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Abstract
The railway scheduling problem requires the com-1

putation of an operable timetable that satisfies con-2

straints involving railway infrastructure and re-3

source occupancy times, while minimising aver-4

age delay over a set of events. Since this problem5

is computationally hard, practical solutions typi-6

cally roll out feasible (but suboptimal) schedules7

one step at a time, by choosing which train to move8

next in every step. The choices made by such algo-9

rithms are necessarily myopic, and incur the risk of10

driving the system to a deadlock. To escape dead-11

locks, the predominant approach is to stay away12

from states flagged as potentially unsafe by some13

fast-to-compute rule R. While many choices of R14

guarantee deadlock avoidance, they are suboptimal15

in the sense of also flagging some safe states as16

unsafe. In this paper, we revisit the literature on17

process scheduling and describe a rule R0 that is18

(i) necessary and sufficient for deadlock detection19

when the network has at least two tracks in each20

resource (station / track section), (ii) computable in21

linear time, and (iii) yields lower delays when com-22

bined with existing scheduling algorithms on both23

synthetic and real data sets from Indian Railways.24

1 Introduction25

Railway networks around the world form the backbones of26

national economies. However, due to the constraints imposed27

by movement on tracks, delays in railways have particularly28

large domino effects [Goverde, 2010]. In the US, the esti-29

mated cost of delays ranges from 200 USD to more than 100030

USD per train-hour [Schlake et al., 2011; Lovett et al., 2015].31

Of the total delays in Britain in the 2000s, 40% was composed32

of primary delay (random events such as train or infrastruc-33

ture faults), and 60% was secondary delay (caused by subse-34

quent congestion) [Preston et al., 2009]. Khadilkar [2017a]35

observes that in India, 20% of passenger train services are36

delayed by at least 10 minutes, and that different scheduling37

strategies have a significant effect on operational efficiency.38

This fact motivates us to look at scheduling strategies in de-39

tail, with a particular focus on deadlocks, which affect both40

the computation time and schedule efficiency.41

The railway scheduling problem is a blocking version 42

[Strotmann, 2007; Liu and Kozan, 2009] of the famous job 43

shop scheduling problem (JSSP) [Manne, 1960]. The JSSP is 44

a class of problems in which a number of jobs or processes 45

(in this case, trains) need to be scheduled to pass through a 46

pre-specified sequence of machines or resources (in this case, 47

stations and inter-station track sections) in some “optimal” 48

way. The blocking variant implies that once a job is loaded 49

on a machine (train enters a track), it must be fully processed 50

through that step before the unit (track) becomes available for 51

the next job (train). Various versions of optimality exist in the 52

literature, from makespan (time duration from start of the first 53

job to the end of the last job) and average queueing time to 54

average delay. It has been established that the JSSP in several 55

forms is NP-complete [Mascis and Pacciarelli, 2002]. 56

With solving for optimality ruled out, common approaches 57

for railway scheduling proceed by “rolling out” schedules 58

over time [Khadilkar, 2018; Prasad et al., 2021]. Abstractly, 59

such algorithms begin from an initial state in which trains are 60

located in respective resources. Then, at each time step, a 61

train is chosen from those eligible to move, and moved for- 62

ward. This process is continued until (possibly) all the trains 63

complete their journeys. Since the decision of which train to 64

move at each step is made myopically, there is a possibility 65

of reaching a deadlock state, from which no further progress 66

is possible unless some train moves backward—which is ex- 67

pensive and induces large delays in practice. Figure 1 shows a 68

network with three resources, with one free track in the mid- 69

dle resource. If a train heading right is moved into this free 70

track, there is a deadlock. However, deadlock can be avoided 71

by moving a train heading left into the free track. 72

Interestingly, detecting deadlocks in the general JSSP is 73

also NP-complete [Araki et al., 1977; Cocco and Monas- 74

son, 2001]. It has consequently been accepted wisdom in 75

Figure 1: Illustration of possible deadlock. The moves correspond-
ing to red (solid) arrows lead to deadlock, while those corresponding
to green (dashed) arrows admit a solution without deadlocks.



