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ABSTRACT

Recently, various methods have been proposed to solve Image Restoration (IR)
tasks using a pre-trained diffusion models leading to state-of-the-art performance.
A common characteristic among these approaches is that they alter the diffusion
sampling process in order to satisfy the consistency with the corrupted input image.
However, this choice has recently been shown to be sub-optimal and may cause
the generated image to deviate from the data manifold. We propose to address this
limitation through a novel IR method that not only leverages the power of diffusion
but also guarantees that the sample generation path always lies on the data manifold.
One choice that satisfies this requirement is not to modify the reverse sampling ,
i.e., not to alter all the intermediate latents, once an initial noise is sampled. This
is ultimately equivalent to casting the IR task as an optimization problem in the
space of the diffusion input noise. To mitigate the substantial computational cost
associated with inverting a fully unrolled diffusion model, we leverage the inherent
capability of these models to skip ahead in the forward diffusion process using
arbitrary large time steps. We experimentally validate our method on several image
restoration tasks. Our method SHRED achieves state of the art results on multiple
zero-shot IR benchmarks especially in terms of image quality quantified using FID.

1 INTRODUCTION

Recent advances in the field of generative learning due to diffusion models (Ho et al., 2020; Song &
Ermon, 2019) and better architecture choices (Karras et al., 2021; Zhang et al., 2022) have led to
models capable of generating detailed high-resolution images. In addition to their data generation
capabilities, these models also provide a smooth representation of the learned data distribution, which
can be used for various applications, such as image restoration. Indeed, different approaches (Kawar
et al., 2022; Lugmayr et al., 2022; Wang et al., 2023) have emerged to solve inverse problems using
pretrained diffusion models. Those approaches start from a random noise vector as the diffusion
input and recursively alter the diffusion sampling process in order to guarantee the data fidelity. After
each diffusion reverse step, a projection-based measurement consistency step is added to ensure the
consistency with the corrupted image. Chung et al. (2022b) shows that this procedure may cause the
generated image to step outside the data manifold during the iterative denoising process.

In this work, we devise a new zero-shot image restoration method that we call in short SHRED
(zero-SHot image REstoration via Diffusion inversion) which, by construction, ensures that the
sample generation path always lies on the data manifold. To this end, we opt for a simple yet effective
strategy: we do not alter the reverse sampling , i.e., all the intermediate latents, once an initial
noise is sampled. More specifically, SHRED use a pre-trained Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2020) and exploits the existing deterministic correspondence between noise
and images in DDIMs by casting the inverse restoration problem as a latent estimation problem, i.e.,
where the latent variable is the input noise to the diffusion model.Given a degraded image, the pre-
trained generative model allows us to retrieve the optimal initial noise that, when applying the reverse
diffusion sampling, generates the closest clean image under the learnt image distribution. Since
SHRED is an optimization method that works by iteratively optimizing the initial noise, multiple
forward passes of the diffusion process are required which can be computationally expensive. A
single forward pass of a standard diffusion model (with 1000 steps) takes in the order of minutes on
a typical modern GPU. Thus, a direct implementation of the optimization procedure in the case of
the Diffusion model as a black box would be computationally demanding and ultimately impractical.
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Figure 1: Image inpainting with SHRED. We show the flow during one iteration of our optimization
scheme of initial noise xT . The dashed and single line arrows denote the reverse and forward diffusion
processes respectively. We optimize the inpainting error LIR only with respect to the initial noise
xT . In our notation, x0|t is our intermediate estimate of x0 given xt. The top and bottom row images
show xt and x0|t for different values of t respectively. The reconstruction of x0|t allows us to skip
time steps and make the generation process and the gradient back-propagation much more efficient.

To mitigate the substantial computational cost associated with inverting a fully unrolled diffusion
model, we leverage the inherent capability of these models to skip ahead in the forward diffusion
process using arbitrary large time steps. Thanks to the non-Markovian marginal distributions used in
DDIM, our method introduces a hyperparameter δt that can be used to prioritize either image quality
or computational cost. We show that by optimizing for the best initial noise that corresponds to the
unknown restored image, our method is able to achieve competitive image performance across a wide
range of image restoration tasks both in the blind and non-blind setting. Our main contributions can
be summarized as:

1. We are the first to cast the IR task as a latent optimization problem in the context of diffusion
models where only the initial noise is optimized. This design choice does not alter the
intermediate diffusion latents and thus provides more guarantees that the generated images
lies in the in-distribution manifold.

