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Abstract

3D Gaussian Splatting has recently emerged as an efficient solution for high-
quality and real-time novel view synthesis. However, its capability for accurate
surface reconstruction remains underexplored. Due to the discrete and unstructured
nature of Gaussians, supervision based solely on image rendering loss often leads
to inaccurate geometry and inconsistent multi-view alignment. In this work, we
propose a novel method that enhances the geometric representation of 3D Gaussians
through view alignment (VA). Specifically, we incorporate edge-aware image
cues into the rendering loss to improve surface boundary delineation. To enforce
geometric consistency across views, we introduce a visibility-aware photometric
alignment loss that models occlusions and encourages accurate spatial relationships
among Gaussians. To further mitigate ambiguities caused by lighting variations, we
incorporate normal-based constraints to refine the spatial orientation of Gaussians
and improve local surface estimation. Additionally, we leverage deep image
feature embeddings to enforce cross-view consistency, enhancing the robustness
of the learned geometry under varying viewpoints and illumination. Extensive
experiments on standard benchmarks demonstrate that our method achieves state-
of-the-art performance in both surface reconstruction and novel view synthesis.
The source code is available at https://github.com/LeoQLi/VA-GS.

1 Introduction

Accurate surface reconstruction from multi-view images is a long-standing problem in computer
vision, fundamental to applications such as 3D modeling, AR/VR, and robotics. Recently, 3D
Gaussian Splatting (3DGS) has emerged as a powerful explicit representation for real-time novel view
synthesis, demonstrating impressive rendering quality and speed by modeling scenes as collections of
semi-transparent 3D Gaussian primitives. However, despite its rendering advantages, 3DGS remains
limited in its ability to recover accurate and detailed geometry, especially when supervision is derived
solely from RGB images. This limitation stems from the inherent discrete and unstructured nature of
Gaussians, which makes it difficult to enforce global surface consistency or capture fine geometric
details, particularly under complex illumination and along object boundaries.

Existing methods have attempted to enhance the geometric capabilities of Gaussian splatting. For
example, SuGaR [14] constructs a density field from Gaussians and extracts meshes via level-set
searching, but it struggles with large smooth surfaces and is computationally expensive. 2DGS [16]
models scenes using 2D oriented planar Gaussian disks, which inherently represent surfaces and pro-
vide view-consistent geometry. However, 2DGS has difficulty reconstructing background geometry
and often produces incomplete or distorted surfaces in complex or unbounded scenes. GOF [55]
constructs an opacity field from Gaussians and extracts surfaces using Marching Tetrahedra [10],
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yielding adaptive mesh resolution without volumetric fusion. Nonetheless, thin structures can be lost
and strong lighting contrasts still cause artifacts. GS-Pull [58] integrates a neural signed distance
field (SDF), dynamically pulling Gaussians toward the zero-level set of the learned SDF. While this
improves surface completeness, it introduces additional network complexity, produces overly smooth
surfaces, and primarily focuses on foreground object reconstruction. PGSR [4] fits Gaussians to local
planar hypotheses and uses unbiased depth rendering to improve geometric accuracy. However, it
does not fully resolve the challenges posed by complex lighting and remains sensitive to boundary
ambiguities in non-planar regions. Overall, previous methods have introduced geometric regularizers
or hybrid representations and achieved significant progress. However, they still struggle to address
two persistent challenges: illumination-induced artifacts (e.g., shadows and specular highlights) and
accurate surface boundary delineation, as shown in Fig. 1. Illumination effects distort photometric
losses, while ambiguous boundaries often result in geometry drift or holes.

2DGS GOF Ours

Figure 1: Our method addresses illumination and boundary
artifacts that previous methods fail to resolve.

In this work, we propose a novel
method for accurate and detailed sur-
face reconstruction by enhancing the
geometric representation of 3D Gaus-
sians. We address the limitations of
previous methods by incorporating
multi-faceted geometric constraints
and structural priors. Our approach in-
troduces geometry-aware constraints
guided by image edges, multi-view
alignment that considers visibility and
occlusion, and robust priors derived
from surface normals and deep image
features to mitigate the effects of light-
ing variations and boundary ambigui-
ties. Specifically, we enhance the standard rendering loss with edge-aware image cues, which sharpen
surface boundaries in the 2D projection space of Gaussian splats, resulting in clearer and more precise
delineations in rendered images. To enforce geometric consistency across views, we introduce a
multi-view photometric alignment loss that explicitly accounts for visibility and occlusions, encour-
aging accurate spatial relationships among 3D Gaussians and improving boundary localization. To
further reduce ambiguity caused by lighting, we introduce normal-based alignment to constrain the
spatial orientation of Gaussians, ensuring reliable surface estimation. Additionally, we leverage high-
dimensional image features to enforce cross-view consistency, improving robustness to viewpoint and
lighting variations. These innovations significantly reduce the impact of complex illumination and
boundary ambiguity, enabling accurate surface reconstruction in challenging scenes. Experiments
on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both
surface reconstruction and novel view synthesis. Our contributions are summarized as follows.
• Incorporating edge information and visibility-aware multi-view alignment to enhance surface

