 shows the results of the mod-
ified IIT-GANs with each training mecha-
nism removed, respectively. The model us-
ing the negative log-density training shows
better performance than the model not using
it. That is, the MLE training makes the synthetic data more like the real data. When the pre-trained
autoencoder model is not used, the predictive score is better than the existing IIT-GAN. However, the
discriminative score is the worst. The hyperparameters that significantly affect model performance
are the absolute tolerance (atol), the relative tolerance (rtol), and the period of the MLE training
(PMLE) for the generator. The atol and rtol determine the error control performed by the ODE solvers
in CTFPs. We test with various options of the hyperparameters in Fig 8. We found that there is an
appropriate error tolerance (atol, rtol) depending on the data input size. For example, datasets with
small input sizes (Sines, Stocks) have good discriminator scores with (1e-2, 1e-3), and datasets with
large input sizes (Energy, MuJoCo) show good results with (1e-3, 1e-2).

8

Under review as a conference paper at ICLR 2022

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15
Original
T-Forcing-D

−15 −5 5 15
−15

−5

5

15
Original
IIT-GAN

−15 −5 5 15
−15

−5

5

15
Original
T-Forcing-D

0.0 0.5 1.0 1.5
Data Value

0

1

2

3

Da
ta

 D
en

sit
y

Es
tim

at
e Original

IIT-GAN

0.0 0.5 1.0 1.5
Data Value

0

1

2

3

Da
ta

 D
en

sit
y

Es
tim

at
e Original

T-Forcing-D

(a) Stocks

0.2 0.4 0.6 0.8
Data Value

0
2
4
6
8

10
12
14

Da
ta

 D
en

sit
y

Es
tim

at
e Original

IIT-GAN

0.2 0.4 0.6 0.8
Data Value

0
2
4
6
8

10
12
14

Da
ta

 D
en

sit
y

Es
tim

at
e

Original
T-Forcing-D

(b) Energy

Figure 7: Visualizations of the irregular time-series (70% dropped) synthesized by IIT-GAN (the 1st

row) and T-Forcing-D (the 2nd row)

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.05

0.10

0.15

0.20 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.12

0.24

0.36 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44

0.55 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines
atol rtol PMLE

0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks
atol rtol PMLE

0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy
atol rtol PMLE

0.00

0.11

0.22

0.33

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 8: The sensitivity of the discriminative score of regluar time-series (the 1st row) and 30%
dropped irregular time-series (the 2nd row) w.r.t. some key hyperparameters

5 CONCLUSIONS & FUTURE WORK

The dominant topic in time-series synthesis is mostly about learning and synthesizing for time-series
without missing values, i.e., regular time-series synthesis. However, time-series data in real-world
applications is frequently irregular and intermittent, i.e., there are many missing observations and
time-series does not have specifically known frequencies. Therefore, we presented how to learn and
synthesize for irregular and intermittent time-series data. Our proposed method, IIT-GAN, is based
on various advanced deep learning technologies, ranging from GANs to NOCDEs, NCDEs, and so
forth. We successfully designed our method after carefully customizing those technologies toward
the challenging goal of synthesizing irregular and intermittent time-series. Our experiments, which
incorporate various synthetic and real-world datasets, prove the efficacy of the proposed method. In
particular, only our method shows reasonable synthesis capabilities when the degree of irregularity
and intermittence is high, i.e., a dropping rate of 70% in our experiments.

One important topic in time-series that has not been solved is synthesizing very long time-series, e.g.,
a time-series length larger than 20,000. Recently, a breakthrough has been proposed for very long
time-series classification and forecasting (Morrill et al., 2021). We believe that in the near future, this
challenging problem can be solved.

9

Under review as a conference paper at ICLR 2022

6 ETHICS STATEMENT

Fake data synthesis can be used for several different purposes. One can use our method to protect the
privacy of the original data by sharing the synthesized fake data with partners. Others can use our
method to augment their insufficient training data. Likewise, we consider that our method has more
benefits than risks.

7 REPRODUCIBILITY STATEMENT

We include detailed reproducibility information in Appendix. In particular, we clarify the neural
network architectures we used and their best hyperparameter sets for all experiments in our paper.
We also submit our source codes and data with appropriate readme descriptions to easily reproduce
some selected results due to the 100MB limitation of the supplementary zip file.

REFERENCES

Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with
fourier flows. In ICLR, 2021.

Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Quan Z. Sheng. Stg2seq: Spatial-temporal
graph to sequence model for multi-step passenger demand forecasting. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 1981–1987,
7 2019. doi: 10.24963/ijcai.2019/274.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS. 2018.

Ruizhi Deng, Bo Chang, Marcus A. Brubaker, Greg Mori, and Andreas M. Lehrmann. Modeling
continuous stochastic processes with dynamic normalizing flows. In NeurIPS, 2020.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis, 2019.

Cristóbal Esteban, L. Stephanie Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans, 2017.

Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence,
24(1):164–181, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. 2019.

Alex Graves. Generating sequences with recurrent neural networks, 2014.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood and
adversarial learning in generative models. In AAAI, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33(01):922–929, Jul. 2019. doi: 10.1609/aaai.v33i01.3301922.

Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong. Lsgcn: Long short-term
traffic prediction with graph convolutional networks. In IJCAI, pp. 2355–2361, 2020.

10

Under review as a conference paper at ICLR 2022

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In NeurIPS, 2019.

Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry J. Lyons. Deep
signature transforms. In NeurIPS, 2019.

Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural controlled differential
equations for irregular time series. In NeurIPS, 2020.

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry J. Lyons. Neural sdes as
infinite-dimensional gans. CoRR, abs/2102.03657, 2021.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio.
Professor forcing: A new algorithm for training recurrent networks, 2016.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations (ICLR

’18), 2018.

Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths.
Springer, 2007.

Dong Ma, Guohao Lan, Mahbub Hassan, Wen Hu, and Sajal Das. Sensing, computing, and com-
munications for energy harvesting iots: A survey. IEEE Communications Surveys Tutorials, 22:
1222–1250, 2020.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training, 2016.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR,
2021.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks, 2016.

Gregory C Reinsel. Elements of multivariate time series analysis. Springer Science & Business
Media, 2003.

Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
Deep learning-based weather prediction: A survey. Big Data Research, 23, 2021.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of sepsis
from clinical data: the physionet/computing in cardiology challenge 2019. In 2019 Computing in
Cardiology (CinC), pp. Page 1–Page 4, 2019. doi: 10.23919/CinC49843.2019.9005736.

Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data forecasting. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(01):914–921, Apr. 2020. doi:
10.1609/aaai.v34i01.5438.

Selim Furkan Tekin, Oguzhan Karaahmetoglu, Fatih Ilhan, Ismail Balaban, and Suleyman Serdar
Kozat. Spatio-temporal weather forecasting and attention mechanism on convolutional lstms. arXiv
preprint, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 1907–1913, 7 2019.

11

Under review as a conference paper at ICLR 2022

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In NeurIPS, 2019.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3634–3640, 7 2018. doi: 10.24963/ijcai.
2018/505.

12

Under review as a conference paper at ICLR 2022

A DATASETS

We use 2 simulated (Sines, MuJoCo) and 2 real-world (Stocks, Energy) datasets. Table. 6 shows the
statistics of the datasets. All datasets are available online via the link. We note that in some of our
datasets, the time-series length N can be varied from one time-series sample to another. However,
our framework has no problems in dealing with those varying lengths.

Table 6: Dataset Statistics

Dataset # of Samples dim(x) Average of N Link
Sines 10,000 5 24 time-points -
Stocks 3,773 6 24 days Link
Energy 19,711 28 24 hours Link

MuJoCo 4,620 14 24 time-points Link

B ODE/CDE FUNCTIONS IN IIT-GAN

B.1 ENCODER

Our encoder based on NCDEs has the following CDE function f .

Table 7: The architecture of the network f in the encoder

Layer Design Input Size Output Size
1 ReLU(Linear) N × dim(x) N × 4 dim(x)
2 ReLU(Linear) N × 4 dim(x) N × 4 dim(x)
3 ReLU(Linear) N × 4 dim(x) N × 4 dim(x)
4 Tanh(Linear) N × 4 dim(x) N × dim(x)

B.2 DECODER, DISCRIMINATOR

Our decoder and discriminator based on GRU-ODEs have the following ODE functions. They have
the same architecture but their parameters are separated.