2. We leverage the capabilty of DDIM to skip ahead in the forward diffusion process by
arbitrary time steps and propose an efficient and practical diffusion model inversion in the
context of image restoration. We note that in our method, DDIM is neither fine-tuned nor
retrained.

3. We achieve competitive results on both CelebA and ImageNet for different IR tasks including
image inpainting, super-resolution, compressed sensing and blind deconvolution.

2 RELATED WORK

Zero-shot methods Recently, methods that can be repurposed to different inverse problems have been
called zero-shot. Song & Ermon (2019) proposes a method based on guiding the reverse diffusion
process with the unmasked region to solve inpainting in a zero-shot manner. Song et al. (2021)
proposes the use of gradient guidance to solve inverse problems in the context of medical imaging.
Choi et al. (2021) applies low-frequency guidance from a reference image to solve super-resolution.
RePaint (Lugmayr et al., 2022) solves the inpainting problem by guiding the diffusion process with
the unmasked region. To condition the generation process, the reverse diffusion iterations are altered
by sampling the unmasked regions using the given image information. DDRM (Kawar et al., 2022)
proposes an inverse problem solver based on posterior sampling by introducing a variational inference
objective for learning the posterior distribution of the inverse problem.
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DDNM (Wang et al., 2023) proposes a zero-shot framework for IR tasks based on the range-null
space decomposition. The method works by refining only the null-space contents during the reverse
diffusion process,to satisfy both data consistency and realness. Fei et al. (2023) leverage DDPM and
solve inverse problems via hierarchical guidance and a patch-based method. Chung et al. (2022b)
argues that relying on an iterative procedure consisting of reverse diffusion steps and a projection-
based consistency step runs the risk of stepping outside of the data manifold, a risk they mitigate
using an additional correction term.

Methods based on GAN inversion Different approaches Pan et al. (2021); Yang et al. (2021); Yu
et al. (2022) use a pre-trained GAN inversion to solve image restoration. Pan et al. (2021) use GAN
as an image prior and estimates the latent that when fed to GAN will generates the clean image
through optimization. The authors shows that this procedure alone does not achieve satisfactory
results and propose to finetune the GAN while optimizing for the GAN latent. Yu et al. (2022) opt for
encoder-based inversion to solve image inpainting. An encoder is trained to projects corrupted images
into a latent space with a pre-modulation for learning more discriminative representation to solve the
inpainting task. We note that SHRED is separate enough to the GAN inversion literature. In fact,
GAN and diffusion models are fundamentally different. Thus, their inversion through optimization
requires different techniques. For example, one of the main differences is that GANs generate samples
in "one forward pass", while Diffusion models require multiple iterative steps. Moreover, all IR
methods based on GAN inversion, either train an auxiliary network or fine-tune the pre-trained GAN
network. In our method, the diffusion model is neither fine-tuned nor trained.

3 BACKGROUND

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) leverage diffusion processes in
order to generate high quality image samples. The aim is to reverse the forward diffusion process that
maps images to noise, either by relying on a stochastic iterative denoising process or by learning the
explicit dynamics of the reverse process, e.g., through an ODE (Song et al., 2020). More precisely
the forward diffusion process maps an image x0 ∼ p(x) to a zero-mean Gaussian xT ∼ N (0, I)
by generating intermediate images xt for t ∈ (0, T ] which are progressively noisier versions of x0.
DDPM (Ho et al., 2020) adopts a Markovian diffusion process, where xt only depends on xt−1.
Given a non-increasing sequence α1:T ∈ (0, 1], the joint and marginal distributions of the forward
diffusion process are described by

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) = N

(
√
αtxt−1,

(
1− αt

)
I

)
, (1)

which implies that we can sample xt simply by conditioning on x0 with ᾱt =
∏

s≤t αs via

q(xt|x0) = N
(√

ᾱtx0, (1− ᾱt)I
)
. (2)

To invert the forward process, one can train a model ϵθ to minimize the objective

min
θ

Et∼U(0,1);x0∼q(x);ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
. (3)

Image samples x̂0 given the initial noise xT , are obtained by iterating for t ∈ [1, T ] the denoising
update

xt−1 = 1/√αt(xt − ϵθ(xt, t)× (1−αt)/
√
1−ᾱt) + σtz, (4)

with z ∼ N (0, I), and σ2
t = 1−ᾱt−1

1−ᾱt
(1− αt).