boundary delineation and improve geometric consistency.
• Aligning the robust priors based on normals and deep image features to mitigate illumination-

induced artifacts and increase reconstruction accuracy.
• State-of-the-art results on standard benchmarks, demonstrating the effectiveness of our method in

both surface reconstruction and novel view synthesis.

2 Related Work

View Synthesis and Gaussian Splatting. Neural Radiance Fields (NeRF) [31] pioneered high-fidelity
novel view synthesis by representing a scene as a continuous volumetric density and view-dependent
color field, optimized via differentiable volume rendering. Subsequent works accelerated training and
rendering through hybrid representations such as multi-resolution hash grids [32], explicit voxel or
sparse tensor grids [40, 2], and learned feature planes [52]. However, these volumetric methods still
entail high memory and computational costs. 3DGS [21] departs from dense volumes by modeling a
scene as a sparse cloud of anisotropic 3D Gaussians. Follow-up work has enhanced visual fidelity
through anti-aliasing and level-of-detail control [54, 38], improved training speed and robustness
under sparse views using density regularization and learned radiance priors [46, 34], and extended
3DGS to dynamic scenes [29, 47], relighting [13], and animation [50]. Geometry-aware variants such
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as FatesGS [17], DNGaussian [23] and GeoGaussian [26] address sparse-view and textureless regions,
while methods like Instantsplat [11] and Scaffold-GS [28] accelerate convergence by leveraging
pretraining or hybrid implicit-explicit designs. Despite these advances, most 3DGS variants primarily
emphasize appearance quality and lack mechanisms to enforce explicit surface geometry, motivating
dedicated reconstruction techniques.

Surface Reconstruction with Gaussians. Extracting accurate surfaces from a 3DGS representation
is challenging due to its unstructured nature and supervision based solely on RGB signals. Early
approaches convert Gaussians into volumetric density or opacity fields: SuGaR [14] builds a density
field and applies level-set search with Poisson reconstruction [20], but it struggles to recover large,
smooth surfaces; GOF [55] accumulates per-view alpha values into an opacity volume and extracts
iso-surfaces with Marching Tetrahedra [10], achieving adaptive resolution but often missing fine,
thin structures under high lighting contrast. Other methods project Gaussians into oriented 2D
disks (surfels) and fuse via Truncated Signed Distance Function (TSDF) fusion [33] or Poisson
reconstruction. 2DGS [16] and GSurfels [8] improve local alignment but tend to introduce distortions
in unbounded scenes and result in incomplete background geometry. PGSR [4] fits Gaussians to planar
patches and adds multi-view photometric and geometric regularization, excelling on planar man-made
scenes but remaining sensitive to non-planar boundaries. More recent works [53, 58, 30, 1, 24, 25]
integrate Signed Distance Fields (SDF) to guide Gaussian placement. GSDF [53] and 3DGSR [30]
jointly optimize a neural SDF branch alongside Gaussian parameters using volume-rendered depth
and normal supervision, which improves surface smoothness but requires additional network branches.
GS-Pull [58] leverages SDF gradients to pull Gaussians toward the zero-level set, enhancing alignment
at the cost of limiting object-level reconstruction and producing overly smooth results. Methods
that incorporate depth or normal estimators [5, 56, 41, 45, 43] impose priors on Gaussians but
rely on TSDF fusion’s fixed resolution or Poisson reconstruction’s sensitivity to noisy inputs, and
often struggle under varying illumination or around complex geometric boundaries. Our approach
enforces view consistency through multi-faceted constraints during Gaussian optimization, enabling
high-fidelity mesh extraction even under challenging lighting and boundary conditions.