the railway scheduling community [Törnquist and Persson,76

2007; Pachl, 2012; Khadilkar, 2017b; Vujanic and Hill, 2022]77

that deadlock detection for railway scheduling is also NP-78

complete in all its forms. The motivation for our work is a79

result by Reveliotis et al. [1997] for a variant of JSSP called80

single-unit resource allocations systems (SURAS), showing81

that in many reasonable situations and for an arbitrary net-82

work topology, a necessary and sufficient condition for dead-83

lock detection can be computed in polynomial time.84

We make an explicit connection between the SURAS85

polynomial-time deadlock detection condition given by Reve-86

liotis et al. [1997] and the railway scheduling problem. In the87

case where every resource (station and track section) has at88

least two tracks, we show that this condition can be evaluated89

for arbitrary network states with a linear complexity in the90

number of trains (slightly more efficiently than Reveliotis et91

al. [1997]). Thereafter, we demonstrate the significant benefit92

of implementing not just sufficient but necessary conditions93

for deadlock-free movement on real-world railway networks94

in India. These include single-track as well as multi-track95

lines, thus showcasing the wide applicability of the algorithm.96

From an infrastructure perspective, laying two tracks has97

only modest additional cost compared to laying one track,98

because the land and utilities infrastructure already exists.99

Hence the only places where single tracks are typically laid100

are ones where the traffic is low (in which case sophisticated101

algorithms are not needed) or where the terrain is tough. In-102

deed it is apparent even from data sets used in the academic103

literature [Pappaterra et al., 2021; Prasad et al., 2021] that104

nodes in real-world railway lines usually contain more than105

one track. Even where single tracks exist (we have empir-106

ical results in Section 5), we can handle them so long as a107

set of feasible moves exist for moving trains to the nearest108

multi-track resource. At this point, we can drop empty single109

tracks from the analysis (since they effectively connect two110

resources, rather than act as independent resources) and the111

remaining analysis is valid. In the case of scheduling algo-112

rithms, we simply ensure that a train that moves into a single113

track must be moved on to a multi-track section before an-114

other train move is attempted.115

After discussing related work in Section 2, we formalise116

the railway deadlock detection problem in Section 3. In Sec-117

tion 4, we present a novel and conceptually simple interpreta-118

tion of the detection rule of Reveliotis et al. [1997] for multi-119

track networks. In Section 5, we empirically validate of the120

utility of this rule in scheduling. We conclude in Section 6.121

2 Related Work122

The railway scheduling problem is that of establishing a123

feasible timetable, given a set of ‘services’ to be defined from124

a given origin and destination [Törnquist and Persson, 2007].125

Previous literature [Cai and Goh, 1994; Liu and Kozan,126

2009; Strotmann, 2007] shows that the Job Shop Scheduling127

Problem (JSSP) and railway scheduling are reducible to128

each other; their decision variants are both NP-complete.129

Typically the timetabling (scheduling) problem can be solved130

at leisure, using a mix of exact and randomised search algo-131

rithms [Higgins et al., 1996; Törnquist and Persson, 2007].132

The train rescheduling problem [Sinha et al., 2016] involves 133

a disruption externally imposed on the timetable, from which 134

one must quickly compute a set of recovery actions to return 135

to the original timetable. Delays in this context can be com- 136

puted relative to the corresponding event times in the original 137

timetable. Deadlocks are also important in this context since 138

disruptions to the timetable may require changes in the order 139

of train moves, with uncertain implications for operational 140

feasibility. In this paper, we consider both scheduling and 141

rescheduling, with the understanding that computational 142

complexity has more impact on rescheduling (disruption 143

recovery) than on scheduling (timetabling). 144

145

Rescheduling and deadlock avoidance in railways. While 146

exact formulations of rescheduling as an optimisation prob- 147

lem are available [Higgins et al., 1996; Törnquist and Pers- 148

son, 2007], they are not scalable. Practical approaches instead 149

use heuristics [Higgins et al., 1997; Chen et al., 2015] or pre- 150

trained policies [Šemrov et al., 2016; Khadilkar, 2018; Prasad 151

et al., 2021] to move trains forward through the network (in 152

a manner analogous to checkers pieces) until they reach their 153

destinations. The order of train movements, their timings, and 154

track allocations vary by the algorithm. However, as illus- 155

trated in Figure 1, the risk in all such finite-lookahead meth- 156

ods is that of deadlock, or a situation where some or all trains 157

are unable to move forward because of a circular dependence 158

on each other [Pachl, 2012]. 159

Pachl [2012] proposes four conditions which are necessary 160

to create deadlocks. If a scheduling strategy ensures that at 161

least one of these conditions is not met, it is sufficient to avoid 162

deadlocks. Similarly, Mackenzie [2010] proposes sufficient 163

conditions for avoiding deadlock, including the conservative 164

path-to-destination approach. Khadilkar [2017b] proposes 165

the critical-first approach for railway lines, which focuses on 166

prioritising occupants of the most constrained resources in or- 167

der to avoid bottlenecks. The condition in this case is to keep 168

moving trains forward up to a point where at least one addi- 169

tional free track is available for other trains to pass. Vujanic 170

and Hill [2022] make this more concrete by defining the no- 171

tion of a safe state as one where all nodes (resources) have an 172

unoccupied slot. If initialised from a compliant initial state, 173

this procedure takes polynomial time for scheduling. 174

The basis for all these studies is that the NP-completeness 175

of the general deadlock detection problem makes it hard 176

to detect deadlocks in instances encountered in practice. 177

Therefore, deadlock detection is typically performed by 178

rules that provably detect deadlocks, but might also flag 179

false positives. The novelty of our paper is in identifying 180

the applicability of an optimal polynomial-time deadlock 181