Song et al. (2020) point out that the quality of generated images highly depends on the total num-
ber of denoising steps T . Thus, the inference loop using Eq. (4) becomes computationally ex-
pensive. To reduce the computational cost, they propose a Denoising Diffusion Implicit Model
(DDIM) (Song et al., 2020), which foregoes the Markovian assumption in favor of a diffusion process
q(x1:T |x0) = q(xT |x0)

∏T
t=2 q(xt−1|xt, x0) where q(xT |x0) = N

(√
ᾱTx0, (1− ᾱT )I

)
and

q(xt−1|xt, x0) = N
(√

ᾱt−1x0 +
√
1− ᾱt−1 − σ2

t .(xt−
√
ᾱtx0)/

√
1−ᾱt, σ

2
t I
)
. (5)
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Original Reconstructed
(PSNR=44.10± 1.06 )

Original Reconstructed
(PSNR=42.43± 0.67)

Figure 2: Inversion results using our optimization scheme on samples from both CelebA and
ImageNet validation datasets. The PSNR mean and standard deviation are computed over 10 runs.

When σt = 0 for all t, the diffusion process is fully deterministic. This means that when we start
from the same noisy sample xT we obtain the same generated image sample. Given xt, one can first
predict the denoised observation x̂0, which is a prediction of x0 given xt

x̂0 = (xt−
√
1−ᾱtϵθ(xt,t))/

√
ᾱt. (6)

then we can predict xt−1 from xt and x̂0 using Eq. (5) by setting σt = 0

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ω̂ (7)

with ω̂ = xt−
√
ᾱtx̂0√

1−ᾱt
a direction pointing to xt.

Song et al. (2020) shows that this formulation allows DDIM to use fewer time steps at inference by
directly predicting xt−k with k > 1 which results in a more computationally efficient process using

xt−k =
√
ᾱt−kx̂0 +

√
1− ᾱt−kω̂. (8)

4 IMAGE RESTORATION VIA SHRED

In this section, we introduce the general setting of inverse problems that we aim to solve and
how generative models can be used to address the ambiguities associated with this class of image
restoration tasks. We then present our zero-shot image restoration algorithm SHRED.

4.1 AN UNBIASED FORMULATION

Image restoration (IR) can be cast as a Maximum a Posteriori (MAP) optimization problem (Zhang
et al., 2020)

x̂ = argmax
x∈RNx×Mx

log p(y|x) + log p(x), (9)

where x̂ ∈ RNx×Mx is the restored image and y ∈ RNy×My is the degraded image, and where p(y|x)
is the so-called likelihood and p(x) the prior distribution. Linear inverse problems describe IR tasks
with linear degradation operators H : RNx×Mx → RNy×My and often consider zero-mean additive
noise η, such that the observed degraded image y can be written as

y = H(x) + η. (10)

IR tasks such as image inpainting, denoising and super-resolution can all be described using specific
choices of H and η. For instance, if we vectorize the image x and the output of the operator H , we can
describe image inpainting via a pixel projection operator H(x)i = xk[i], where i = 1, . . . , Ny ×My ,
k is a permutation of Nx ×Mx > Ny ×My indices, and η = 0. The associated H and η for each
image restoration task1 considered in this paper are provided in the supplementary material. By

1A more accurate denomination of the operators used in the linear image restoration problems should be
affine rather than linear. Nonetheless, we follow the terminology used in the literature for simplicity.
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Algorithm 1 SHRED: Image Restoration via DDIM inversion
Require: Degraded image y, step size δt, learning rate α
Ensure: Restored image x̂0

1: Initialize xT with random from N (0, 1). If blind, initialize Hθ .
2: for k : 1 → N do
3: Initialize t = T
4: while t > 0 do
5: x̂0|t = (xt −

√
1 − ᾱtϵθ(xt, t))/

√
ᾱt

6: xt−δt =
√
ᾱt−δtx̂0|t +

√
1 − ᾱt−δt.