3 Preliminaries

3DGS [21] explicitly represents a scene as a collection of anisotropic 3D Gaussians, which can be
rendered to images from arbitrary viewpoints using a splatting-based rasterization technique [59].
Specifically, each 3D Gaussian G is defined as:

G(x) = exp
(
−0.5(x− µ)TΣ−1(x− µ)

)
, (1)

where µ is the Gaussian center and Σ is its covariance matrix. For novel-view rendering, the color at
pixel p is obtained by compositing K ordered Gaussian splats using point-based α-blending, i.e.,

C(p) =

K∑
i=1

ciαi

i−1∏
j=1

(1− αj) , (2)

where αi denotes the pixel translucency determined by the learned opacity of the i-th Gaussian
kernel and its projected footprint at pixel p. The view-dependent color ci is encoded using spherical
harmonics associated with each Gaussian. In addition to color, Eq. (2) is similarly used to render
per-pixel normals and depths by replacing ci with the corresponding normal or depth value.

Normal and Depth Estimation from Gaussians. The covariance matrix Σ ∈ R3×3 of a 3D
Gaussian can be decomposed into a rotation matrix R and a scaling matrix S, i.e., Σ = RSS⊤R⊤,
where R contains the three orthogonal eigenvectors, and S encodes the scale along these directions.
This decomposition resembles an ellipsoid representation: the eigenvectors define the axes of the
ellipsoid, while the scale values correspond to the axis lengths. As optimization progresses, the
initially spherical Gaussian flattens and approaches a plane [19]. We take the direction corresponding
to the smallest scale factor as the normal n of the Gaussian. The distance from the local plane
to the camera center is then computed as d = (R⊤

c (µ − Tc))
⊤(R⊤

c n), where Rc is the rotation
from the camera to the world frame, and Tc is the camera center in world coordinates. Given the
normal and distance, the depth is obtained by intersecting the viewing ray with the local plane:
z = d/(R⊤

c n K−1p̄), where p̄ is the homogeneous coordinate of the pixel (we use p to denote
both the homogeneous and 2D pixel coordinates for simplicity), and K is the intrinsic matrix of
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Figure 2: Overview of our method. The training includes five loss functions: LI , Lnc, Lns, Lp

and Lf . The occlusion weight ω, visibility item υ and homography matrix H are involved in Lp

and Lf . The image features Fs and Fr are extracted using a pretrained network f . {K,M} is the
intrinsic/extrinsic parameter matrix of the camera view.

the camera. Finally, the per-pixel distance, depth, and normal maps under the current viewpoint are
rendered using α-blending as defined in Eq. (2), where the attribute color ci is replaced with the
corresponding Gaussian attributes.

4 Method

Fig. 2 illustrates the overall framework of our approach. Given a set of posed RGB images, our
goal is to learn a bunch of 3D Gaussian functions with associated attributes, such as color, opacity,
position and shape, to represent the geometry of a 3D scene. We introduce novel constraints to enable
accurate surface reconstruction while preserving high-quality novel view synthesis.

4.1 Single-View Alignment

Edge-aware Image Reconstruction. The original 3DGS [21] and its variants typically employ
a color rendering loss, which combines the L1 reconstruction error with a D-SSIM term. While
effective for overall image quality, this loss alone is insufficient for accurately capturing object
boundaries during surface reconstruction, and it tends to overly smooth high-frequency regions and
complex structures. To address this limitation, we propose an edge-aware image reconstruction loss
that encourages the model to better preserve sharp structures and boundary details:

LI = (1− β1)L1(Ĩ − I) + β1LSSIM (Ĩ − I) + β2L1(∇Ĩ −∇I), (3)

where Ĩ is the rendered image, I is the ground-truth image, and ∇I denotes the image gradient
normalized to the range [0, 1]. β1 and β2 are weight factors. The incorporation of gradient-based
supervision leads to better preservation of object contours and improves reconstruction quality in
boundary and texture-rich regions.

Normal-based Geometry Alignment. 2DGS [16] introduces a normal consistency loss that aligns
the normals of Gaussian primitives with those derived from the rendered depth map, ensuring that
each 2D splat locally approximates the underlying object surface. However, in boundary regions,
the Gaussian primitives often exhibit ambiguous normal directions due to insufficient local support,
which can lead to inaccurate geometry reconstruction across different surfaces. To address this
issue, we utilize image edges as proxies for geometric edges, assuming that areas with strong image
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gradients are likely to correspond to surface discontinuities. Thus, we adopt an edge-aware normal
consistency loss defined as:

Lnc =
1

I
∑
p∈I

δ ·
∥∥ N̂ − Ñ

∥∥
1
, (4)

where δ = (1 − ∇I)2 serves as a per-pixel weight [4] that downweights loss contributions from
edge regions, and I denotes the set of image pixels. Ñ is the rendered normal, and N̂ is the normal
estimated from the depth map gradient [16]. To compute normal N̂ , we first project four neighboring
depth samples into 3D points in the camera coordinate system. We then estimate the surface normal
at pixel p by computing the cross product of vectors formed from these projected points, effectively
fitting a local plane.

