
Implicitly Learned Invariance and Equivariance in Linear Regression

Yonatan Gideoni 1

Abstract
Can deep learning models generalize if their prob-
lem’s underlying structure is unknown a priori?
We analyze this theoretically and empirically in an
idealistic setting for linear regression with invari-
ant/equivariant data. We prove that linear regres-
sion models learn to become invariant/equivariant,
with their weights being decomposed into a com-
ponent that respects the symmetry and one that
does not. These two components evolve indepen-
dently over time, with the asymmetric component
decaying exponentially given sufficient data. Ex-
tending these results to more complex systems
will be pursued in future work.1

1. Introduction
It is often believed that a deep learning model cannot ad-
equately solve a problem without utilizing its underlying
structure (Bronstein et al., 2021). Concretely, if a problem
has a certain symmetry then an architecture that does not
respect it will do worse than one that does. This line of
thought has led to much work on discovering symmetries in
data (Krippendorf & Syvaeri, 2020; Dehmamy et al., 2021;
Desai et al., 2021; Yang et al., 2023) and to the design of
architectures that respect them, usually through invariance
or equivariance (Cohen & Welling, 2016; Finzi et al., 2020;
van der Ouderaa & van der Wilk, 2022).

However, many such beliefs in deep learning were later
found not to hold. For example, neural networks were
thought to have no chance of generalizing because they are
always overparameterized, yet this was disproven by phe-
nomena like double descent (Belkin et al., 2018; Nakkiran
et al., 2019). This begs the question—can a task be ade-
quately learned without having its symmetries encoded into
the architecture?

1Department of Computer Science and Technology, Uni-
versity of Cambridge. Correspondence to: Yonatan Gideoni
<yg403@cl.cam.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Code is given at https://github.com/
YonatanGideoni/ImplLearntSymmLinReg.

In this work we take a modest step in answering this ques-
tion, with our contributions being as follows. To make
the analysis tractable we analytically examine linear regres-
sion’s training dynamics for data that is invariant/equivariant
to a symmetry. Its weights are found to decompose into a
symmetric and asymmetric component, with the former
being invariant/equivariant to the symmetry. The asymmet-
ric component is found to exponentially decay given suffi-
cient data, making the final predictor respect the symmetry.
Proofs and additional findings are in the appendix.

2. Preliminaries
Representation theory: A familiarity with basic group the-
ory is assumed. In certain cases, abstract notions regarding
groups can be conveniently expressed using vector spaces. A
group representation is a homomorphism ρ : G → GLn(R)
such that ρ(gh) = ρ(g)ρ(h), with GLn(R) being the group
of invertible matrices over Rn. A representation makes the
group’s operation become standard matrix multiplication,
with the elements of X being vectors. Throughout this paper
only such groups will be considered, having ρ be implicit.

Invariance and equivariance: Often it is desirable that
functions applied to a symmetric object preserve its symme-
try. This is formalized through invariance and equivariance.
A function is invariant to a group if acting on the input does
not affect the function’s output—f(gx) = f(x). Equivari-
ance accordingly means that the output changes with the
input, such that gf(x) = f(gx).

Gradient flow and linear regression: When training mod-
els with gradient descent the weights’ w discrete update rule
is wi+1 = wi − η∇wL, where η is the learning rate and
L is the loss. By taking η to be infinitesimal this becomes
continuous, such that instead of gradient descent the weights
evolve as ẇ = −∇wL. This is known as gradient flow.

This flow can sometimes yield analytical results for the
weights’ trajectory over time. For example, this occurs for
linear regression with a squared error loss, L = 1

2 ||y −
Xw||2, with y being the labels, X the design matrix, and
w the weights. The total instead of mean loss is taken for
convenience, as scaling the loss does not change the weights’
trajectory. Under gradient flow the weights over time are

https://github.com/YonatanGideoni/ImplLearntSymmLinReg
https://github.com/YonatanGideoni/ImplLearntSymmLinReg

Implicitly Learned Invariance and Equivariance in Linear Regression

known to be

w(t) = e−Ktw0 + (I − e−Kt)K†XT y, (1)

where K := XTX is the uncentered empirical covari-
ance matrix, K† is its pseudo-inverse, and w0 is the initial
weights vector. The exponentials are matrix exponents.