xt−
√

ᾱtx̂0|t√
1−ᾱt

7: t = t - δt
8: end while
9: if BLIND then
10: xk+1

T = xk
T − α∇xT

LIR(xk
T , H

θk
)

11: θk+1 = θk − α∇θLIR(xk
T , H

θk
)

12: else
13: xk+1

T = xk
T − α∇xT

LIR(xk
T )

14: end if
15: end for
16: Return the restored image x̂0

applying the desired observation model to the MAP formulation, one can aim to recover x̂ given y by
using

x̂ = argmin
x∈RNx×Mx

∥y −H(x)∥+ λR(x), (11)

where ∥.∥ is often a norm that depends on the nature of the noise η, e.g., a zero-mean Gaussian noise
η induces a squared L2 norm, R is a term corresponding to the prior, and λ > 0 is a coefficient that
regulates the interplay between the likelihood and the prior.

In plug-and-play methods (Zhang et al., 2020) the prior R is obtained through a pre-training that
aims at denoising the images x. However, using the prior p(x) also captures the bias of the specific
dataset used for pre-training. Since we do not know where the prior will be used, we argue that a
bias could impact negatively the restoration process. Thus, we propose to employ a formulation
that implicitly assumes a uniform prior on the domain Ω ⊂ RNx×Mx of valid reconstructions, i.e.,
R(x) = − log(pU (x)) = − log(const · 1Ω(x)), where 1Ω(x) is 1 for x in the support Ω and 0
otherwise. This choice of R(x) is equivalent to considering an unbiased prior over the support of the
data distribution and results in the following formulation

x̂ = argmin
x∈Ω

∥y −H(x)∥. (12)

To ensure that x ∈ Ω, we parameterize x via the initial noise of a pre-trained diffusion model. In
the next section, we present our approach to infer the initial noise such that the generated image
minimizes Eq. (12).

4.2 AN EFFICIENT DIFFUSION INVERSION

In this work, we adopt DDIM as our pre-trained generative process and we adopt a fully deterministic
diffusion process (σt = 0). We propose a new iterative inversion process, which we summarize in
Algorithm 1. We adopt an optimization-based iterative procedure to solve Eq. (12). In contrast to
Kawar et al. (2022); Wang et al. (2023); Lugmayr et al. (2022), we explicitly use the correspondence
between image samples x0 and their associated latent vector xT . SHRED starts from an initial noise
instance x0

T ∼ N (0, I) and at the end of each iteration k, we update xk
T . At each iteration, we first

predict x̂0|t from xt using the pre-trained DDIM model ϵθ.

x̂0|t =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
. (13)

Rather than denoising xT iteratively for all the steps used in the pre-training, we make larger steps
by using intermediate estimates of x̂0|t. We define a hyper-parameter δt that controls the number of
denoising steps and we can directly jump to estimate xt−δt from x̂0|t and xt using

xt−δt =
√
ᾱt−δtx̂0|t +

√
1− ᾱt−δt.

xt −
√
ᾱtx̂0|t√

1− ᾱt
. (14)
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Table 1: LPIPS/FID metrics for different degradation tasks on the CelebA dataset. The best and
second best methods are in bold and underlined respectively.

Method Inpainting SR ×8 SR ×16 SR ×32 Blind Deconv CS 1% CS 5%

DIP Ulyanov et al. (2018) 0.373/125.56 0.423/195.74 0.507/228.14 0.581/267.27 - - -

SelfDeblur Ren et al. (2020) - - - - 0.667/343.40 - -

Repaint Lugmayr et al. (2022) 0.028/7.82 - - - - 0.583/181.57 0.389/142.61

DDRM Kawar et al. (2022) 0.039/8.69 0.239/123.54 0.385/139.15 0.492/149.12 - 0.567/162.22 0.462/149.79

DDNM Wang et al. (2023) 0.018/6.09 0.299/113.76 0.376/122.95 0.447/143.86 - 0.570/179.43 0.319/105.06

SHRED 0.021/6.51 0.304/78.84 0.325/85.82 0.416/110.75 0.362/90.28 0.558/139.88 0.344/85.42

Higher step size δt allows us to favor speed while a lower one will favor fidelity. This iterative
procedure results in an estimate of x0 that is differentiable in xT . We denote by f the mapping
between xT and xt. The estimate x0 = f(xT ) is used to update xT such that it minimizes the image
restoration loss. Our method supports both non-blind and blind image degradation.