While the above loss enforces the global alignment of Gaussian primitives with the actual surface,
noisy primitives can still appear in flat or texture-less regions, leading to abrupt and unnatural changes
in surface normals. Moreover, illumination changes, such as shadows shown in Fig. 1, may introduce
false edges during reconstruction. To address these, we use a normal smoothing loss that encourages
local continuity of surface normals by penalizing large discrepancies between adjacent pixels:

Lns =
1

I
∑
i,j,k

δk · R
(∣∣N̂k − N̂(i,j)

∣∣− τ2
)
·
[∣∣Ñk − Ñ(i,j)

∣∣− τ
]
, (5)

where N̂(i,j) and Ñ(i,j) denote the normals at pixel location (i, j), and k ∈ {(i+ 1, j), (i, j + 1)}
refers to its neighboring pixels in the horizontal and vertical directions. R(·) is the ReLU function,
and [·] denotes the Iverson bracket, which evaluates to 1 if the condition inside is true and 0
otherwise. The threshold τ and weight δ help distinguish surface edges and prevents over-smoothing
in high-frequency regions. This loss promotes smoother local geometry while preserving meaningful
structural edges, thereby improving the overall surface fidelity.

4.2 Multi-View Alignment

Multi-View Photometric Alignment. While image reconstruction and geometry alignment losses
help reduce artifacts and preserve coarse geometry, they often fail to capture fine details. To
address this, we draw inspiration from traditional multi-view stereo (MVS) methods [37, 3, 12],
which refine surfaces by enforcing photometric consistency across views. Specifically, they project
3D points derived from depth maps onto multiple views and compare their colors to evaluate
consistency. By introducing a photometric consistency loss based on plane patches, we leverage
multi-view observations to resolve geometric ambiguities, particularly at object boundaries, and
enhance reconstruction accuracy.

As shown in Fig. 2, let Ir be the reference view image, and Is ∈ {Is,i | i = 1, 2, . . . , N} denote its
neighboring source views. For a pixel pr in the reference view, we define its corresponding plane by
normal nr and distance dr. Using a homography matrix Hrs, pr is projected to pr

s in the source
view as follows:

pr
s = Hrs pr, Hrs = Ks

(
Rrs −

Trsn
⊤
r

dr

)
K−1

r , (6)

where Rrs and Trs are the relative rotation and translation from the reference to the source view.
Assuming local planarity, we warp a reference patch Pr centered at pr to its corresponding source
patch Ps using Hrs. We enforce multi-view photometric alignment by encouraging consistency
between Pr and Ps:

Lp =
∑

Is∈{Is,i}

1

V

∑
pr∈Ir

υrs(pr) · ω(pr) ·
(
1− C

(
Pr(pr), Ps(p

r
s)
))

, i = 1, 2, . . . , N , (7)

where C(·) is the normalized cross-correlation [51], and V is the number of visible pixels. The
visibility term υrs(pr) indicates whether pr is visible in the source view, and ω(pr) is a weight
accounting for geometric occlusion. Note that we aggregate the losses from all source views by
summation, not averaging. The definitions of υrs(pr) and ω(pr) are detailed in the following.

• Due to viewpoint changes, a 2D pixel pr in the reference view may fall outside the field of view
when projected into a source view. We define a visibility term υrs(pr) to indicate whether pr is
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visible from the source viewpoint. Given a pixel pr with rendered depth zr, its corresponding 3D
point xr and projected pixel coordinate p′

s in the source view are computed as:

p′
s = π(KMsM

−1
r xr), xr = zrK

−1p̄r , (8)

where M is the extrinsic matrix of the camera, π(·) converts 3D coordinates to 2D pixels. The pixel
pr is considered visible in the source view if its projection p′

s lies within the image bounds. Thus the
visibility term is defined as:

υrs(pr) =
[
(0, 0) < p′

s < (W,H)
]
, (9)

where (W,H) is the image resolution, and [·] denotes the Iverson bracket.