detection algorithm in JSSP to the railway context (the notion 182

of optimality is formally defined below). 183

184

Deadlock avoidance in JSSP. We shall first define the 185

various terms used in this paper. The problem of evaluat- 186

ing an arbitrary state of the railway network, for the pres- 187

ence/absence of present/future deadlock, is deadlock detec- 188

tion. Any subsequent scheduling policies that reduce the 189

probability of deadlock (but not eliminate it) are called dead- 190

lock avoiding policies, while scheduling policies that guaran- 191



tee the absence of deadlock are called deadlock free policies.192

Similar to the railway scheduling case, it is well known193

that optimal deadlock detection in JSSP is also NP-complete.194

Araki et al. [1977] consider the question: “given a state S,195

is S safe?” They reduce the 3-SAT problem [Cocco and196

Monasson, 2001] to optimal deadlock detection in JSSP,197

thereby proving the latter to be NP-complete. Fanti et al.198

[1997] derive necessary and sufficient conditions for dead-199

lock in production systems with resource sharing, and then200

propose a ‘restriction policy’ that is tractable and provably201

correct (in the sense of sufficiency). Gold [1978] considered202

the question from a more practical perspective, examining203

under what restrictions on state S one can detect deadlock in204

polynomial time. They derived some conditions under which205

deadlock detection can be solved in polynomial time.206

207

Optimal deadlock detection. Previously published studies208

also consider two forms of optimality in the present context.209

The first definition of optimal implies the minimisation of de-210

lays in the schedule with respect to a reference timetable, or211

the minimisation of the makespan of the schedule if no ref-212

erence timetable is available [Törnquist and Persson, 2007].213

The second definition of optimality [Reveliotis et al., 1997]214

refers to the removal of unsafe transitions from the current215

state, with the objective of identifying the smallest (hence216

optimal) set of unsafe transitions that ensures the absence of217

present or future deadlocks. In this paper, by optimal rule we218

refer to the second definition: to a rule that characterises nec-219

essary and sufficient conditions of states or transitions to be220

safe, and hence can be used for deadlock-free scheduling.221

Reveliotis et al. [1997] develop necessary and sufficient222

conditions for deadlock prevention in “single-unit sequential223

resource allocation systems” (SURAS). They show that dead-224

lock detection in polynomial-time is possible in the special225

case where every resource in the system has a minimum ca-226

pacity of 2 units. If the number of resources is m and C̄227

is the maximum capacity among these nodes, their detection228

condition has O(m2C̄) complexity. The intuition behind this229

number is that a search algorithm makes m passes through the230

set of m resources, eliminating one eligible resource in each231

pass. Our observation is that this result applies to the case of232

arbitrary railway network topologies (branching and straight233

lines) as long as there are at least two tracks in each node234

(in railway terminology, at stations and inter-station track235

sections). Furthermore, (i) the result can actually be imple-236

mented in linear (and not quadratic) complexity, and (ii) we237

can handle single-resource nodes under reasonable assump-238

tions, as explained in Section 1.239

3 Deadlock Detection240

In this section, we specify the problem of (optimal) dead-241

lock detection. We begin from the broader context of railway242

scheduling, within which this problem arises.243

3.1 Railway scheduling problem244

Railway infrastructure. A railway network is made up of245

a number of resources, each containing some number of246

parallel tracks running from one end of the resource to the247

other. Tracks admit traffic in both directions. Stations (where 248

trains may halt) as well as the inter-station track sections 249

between them (where trains do not have scheduled halts) are 250

modeled as resources. A resource connects to other resources 251

through one of its ends. Typically, terminal resources have 252

all their connections only from one end, but in general we 253

could have cycles in the network topology. Figure 2 shows an 254

illustrative railway network with branching and a cycle; the 255

example in Figure 1 has a linear topology (often called a line). 256

257

Desired schedule. The dynamic aspect of the scheduling 258

problem arises from the movement of a set of trains through 259

resources. The target is to meet a desired schedule Sdesired, 260

which may be represented as a set of N events: 261

Sdesired = {e[i], 1 ≤ i ≤ N},where
e[i] = (train[i], start res[i], next res[i], time[i]).

Event e[i] specifies that train train[i] must be moved from 262

resource start res[i] to the adjoining resource next res[i] at 263

time time[i]. Now, it may not be possible to execute Sdesired, 264

due to constraints imposed by the railway infrastructure. For 265

instance, if three events all mean to push trains into the same 266

resource at the same time, but this resource only has two free 267

tracks, then at least one of the events will have to be delayed. 268

The goal of scheduling is to compute an operable schedule 269

Soperable that is feasible to execute, but at the expense of de- 270

laying a subset of events in Sdesired. For each event e[i], the 271

operable schedule has a replacement e[i] with a new time 272

time[i] ≥ time[i]: 273

Soperable = {e[i], 1 ≤ i ≤ N},where

e[i] = (train[i], start res[i], next res[i], time[i]).

Formally, the objective function to be minimised while com- 274

puting Soperable is the average departure delay 275

ADD =
1

N

N∑
i=1

(time[i]− time[i]). (1)

Since the problem of computing an operable schedule that 276

minimises ADD is NP-hard [Mascis and Pacciarelli, 2002], 277

one practical alternative is to roll out schedules over time, 278

ensuring operabilty, while making greedy choices to reduce 279

delays [Khadilkar, 2018; Prasad et al., 2021]. 280

3.2 Roll-out algorithms 281

A roll-out algorithm executes the set of events {e[i], 1 ≤ i ≤ 282

N} one by one. The algorithm begins with a counter τ set 283

to the earliest event time, with state sτ associating each train 284

with its initial resource. An event i is said to be executed (and 285

inserted into Soperable) when the algorithm sets time[i]. 286

Figure 2: Example of a network topology. Two trains are shown.