Non-blind case In the non-blind case, H is supposed to be known, the restoration loss becomes

LIR(xT ) = ∥y −H(f(xT ))∥ (15)

Given an initial noise x0
T , the optimization iteration is simply derived as the following

xk+1
T = xk

T − α∇xT
LIR(x

k
T ) (16)

where α is the learning rate.

Blind case In the blind case, H is unknown and can be approximated by a parametric function Hθ,
the restoration loss becomes

LIR(xT , Hθ) = ∥y −Hθ(f(xT ))∥ (17)

Given an initial noise x0
T and Hθ0 , the optimization iteration is simply derived as the following

xk+1
T = xk

T − α∇xT
LIR(x

k
T , Hθk) (18)

θk+1 = θk − α∇θLIR(x
k
T , Hθk) (19)

where α is the learning rate.

One might wonder if the proposed fast inversion procedure suffers from local minima, such that
different initial noise samples xT might result in different estimates of x0. We show in Fig. 2 that our
inversion method is stable and is insensitive to the initialization. We use images from both ImageNet
and CelebA and perform denoising without noise (i.e., H is the identity function and η = 0). As can
be observed, the proposed inversion method is stable.

5 EXPERIMENTS

5.1 IMAGE RESTORATION TASKS

In this work, we showcase our proposed method for different image restoration tasks. Specifically,
we evaluate our method on 4 typical noise-free IR tasks, including image inpainting, ×4, ×8, ×16
and ×32 image super-resolution (SR), blind deconvolution, and compressed sensing (CS) with a 1%
and 5% sampling rates. For our super-resolution experiments, we adopt a uniform downsampling.
For the case of blind deconvolution, we use an anisotropic Gaussian kernel and we follow Ren et al.
(2020) and use the same feed-forward network for the kernel estimation. Our compressed sensing
experiments use a uniform pixel sampling strategy. Lastly, for our inpainting task, we consider a
square centered mask. For each image restoration task, we use the same degradation operator for
all methods. We evaluate our method both on ImageNet (Deng et al., 2009) and CelebA (Liu et al.,
2018) at 256×256 resolution. We follow Chung et al. (2022a;b) and report the LPIPS Zhang et al.
(2018) and FID Heusel et al. (2017) values obtained for each experiment.
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Table 2: LPIPS/FID metrics for different degradation tasks on the ImageNet dataset. The best and
second best methods are highlighted in bold and underlined respectively.

Method Inpainting SR ×4 SR ×8 SR ×16 Blind Deconv CS 1% CS 5%

DIP Ulyanov et al. (2018) 0.175/75.12 0.369/114.83 0.544/267.31 0.738/376.35 - - -

SelfDeblur Ren et al. (2020) - - - - 0.719/368.94 - -

Repaint Lugmayr et al. (2022) 0.068/7.85 - - - - 0.769/338.31 0.623/292.17

DDRM Kawar et al. (2022) 0.042/5.32 0.302/75.34 0.478/195.82 0.578/277.86 - 0.784/345.39 0.607/295.52

DDNM Wang et al. (2023) 0.056/7.13 0.284/70.88 0.450/183.64 0.582/281.15 - 0.700/315.86 0.532/276.63

SHRED 0.063/6.45 0.329/ 65.78 0.394/152.74 0.470/183.11 0.467/185.37 0.736/295.12 0.642/262.17

5.2 EXPERIMENTAL RESULTS

Our experimental results are summarized in Tables 1 and 2 for CelebA and ImageNet, respectively.
We report the performance of SHRED as well as DIP (Ulyanov et al., 2018), SelfDeblur (Ren et al.,
2020), RePaint (Lugmayr et al., 2022), DDRM (Kawar et al., 2022) and DDNM (Wang et al., 2023).
We showcase the versatile nature of SHRED and its ability to restore degraded images with a higher
level of details thanks to its explicit use of the correspondence property of the underlying pre-trained
DDIM Song et al. (2020) model. We report the performance of super-resolution methods in Tables 1
and 2 for the ×8, ×16 and ×32 upscaling factors on CelebA and ×4, ×8 and ×16 on ImageNet
respectively.

Masked Repaint DDRM DDNM SHRED GT

Figure 3: Visual results of inpaintings on CelebA.