• During projection via the homography matrix, some pixels may be occluded or exhibit significant
geometric error [4]. To avoid the influence of such outliers, we exclude them from the multi-view
alignment loss using an occlusion-aware weight. Given a reference 3D point xr and its corresponding
rendered (or interpolated) depth zs in the source view, we first compute the projection error at pr as:

φ(pr) = || pr − p′
r ||2 , (10)

p′
r = π(KMrM

−1
s xs), xs = ẍ′

s · zs, x′
s = MsM

−1
r xr, (11)

where p′
r is the reprojected pixel in the reference view, ẍ′

s denotes the depth normalized version of
x′
s. We then define the occlusion weight as ω(pr) = 1/exp(φ(pr)) if φ(pr) < 1, and otherwise 0.

A small projection error indicates reliable geometry, resulting in a higher weight, while a large error
implies occlusion or misalignment, thus being downweighted or discarded.

Multi-View Feature Alignment. The previously introduced image reconstruction and photometric
alignment losses help preserve the shape and structure of the objects. However, image-based losses
are susceptible to noise, blur, and low-texture regions. Additionally, due to lighting variations, the
color of the same surface point may differ across views, making photometric consistency unreliable.
To address these limitations, we introduce a multi-view feature alignment loss. We extract image
features using a pretrained network f [57], i.e., F = f(I). Let Fr denote the reference view’s
feature map, and Fs be one of the source view features, with Fs ∈ {Fs,i | i = 1, 2, . . . , N}. Then
the pixel-wise feature alignment loss is defined as:

Lf =
1

N

∑
Fs∈{Fs,i}

1

V

∑
pr∈Ir

υrs(pr) ·ω(pr) ·
∣∣1− cos

(
Fr(pr), Fs(p

′
s)
)∣∣ , i = 1, 2, . . . , N, (12)

where cos(·) denotes the cosine similarity between feature vectors. This feature-level loss improves
robustness under challenging conditions such as appearance variation and poor lighting consistency.

Final loss. To summarize, the final training objective integrates five components:

L = LI + λ1Lnc + λ2Lns + λ3Lp + λ4Lf , (13)

where λ1, λ2, λ3 and λ4 are weighting factors determined based on validation performance.

5 Experiments

Evaluation Protocols. We evaluate our surface reconstruction performance on the DTU [18] and
Tanks and Temples (TNT) [22] datasets. Following prior works [16, 55, 4, 56], we use 15 scenes from
the DTU dataset and 6 scenes from the TNT dataset for evaluation. Depth maps are rendered for all
training views, and a TSDF [7] is constructed for mesh extraction. For novel view synthesis, we use
the Mip-NeRF 360 dataset [2], which contains large-scale indoor and outdoor scenes with complex
lighting and fine-grained geometric details. Following 3DGS [21], one out of every eight images
is used for evaluation, while the remaining seven are used for training. We employ COLMAP [36]
to generate a sparse point cloud from the original dataset images for initializing the 3D Gaussians.
All images are downsampled to a lower resolution to facilitate training. Following established
protocols [16, 55, 4, 56], we report Chamfer distance for surface reconstruction on the DTU dataset
and F1-score for the TNT dataset. For novel view synthesis, we evaluate using three widely adopted
image quality metrics: PSNR, SSIM, and LPIPS.

Implementation Details. Our overall pipeline, training strategy, and hyperparameter settings
generally follow 3DGS [21]. We set the number of source views to N = 3, the threshold in Lns
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Figure 3: Visual comparison of surface reconstruction results on the TNT dataset. Our method can
handle shadows and large indoor flat regions. GS-Pull reconstructs only the foreground objects.

2DGS GOF PGSR RaDe-GS OursGS-Pull

Figure 4: Visual comparison of surface reconstruction results on the Mip-NeRF 360 dataset. Our
approach effectively handles the challenges posed by cluttered lighting and boundaries.

to τ =0.01, and the patch size in Lp to 7×7. The loss weight factors are set as follows: β1=0.2,
β2=0.03, λ1=0.015, λ2=0.3, λ3=0.15, and λ4=1.0. The model is trained for 20,000 iterations
for surface reconstruction and 30,000 iterations for novel view synthesis. We first pretrain the model
using only the color loss for 7,000 steps to obtain a coarse geometric initialization, which provides a
stable foundation for subsequent geometry refinement. Then, we incorporate our image edge item and
normal-based geometry alignment into the training. To further refine geometry, we sequentially apply
our multi-view photometric alignment for 8,000 iterations, followed by 5,000 iterations of multi-view
feature alignment. For novel view synthesis, we continue training for an additional 10,000 steps to
optimize rendering quality. All experiments are conducted on a single NVIDIA RTX 4090 GPU.

