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Figure 1: Overview of proposed 3D-SynthPlace dataset and OptiScene framework for indoor
layout generation. (Left): We propose 3D-SynthPlace, a large-scale, high-quality indoor layout
dataset. (Middle): Our open-source LLM-based generator, OptiScene, takes user instructions and
produces structured layout representations through a two-stage, coarse-to-fine optimization. (Right):
OptiScene supports interactive layout editing and downstream tasks such as robotic navigation.
(Bottom): Qualitative layout visualizations and quantitative comparisons show OptiScene’s superior
performance (sucess rate) over existing prompt-driven and learning-based baselines.

Abstract

Automatic indoor layout generation has attracted increasing attention due to its
potential in interior design, virtual environment construction, and embodied Al.
Existing methods fall into two categories: prompt-driven approaches that leverage
proprietary LLM services (e.g., GPT APIs), and learning-based methods trained
on layout data upon diffusion-based models. Prompt-driven methods often suffer
from spatial inconsistency and high computational costs, while learning-based
methods are typically constrained by coarse relational graphs and limited datasets,
restricting their generalization to diverse room categories. In this paper, we revisit
LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale
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dataset that combines synthetic layouts generated via a ‘GPT synthesize, Human
inspect’ pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains
nearly 17,000 scenes, covering four common room types—bedroom, living room,
kitchen, and bathroom—enriched with diverse objects and high-level spatial anno-
tations. We further introduce OptiScene, a strong open-source LLM optimized for
indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through
our two-stage training. For the warm-up stage I, we adopt supervised fine-tuning
(SFT), which is taught to first generate high-level spatial descriptions then condi-
tionally predict concrete object placements. For the reinforcing stage II, to better
align the generated layouts with human design preferences, we apply multi-turn
direct preference optimization (DPO), which significantly improves layout quality
and generation success rates. Extensive experiments demonstrate that OptiScene
outperforms traditional prompt-driven and learning-based baselines. Moreover,
OptiScene shows promising potential in interactive tasks such as scene editing
and robot navigation, highlighting its applicability beyond static layout generation.
Project page: optiscene.github.io/.

1 Introduction

Indoor Scene Layout Generation has attracted growing attention across the 3D vision fields, including
virtual environment synthesis [40} 10,46\ 49| |4, 3 [12], robot navigation [29} 28, 50, 45|, digital twin
construction [5, 20,30, 39], interior design automation [42} 14,17, and human-centric simulation
in some scenes [47} 143} 136l 21} [38} [16]]. With the increasing need for simulating realistic virtual
environments, learning to generate functionally plausible, physically feasible, and semantically
meaningful spatial arrangements has become an essential capability for intelligent systems.

Existing approaches for indoor scene layout generation fall broadly into two paradigms: prompt-
driven methods that leverage large language models (LLMs) through well-defined natural language
prompts, and learning-based methods that train models on layout data to capture spatial priors.
Prompt-driven methods, such as Holodeck [42], SceneCraft [14], FlairGPT [18]], SceneTeller [23],
I-Design [2]], LayoutVLM [32] and LayoutGPT [8]], typically rely on proprietary LLM services
(e.g., GPT APIs) to produce layouts based on multi-turn prompting or retrieval-based in-context
examples. Although prompting approaches have shown competitive performance, they suffer from
fundamental limitations such as incorrect domain alignment, weak controllability, and most impor-
tantly, superficial physical understanding. Moreover, these commercial LLM APIs are closed-source,
prohibitively expensive for large-scale generation, and thoroughly static that can not be modeled with
new 3D spatial priors or perfectly encoded with human preferences. As a result, they are ill-suited
for fine-grained layout tasks that require geometric validity, functional coherence, and task-specific
adaptation. Learning-based methods, on the other hand, explicitly optimize local models using open-
source structured layout data. Diffusion-based approaches such as LEGO-Net [37], DiffuScene [33]],
InstructScene [17], and PhyScene [40] refine layouts iteratively by modeling object-object relation-
ships through layout graphs or bounding boxes. LLplace [41] represents another type of attempt
to fine-tune LLMs instead of diffusion-based models. Most learning-based models are trained on
datasets like 3D-Front [9], which contain fewer than 7,000 usable layouts and focus predominantly
on bedrooms and living/dining rooms. This limited data diversity not only restricts scene coverage
but also biases the model toward overfitting on narrow spatial patterns. Beyond the dataset, while
existing learning-based methods have shown progress in modeling spatial layouts, they essentially
lack a preference-aware learning objective that aligns with human minds. Most existing approaches
optimize for data reconstruction or distribution matching, rather than aligning with human notions,
such as what constitutes a desirable, functional, or aesthetically pleasing layout. Without explicit
reasoning of human-aligned supervision, these models struggle to generalize across room types, adapt
to variable orientations, or reflect higher-level spatial semantics—capabilities that are essential for
practical deployment in design systems or embodied environments.