At each counter value τ , the algorithm compiles the list of287

events that are eligible: these are events e[i], 1 ≤ i ≤ N , such288

that (i) train[i] is in start res[i] in state sτ ; (ii) there is a free289

track in resource next res[i] in sτ ; and (iii) time[i] ≥ τ .290

If, indeed, there are eligible events, one of these events i is291

selected and executed by setting time[i] = τ . The updated292

event e[i] is moved into Soperable, and e[i] is no longer eligible.293

As long as there are eligible events at τ , these are repeatedly294

executed, until there are no eligible events at τ ; in this case295

τ is incremented and the procedure continues. Since train296

journeys are a sequence of contiguous resources, any train297

can be in at most one eligible event at any time step. Hence,298

it is sometimes convenient to view the set of eligible events at299

τ as the set of trains that are eligible to be moved at τ .300

By construction, the set of events that have already been301

executed by a roll-out algorithm have no internal conflicts.302

Hence, if all N events in Sdesired get executed, we are guar-303

anteed an operable schedule Soperable. However, the ADD of304

Soperable depends on the delays introduced while executing the305

events. The choice of which event among the eligible ones306

to execute at any step also has the long-term consequence307

of which events become eligible in subsequent time steps.308

By and large, roll-out algorithms make this choice greed-309

ily [Khadilkar, 2018; Prasad et al., 2021]. An unfortunate310

consequence is the possibility of a deadlock, wherein there311

remain events to execute, but these cannot become eligible at312

the current counter value τ or anything larger.313

3.3 Deadlock detection problem314

Abstractly, the progress of a roll-out algorithm for generat-315

ing a schedule can be viewed as a sequence of state transi-316

tions. The background data from the problem instance, which317

guide and constrain these transitions, are (1) the set of re-318

sources U ; (2) resource capacities encoded by C̄ : U → N;319

(3) the set of trains T ; and (4) the set of train journeys320

D = {(t, u1, u2, . . . , ult), t ∈ T}. In D, each journey321

(t, u1, u2, . . . , ult) contains a train t ∈ T and the identities322

of some lt ≥ 1 resources through which t must pass in se-323

quence. Exact event times are not needed for deadlock de-324

tection. As motivated in Section 1, we make the following325

“multi-track” assumption while devising and analysing our326

algorithm, which is presented in Section 4.327

Assumption 1. For all u ∈ U , C̄(u) ≥ 2.328

However, the problem statement presented below does not329

depend on this assumption.330

331

States, actions, transitions. Each state s in our system con-332

tains a subset of trains T ′
s ⊆ T that are yet to complete333

their journeys. In s, each train t ∈ T ′
s is in some resource334

u ∈ U . Hence, a state can be represented as a set of pairs335

(t, u) ∈ T × U . Let S denote the set of all states. The de-336

sired terminal state s⊤ ∈ S is the one in which all trains have337

reached their destinations. Destinations typically connect to338

“yards” with effectively infinite capacity, so trains do not oc-339

cupy regular tracks at their destinations. Hence s⊤ = ∅.340

A useful quantity to associate with each state s ∈ S is its341

“potential” ϕ(s), which we define to be the sum of the dis-342

tances of the trains present in s to their respective termini.343

Concretely, suppose s = {(ti, ui), 1 ≤ i ≤ m}, where the 344

remaining sequence of resources for train ti to visit after de- 345

parting ui is u1
i , u

2
i , . . . , u

ℓi
i for some ℓi ≥ 1. Then we have 346

ϕ(s) =
∑m

i=1 (1 + ℓi) . Observe that ϕ(s⊤) = 0. 347

The set of actions available from state s ∈ S is denoted 348

A(s). Each action a ∈ A(s) corresponds to moving some 349

train from its current resource to the next one on its journey. 350

Naturally, only moves corresponding to eligible events are 351

present as actions in A(s). 352

When an action from A(s) is performed on state s ∈ S, 353

we denote the resulting state s+ a. Suppose action a ∈ A(s) 354

moves train t in s, where t is in resource u, to its next resource 355

u′. If u′ is the terminal resource for t, then s+a = s\{(t, u)}; 356

otherwise s+a = (s\{(t, u)})∪{(t, u′)}. Notice that when 357

an action from A(s) is performed on s, progress is achieved 358

in the sense that ϕ(s + a) = ϕ(s) − 1. Since trains cannot 359

move backwards, this progress cannot be undone. However, 360

as we see next, an action may lead to a state from which 361

further progress is not possible. 362

363

Safe and unsafe states. By definition, the desirable terminal
state s⊤ = ∅ is a safe state; so also is every state for which
there exists a sequence of actions to reach s⊤. We may write
down recursively: for s ∈ S,

SAFE(s) ⇐⇒ (s = s⊤) ∨ (∃a ∈ A(s) : SAFE(s+ a)) .