5.1 Performance Evaluation

Comparisons on DTU. We first compare our method with state-of-the-art implicit and explicit surface
reconstruction approaches on the DTU dataset [18]. Following standard protocol, reconstructions are
clipped using the provided mask, and evaluations are performed only on foreground objects, as the
ground truth point clouds exclude background regions. As shown in Table 1, our method achieves the
lowest average Chamfer distance and ranks best across most scenes. Compared to implicit approaches
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Table 1: Quantitative comparison of Chamfer distances on the DTU dataset. The best results are
highlighted as 1st , 2nd and 3rd . ∗ means that the source code is not available.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time
Im

pl
ic

it
NeRF [31] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 >12h
VolSDF [48] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12h
NeuS [44] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 >12h
NeuralWarp [9] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68 >10h
Neuralangelo [27] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 >12h
PSDF∗ [39] 0.36 0.60 0.35 0.36 0.70 0.61 0.49 1.11 0.89 0.60 0.47 0.57 0.30 0.40 0.37 0.55 -

E
xp

lic
it

3DGS [21] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 3.4m
SuGaR [14] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 1h
GaussianSurfels[8] 0.66 0.93 0.54 0.41 1.06 1.14 0.85 1.29 1.53 0.79 0.82 1.58 0.45 0.66 0.53 0.88 4.5m
2DGS [16] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 5.8m
GS-Pull [58] 0.51 0.56 0.46 0.39 0.82 0.67 0.85 1.37 1.25 0.73 0.54 1.39 0.35 0.88 0.42 0.75 5.6m
GOF [55] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 32m
RaDe-GS [56] 0.46 0.73 0.33 0.38 0.79 0.75 0.76 1.19 1.22 0.62 0.70 0.78 0.36 0.68 0.47 0.68 6.5m
PGSR [4] 0.34 0.58 0.29 0.29 0.78 0.58 0.54 1.01 0.73 0.51 0.49 0.69 0.31 0.37 0.38 0.53 15m
GausSurf∗ [43] 0.35 0.55 0.34 0.34 0.77 0.58 0.51 1.10 0.69 0.60 0.43 0.49 0.32 0.40 0.37 0.52 -
Ours 0.32 0.49 0.32 0.30 0.77 0.68 0.43 1.05 0.61 0.57 0.36 0.52 0.28 0.33 0.30 0.49 15.5m

Table 2: Quantitative comparison of F1-scores on the TNT dataset. The best results are highlighted
as 1st , 2nd and 3rd . ∗ means that the source code is not available.

Barn Caterpillar Courthouse Ignatius Meetingroom Truck Mean Time

Im
pl

ic
it NeuS [44] 0.29 0.29 0.17 0.83 0.24 0.45 0.38 >12h

Geo-Neus [12] 0.33 0.26 0.12 0.72 0.20 0.45 0.35 >12h
Neuralangelo [27] 0.70 0.36 0.28 0.89 0.32 0.48 0.50 >12h
PSDF∗ [39] 0.62 0.39 0.42 0.79 0.47 0.53 0.53 -

E
xp

lic
it

3DGS [21] 0.13 0.08 0.09 0.04 0.01 0.19 0.09 7.5m
DN-Splatter [42] 0.15 0.11 0.07 0.18 0.01 0.20 0.12 20m
SuGaR [14] 0.14 0.16 0.08 0.33 0.15 0.26 0.19 2h
GaussianSurfels [8] 0.24 0.22 0.07 0.39 0.12 0.24 0.21 5m
2DGS [16] 0.41 0.23 0.16 0.51 0.17 0.45 0.32 7.5m
GS-Pull [58] 0.60 0.37 0.16 0.71 0.22 0.52 0.43 18m
GOF [55] 0.51 0.41 0.28 0.68 0.28 0.59 0.46 40m
RaDe-GS [56] 0.43 0.32 0.21 0.69 0.25 0.51 0.40 9m
PGSR [4] 0.66 0.44 0.20 0.81 0.33 0.66 0.52 25.5m
GausSurf∗ [43] 0.50 0.42 0.30 0.73 0.39 0.65 0.50 -
Ours 0.71 0.45 0.21 0.82 0.40 0.64 0.54 20.6m

such as NeuS [44] and Neuralangelo [27], our method delivers significantly better reconstruction
accuracy while being much more efficient in terms of runtime. It is worth noting that most implicit
methods [44, 27] only reconstruct foreground geometry, whereas our approach can produce detailed
and complete meshes, including background regions, which is an essential feature for mesh-based
rendering. Although our method is slightly slower than 3DGS [21] and 2DGS [16] due to the use
of multi-view alignment, it achieves significant improvements in reconstruction quality over these
earlier Gaussian-based methods.