Table 8: The architecture of the network g in the decoder

Layer Design Input Size Output Size

1

rt =Sigmoid(Linear) N × dim(h) N × dim(h)
zt =Sigmoid(Linear) N × dim(h) N × dim(h)
ut =Tanh(Linear) N × dim(h) N × dim(h)

dh = (1− zt) ∗ (ut − ht) N × dim(h) N × dim(h)

Table 9: The architecture of the network q in the discriminator

Layer Design Input Size Output Size

1

rt =Sigmoid(Linear) N × dim(x) N × dim(x)
zt =Sigmoid(Linear) N × dim(x) N × dim(x)
ut =Tanh(Linear) N × dim(x) N × dim(x)

dh = (1− zt) ∗ (ut − ht) N × dim(x) N × dim(x)

B.3 GENERATOR

Our generator has the following ODE function f in Table 10.

13

https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://github.com/deepmind/dm_control.

Under review as a conference paper at ICLR 2022

Table 10: The architecture of the network r in the generator

Layer Design Input Size Output Size
1 Softplus(Linear) N × dim(h + 1) N × dim(h)
2 Softplus(Linear) N × dim(h + 1) N × dim(h)
3 Softplus(Linear) N × dim(h + 1) N × dim(h)

(a) How to calculate the predictive
score for the regular time-series syn-
thesis in TimeGAN

(b) How to calculate the predictive
score for the irregular and intermittent
time-series in this paper

Figure 9: Predictive task according to the data type

C BASELINES

For the regular time-series baseline models, i.e., TimeGAN, RCGAN, C-RNN-GAN, T-forcing, and
P-forcing, we use the 3-layer GRU-based neural network architecture with a hidden size that is 4
times larger than the input size. We use or modify the following accessible source codes to run.

• TimeGAN : https://github.com/jsyoon0823/TimeGAN
• RCGAN : https://github.com/3778/Ward2ICU
• C-RNN-GAN : https://github.com/olofmogren/c-rnn-gan
• T-forcing, P-forcing : https://github.com/mojesty/professor forcing
• GRU-D : https://github.com/zhiyongc/GRU-D

Because ordinary GRUs can not be applied to irregular time-series, we replace the first layer GRU to
GRU-D in all those baselines so that the redesigned baseline models, i.e., TimeGAN-D, RCGAN-D,
C-RNN-GAN-D, T-forcing-D and P-forcing-D, can process irregular time-series data.

D EVALUATION METRICS

For fair comparison, we reuse the experimental environments of TimeGAN for the discriminative
score. However, we found that TimeGAN’s predictive task is rather straightforward as shown in
Fig. 9 (a). It predicts only one element in yellow from other four past elements in blue. Since only
one element is used for evaluation, we found that the original predictive score of TimeGAN can be
biased. Instead, our predictive task predicts the entire vector, as shown in Fig. 9 (b), and therefore,
our predictive score is measured under much more challenging environments. We use this more
challenging predictive score definition for our irregular and intermittent time-series synthesis. We
stick to the TimeGAN’s definition for the regular time-series experiment for fair comparison but use
our challenging predictive score metric for all other experiments.

14

Under review as a conference paper at ICLR 2022

Table 11: Ablation study of model architecture in Sines

Sines IIT-GAN (w.o. AE) IIT-GAN (Flow only) IIT-GAN (AE only) IIT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .384 .499 .383 .478 .323 .363 .099
50% dropped .500 .523 .499 .445 .477 .409 .372 .101
70% dropped .500 .526 .497 .426 .476 .347 .278 .088

Table 12: Ablation study of model architecture in Stocks

Stocks IIT-GAN (w.o. AE) IIT-GAN (Flow only) IIT-GAN (AE only) IIT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .498 .207 .492 .140 .493 .133 .251 .021
50% dropped .498 .242 .491 .128 .492 .125 .265 .018
70% dropped .498 .224 .490 .128 .492 .122 .230 .020

Table 13: Ablation study of model architecture in Energy

Energy IIT-GAN (w.o. AE) IIT-GAN (Flow only) IIT-GAN (AE only) IIT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .305 .500 .179 .495 .162 .333 .066
50% dropped .500 .365 .499 .160 .499 .135 .317 .064
70% dropped .499 .376 .499 .184 .499 .131 .325 .076

Table 14: Ablation study of model architecture in MuJoCo

MuJoCo IIT-GAN (w.o. AE) IIT-GAN (Flow only) IIT-GAN (AE only) IIT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .233 .500 .198 .495 .162 .249 .048
50% dropped .499 .331 .499 .196 .495 .162 .270 .056
70% dropped .499 .326 .499 .200 .496 .146 .275 .051

E ABLATION STUDIES

We introduce our additional ablation study. We modify our proposed IIT-GAN model by removing its
sub-parts to create simpler ablation models. This ablation study shows that the ablation models of
IIT-GAN does not perform as well as its full model if any parts are missing.