This recursive definition gives rise to a straightforward pro- 364

cedure to compute SAFE(s), since any state s+ a in the RHS 365

has a potential value ϕ(·) one unit lower than s. However, 366

there is branching by a factor of |A(s)|, implying exponential 367

complexity for a naive implementation. Our main observa- 368

tion, described in the next section, is that SAFE(s) can be 369

computed in time that is only linear in the size of s. 370

An unsafe state is a state that is not safe. A deadlocked 371

state is a state containing trains, but on which no valid action 372

can be performed. For s ∈ S, 373

UNSAFE(s) ⇐⇒ ¬SAFE(s);

DEADLOCK(s) ⇐⇒ (s ̸= s⊤) ∧ (A(s) = ∅).
Since our system contains a finite number of trains, and their 374

journeys are also finite, it follows that ϕ(·) has a finite upper 375

bound. Since ϕ(·) decreases by 1 unit after each action, the 376

length of any action sequence starting from any initial state 377

s0 is also guaranteed to be finite. It follows that if s is unsafe, 378

then any sequence of actions starting from s will lead to a 379

deadlocked state, from which no further actions are available. 380

381

Computational problem. We require a procedure that can 382

efficiently identify whether a given state s ∈ S is safe or not. 383

It is convenient to view this procedure as a rule or proposition 384

R(s), which evaluates to a boolean value. R(s) may depend 385

both on s and on the journey details of the trains in D, but 386

must be efficient to compute. Several “sufficient” rules R 387

from the literature guarantee that R(s) =⇒ SAFE(s). We 388

require a “necessary and sufficient” rule, also called an opti- 389

mal rule, which satisfies R(s) ⇐⇒ SAFE(s). 390

As described in Section 1, optimal rules are computation- 391

ally hard on unrestricted problem instances. On the other 392

hand, we show next that if Assumption 1 is satisfied, then 393

an optimal rule can be implemented in only linear time. 394



4 Linear-Time Algorithm395

The algorithm presented here is due to Reveliotis et al.396

[1997], who proposed it in the context of resource allocation397

and implemented it with quadratic complexity. We describe398

this algorithm from the perspective of deadlock detection399

in railway networks, using the vocabulary introduced in400

Section 3. We provide a concise proof of correctness based401

on a graph-theoretic model, and also show that a linear-time402

implementation is possible.403

404

Next-stop graph. The main data structure involved in speci-405

fying R0 is a directed graph constructed based on input state406

s. The construction also requires the resource capacities en-407

coded by C̄ and the set of train journeys D. We denote this408

directed graph Gs = (V,E,C), where V is the set of vertices,409

E the set of edges, and C : V → {red, black} a function that410

associates a colour with each vertex.411

Recall that Ts is the set of trains in s. A resource u ∈ U is412

a vertex v ∈ V in Gs if and only if u is the current resource413

for some train t in s, or it is the next resource for some train414

t in s (as specified in t’s journey in D). The colour C(v) of a415

vertex v ∈ V is red if the corresponding resource has at least416

one free track (that is, the number of trains in this resource417

is strictly smaller than the capacity). Fully-occupied vertices418

are coloured black. Each train t in state s gives rise to an edge419

from the vertex of its current resource u to the vertex of its420

next resource u′. Hence, each edge e ∈ E corresponds to one421

or more trains in s. Notice that every vertex v ∈ V must have422

at least one edge, either incoming or outgoing (but possibly423

one or more of each type).424

Surprisingly, one does not need to access the extended425

journeys of trains in s in order to construct Gs: one only426

needs the trains’ current and next resources. For this reason,427

we may refer to Gs as the “next-stop graph” of s. Notice that428

the number of edges in Gs is at most the number of trains in429