Comparisons on TNT. We further evaluate our method on the TNT dataset [22], comparing it against
both implicit and explicit surface reconstruction baselines. Since the ground-truth point clouds do not
include background regions, the evaluation is restricted to foreground objects. As shown in Table 2,
our method achieves the best reconstruction performance among all competing approaches, including
both implicit and explicit methods. Notably, while several Gaussian-based methods require less
optimization time, they tend to produce results with much lower accuracy. In contrast, our method
reaches a better balance between efficiency and reconstruction quality. For example, GS-Pull [58]
only reconstructs foreground objects and often generates overly smooth surfaces. Fig. 3 provides a
qualitative comparison. Our method produces more accurate and detailed reconstructions for both
foreground and background regions. It also effectively mitigates the impact of shadows, whereas
baseline methods often yield noisy meshes or fail to capture geometric details. The use of geometry,
photometric, and feature-based alignment from multiple views provides strong guidance, enabling
the Gaussian primitives to converge more accurately to the true surface geometry.
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Table 3: Quantitative comparison on the Mip-NeRF 360 dataset. The best results are highlighted as
1st , 2nd and 3rd .

Outdoor scenes Indoor scenes Average on all scenes
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [31] 21.46 0.458 0.515 26.84 0.790 0.370 23.85 0.606 0.451
Deep Blending [15] 21.54 0.524 0.364 26.40 0.844 0.261 23.70 0.666 0.318
Instant NGP [32] 22.90 0.566 0.371 29.15 0.880 0.216 25.68 0.706 0.302
MERF [35] 23.19 0.616 0.343 27.80 0.855 0.271 25.24 0.722 0.311
BakedSDF [49] 22.47 0.585 0.349 27.06 0.836 0.258 24.51 0.697 0.309
Mip-NeRF 360 [2] 24.47 0.691 0.283 31.72 0.917 0.180 27.69 0.791 0.237

3DGS [21] 24.64 0.731 0.234 30.41 0.920 0.189 27.20 0.815 0.214
SuGaR [14] 22.93 0.629 0.356 29.43 0.906 0.225 25.82 0.752 0.298
2DGS [16] 24.34 0.717 0.246 30.40 0.916 0.195 27.03 0.805 0.223
GS-Pull [58] 23.76 0.703 0.278 30.78 0.925 0.182 26.88 0.802 0.235
GOF [55] 24.82 0.750 0.202 30.79 0.924 0.184 27.47 0.827 0.194
RaDe-GS [56] 25.17 0.764 0.199 30.74 0.928 0.165 27.65 0.837 0.184
PGSR [4] 24.45 0.730 0.224 30.41 0.930 0.161 27.10 0.819 0.196
GausSurf [43] 25.09 0.753 0.212 30.05 0.920 0.183 27.29 0.827 0.199
Ours 25.00 0.760 0.191 30.63 0.933 0.153 27.50 0.837 0.174

Comparisons on Mip-NeRF 360. We also evaluate our approach on the Mip-NeRF 360 dataset [2]
for novel view synthesis. Table 3 reports quantitative comparisons against state-of-the-art Gaussian-
based and other neural rendering baselines. Our method outperforms competitors on most metrics,
demonstrating superior image fitting and generalization to unseen viewpoints. This evidences that
our enhanced geometry representation yields higher visual fidelity. Notably, the Mip-NeRF 360 itself
achieves the highest average PSNR on indoor scenes but lags on SSIM and LPIPS. Among Gaussian-
based methods, 2DGS [16], SuGaR [14], and GS-Pull [58] perform worse than vanilla 3DGS [21],
suggesting that their planar Gaussian constraints degrade performance in complex environments. Our
ablation results in Table 4 further confirm that flattening 3D Gaussians into planar Gaussian disks is
ineffective for our framework. Our method preserves the full 3D Gaussian representation and delivers
high-quality surfaces without sacrificing novel-view rendering quality. Fig. 4 provides a qualitative
comparison of reconstructed meshes. Consistent with our observations on the TNT dataset, our
method recovers more accurate and complete surfaces in both foreground and background regions,
whereas other methods suffer from noise, oversmoothing, or missing details, especially in challenging
indoor scenes.