3. Learned Invariance
To understand the effect symmetries in the data have on
training dynamics we start by analyzing an idealistic noise-
less setting. For simplicity, we start with the invariant case.

Let fw(x) = xw be a linear predictor, where x is a row
vector for notational convenience, and let L = 1

2 ||y−Xw||2
be the loss. The total squared error instead of the mean
squared error is used for convenience, as a constant factor
only affects the speed with which the weights evolve and
not their trajectory. We assume the following:
Assumption 1. (Data Invariance) There exists a linear group
G such the dataset only contains entire orbits having the
same labels. Thus, for all g ∈ G both (x, y) and (gx, y) are
in the dataset.
Example 3.1. When trying to fit a straight 1D line the fea-
tures are

(
1 x

)T
. An implicit reflection symmetry implies

that both (x, y) and (−x, y) exist in the dataset. In this case

the group is G :=

{
I2,

(
1 0
0 −1

)}
, such that the second

group element represents the reflection x → −x.
Corollary 3.2. Assumption 1 allows rewriting the loss as

L =
1

2

∑
g∈G

||y −Xgw||2 (2)

where we now take a single point over each orbit and ex-
plicitly sum over it. g acts from the right because it acts on
the design matrix’ features, which are its columns.

Assumption 2. (Gradient Flow) We assume that training
is done using gradient flow, such that the learning rate η is
sufficiently small.

The following technical assumption is required for parts of
our proofs. It holds for many common groups, including
rotations, permutations, and reflections. A case where it
does not hold is given in Appendix A.
Assumption 3. For all g ∈ G, gT is also in the group.

These assumptions together yield the following result:
Theorem 3.3. (Induced Invariance in Linear Regression)
Given these three assumptions, the following holds:

1. The weights over time are:

w(t) = e−KGtw0 + (I − e−KGt)K†
GR

TXT y, (3)

where w0 is the initial weights vector, KG :=∑
g∈G gTXTXg, and R :=

∑
g∈G g. R is an un-

normalized Reynolds operator (Billik & Rota, 1960).
K†

G is the pseudoinverse of KG.

2. The weights can be decomposed as w = wr + wk,
where wk ∈ ker(R) and wr ∈ ker(R)⊥. These
two components are decoupled from one another—the
value of one does not affect the dynamics of the other.

3. wk does not depend on the labels y and thus appears
only in the first term of Equation 3. By definition, KG

is positive semi-definite (PSD), being a sum of PSD
matrices. If it is positive definite (PD) then wk will
exponentially decay, regardless of the initial weights.

Intuitively, the weights decompose into a part that respects
the symmetry, wr, and a part that does not, wk. As the
weights in linear regression converge to a point spanned by
the data (Bishop & Nasrabadi, 2006, p.163), if it spans the
entire space then KG will be PD. This is because there will
be no directions along which the data has zero variance. As
all the group elements g are invertible, KG is PD iff XTX
is PD. In this case, we arrive at the following result:

Corollary 3.4. If KG is PD, w∗ := w(t → ∞) will be
invariant to the symmetry, so ∀g ∈ G : fw∗(x) = fw∗(gx).

Thus, although the initial model had no information about
the symmetry, it becomes invariant after training. A dif-
ferent, restricted version of this was proven by Lyle et al.
(2020).

4. Learned Equivariance
A similar albeit weaker version of these results holds when
the data is equivariant to a given symmetry. To meaningfully
discuss equivariance we train a function f that maps the
domain onto itself, giving our linear predictor the form
fW (x) = xW , with W being a matrix and x a row vector.
Accordingly, the labels are now vectors instead of scalars.
Denoting the label matrix as Y , the loss now becomes L =
1
2 ||Y −XW ||2Fr, where || · ||Fr is the Frobenius norm.

In this case Assumptions 1, 3 and Corollary 3.2 are replaced
by the following:

Assumption 4. (Data Equivariance) There exists a linear
group G such the dataset only contains entire orbits having
equivariant labels. Thus, for all g ∈ G both (x, y) and
(gx, gy) are in the dataset.