s: that is, |E| ≤ |T |. Clearly Gs does not exceed the size430

of s or of the journey data D beyond a constant factor, as431

both s and D use Ω(|T |) space. Even so, Gs provides all the432

information required for optimal deadlock detection.433

434

Optimal rule. Our rule R0 has an intuitive form.435

Definition 2. For s ∈ S, R0(s) is the proposition: “In Gs,436

every black vertex has a directed path to some red vertex.”437

We formally show that under the multi-track assumption,438

R0 is an optimal deadlock detection rule.439

Theorem 3. If the problem instance satisfies Assumption 1,440

then for s ∈ S, R0(s) ⇐⇒ SAFE(s).441

Proof. Let Gs = (V,E,C). We prove the theorem by induc-442

tion on ϕ(s). As base case, consider arbitrary s ∈ S for which443

ϕ(s) = 1. If so, there is exactly one train t in the network, in a444

resource that connects to t’s terminus. Clearly s is safe since445

t can be moved into its terminus (thus s transitions into s⊤).446

Also notice that in this case, Gs comprises exactly two ver-447

tices r1, r2 ∈ V , with an outgoing edge from r1 to r2. Since448

each resource has at least two tracks, r1 and r2 must both be449

red, making R0(s) trivially true. In short, when ϕ(s) = 1,450

R0(s) and SAFE(s) are both true, and thereby equivalent.451

Our induction hypothesis is that for some integer m ≥ 1, 452

R0(s) ⇐⇒ SAFE(s) for all s ∈ S having ϕ(s) = m. 453

Now consider a state s ∈ S for which ϕ(s) = m + 1. We 454

separately prove the two implications in the theorem. 455

456

1. Proof of R0(s) =⇒ SAFE(s). Suppose that R0(s) is 457

true: that is, in Gs, every black vertex has a directed path to 458

some red vertex. We consider two complementary subcases. 459

460

1.1. Suppose Gs contains some red vertex r ∈ V with no 461

outgoing edges (Figure 3a). As in our base case, r must 462

contain an incoming edge from some vertex v ∈ V . Notice 463

that r has two or more empty tracks. Hence, we can move 464

a train t from v to r to obtain a state s′ with ϕ(s′) = m. 465

If there are any incoming edges into v in s, or v has trains 466

other than t in s, then v would also be a vertex in s′, but 467

now coloured red. Otherwise v would not be a vertex in Gs′ . 468

Depending on t’s next stop from s′, v could get a new edge 469

to an existing vertex or a new red vertex in Gs′ . Regardless, 470

notice that if any black vertex had a path to a red vertex in 471

Gs, it would continue to have a path to a red vertex in Gs′ . 472

Hence, if R0(s) is true, then R0(s
′) is also true. By the 473

induction hypothesis, s′ is safe, and hence s is also safe. 474

475

1.2. The second subcase is that every red vertex in Gs has 476

an outgoing edge (Figure 3b); every black vertex in Gs will 477

anyway have at least one outgoing edge. In this case, we 478

consider a subgraph G′ of Gs (Figure 3c), which differs only 479

in the set of edges. Indeed let G′ = (V,E′, C) so that (i) 480

each vertex v ∈ V has exactly one outgoing edge in E′, and 481

(ii) each black vertex in G′ has a directed path to some red 482

vertex in G′. A natural way to construct E′ would be to first 483

fix some outgoing edge to a red vertex from all black vertices 484

having such an edge in E, then to fix an outgoing edge to one 485

of those black vertices from all other black vertices having 486

such an edge in E, and proceeding similarly until all black 487

vertices have an outgoing edge. Thereafter each red vertex 488

can be given an arbitrary outgoing edge from E. 489

By its definition, G′ cannot have a directed cycle with only 490

black vertices (since that would imply that those vertices do 491

v1 v2

v3 v4

(a) Example
of Gs con-
taining a red
vertex with
no outgoing
edges.

v1 v2

v3 v4

v5 v6

(b) Example
of Gs in
which all red
vertices have
an outgoing
edge.

v1 v2

v3 v4

v5 v6

(c) G′ con-
structed for
Gs from
Figure 3b.

v1 v2

v3 v4

v5 v6

(d) Example
of Gs with
black vertices
not having a
path to any
red vertex.

Figure 3: Graphs illustrating cases in proof of Theorem 3.