5.2 Ablation Studies
Table 4: Ablations on the TNT dataset.

Precision ↑ Recall ↑ F1-score ↑
Only LI 0.09 0.23 0.13
w/o edge item 0.49 0.59 0.53
w/o weight δ 0.50 0.59 0.53
w/o Lnc 0.48 0.60 0.52
w/o Lns 0.47 0.58 0.51
w/o Lnc + Lns 0.40 0.57 0.46
w/o Lp 0.46 0.56 0.50
w/o Lf 0.49 0.60 0.53
w/o Lp + Lf 0.33 0.40 0.36
w/ scale loss 0.51 0.60 0.54
N = 1 0.49 0.58 0.52
N = 2 0.49 0.59 0.53
N = 4 0.51 0.60 0.54

Ours 0.51 0.60 0.54

To quantify the contributions of our alignment
constraints, we perform ablations by selectively
removing loss terms and report reconstruction
quality on the TNT dataset. In addition to the
F1-score, we also report Precision and Recall to
provide a more comprehensive evaluation. The
base color rendering loss from 3DGS is always
retained in the following experiments. We pro-
vide quantitative results in Table 4.
(1) Only image reconstruction loss (LI ): Re-
moving all alignment losses yields the worst
results, with an average F1-score of 0.13, but
still better than the vanilla 3DGS’s score of 0.09.
(2) Edge-aware term in LI : Omitting the image
edge-based component slightly degrades perfor-
mance, confirming its role in preserving bound-
ary detail.
(3) Edge-aware weight δ: In boundary regions, Gaussian primitives often exhibit ambiguous or noisy
normal directions, which can lead to incorrect supervision signals. The weight δ in loss Lnc reduces
the loss contribution from these areas, allowing the network to focus learning on more reliable surface

9



regions. While the improvement is modest, it reflects the fact that shape boundaries constitute a
relatively small proportion of the scene, and thus affect only a small number of sampled points during
evaluation.
(4) Normal-based alignment (Lnc, Lns): The normal consistency (Lnc) and smoothing (Lns) losses
are critical. Excluding either term causes a noticeable drop in Precision and F1-score, and removing
both leads to a dramatic performance collapse.
(5) Multi-view alignment (Lp, Lf ): Enforcing photometric and feature consistency across views
consistently improves reconstruction accuracy. Each multi-view alignment term contributes positively,
validating the benefit of cross-view geometric constraints.
(6) Scale regularization: The scaling matrix S represents the stretching of a spherical Gaussian along
the three axes. Different from previous works [4, 6, 58], incorporating the widely used scale penalty
into our method to flatten the 3D Gaussian disks provides no performance gains, and even degrades
novel-view rendering quality on the Mip-NeRF 360 dataset.
(7) Number of source views (N ): Our method takes both a reference view and N source views.
Increasing the number of source views used in the alignment losses improves reconstruction quality.
However, setting N = 4 yields no additional performance gains but increases the computational cost.
We therefore choose N = 3 to balance accuracy and efficiency.

Overall, these ablations demonstrate that each of our proposed alignment constraints plays a distinct
and essential role in achieving high-fidelity surface reconstruction.

6 Conclusion

In this paper, we address the limitations of existing 3D Gaussian Splatting approaches in recovering
accurate and detailed surface geometry, especially under challenging conditions such as complex
lighting and ambiguous object boundaries. We propose a novel method that improves geometric
fidelity by integrating edge-aware supervision, visibility-aware multi-view alignment, and robust
geometric constraints based on surface normals and deep visual features. These components jointly
enforce cross-view consistency, enhance boundary sharpness, and mitigate the impact of illumination-
induced artifacts. Extensive experiments demonstrate that our method achieves state-of-the-art
performance in both surface reconstruction and novel view synthesis, underscoring its effectiveness
and robustness in complex real-world scenarios. The main limitation of our approach is its relatively
slower training speed compared to earlier 3DGS variants. In future work, we aim to explore adaptive
Gaussian pruning and learned covariance regularization to accelerate training and further improve
robustness in large-scale and dynamic scenes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction reflect the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the experimental results is provided in
Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code and data will be publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are discussed in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Research work in this area does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is provided in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses of code and data used in the paper are respected. We have cited
the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation will be provided along with the dataset/code/model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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