To address the fundamental obstacle—namely the lack of human-aligned optimization preference,
insufficient spatial reasoning, and limited scene diversity—we propose 3D-SynthPlace, a large-scale
dataset with more than 16,000 layouts that augments 3D-Front [9]] with over 9,000 synthetic layouts
generated via Holodeck, as well as introduce OptiScene, an LLM-based framework that enables
controllable and preference-aware indoor layout generation. Different from existing GPT-based
pipelines that depend on closed APIs and prompt engineering, OptiScene is dedicated to post-tuning
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open-source LLM for spatial design tasks, making it adaptable, efficient, and deployable in real-world
systems. Serving as an important prerequisite, 3D-SynthPlace ensures sufficient training diversity.
All generated scenes within the dataset are manually filtered and rigorously corrected to ensure
quality, and the dataset expands room coverage beyond the conventional bedroom/living room focus
to include kitchens and bathrooms, providing a more comprehensive training foundation. Building on
3D-SynthPlace, we enhance the regular SFT tuning by introducing high-level semantic reasoning
plans: instead of directly predicting placements, the model is first guided to generate a natural
language summary that describes spatial organization and object relationships inside the room. This
step provides an interpretable outline that helps the model internalize functional zoning and spatial
intent—challenges that graph-based or purely coordinate-driven approaches often fail to address.
Afterwards, the SFT model utilizes the room layout summary for robust generation. To further align
the generation with human preferences, we introduce a two-stage Direct Preference Optimization
(DPO)[26]] reinforcing process. In the first stage of DPO, we construct preference pairs from an
expert-curated subset of human-consensus layouts, as the positive preference, and contrast them
against a group of suboptimal model-generated variants by the SFT basis, fostering the SFT model
to capture subtle stylistic and structural preferences. In the second stage, we synthetically inject
spatial violations (e.g., collisions and boundary overflows) into positive scenes to produce harder
negatives, encouraging the model to learn robust, geometry-aware layout decisions. Through this
reasoning-guided, preference-aligned training strategy, our OptiScene bridges the gap between static
language generation and dynamic spatial intelligence, producing layouts that are physically plausible,
semantically coherent, and practically usable across design and robotics workflows.

As shown in Fig.[I] OptiScene demonstrates consistent improvements across multiple dimensions in
our experiments, including success rate and layout quality. Overall, our contributions are threefold:

* We construct 3D-SynthPlace, a large-scale dataset with more than 16,000 scene layouts,
which combine the 3D-Front dataset and over 9,000 synthetic layouts generated by Holodeck.
All samples are manually filtered and corrected to ensure quality, and we expand the scene
coverage to include kitchen and bathroom layouts, providing a richer and more diverse
training corpus for indoor layout generation.

* We propose OptiScene, a human-aligned indoor layout generation framework. The frame-
work introduces high-level semantic reasoning into a supervised fine-tuning (SFT) stage,
encouraging the model to infer spatial intent and object relationships before predicting
concrete layouts. Building on this, it further applies a two-stage Direct Preference Optimiza-
tion (DPO) reinforcement to align layout generation with human preferences and physical
constraints.

* We conduct comprehensive evaluations across multiple metrics and prove that OptiScene
achieves state-of-the-art performance. Furthermore, we show its effectiveness on down-
stream tasks like interactive editing and robot navigation, validating its practical applicability.

2 Related work

Methods & datasets for scene layout generation. Besides traditional methods [35) 134} 25]], recent
methods can be grouped into prompt-driven and learning-based approaches. Prompt-driven meth-
ods use LLMs via structured or free-form prompts to generate layouts, including Holodeck [42]],
SceneCraft [14]], FlairGPT [18]], SceneTeller [23]], I-Design [2], Aguina [[1]], LayoutVLM [32]], and
LayoutGPT [8]]. These methods show language-scene grounding but often rely on proprietary LLMs
(e.g., GPT), lack spatial fine-tuning, and offer limited controllability or offline deployment. Diffusion
models have been used in widely areas [48| 31} [13], and are now applied in the scene layout genera-
tion area, such as LEGO-Net [37], DiffuScene [33l], PhyScene [40], and InstructScene [[17]]. These
methods train diffusion models on layout graphs or bounding boxes to improve physical plausibility.
They often model object-object relations coarsely, lack expressiveness for human spatial preferences,
and are sensitive to room orientation. Most are trained on small-scale datasets like 3D-Front [9],
limiting generalization to diverse layouts. Other existing indoor scene datasets [44] |6l 27] have
different data format. Hence they cannot be applied in the scene layout generation task.

Human preference learning for 2D/3D understanding. Recent LLM research has increasingly
explored human preference with reinforcement learning (RL) to enhance reasoning, as seen in models
like OpenATI’s ol [15] and DeepSeek-R1 [[1L1]]. In vision tasks, Visual-RFT [[19] improves spatial
grounding via reward tuning for localization and object detection. Closer to our domain, MetaS-
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Figure 2: Overview of the OptiScene pipeline. (1) SFT Process: The user input is transformed
into structured instructions and bounding boxes to guide the LLM, which first generates a high-level
semantic description before predicting final object placements. (2) Two-stage DPO: The model
outputs are aligned with human preferences by progressively training on curated positive data and
synthesized negative samples with increasing difficulty. (3) Inference and Rendering: The optimized
model generates layouts that are visualized through a rendering module.
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patial [24] applies multi-step RL to reorganize cluttered scenes by relocating objects semantically.
While effective for spatial adjustment, it focuses on rearrangement rather than full layout generation.
In contrast, we aim to generate complete layouts from scratch, optimizing both structure and usability
through preference-aligned method.

3 Methodology: 3D-SynthPlace & OptiScene

In this section, we present the 3D-SynthPlace dataset and OptiScene framework (see Fig.[2). We begin
by providing a concise formulation of our layout generation problem in Section 3.1} In Section 3.2}
we describe the dataset construction process and highlight the criteria and techniques used to ensure
high-quality and diverse scene representations. Following this, in Section[3.3] we detail the supervised
fine-tuning (SFT) process, including the model’s input/output format and the design of the meta
instruction prompt. And finally in Section[3.4] we discuss how to use Direct Preference Optimization
(DPO) to perform iterative optimization to make the SFT scene layout result align with human
preferences.

3.1 Problem formulation

We define indoor layout generation as a spatial reasoning task guided by structured language input.
Given a user instruction U, the system first wraps the natural language instructions into the JSON-
structured input with the floor dimensions F, the room type T, a set of object descriptions Dy,
and their quantities Q.. The Dy are applied to retrieve the relevant 3D object assets O =
{01,02,...,0n} from a large-scale 3D assets database DB (eg. Objaverse [[7]]), where each object is
associated with a corresponding 3D bounding box size. This can be formulated as {O,bbox} .y =

R({D\-y},DB).