Assumption 5. The group G is orthogonal, such that ggT =
gT g = I and ∀g ∈ G : gT ∈ G.

Corollary 4.1. Assumption 5 allows rewriting the loss as

L =
1

2

∑
g∈G

||Y g −XgW ||2Fr. (4)

Implicitly Learned Invariance and Equivariance in Linear Regression

0 20 40 60 80 100
Epoch

10 4

10 3

10 2

10 1
As

ym
m

et
ry

 lo
ss

(a)

0.00

0.25

0.50

0.75

As
ym

m
. c

om
p.

0 20 40
Epoch

0

1

2

3

Sy
m

m
. c

om
p.

(b)

0

2

As
ym

m
. c

om
p.

0 20 40
Epoch

0.6

0.8

Sy
m

m
. c

om
p.

(c)

Figure 1. Empirical verifications of Theorem 3.3 on the task given in Example 3.1. Each line/color corresponds to a differently initialized
model. (a) Shows the predictions’ antisymmetric part decaying exponentially until the gradient flow assumption breaks down, as per
Theorem 3.3.3. (b) and (c) show that the components that respect/disrespect the symmetry are decoupled from one another, as per Theorem
3.3.2. In (b) the asymmetric components have the same initialization while the symmetric are different, with the opposite case given in (c).

These yield the following results:

Theorem 4.2. (Induced Equivariance in Linear Regres-
sion) Given these assumptions and defining CG :=∑

g∈G gTXTY g, the following hold:

1. Given initial weights W0, the weights over time are:

W (t) = e−KGtW0 + (I − e−KGt)K†
GCG. (5)

2. The weights can be decomposed as W = Wr + Wk,
where Wr is in the subspace of matrices that commute
with the group elements, defined as VG = {A|∀g ∈ G :
[g,A] = 0}, and Wk is in V ⊥

G . These two components
are decoupled from one another.

3. Wk does not depend on the labels Y and thus appears
only in the first term of Equation 5. Thus, if KG is
PD then Wk will always decay exponentially over time,
regardless of the initial weights.

Corollary 4.3. If KG is PD then W ∗ := W (t → ∞) com-
mutes with the group elements. This results in fW∗ being
equivariant, such that ∀g ∈ G : fW∗(gx) = gfW∗(x).

Like before, although no knowledge of the symmetry was
known in advance, the final model becomes equivariant.

5. Experiments
We verify our findings for the learned invariance case using
several artificial datasets. The simple case given in Example
3.1 of learning a reflection invariant function such as |x|
with the features being

(
1 x

)T
is shown in Figure 1, with

other experiments and findings detailed in Appendix D.
The asymmetry loss is a measure of how non-invariant the

model is and is defined as Ex[|f(x) − Eg[f(gx)]|], where
the expectation over the group elements is with respect
to the Haar measure. Empirical verifications for learned
equivariance are given in Appendix E.

6. Wide Neural Networks
As wide neural networks are approximated by their lin-
earised versions, one would naı̈vely expect these results
to extend to them. However, this turns out not to be the
case—a thorough discussion is given in Appendix F, with a
thorough analysis being left for future work.

7. Discussion
We analyzed whether invariance and equivariance can be
implicitly learned in an idealized setting. We prove that
this generally occurs in linear regression, where given suf-
ficient data the final predictor becomes perfectly invari-
ant/equivariant.

It is interesting to consider whether this occurs in more com-
plex models, such as neural networks. Olah et al. (2020)
qualitatively and empirically observed approximately equiv-
ariant features being learned in images. Gruver et al. (2022)
empirically showed that some pretrained models with fine-
tuning can reach approximate equivariance on par with ar-
chitectures that have it baked in. These results, although
mostly empirical and qualitative, are interesting—they im-
ply this could occur for neural networks as well. If so, this
begs the question—how much should we invest in encoding
such priors into architectures? This question is relevant only
given sufficient data, as for low-data regimes it is unlikely
this would occur. Extending this analysis to more complex
systems is an interesting avenue for future work.