not have a directed path to some red vertex in G, hence inval-492

idating R0(s)). Also, since it has an outgoing edge for each493

vertex, G′ must contain a directed cycle. In summary, we494

infer that G′ must contain a directed cycle with at least one495

red vertex. Indeed let such a cycle C contain the sequence of496

vertices r, v1, v2, . . . , vm for some m ≥ 1, where r is a red497

vertex. We are indifferent to the colours of v1, v2, . . . , vm.498

Now consider the action of moving a train t from vm to r,499

leading to next state s′. The set of vertices in Gs′ remains500

identical to that of s, except that Gs′ may get a new red501

vertex that is the next stop for t in s′. The set of edges in502

Gs′ is also identical to that of Gs, except for (i) the possible503

loss of the single edge from vm to r in case t was the only504

train having that transition in s, and (ii) the possible gain of505

a new outgoing edge from r. Regardless, vm is necessarily506

a red vertex in Gs′ , and moreover, any black vertex that had507

a directed path to r in s must have a path to vm in s′ (since508

r has a path through the sequence of vertices in C to vm).509

Directed paths not involving C in Gs remain the same in510

Gs′ . Hence, we conclude that if R0(s) is true, then R0(s
′)511

is also true. Since ϕ(s′) = m, we obtain from the induction512

hypothesis that s′ is safe. Since we can go from s to s′ by513

moving t, we observe that s must also be safe.514

515

2. Proof of SAFE(s) =⇒ R0(s). Suppose R0(s) is not true:516

that is, there exists a black vertex b ∈ V with no directed path517

to any red vertex in V (Figure 3d). b is fully occupied in s,518

and so it must have outgoing edges in Gs. Since these edges519

to do not lead to a red vertex in Gs, we surmise that there520

exists a finite subset of black vertices B ⊆ V of size at least521

two such that for each vertex in B, all outgoing edges lead522

to other vertices in B. Since every vertex b′ ∈ B is fully-523

occupied, no train can be moved out from or moved into any524

vertex in B. If s is already in deadlock, by definition it is525

unsafe. On the other hand, after any possible move of any526

train outside of B in s to reach s′, B remains a finite set of527

black vertices in Gs′ , with no directed path to any red vertex.528

Since ϕ(s′) = m, the induction hypothesis gives us that s′ is529

unsafe, and hence s is unsafe.530

Although R0 is essentially a rephrasing of the rule given531

by Reveliotis et al. [1997] for SURAS, its interpretation in532

terms of a next-stop graph Gs is novel. The algorithm given533

by Reveliotis et al. [1997] eliminates one node in each pass534

through the set of resources, hence takes time that is quadratic535

in the number of resources. On the other hand, it is easy536

to see that R0(s) can be computed in time that is only lin-537

ear in the number of edges in Gs, which is generally much538

smaller than |U |2. The pseudocode in Figure 4 is for an im-539

plementation of R0 by a standard search algorithm [Russell540

and Norvig, 2022, see Chapter 3], taking O(|E|) operations541

for input Gs = (V,E,C).542

5 Experimental validation543

We compare our proposed rule R0 against other deadlock544

avoidance algorithms on real railway schedules as well as545

synthetically-generated ones. Data and code to reproduce546

the results reported in this section are available at https:547

//github.com/Hastyn/Linear-Time-Deadlock-Detection/.548

Initialise FRONTIER to an empty stack.
For v ∈ V :

HASPATHTORED[v]← false.
If C[v] = red:

HASPATHTORED[v]← true.
FRONTIER.PUSH(v).

Initialise INCOMING[v] to an empty stack.
For (u, v) ∈ E:

INCOMING[v].APPEND(u).

While FRONTIER is not empty:
v← FRONTIER.POP().
For u ∈ INCOMING[v]:

If HASPATHTORED[u] = false:
FRONTIER.PUSH(u).
HASPATHTORED[u] = true.

For v ∈ V :
If HASPATHTORED[v] = false:

Return false.
Return true.

Figure 4: R0(s) implementation with input Gs = (V,E,C). The
frontier may be implemented either as a stack or as a queue.

5.1 Data description 549

We use published timetables and infrastructure information 550

from three portions of the Indian Railway network. These 551

portions are from Ajmer (northwest India), Kanpur (north In- 552

dia) and Konkan (west coast). Of these, Ajmer and Kanpur 553

are predominantly multi-track at stations as well as the con- 554

necting sections between stations, while Konkan has multi- 555

track stations but mostly single-track connecting sections (we 556

handle this scenario by moving trains from one station to the 557

next without stopping in the connecting sections, as outlined 558

earlier). Details from these networks are summarised in Table 559

1. In addition to the real data sets, we also generate 8 hypo- 560

thetical lines and branching networks to have better control on 561

the characteristics. HYP-1 is a small toy dataset, HYP-2 and 562

HYP-3 share the same infrastructure, but HYP-3 has twice 563

the number of trains of HYP-2. HYP-4 and HYP-5 simulate 564

Instance Sn. Tns. Time Events Con. Density
Span Sec.

Ajmer 52 444 5.5 day 13129 51 0.016
Kanpur 27 190 1.4 day 3858 26 0.036
Konkan 59 85 2.2 day 2709 58 0.007
HYP-1 5 8 1.8 hrs 40 4 0.041
HYP-2 11 60 2.0 day 660 10 0.011
HYP-3 11 120 2.1 day 1320 10 0.021
HYP-4 4 350 0.8 hrs 1290 3 3.839
HYP-5 3 200 0.5 hrs 4766 2 31.773
HYP-6 6 6 0.8 hrs 23 5 0.044
HYP-7 26 500 3.0 hrs 4537 27 0.476
HYP-8 22 100 4.8 hrs 1046 21 0.084

Table 1: Data set description, giving number of stations (Sn.), trains
(Tns.), span of the reference timetable, total number of departure
events, number of connecting sections (Con. Sec.), and the traffic
density in events per resource per minute. Note that the number of
resources is the sum of stations and connecting sections.

https://github.com/Hastyn/Linear-Time-Deadlock-Detection/
https://github.com/Hastyn/Linear-Time-Deadlock-Detection/
https://github.com/Hastyn/Linear-Time-Deadlock-Detection/