For both datasets, we observe that our method is ranked first in both LPIPS and FID. We observe
a similar pattern as in our super-resolution experiments for compressed sensing where SHRED
generates more detailed images and achieves a better FID while being on par or slightly worse in
terms of LPIPS.

Bicubic DDNM SHRED

×
8

×
1
6

Bicubic DDNM SHRED

×
8

×
1
6

Figure 4: Visual results of super-resolution with different upsampling factors.
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For the case of blind deconvolution, SHRED largely outperforms SelfDeblur (Ren et al., 2020) both
in terms of FID and LPIPS which highlights its ability to also tackle blind restoration tasks through
joint optimization. We illustrate this in Fig. 5 on two blurred images using a large blur kernel. Due to
the significant blur, SelfDeblur is unable to restore the degraded image. SHRED on the other hand
successfully deblurs the image especially around the main object in the image. Lastly, in the case
of image inpainting SHRED is ranked second and third on CelebA and ImageNet respectively. On
CelebA, SHRED achieves a comparable FID and LPIPS to DDNM while significantly outperforming
other inpainting methods. We showcase the different considered methods in Fig. 3, where we observe
that SHRED is capable of generating highly detailed and consistent features in the masked regions.

Blurry SelfDeblur SHRED GT

Figure 5: Visual results of blind deconvolution
using a random Gaussian kernel with size 41× 41.

Figure 6: Robustness of SHRED to the initial
noise xT .

Figure 7: Restoring real-world photos using SHRED. Degraded images are collected from the
internet

6 ABLATIONS STUDY

6.1 EFFECT OF DIFFERENT HYPER-PARAMETERS

We study the influence of hyper-parameters: the learning rate α, the number of iterations N and the
step size δt, on SHRED performance. Table 4 shows the effect of varying the step size δt on both
FID and the computation time. δt = 100 gives the best trade-off between the speed and the visual
quality. In Table 5, we report the FID values achieved by SHRED for different learning rates. SHRED
acheives competitive FID with the different learning rates and this shows that it is robust enough
to the choice of learning rate. Table 6 shows SHRED performance for different values of N (the
total number of iterations). SHRED needs around 100 iterations to achieve the best FID indicating
that a limited number of iterations is sufficient to produce a decent reconstruction. We note that N
can be set automatically using the criteria LIR < ϵ . We empirically observe that tuning on a small
set generalizes well in the zero-shot setting. For all IR tasks, δt = 100 and α = 0.003 produces
competitive performance.

8



Under review as a conference paper at ICLR 2024

Method Time[s]

DIP Ulyanov et al. (2018) 520
DDRM Kawar et al. (2022) 13
DDNM Wang et al. (2023) 12
Naive Inversion 5750
SHRED 55

Table 3: Runtime (in seconds) comparison of dif-
ferent methods on CelebA per image on super-
resolution. All experiments are conducted on a
Geforce GTX 1080 Ti.

Step size (δt) 50 100 200

FID 6.38 6.51 8.32

Time/Iteration (ms) 2330 1150 576

Table 4: Effect of the step size δt on the visual
quality and the runtime of image inpainting
on CelebA.

6.2 SHRED ROBUSTNESS

Robustness to the initial noise

We fix the degraded image and we test our method by varying the initial noise x0
T . Figure6 shows

that SHRED is robust to the input noise initialization and that for each time it can output a different
plausible solution.

Robustness to real-world degradations

We apply our method to the task of old image enhancement where the images are real and collected
from internet depicting complex and unknown degradation (noise, jpeg artifacts, blur..). The problem
is framed as the mixture of image colorization and super-resolution. Figure 7 shows SHRED is able
to enhance the image quality and that is robust to the different degradation.

6.3 COMPUTATIONAL COST

In Table 3, we report the runtime per image of the different compared methods. We denote by Naive
Inversion a similar approach as SHRED that works by inverting the fully unrolled diffusion model.
SHRED is ×100 time faster than the Naive Inversion. Despite being an iterative method, SHRED
has a reasonable runtime making it a practical zero-shot IR method. We note that the reported speed
is using δt = 100 and a further speed boost is possible by opting for a higher value of δt at a small
reduction of the visual quality.

α 5× 10−4 10−3 2.5× 10−3 5× 10−3

FID 87.85 72.36 74.52 77.85

Table 5: Effect of the learning rate α on the visual
quality of SR on CelebA.