Implicitly Learned Invariance and Equivariance in Linear Regression

Acknowledgements
In no particular order, I would like to thank Challenger
Mishra, Francisco Vargas, Aditya Ravuri, Kamil Bujel,
Theodore Long, Jonas Jürß, and Dulhan Jayalath for helpful
comments and discussions.

References
Belkin, M., Hsu, D. J., Ma, S., and Mandal, S. Recon-

ciling modern machine-learning practice and the classi-
cal bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116:15849 – 15854, 2018.

Billik, M. and Rota, G.-C. On reynolds operators in finite-
dimensional algebras. Indiana University Mathematics
Journal, 9:927–932, 1960.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning. J. Electronic Imaging, 16:049901,
2006.

Bronstein, M. M., Bruna, J., Cohen, T., and Velivckovi’c,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. ArXiv, abs/2104.13478, 2021.

Chizat, L., Oyallon, E., and Bach, F. R. On lazy training
in differentiable programming. In Neural Information
Processing Systems, 2018.

Cho, Y. and Saul, L. K. Kernel methods for deep learning.
In NIPS, 2009.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. In NIPS, 2016.

Dehmamy, N., Walters, R., Liu, Y., Wang, D., and Yu,
R. Automatic symmetry discovery with lie algebra con-
volutional network. In Neural Information Processing
Systems, 2021.

Desai, K., Nachman, B. P., and Thaler, J. Symmetry discov-
ery with deep learning. Physical Review D, 2021.

Fan, Z. and Wang, Z. Spectra of the conjugate kernel and
neural tangent kernel for linear-width neural networks.
ArXiv, abs/2005.11879, 2020.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. Gen-
eralizing convolutional neural networks for equivariance
to lie groups on arbitrary continuous data. In Interna-
tional Conference on Machine Learning, pp. 3165–3176.
PMLR, 2020.

Gruver, N., Finzi, M., Goldblum, M., and Wilson, A. G. The
lie derivative for measuring learned equivariance. ArXiv,
abs/2210.02984, 2022.

Hu, Z. and Huang, H. On the random conjugate kernel and
neural tangent kernel. In International Conference on
Machine Learning, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: convergence and generalization in neural networks
(invited paper). Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, 2018.

Krippendorf, S. and Syvaeri, M. Detecting symmetries
with neural networks. Machine Learning: Science and
Technology, 2, 2020.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,
J., and Sohl-Dickstein, J. N. Deep neural networks as
gaussian processes. ArXiv, abs/1711.00165, 2017.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J. N., and Pennington, J. Wide neural
networks of any depth evolve as linear models under gra-
dient descent. Journal of Statistical Mechanics: Theory
and Experiment, 2020, 2019.

Lyle, C., van der Wilk, M., Kwiatkowska, M. Z., Gal, Y.,
and Bloem-Reddy, B. On the benefits of invariance in
neural networks. ArXiv, abs/2005.00178, 2020.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: where bigger mod-
els and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021, 2019.

Olah, C., Cammarata, N., Voss, C., Schubert, L., and
Goh, G. Naturally occurring equivariance in neural net-
works. Distill, 2020. doi: 10.23915/distill.00024.004.
https://distill.pub/2020/circuits/equivariance.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In NIPS, 2007.

van der Ouderaa, T. F. A. and van der Wilk, M. Learn-
ing invariant weights in neural networks. ArXiv,
abs/2202.12439, 2022.

Yang, J., Walters, R., Dehmamy, N., and Yu, R. Generative
adversarial symmetry discovery. ArXiv, abs/2302.00236,
2023.

Implicitly Learned Invariance and Equivariance in Linear Regression

A. Assumption 3 counterexample

Note that

{(
1 0
a 1

) ∣∣∣∣∣a ∈ R

}
is a group which describes

symmetry to 1D translations of a point x given as
(
1
x

)
.

Clearly, for a ̸= 0 the transposed matrices
(
1 a
0 1

)
are not

in it.