The previously described room and object descriptions are converted into a structured JSON specifi-
cation X. We then apply the meta prompt template of static generation as P, which is a fixed text
wrapper for sorting room and objects descriptions into a fluent text instruction, and then guiding the
LLM M for effective design. The M then generates a layout L from the prompt P(X), specifying 3D
positions ¢y and orientations . in a JSON structure. The L combines the generated objects’
properties and input room. Finally, a rendering module ;s visualizes the 3D scene layout Vip,.
The whole pipeline is formally defined as:

Vimg = %yis(M(P(X)), O), where{O,bbox},.y =R({D\~-n},DB). (1)
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To support effective training of the layout generation model M, we require a large-scale dataset that
provides diverse scene configurations and is aligned with human preferences.

3.2 3D-SynthPlace dataset construction

While 3D-Front [9] is widely used in layout generation tasks, it suffers from limited scale and
scene diversity. After filtering, only around 7,300 layouts are usable, and most belong to bedroom
or living/dining room categories. This narrow distribution hinders generalization, especially for
underrepresented room types like kitchens and bathrooms. Manually creating large-scale, high-quality
layout datasets is prohibitively costly, making synthetic generation a practical alternative. To this end,
we construct 3D-SynthPlace, a large-scale dataset that augments 3D-Front with over 9,000 additional
synthetic layouts, enabling richer training coverage for our reasoning- and preference-aligned learning
framework.

We use Holodeck [42] as the base generator for constructing the 3D-SynthPlace dataset because
manually curating scene layouts is expensive and time-consuming. Holodeck offers a low-cost,
easy-to-use alternative by automatically generating layouts from GPT-based prompts. However,
during synthesis we observe frequent structural issues: under-populated layouts, clustered object
placements in large rooms, and erroneous object counts or orientations. Approximately 55% of
the scenes exhibit such flaws. We apply a strict filtering to remove invalid samples and manually
correct plausible ones. We also discard scenes with fewer than 6 objects in bedrooms/living rooms,
fewer than 3 in kitchens, and fewer than 2 in bathrooms, to ensure minimum complexity. However,
Holodeck’s default prompts (only consider room description) and output formats differ from our
task requirements. To bridge this gap, we (1) unify scene descriptions into a structured JSON input
specifying object types and quantities, (2) align asset metadata with 3D-Front conventions, and (3)
supplement each layout with a high-level semantic summary describing spatial organization. These
semantic descriptions are generated by rendering each layout from top-down and oblique views and
prompting GPT to describe spatial relations, providing interpretable supervision for the model’s
reasoning stage.

The resulting 3D-SynthPlace dataset contains over 16,000 scenes across four room categories,
combine with 7,306 3D-Front data samples and 9,360 Holodeck-Synth data samples, balancing
geometric coverage with semantic diversity of four room types. Figure [3|compares object counts,
room type distributions, and the diversity of newly introduced Objaverse assets between 3D-Front and
our dataset. Additionally, we further extend our reasoning step supervision by generating consistent
semantic summaries for all data within the 3D-SynthPlace, and annotate retrieved objects with more
precise category and geometry metadata. Together, these refinements make 3D-SynthPlace a more
comprehensive and reasoning-friendly dataset for indoor layout modeling. For further dataset details
and visualizations, please refer to the supplementary material.

3.3 Warm-up stage I: supervised fine-tuning (SFT) process

After having constructed a high-quality dataset, we leverage 3D-SynthPlace to activate the spatial
reasoning and generation capabilities of existing LLMs. We first adapt a general-purpose LLM to the



layout generation task via supervised fine-tuning (SFT) on the 3D-SynthPlace dataset. Each input
instruction X consists of the room type T, floor size F, object descriptions Dy, quantities Q;,y,
and retrieved bounding boxes bbox| .y, all wrapped into a meta prompt P to condition the model.

To improve spatial reasoning and layout quality, we introduce a semantic reasoning step before the
final placement prediction. Instead of directly generating object positions and rotations, the model
is prompted to produce a high-level natural language summary Sge, describing the global spatial
structure (e.g., “place the sofa against the long wall with the coffee table in front”). This step serves
as an coarse interpretable intermediate prior, helping the model produce fine coherent layouts and
better reflect human design preferences, especially in the absence of explicit spatial constraints.

We treat the LLM as a policy 7y, where 6 denotes the model parameters. This policy generates scene
layouts conditioned on input instructions X. The full generation process is:

{Xvssema [car}INN} - ﬂe[P({D,Q,bbox}l~N7T,F)], (2)
L:(TvFa{Dvgvbboxac7r}l~N)' (3)

We minimize the discrepancy between predictions and ground-truth layouts, including both the
semantic summary and structured output. The prompt includes design constraints to (1) avoid
collisions, (2) maintain functional organization, and (3) favor boundary-aligned placement to enhance
spatial openness. Full prompt templates are provided in the supplementary material.

3.4 Reinforcing stage II: human preference optimization

While our supervised fine-tuning (SFT) enables the model to acquire structured spatial priors, we
observe that it still struggles to generate physically valid and semantically coherent layouts. In
particular, generated scenes often suffer from object collisions, boundary violations, or even high-
level planning inconsistencies due to hallucinations in the reasoning process. We attribute these issues
to the inherent limitations of LLMs in modeling 3D spatial structures, where the learned relations
between objects tend to remain coarse, linguistic, and geometry-agnostic, rather than grounded in
physical feasibility or human design preferences. To address this gap, we propose a multi-stage
optimization framework based on Direct Preference Optimization (DPO) that progressively aligns
the model outputs with human preferences and improves its understanding of 3D scene plausibility.