In the first ablation model, we remove the autoencoder and perform the adversarial training only with
our generator and discriminator, denoted IIT-GAN (w.o. AE). In other words, our generation directly
outputs raw observations (instead of hidden vectors), which will be fed into our GRU-ODE-based
discriminator.

The second ablation model, denoted IIT-GAN (Flow only), has only our CTFP-based generator and
we train it with the maximum likelihood training — we note that this construction is the same as
training flow-based models. This model is equivalent to the original CTFP model (Deng et al., 2020).

The third ablation model has only the autoencoder, denoted IIT-GAN (AE only). However, we
convert it to a variational autoencoder (VAE) model. In the full IIT-GAN model, the encoder pro-
duces a set of hidden vectors {(ti,hreal

i)}Ni=0. In this ablation model, however, this is changed
to{(ti,N (hreal

i ,1))}Ni=0, where N (hreal
i ,1) means the unit Gaussian centered at hreal

i . The de-
coder is the same as its full model. We use the variational training for this model.

We summarize their experimental results in Tables 11 to 14. In Table 11, we summarize the results
for Sines and the full model greatly outperforms all the ablation models. Among the ablation models,
IIT-GAN (AE only) shows the best performance. Similar patterns are observed in other datasets as
well.

In Tables 15 to 17, we report the missing ablation study table in the main paper. We reported the
ablation study with regular time-series only in the main paper and now report additional results with
irregular time-series.

15

Under review as a conference paper at ICLR 2022

Table 15: Irregular time-series (30% dropped) ablation study

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

IIT-GAN .363 .251 .333 .249
w/o Eq. 8 .498 .266 .392 .303

w/o pre-training .499 .305 .345 .241
Predictive

Score
(Lower the Better)

IIT-GAN .099 .021 .066 .048
w/o Eq. 8 .241 .015 .064 .061

w/o pre-training .273 .022 .061 .049

Table 16: Irregular time-series (50% dropped) ablation study

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

IIT-GAN .372 .265 .317 .270
w/o Eq. 8 .500 .323 .381 .274

w/o pre-training .500 .209 .325 .270
Predictive

Score
(Lower the Better)

IIT-GAN .101 .018 .064 .056
w/o Eq. 8 .277 .018 .063 .051

w/o pre-training .103 .017 .071 .051

Table 17: Irregular time-series (70% dropped) ablation study

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

IIT-GAN .278 .230 .325 .275
w/o Eq. 8 .319 .274 .382 .290

w/o pre-training .408 .311 .345 .249
Predictive

Score
(Lower the Better)

IIT-GAN .088 .020 .076 .052
w/o Eq. 8 .082 .025 .066 .051

w/o pre-training .104 .020 .085 .049

16

Under review as a conference paper at ICLR 2022

F SENSITIVITY ANALYSES

We provide performance (discriminative score and predictive score) depending on hyperparameters
(i.e. atol (absolute tolerance), rtol (relative tolerance) and PMLE (the period of the MLE training for
the generator.)) for each different datasets.

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.05

0.10

0.15

0.20 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.12

0.24

0.36 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00
0.02
0.04
0.06
0.08
0.10 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 10: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for regular data

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44

0.55 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.21

0.42

0.63

0.84
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

0.03

0.04

0.05 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 11: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 30%)

G THE BEST HYPERPARAMTER SET FOR IIT-GAN

• ‘atol’ means absolute tolerance for the generator.
• ‘rtol’ means relative tolerance for the generator.
• ‘PMLE’means the period of the negative log-density training for the generator.
• ‘KAE’ means the autoencoder’s pre-training iteration numbers.
• ‘d-layer’ means the number of discriminator’s GRU layers.
• ‘r-acti’ means the last activation function of the decoder.
• ‘reg-recon’ means the reconstruction regularization for the generator.
• ‘reg-kinetic’ means the kinetic-energy regularization for the generator.
• ‘reg-jacobian’ means the Jacobian-norm2 regularization for the generator.
• ‘reg-direct’ means the directional-penalty regularization for the generator.