very high traffic networks with only four stations but a large565

number of trains. HYP-6, HYP-7, and HYP-8 are branch-566

ing networks with HYP-7 having high traffic. In Table 1, the567

density reported is the total number of events occurring per568

minute per resource in the network.569

5.2 Comparison with baselines570

The goal of our experiments is to test the reduction in ADD571

(defined in (1)) as a result of dividing the action set in any572

given state optimally into safe and unsafe labels. Considering573

this to be a binary classification problem, we pick one base-574

line rule Rg which allows false negatives (marking an actu-575

ally unsafe state as safe) and one rule Rc which allows false576

positives (marking an actually safe state as unsafe). We note577

that the rules Rg and Rc correspond to ‘greedy’ [Prasad et578

al., 2021] and ‘critical first’ [Khadilkar, 2017b] in their orig-579

inal forms. Briefly, the greedy algorithm marks a train move-580

ment as safe if it has at least two feasible forward moves.581

Critical-first is a sufficient condition for deadlock free move-582

ment, which allows a train to move ahead as long as it only583

stops in a resource where at least one additional track is free.584

For every compounded set of primitive moves, this results in585

a state where every resource has at least one free track.586

The critical first algorithm further provides a ranking order587

when multiple train movements are marked as safe, based on588

the number of presently free tracks in the resource the train589

is currently occupying (criticality of the node). We use this590

logic to rank train moves among the set marked safe by each591

rule. The resulting ADD for all problem instances and algo-592

rithms is summarised in Table 2. We emphasise that only the593

safe action masking (by using R0, Rg , or Rc) differs among594

the algorithms, and the remaining scheduling/rescheduling595

policy is the same. In order to generate statistical results,596

we generate perturbed versions of each instance by moving597

the entire journey of each train in the reference timetable by598

an amount picked uniformly at random in [−30, 30] minutes.599

Refer to Prasad et al. [2021] for details of the perturbations.600

From Table 2, we first confirm that both Rc (sufficient) and601

R0 (necessary and sufficient) conditions result in deadlock-602

free schedules for all instances. Second, R0 performs signif-603

icantly better than Rc in all instances, in terms of schedule604

efficiency. This demonstrates the advantage of employing an605

optimal deadlock detection condition. Rg outperforms R0 in606

Instance Critical First (Rc) Greedy (Rg) R0

Ajmer 4.76±0.07 4.19±0.08 4.12±0.09
Kanpur 1.35±0.07 3.57±0.09 1.29±0.05
Konkan 60.33±0.69 42.22±0.59 42.60±0.51
HYP-1 19.30±1.74 16.22±1.29 16.49±1.30
HYP-2 6.33±0.33 4.29±0.21 4.31±0.21
HYP-3 7.02±0.91 5.01±0.16 0.83±0.07
HYP-4 1773.73±12.79 deadlock 1170.11±2.46
HYP-5 654.9±17.26 568.07±2.71 524.23±2.39
HYP-6 12.07±1.43 deadlock 6.42±1.20
HYP-7 1487.88±22.11 deadlock 1228.30±1.61
HYP-8 776.96±27.74 215.74±2.04 169.48±1.90

Table 2: ADD values in minutes with their standard error averaged
over 10 perturbed versions of the reference timetables.

three instances, all of which have low traffic density (see Ta- 607

ble 1). However, the ADD for R0 is competitive even in these 608

instances. On the other hand, Rg deadlocks in instances with 609

high traffic density, and hence in general would not be a suit- 610

able choice for real-time rescheduling. 611

5.3 Policy Improvement 612

As a second experiment, we consider the effect of optimal 613

deadlock detection on the efficiency of resulting schedules, 614

by performing policy improvement using roll-outs [Tesauro 615

and Galperin, 1996; Agarwal, 2022]. Under policy improve- 616

ment, a base schedule is progressively improved by updating 617

each action to one that minimises delay when followed by a 618

roll-out policy. In Table 3, we start with the schedule pro- 619

duced by R0 in Table 2 for all three algorithms (for a fair 620

comparison). For every decision taken in the sequence, we 621

roll out the individual trajectories for all alternative actions 622

which are also marked as safe by the relevant rule. We choose 623

the schedule with the least ADD out of these results, move to 624

the next decision in the sequence, and repeat. The results in 625

Table 3 show that the rollouts using R0 (which provides the 626

maximal set of feasible actions) are predominantly more ef- 627

fective than those using Rc and Rg . In some cases, Rc and Rg 628

are unable to improve on the baseline schedule given by R0, 629

while R0 results in improvement over Table 2 in all instances. 630

6 Conclusion 631

In this paper, we show that in contrast to the accepted 632

characterisation of railway scheduling in the literature, a 633

polynomial-time deadlock detection method from the re- 634

source allocation literature applies to a large class of 635

(re)scheduling problems. Our version of the implementation 636

is in fact linear-time for arbitrary network topology, so long as 637

each resource (station or connecting section) has at least two 638

tracks. Further, we show that under a mild assumption (avail- 639

ability of a sequence of moves to bring all trains in single- 640

track resources to a multi-track resource), we can also handle 641

scheduling in the single-track scenario. Our empirical results 642

show that using an optimal deadlock detection strategy sig- 643

nificantly improves scheduling efficiency, in addition to pro- 644

viding feasibility guarantees. One important open question 645

for the future is to evaluate the usefulness of optimal action 646

masking while training data-driven scheduling policies. 647

Instance Rg Rollout Rc Rollout R0 Rollout
Ajmer 3.43 ± 0.04 3.79 ± 0.05 3.43 ± 0.07
Kanpur 1.29 ± 0.05 1.13 ± 0.05 1.09 ± 0.05
Konkan 39.67 ± 0.57 42.59 ± 0.51 40.24 ± 0.61
HYP-1 15.75 ± 1.26 16.18 ± 1.28 15.74 ± 1.26
HYP-2 3.99 ± 0.24 4.19 ± 0.18 4.08 ± 0.20
HYP-3 0.83 ± 0.07 0.82 ± 0.07 0.74 ± 0.06
HYP-4 1170.11 ± 2.46 1170.11 ± 2.46 1166.26 ± 2.49
HYP-5 524.23 ± 2.39 524.23 ± 2.39 517.23 ± 2.09
HYP-6 6.35 ± 1.22 5.90 ± 1.01 4.20 ± 0.62
HYP-7 1215.73 ± 1.57 1228.3 ± 1.61 1225.99 ± 1.36
HYP-8 169.48 ± 1.90 169.48 ± 1.90 165.79 ± 2.42

Table 3: Policy improvement starting with the baseline schedule pro-
duced by R0 in (the last column of) Table 2.
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