The DPO framework is formulated as a preference modeling problem, where the model learns to
favor human-preferred layouts L™ over less desirable alternatives L™ given the same input X from
the 3D-SynthPlace dataset . Formally, we optimize the policy g using the standard DPO loss:

mg (L | X; mo (L7 | X;
9( l+| l) —‘BIOg 9( l_| l) , (4)
Tref (L, | XI) Tlref (L, ‘ XI)

where f3 is a temperature hyperparameter and o(+) is the sigmoid function. Due to the complexity of

layout generation and the nuanced nature of human design preferences, we adopt a two-stage DPO
framework to progressively refine the SFT model.
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DPO-stage I: human consensus alignment. Instead of relying on noisy or random model generations
to create preference pairs, we take a data-first approach. We observe that curated layouts from 3D-
SynthPlace inherently reflect strong human preferences in object placement and room organization.
We select ~ 2,200 of such layouts that received unanimous approval from annotators as positive
samples L. For each corresponding scene description X, we then use our SFT model to generate
multiple layout candidates. These generated results, while semantically plausible, often deviate from
human-intuitive arrangements, and are therefore treated as negative samples L™ . This contrastive
pairing ensures that the optimization target explicitly favours human consensus without being biased
by generation-stage noise.

DPO-stage II: geometric plausibility enhancement. While the first-stage DPO improves layout
semantics and global structure, it does not always eliminate low-level physical errors, such as object
collisions, surface overflow, or implausible rotations. These issues arise because the model lacks
direct training signals to avoid physically invalid configurations. To address this, we design a second
optimization stage focused on hard negative mining: for each ground-truth layout L™, we synthesize
perturbed versions L~ with targeted spatial violations (e.g., objects extending beyond table bounds,
interpenetrations with walls or other furniture). These negatives are subtle but structurally invalid,
providing sharper gradients to improve the model’s sensitivity to physical realism.



Table 1: Layout quality [FID | / OOR |] on 3D-Front & 3D-SynthPlace.

Method 3D-Front 3D-SynthPlace

Bedroom Living room Bedroom Living room Kitchen Bathroom
I-Design [2] 73.56/0.19 80.123/0.20 | 76.42/0.18 80.561/0.19 90.25/0.28 85.4/0.16
DiffuScene [33] 49.71/0.12  55.21/0.14 | 58.37/0.14 61.46/0.18 -/- -/-
LLplace [41] 56.63/0.12 61.97/0.17 | 63.45/0.06 69.64/0.16 89.34/0.14 59.31/0.03

DiffuScene (w/ 3D-Synth) [33] | 41.23/0.06 46.64/0.11 | 38.96/0.06 44.25/0.12 52.63/0.10 39.76/0.04
LLplace (w/ 3D-Synth) [41] 38.81/0.07 4532/0.13 | 37.66/0.04 40.72/0.08 43.68/0.08 37.44/0.03

OptiScene | 33.56/0.03 37.68/0.08 | 26.45/0.01 31.25/0.02 41.73/0.05 35.29/0.02

Table 2: Layout quality using GPT-4o[Func 1/ Layout T /Aes. 1] on 3D-Front & 3D-SynthPlace.

Method ‘ 3D-Front 3D-SynthPlace

Bedroom Living room Bedroom Living room Kitchen Bathroom

6.7/70/73 65/64/71|64/62/70 61/60/68 58/56/6.6 6.0/6.1/6.9
DiffuScene [33] | 7.8/8.1/84 75/79/82 |8.0/82/85 79/78/83 82/80/78 74/7.6/8.0

LLplace [41] 86/84/85 82/78/80 |85/86/88 72/70/82 74/78/80 7.5/7.3/8.0
OptiScene | 8.6/9.1/9.3 88/8.7/9.0 | 87/9.0/9.2 89/92/91 84/83/88 8.7/9.4/9.0

I-Design [2]

Through this two-stage optimization, our model OptiScene develops dual awareness of both design
intent and spatial plausibility. Unlike generic LLMs or prompt-based tools, OptiScene is explicitly
trained to meet the needs of interior design tasks, producing layouts that are not only spatially valid
but also aligned with real-world usage and human preferences.

4 Experiments

4.1 Experiments setup

Dataset setup. Our constructed dataset, 3D-SynthScene, contains a total of 16,666 scenes, including
7,306 original layouts from the 3D-Front dataset and 9,360 synthetic layouts generated by Holodeck-
Synth pipeline. Following the evaluation protocol of LayoutGPT [8] and LLplace [41], we select
423 bedroom and 53 living room layouts from 3D-Front as the test set. Additionally, we sample
50 layouts for each of the four room types—bedroom, living room, kitchen, and bathroom—from
Holodeck-Synth as an extended test set. The remaining 15,990 scene layouts are used as the training
set. As described in Section [3.4] we manually select 2,200 high-quality human-preferred layouts
from the full set of 15,990 training samples as the positive dataset for DPO.

Training setup. We adopt Qwen3-8B as the base LLM for both supervised fine-tuning (SFT) and
direct preference optimization (DPO). Due to resource constraints, we apply LoRA-based parameter-
efficient fine-tuning. For SFT, we set the LoRA ¢ to 32, rank r to 16, and dropout rate to 0.05. We
train the model for 10 epochs using a learning rate of 5 x 10~° with a cosine learning rate scheduler.
For the two-stage DPO, we use the same LoRA configuration but lower the learning rate to 5 x 10~
and train for 5 epochs with the same cosine scheduler. The whole training process takes roughly 140
GPU hours.

Evaluation metrics. We adopt four metrics to comprehensively evaluate layout quality. (1) FID,
following DiffuScene [33], measures visual realism between rendered and real scenes. (2) Object
Overlap Rate (OOR) evaluates physical plausibility by computing the proportion of intersecting
bounding boxes. (3) GPT-40 Ratings assess layout quality from three dimensions—Functionality,
Furniture Layout, and Aesthetics—scored from 0 to 10 via prompt-based evaluation. (4) Usability
Rate (UR) reflects human acceptability: among 50 sampled scenes, each judged by 5 annotators, a
layout is counted as usable if at least 3 consider it physically and semantically valid.