17

Under review as a conference paper at ICLR 2022

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44

0.55 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.15

0.30

0.45

0.60

0.75 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00
0.02
0.04
0.06
0.08
0.10

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 12: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 50%)

atol rtol PMLE
0.00

0.15

0.30

0.45 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.12

0.24

0.36 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.04

0.08

0.12

0.16
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

0.03 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00

0.02

0.04

0.06 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 13: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 70%)

Table 18: The best hyperparameters

method Data atol rtol PMLE KAE d-layer r-acti reg-recon reg-kinetic reg-jacobian reg-direct

IIT-GAN
(Regular)

Sines 1e-2 1e-3 1 5000 1 softplus 0.01 0.05 0.1 0.1
Stocks 1e-2 1e-3 2 10000 1 softplue 0.01 0.01 0.05 0.01
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.05 0.01 0.01

IIT-GAN
(Dropped 30%)

Sines 1e-2 1e-3 2 5000 1 softplus 0.01 0.05 0.01 0.01
Stocks 1e-2 1e-3 2 10000 1 softplue 0.01 None None 0.05
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

IIT-GAN
(Dropped 50%)

Sines 1e-2 1e-3 2 5000 2 softplus 0.01 0.05 0.01 0.01
Stocks 1e-3 1e-3 2 10000 1 softplue None 0.05 0.01 0.05
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 1500 2 sigmoid 0.1 0.1 0.01 0.01

IIT-GAN
(Dropped 70%)

Sines 1e-2 1e-3 2 5000 1 softplus 0.01 0.05 0.01 0.01
Stocks 1e-2 1e-3 1 10000 1 softplue None 0.05 0.01 0.05
Energy 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

18

Under review as a conference paper at ICLR 2022

Table 19: Comparison of model size and training time

Sines Stocks Energy MuJoCo
Model IIT-GAN TimeGAN IIT-GAN TimeGAN IIT-GAN TimeGAN IIT-GAN TimeGAN

Parameter 41,913 34,026 41,776 48,775 57,104 1,043,179 47,346 264,447
Memory (MB) 1,675 1,419 1,653 1,423 1,839 1,611 1,655 1,546

Training Time (HH:MM) 10:12 2:56 12:20 2:59 10:39 3:37 13:12 3:10

H MODEL SIZE & TRAINING TIME COMPARISON

In Table 19, we report the model size and training time of our method and TimeGAN, one of the best
performing baseline. As shown, our model has much smaller numbers of parameters than TimeGAN.
However, it take much longer time to train our model than TimeGAN. This is mainly because we need
to solve various differential equations, which is not needed for TimeGAN. The memory requirements
are more or less the same in both models. Therefore, these exist pros and cons for our method in
comparison with the state-of-the-art baseline.

19

Under review as a conference paper at ICLR 2022

I VISUALIZATIONS WITH T-SNE AND DATA DISTRIBUTION

We introduce additional visualization outcomes in Figs. 14 to 21.

(a) 30% (b) 50% (c) 70%

Figure 14: t-SNE visualization of recovered irregular Sines data (the 1st column is for a dropping rate
of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

20

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 15: t-SNE visualization of recovered irregular Stocks data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

21

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 16: t-SNE visualization of recovered irregular Energy data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

22

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 17: t-SNE visualization of recovered irregular MuJoCo data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

23

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 18: Distributions of the Sines data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

24

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 19: Distributions of the Stocks data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

25

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 20: Distributions of the Energy data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

26

Under review as a conference paper at ICLR 2022

(a) 30% (b) 50% (c) 70%

Figure 21: Distributions of the MuJoCo data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

27

	Introduction
	Related Work and Preliminaries
	Proposed Method
	Overall Workflow
	Autoencoder
	Generative Adversarial Network
	Training Method

	Experimental Evaluations
	Experimental Environments
	Experimental Results

	Conclusions & Future Work
	Ethics Statement
	Reproducibility Statement
	Datasets
	ODE/CDE Functions in IIT-GAN
	Encoder
	Decoder, Discriminator
	Generator

	Baselines
	Evaluation Metrics
	Ablation Studies
	Sensitivity Analyses
	The Best Hyperparamter Set for IIT-GAN
	Model Size & Training Time Comparison
	Visualizations with t-SNE and data distribution