N 50 75 100 125 150

FID 78.03 75.63 74.31 73.85 74.42

Table 6: Effect of the number of iterations N
on the visual quality of SR on CelebA.

7 CONCLUSION

We have introduced SHRED, a zero-shot framework for solving IR tasks by using pre-trained diffusion
generative models as learned priors. Our method exploits the deterministic correspondence between
noise and images in DDIM by casting the inverse restoration problem as a latent estimation problem.
We leverage the capabilty of DDIM to skip ahead in the forward diffusion process and provide an
efficient diffusion inversion in the context of IR. SHRED is comprehensively utilized on various tasks
such as super-resolution, inpainting, blind-deconvolution, and compressed sensing , demonstrating
the capabilities of SHRED on unified image restoration.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

For evaluation, We choose a set of 100 random images from ImageNet 1K and CelebA 1K datasets
with image size 256×256 for validation. For a fair comparison, we use the same pre-trained denoising
models used in Wang et al. (2023) and apply them to all the diffusion-based methods. We use the
Adam optimizer all IR tasks. The step size δt is set to 100. All experiments are conducted on a
Geforce GTX 1080 Ti.

Figure 8: An application of SHRED on a non-linear inverse problem (non-uniform deblurring). The
top row shows degraded images with non-uniform blur. The second row depicts the results of our
method. The bottom row shows the ground truth.

A.2 SUPER-RESOLUTION

For superresolution, we use ×4, ×8, and ×16 uniform downsampling factors for ImageNet and
×8, ×16, and ×32 uniform downsampling factors for CelebA. During training, we use Adam as
our optimizer with a learning rate of 0.003 and 50 iterations. We also add comparisons with both
OID Chen et al. (2020b) and Chen et al. Chen et al. (2020a) . Additional visual results are depicted in
Fig. 11, Fig. 12 and Fig. 13. While other methods tend to generate over-smoothed images especially
at higher downsampling factors, our method (SHRED) outputs sharper and more realistic images. For
instance, SHRED is able to generate detailed grass and hair textures in Fig. 11 and Fig. 12 especially
at ×16 upscaling where other methods fail.
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A.3 BLIND DECONVOLUTION

For Blind Deconvolution, we apply a random anisotropic Gaussian kernel of size 41x41. During
training, we use Adam as our optimizer with a learning rate of 0.003 and 150 iterations. Visual results
are shown in Fig. 16 and Fig. 17. Despite the heavy blur, SHRED is able to better deblur the main
object present in the considered image compared to other methods.

A.4 COMPRESSED SENSING (CS)

For Compressed Sensing, we randomly subsample 1% and 5% of the total available pixels. During
training, we use Adam as our optimizer with a learning rate of 0.01 and 150 iterations. More visual
results are depicted in Fig. 14 and Fig. 15. SHRED performs better than the other methods at
preserving the identity of the original image especially at the higher subsampling rates. Indeed,
we see in the second and forth rows of Fig. 14 that other method hallucinate new faces instead of
reconstructing the correct one.

A.5 INPAINTING

For Inpainting, we apply a square mask for CelebA and a text mask for ImageNet. During training,
we use Adam as our optimizer with a learning rate of 0.01 and 200 iterations. We show additional
results with different masks in Fig. 9 and Fig. 10.

12



Under review as a conference paper at ICLR 2024

Masked Repaint DDRM DDNM SHRED GT

Figure 9: Visual results of inpaintings on CelebA.
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Masked Repaint DDRM DDNM SHRED GT

Figure 10: Visual results of inpaintings on ImageNet.
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Figure 11: Visual results of super-resolution with different upsampling factors.
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Figure 12: Visual results of super-resolution with different upsampling factors.
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Figure 13: Visual results of super-resolution with different upsampling factors.
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Figure 14: Visual results of CS on CelebA.
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Figure 15: Visual results of CS on ImageNet.

Blurry SelfDeblur OID Chen et al. SHRED GT

Figure 16: Visual results of blind deconvolution using a random Gaussian kernel with size 41× 41
on CelebA.
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Blurry SelfDeblur OID Chen et al. SHRED GT

Figure 17: Visual results of blind deconvolution using a random Gaussian kernel with size 41× 41
on ImageNet.
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