4.2 Experiment results Table 3: Layout generation success rate.

FID & OOR metrics. Table reports lay— Method | Bedroom  Living room Kitchen Bathroom
. . DiffuScene (w/ 3D-Synth) [33] 30% 20% 20% 25%

out quality across two metrics: FID (]) and [ piace (w/3D-Synth) 1] 0% 0% 0% 32

OOR (] ). Overall, models trained with the _Holodeck [42] 55% 30% 25% 35%

extended 3D-SynthPlace data show signifi- ~_OptiScene | 75% 0% W% 4%

cant improvements over their 3D-Front-only
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Figure 4: Sample layouts generated by several models on 3D-Front & 3D-SynthPlace. Common
layout errors—such as misaligned objects, or object collisions, are highlighted with red boxes. (Please
zoom in to see the details.)

counterparts—demonstrating the effectiveness of large-scale, diverse training layouts. Among all
methods, OptiScene achieves the lowest FID and OOR across every room type, including newly
introduced categories such as kitchen and bathroom. Compared to LLplace (w/ 3D-Synth) in 3D-
SynthPlace, OptiScene reduces FID by 11.21 in bedrooms and 9.47 in living rooms, while also
halving the OOR in several cases.

GPT-Based evaluation. We further evaluate layout quality using GPT-40 across three aspects:
functionality, layout rationality, and aesthetics. As shown in Table 2} OptiScene consistently achieves
the highest scores across all room types and metrics. On the 3D-SynthPlace test set, it surpasses
DiffuScene and LLplace by an average margin of +0.9 in functionality and +1.0 in rationality. In
more challenging scenes such as kitchens and bathrooms, OptiScene reaches up to 9.4 in rationality,
reflecting stronger spatial reasoning and layout usability.

Usability consistency. To evaluate the robustness and reliability of different layout generation
methods, we conduct a usability consistency test in which each model generates 50 layouts per room
type, and we record the proportion of layouts deemed valid (i.e., free of collisions, interpenetrations,
and major structural violations). As shown in Table [3] OptiScene significantly outperforms all
baselines in both bedroom and living room categories, achieving 75% and 50% usable layouts
respectively. In contrast, DiffuScene and LLplace achieve much lower success rates, especially
on complex scenes such as kitchens and bathrooms. While Holodeck performs reasonably well in
bedrooms, its outputs remain less stable across room types.

Qualitative analysis. Figure [4] shows visual comparisons across models on six room categories
from 3D-Front and 3D-SynthPlace. I-Design consistently fails to construct scenes with more than
5-6 objects, often missing essential furniture (marked in blue), highlighting its limited scalability.
DiffuScene and LLplace trained only on 3D-Front struggle to generalize, especially to novel room
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Figure 6: Progressive improvement over stages.

types like kitchens and bathrooms. DiffuScene in particular fails entirely in these categories. With
3D-SynthPlace training, both methods see noticeable improvement, yet issues like collisions and
misalignments (red boxes) persist. In contrast, our proposed OptiScene generates coherent, well-
structured layouts across all scenes, with correct functional grouping and minimal physical violations,
demonstrating superior generalization and human-aligned spatial reasoning.

4.3 Downstream tasks

Room editing is essential for interactive layout generation, yet prior methods like DiffuScene and
I-Design lack such capability. Inspired by LLplace, we extend 3D-SynthPlace with an object-level
editing dataset containing addition and removal instructions. We fine-tune the model with mixed
editing and original data, and evaluate on 20 edit cases using object-overlap rate (OOR) and editing
success rate (ESR). As shown in Table ] OptiScene maintains low OOR post-editing and achieves
90% ESR, with only two failed cases.

Object-Centric navigation evaluates whether the generated layouts support goal-directed robot
exploration. Given a command like “Find a <object> in the room,” the robot succeeds if the target
appears within +30° of its field of view and within 2 meters, measured by success rate (SR). We also
report navigation error (NE), defined as the final distance to the target. As shown in Table 5] our
layouts support stable navigation across LLM backends, indicating strong spatial usability. We show
some robot navigation results in our generated 3D scenes in Fig.

4.4 Ablation study

Effect of high-level semantic reasoning.

We investigate whether prompting the model Table 6: Ablation Study of OptiScene.

to generate high-level spatial semantics be-

fore layout prediction improves overall qual- ~ Only SFT Reasoning SFT+DPOI  SFT+DPOI+DPO2 | OOR.  UR.

ity. As shown in Table[6] adding this reason- v 0.049  28%
: : v 0.048  33%
ing step to the SFT model increases layout v v v : 0033 40%
usability (from 28% to 33%). This demon- v v v 0.023  50%

strates that explicitly guiding the model to
first consider object relationships and room intent leads to more coherent and human-aligned scene
structures.
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Ablation study on SFT and Two-Stage DPO. As shown in Table[6] adding reasoning improves
OOR and UR by encouraging coherent object planning. DPO-Stagel aligns outputs with human
preferences, further reducing violations, while DPO-Stage?2 introduces targeted noise to correct
fine-grained physical errors. Qualitative results in Fig. [6]illustrate progressive improvement in layout
realism and usability across stages.

High-level semantic reasoning v.s. scene graph reasoning. We compare two reasoning supervi-
sion strategies: high-level semantic descriptions and scene graphs. As shown in Fig.[8] using natural
language descriptions leads to significantly better layout quality, with more coherent and functional
arrangements. This is because LLMs are inherently better at interpreting and generating natural
language than symbolic graph structures. Scene graphs, while explicit, lack global spatial context and
are less aligned with the model’s pretraining distribution, resulting in fragmented or rigid layouts.

5 Conclusion

In this paper, we present OptiScene, a human-aligned indoor layout generation framework based
on a fine-tuned open-source LLLM. To overcome limitations of existing approaches—such as poor
spatial understanding, lack of control, and limited scalability—we construct 3D-SynthPlace, a high-
quality dataset that integrates manually refined layouts synthesized by Holodeck with the original
3D-Front scenes. Built on this data, we introduce a novel supervised fine-tuning (SFT) strategy that
incorporates a high-level semantic reasoning step before final layout prediction, enabling the model
to internalize human-aligned spatial priors. Furthermore, we propose a two-stage Direct Preference
Optimization (DPO) pipeline to refine the model’s outputs based on human-preferred layouts and
physical plausibility constraints. Extensive results show that OptiScene surpasses prior baselines in
layout quality and usability. It also generalizes well to downstream tasks such as scene editing and
robot navigation. These findings underscore the potential of aligning LLMs with structured reasoning
and human preferences for controllable and deployable layout generation.

Limitation and future work Our work has some limitations that can be improved in future work:
1. We focus on the generation of a single room layout, without considering the generation of multiple
room layouts. Our future work focuses on generating the layout of an entire house or building. 2.
Our a scene dataset considers only the furniture. Our future work focuses on collecting more small
objects and wall objects to build a more complete and detailed room layout, further enhancing the
authenticity of the room.
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A More details of 3D-SynthPlace dataset

A.1 3D scene layout alignment

In the Holodeck [42]] generation data, (0, 0) is generally used as the bottom-left corner of the floor,
while the single room information in 3D-Front is extracted from a large room formed by a collection
of multiple rooms, making the floor center more uncertain. To align the centers of the rooms in both
datasets, we use (0, 0) as the floor center. We calculate the geometric center of the floor based on
the floor boundary coordinates of both datasets and translate the floor boundary and the coordinates
of objects within the room accordingly. The offset is the difference between (0, 0) and the original
geometric center of the floor. Additionally, we find that although both Holodeck and 3D-Front
use a y-axis coordinate system, their xz-axis rotation directions are opposite. To unify the rotation
directions, we standardize to the 3D-Front rotation direction by adding 180° to the rotation angle of
objects in the Holodeck, thus making the rotation angles consistent.

A.2 Deleted Holodeck generated data

As discussed in Section 3.2, the 3D scene layout rooms created by the Holodeck generation process
have a low success rate. We filter the data and delete badly generated data based on three issues: (1)
under-populated layouts, (2) clustered objects placed in large rooms, and (3) erroneous object counts
or orientations (see Fig. 0).

Under-populated Layouts: These layouts have a noticeably insufficient number of objects, making
the space appear sparse and unnatural. Particularly in bathrooms and bedrooms, the lack of sufficient
furniture and decorations results in a lack of liveliness and functionality. Such layouts may not
effectively simulate real-life environments, impacting the model’s training effectiveness.

Clustered Object Placed in Large Rooms: In large rooms, objects are placed too closely together,
leading to uneven space utilization. This can cause visual disharmony and fail to realistically reflect
the reasonable distribution of furniture in real life. This issue is especially pronounced in living
rooms and kitchens, affecting both functionality and aesthetics.

Erroneous Object Counts or Orientations: Errors in the number or orientation of objects lead
to unreasonable room layouts. For example, the orientation of furniture may not match the room’s
structure, or the number of objects may be too high or too low, affecting the overall harmony of
the room. Such errors can mislead the model in learning spatial relationships, impacting reasoning
capabilities.
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Figure 10: Comparison of object counts, room type distributions, and asset/class statistics between
the 3D-Front and 3D-SynthPlace datasets.

In addition to filtering out invalid layouts, we exclude small objects produced during the Holodeck
generation process, as they are not compatible with the problem definition of our room layout
formulation.

A.3 Data distribution description

Figure|10|presents a comprehensive distribution comparison between the 3D-Front and 3D-SynthPlace
datasets across various dimensions:

Number of Objects, Fig. [10[a): The box plot illustrates the distribution of furniture counts in
different room types for both datasets. The 3D-Front dataset shows a higher median count in living
rooms compared to bedrooms, while the 3D-SynthPlace dataset exhibits a similar pattern with slightly
higher counts in living rooms and kitchens.

Room Distribution, Fig. [I0(b & c¢): Pie charts depict the room distribution within each dataset.
The 3D-Front dataset is predominantly composed of living rooms (66.1%), followed by bedrooms
(33.9%). In contrast, the 3D-SynthPlace dataset has a more diverse distribution, with living rooms
(38%) and bedrooms (27.5%) being the most common, alongside a significant portion of bathrooms
(17.5%) and kitchens (17.1%).

Comparison of Number of Assets, Fig.[10(d): The bar chart compares the total number of assets
across different room types. The 3D-Front dataset has a significantly higher total number of assets,
especially in living rooms, compared to the Holodeck-Synth dataset.

Comparison of Number of Classes Fig. [I0fe): The bar chart compares the number of classes
available in each dataset. The 3D-Front dataset generally has more classes across different room
types, with the most notable difference in the living room category.

A.4 High-level semantic descriptions and reasoning

Figure [T1] shows examples of high-level semantic descriptions and reasoning with the 3D scene
layouts. Examples of generated room layouts paired with natural language descriptions. Each row
shows two 3D layout visualizations of the same room from different angles, accompanied by a GPT-
generated description of the spatial arrangement and object relations. The descriptions emphasize
functionality, object alignment, and spatial reasoning without relying on directional terms like "left"
or "right".

B Instruction-to-JSON Wrapper

We use a Qwen2.5-7B-Instruct LLM as a wrapper to convert natural language user instructions into
structured JSON. The process works as follows:
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The grey and black double bed is centrally positioned in the room, with a blue nightstand with
drawers on each side of the bed. The wooden corner side table stands near one side of the bed,
opposite the blue nightstands. The grey wardrobe with shelves and drawers is placed against the
wall near one of the blue nightstands.

\_ J
a I
The bathtub is positioned next to the storage cabinet. The toilet is placed opposite the bathtub.

The vanity cabinet is located adjacent to the step stool, with the step stool placed between the
vanity cabinet and the toilet.

. /

/The oven_and_stove_unit is positioned adjacent to the kitchen_cabinet_base, which extends
along the same plane. The tall_pantry_cabinet stands near the kitchen_cabinet_base, with the
frees‘tanding_microwave_cabinef located across an open space from both. The
kitcker\_islnnd_wi‘th_stomge is situated opposi‘te the tdll_Fnrd:ry_cnbind:, with the
mobile_kitchen_cart placed near the kitchen_island_with_storage.

J

/The sectional_sofa faces the coffee_table, with two armchairs positioned on the opposite side of
the coffee_table. A side_table and floor_lamp are placed nedr one end of the sectional_sofa,
while two additional side_tables and another floor_ldmp are situated close to the armchairs.
The tv_stand and bookshelf are against the far wall, and the sideboard is placed adjacent to
the bookshelf.

o

-~

The sectional_sofa is positioned opposite the tv_stand, with the coffee_table placed centrally
between them. Two drmchdirs dre fdcing the sectional_sofd, edch adjacent to the coffee_table.
The bookshelf and sideboard are placed along the walls, with a floor_lamp positioned near the
armchairs and another floor_lamr closer to the tv_stand.

- /

J
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Figure 11: High-level semantic descriptions and reasoning with the corresponding 3D scene layouts.

* The wrapper extracts room size, room type, object types, and object counts from the
instruction.

* If any field is missing, the wrapper heuristically infers it based on existing information (e.g.,
number and type of objects).

* It then retrieves suitable 3D assets for each object. We follow a purely text-based retrieval
approach, inspired by Holodeck [42], to match the objects mentioned in the user instruction
to assets in our 3D object database.

* The extracted values are inserted into a predefined JSON layout template, which is then used
as part of the prompt input to OptiScene for inference. This wrapper provides robustness by
normalizing diverse instructions, modularity for easier debugging, and flexibility through
noise filtering.

C More details of SFT

Section 3.3 describes SFT. Here, we discuss the details of the meta instruction prompt. First, we
illustrate the prompt template in the Table [7]and Table[8] As shown in the tables, to fine-tune the
model for the 3D room layout generation task, we design a structured meta prompt that sets the model
as a skilled room layout designer. The prompt guides the model through a step-by-step reasoning
and generation process, covering object extraction, spatial analysis, layout planning, and final output
formatting. It explicitly incorporates design heuristics such as edge-aligned placement, alignment
to walls, and functional constraints (e.g., chairs must face desks). The model is instructed to reason
about object relationships without using explicit directions (e.g., "left", "right") and to output both
the reasoning process and the final layout in a well-defined JSON format. The response is enclosed
in a structured JSON-like format for better consistency and parsing. The prompt also includes
post-checklists to ensure validity of the generated layout (e.g., no overlap, correct coordinate units,
functional flow). This design ensures that the model not only generates spatially valid scenes but also
explains its decisions in a transparent and interpretable way.
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Figure 12: Some positive scene layouts and negative scene layouts with noise additions in the DPO-
stage2.

D More details of DPO

Section 3.4 introduces the two-stage DPO framework designed to align generated room layouts
with human preferences. We begin by selecting 1,100 scene layouts from the Holodeck-Synth
dataset and another 1,100 from the 3D-Front dataset. These layouts are characterized by reasonable,
functional, and human-aligned spatial arrangements. In the second stage of DPO training (DPO-stage
2), we generate hard negative samples by adding targeted spatial violations to the positive examples.
Specifically, as illustrated in Fig.[I2] we introduce two types of noise: (1) Out-of-boundary violations,
where furniture items extend beyond the floor area; and (2) Object-overlap violations, where furniture
pieces intersect or collide with each other. Despite improvements from SFT and DPO-stage 1, the
model still occasionally produces such errors. Therefore, we further fine-tune the model using these
challenging negative samples to enhance spatial reasoning and layout robustness.

E More details of the experiments

E.1 Inference and rendering setup

All layout generation results are produced using the optimized model obtained after the second stage
of DPO. To ensure physically plausible and visually accurate visualization of scenes, we employ
NVIDIA Isaac Sim [22] as the rendering and simulation backend.

E.2 Details of the evaluation metrics

Object overlap rate (OOR). This metric quantifies the spatial overlap between a set of 2D bounding
boxes. To calculate the OOR, we first extract the position and size information from each object,
where the position is typically represented as (x,y) and the size is given by width and depth. Using
this information, we create 2D bounding boxes with the center at the object’s position and dimensions
determined by the size. We then compute the area of each bounding box and, for each pair of
bounding boxes, we calculate the area of their intersection. We sum the intersection areas of all object
pairs to obtain the total intersection area, and then sum the areas of all objects to get the total area.
The OOR is then defined as the total intersection area divided by the total area:

Yy, ):1}’:,- 1 Area(Intersection(B;, B;))

OOR =
N | Area(B;)

i

where B; represents the bounding box of the i-th object, Intersection(B;, B;) denotes the intersection
area of two bounding boxes, and Area(B;) is the area of the bounding box.

GPT-40 evaluation. Following a similar approach to the evaluation protocol introduced in I-
Design [2]], we employ GPT-40 as an automated evaluator to assess the quality of our generated room
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layouts. Specifically, GPT-40 is prompted to assign scores (ranging from 0 to 10) based on multiple
criteria, including functionality, spatial arrangement, and aesthetic coherence, in alignment with the
given user preferences. The detailed prompt template used for this evaluation is provided in Table[9]

E.3 More qualitative results.

Figures[I3] and[T4] show additional qualitative comparisons between the outputs of our OptiScene
model (left two columns) and the ground truth (right two columns) across various room configurations.
It is important to emphasize that the objective of OptiScene is not to converge to the ground truth
layouts exactly, but rather to generate plausible and functional indoor scenes based on high-level
semantic and spatial constraints. The generated layouts exhibit a more efficient use of space, better
object alignment, and clearer functional zoning compared to the ground truth. These examples
demonstrate the model’s capacity to generalize and produce reasonable, sometimes even preferable,
alternative layouts that remain faithful to the intended room semantics. This highlights the potential
of OptiScene to support diverse and creative room layout configurations.

E.4 More downstream tasks results.

Figures[I5]illustrate more downstream tasks results with room editing. As shown in these figures,
with appropriate instructions, the model can edit the room layout.
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Table 7: Meta Prompt Template for generation task (Part 1).

Meta Prompt Template for generation task (Part 1)

You are a skilled room layout designer. Your task is to arrange [Objects] within a given [Room Type]
effectively. Follow these guidance to complete your design:
(1) Extract the [Room Type], [Room Area], [Objects], and [Bounding Box Size] from the provided
JSON data. (2) Analyze the spatial relationships among [Objects] within the specified [Room Type].
Pay special attention to **avoiding overlap** and **consider other spatial factors like accessibility
and aesthetics™*.
(3) Determine and design the precise location of all [Objects] ensuring that their bounding boxes do
not overlap and that the layout is functional and visually appealing.
(4) I prefer objects to be placed at the edge (the most important constraint) of the room if possible
which makes the room look more spacious.
(5) The objects are usually aligned in some ways (parallel or perpendicular to walls).
(6) Chairs must be placed near to the table/desk and face to the table/desk.
(7) Before specifying the detailed positions of each object, first reason step-by-step about their general
arrangement and relative spatial relationships: a) Which objects need the most space or have fixed
positions (like beds, wardrobes) b) Which objects need to be grouped together (like nightstands with
bed) c) Traffic flow and accessibility considerations. Then, clearly articulate your reasoning process.
Emphasize the spatial relationships between objects without using explicit directional terms like
"left," "right," "front," or "back." Summarize the overall arrangement in a logical and natural manner,
ensuring that all major objects are accounted for.
(8) After presenting the thought process, report your design with detailed 3D space coordinates and
rotation angles for each object in JSON format, as follows:

"object": "object",

"coordinates": [

x": X,
"z":
}
1,
"rotate":[
{
"angle": r
}
1

}
The centroid of the room is {"x": 0.00, "y": 0.00, "z": 0.00"}.

Important Notes about Coordinate System:
- Z-axis points upward (z=0 is floor level)
- Rotation angles are in radians, measured in the XY-plane
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Table 8: Meta Prompt Template for generation task (Part 2).

Meta Prompt Template for generation task (Part 2)

(9) The response should follow the following format:

<reasoning>
[Reason]

[/Reason]
</reasoning>
<answer>
[Design]

[/Design]
</answer>

First carefully read this example:

[Example Room Typel
Bedroom
[/Example Room Type]

[Example Objects and Bounding Box Size]
/* A fixed example is put here to show the input format*/
[/Example Objects and Bounding Box Size]

[Example Reason]
/* A fixed example is put here to show the reason formatx*/
[/Example Reason]

[Example Output]
/* A fixed example is put here to show the output format*/
[/Example Output]

Now, please proceed with the design task as outlined and provide only the JSON formatted output of
your design:

[Task Room Typel
/*Input room typex*/
[/Task Room Type]

[Task Objects & Bounding Box Size]

/* The JSON format input of objects description
and bounding box sizex*/

[/Task Objects & Bounding Box Size]

Note: the units for the coordinates are meters.

Before submitting your final design, please verify:

- All objects are within room boundaries

- No objects overlap

- Sufficient clearance space exists around furniture

- The layout is practical and functional

- All rotations are properly specified in radians

Now, please proceed with the design task as outlined and provide your thought process and the JSON
formatted output of your design:
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Table 9: GPT-40 Prompt Template for Room Layout Evaluation.

GPT-40 Prompt Template for Room Layout Evaluation

You are an expert in interior design and human-centric spatial planning. Your task is to evaluate
the quality of the following room layout renders based on how well they match the user’s design
preferences, which are provided below (in triple backquotes).

Please assign a numerical score from **0 to 10** (0 = completely inconsistent, 10 = perfectly
aligned) considering the following three aspects:

1. Functionality and Activity-based Alignment

- Does the layout support natural and efficient use of the space for daily activities (e.g., sleeping,
working, relaxing, walking)?

- Are key object groupings (e.g., desk and chair, bed and nightstand) placed functionally and
accessibly?

- Is there sufficient circulation space to ensure human accessibility?

2. Layout and Furniture Placement

- Are the furniture pieces arranged in a logical, practical way within the room boundaries?

- Are objects positioned with respect to common design principles (e.g., not blocking windows
or doors, aligned to walls where appropriate)?

- Are there overlaps or unnatural collisions between objects?

3. Aesthetic Coherence

- Is the overall layout visually balanced and spacious?

- Does the arrangement exhibit good proportions, symmetry or asymmetry, and grouping where
needed?

- Is the furniture distribution harmonious and pleasing to the eye, according to the user’s stated
aesthetic preferences?

User Preferences:

¢“‘{Insert user preferences here.}”’

After considering all the above, return your evaluation in the following JSON format:

{
(1 {
"functionality_score": X,
"layout_score": Y,
"aesthetics_score": Z,
"overall_score": M,
"comments": "Brief explanation of your judgment."
}( (21
}
Scoring Guidelines:
- Scores should be integers from 0 to 10.
- The overall score can be the average or holistic assessment across the three criteria.
- Include a brief justification of your scores in the "comments" field (1-3 sentences).
Note: The goal is to measure how well the generated layout adheres to functional, spatial, and
aesthetic expectations given the user’s input. Be fair and critical.
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Figure 13: More qualitative results compared with the ground truth (Part 1).



Figure 14: More qualitative results which are compared with the ground truth (Part 2).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have summarized our paper’s contributions and scope well in the abstract
and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method and future work in the supplementary
material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not have any theoretical results in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We thoroughly explain the process of constructing our dataset and training,
and we provide our LLM prompt template for training.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not submit the code and data, but we will release them after the paper is
accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper details the hyperparameters used for training and the division of the
training and test sets.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: We do not provide error bars in the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the computational resources we used.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work does not have a social impact. It is just a research topic.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The code and data used have been properly cited or referenced.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes we have discussed this in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not have potential risks.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Yes we have discussed how we use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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