B. Proof of Induced Invariance
Proof of 3.3.1: Assuming gradient flow, by taking the gradi-
ent of the loss we find the weights’ dynamics to be:

ẇ = −∇wL =
∑
g

gXT
(
y −XgTw

)
. (6)

This is a linear matrix differential equation with constant
coefficients. The particular solution is K†

GRXT y and the
general solution is e−KGtw̃ for some constant w̃. Requiring
that w(t = 0) = w0 yields the solution given in the theorem.
□

Proof of 3.3.2: The weights’ decomposition can always be
carried out, as the direct sum of a subspace (here ker(R))
and its perpendicular subspace span the entire space. Using
this decomposition for Equation 6 yields the single equation
for both components:

ẇr + ẇk = −∇wL = RTXT y −KG(wr + wk). (7)

As ker(R)⊥ = Im(RT), the first term on the RHS is wholly
contained in Im(RT) and thus only affects wr. As for
the second term, we will show that it induces no mixing
between the subspaces, such that KGwr ∈ ker(R)T and
KGwk ∈ ker(R). For the latter case, note that:

∀v ∈ ker(R) : RKGv =
∑
g

RgTXTXgv. (8)

Here Assumption 3 becomes necessary. Note that Rg =
gR = R as acting on R with a group element simply per-
mutes the elements’ order in the sum. As gT ∈ G, we have
that

∑
g RgTXTXgv =

∑
g RXTXgv = RXTXRv,

and as v ∈ ker(R) this is zero, proving this case.

Similarly, one can show that ∀v ∈ Im(RT) : KGv ∈
Im(RT). As v ∈ Im(RT), ∃u : v = RTu.
Thus, KGv = KGR

Tu =
∑

g g
TXTXgRTu. Again,

RT g = gRT = RT . Therefore,
∑

g g
TXTXgRTu =∑

g g
TXTXRTu = RTXTXgRTu ∈ Im(RT).

As the first term in Equation 3 is wholly in one of the sub-
spaces and the second term does not mix the subspaces, they
each evolve independently over time. □

Proof of 3.3.3: This follows directly from our results in the
previous section. They imply that wk’s evolution over time
is per ẇk = −KGwk, resulting in wk(t) = e−KGtw0k. The
theorem’s statement directly follows. □

As for Corollary 3.4, this immediately follows from the
theorem—if KG is PD at t → ∞ the first term in Equation
3 will be zero. As this term is the one that is in the symmetry-
disrespecting subspace, the final model will be invariant to
the symmetry.

C. Proof of Induced Equivariance
The proof of 4.2.1 is identical to that of 3.3.1, just with the
weights being a matrix instead of a vector and the labels
defined differently.

Proof of 4.2.2: We will prove this in similar fashion to
3.3.2. It is easy to see that VG forms a vector space. The
decomposition is valid because of identical reasons, and
results in the weights’ components’ dynamics being

Ẇr + Ẇk = CG −KG(Wr +Wk). (9)

Note that CG commutes with the group elements as ∀g′ ∈
G : CGg

′ =
∑

g g
TXTY gg′, so by defining g = g′g̃ one

can readily see that CGg
′ = g′CG. Thus, the first term

is wholly contained in VG. As for the second, we shall
show that it does not mix the subspaces. As a product of
commuting matrices commutes, KGWr ∈ VG.

To show that KGWk ∈ V ⊥
G we note that ∀C ∈ VG :

V T ∈ VG because the group is orthogonal, so [C, g] =
0 ⇔ [CT , gT] = 0 and the first equation holds also for
g = g′T . Moreover, KG ∈ VG as it commutes with
the group elements, exactly like CG. Thus, note that
∀C ∈ VG : Tr(CTKGWk) = Tr((KGC)TWk), and as
KGC ∈ VG as a product of commuting matrices, this is
zero. Thus, KGWk ∈ V ⊥

G .

Therefore, the dynamics do not mix the subspaces, so
Wr,Wk evolve independently of one another. □

Proof of 4.2.3: This follows directly from the previous re-
sults. Wk over time will be Wk(t) = e−KGtWk0, so the
statement directly follows. □

D. Learned Invariance Experiments
Given sufficient data, these results hold when the symmetry
is encoded in the data only on average and not as detailed in
Assumptions 1 and 4, where each orbit is precisely encoded
in the input. Figure 2 shows this, where for a dataset with
only 20 points with Assumption 1 not being enforced the
asymmetry loss still exponentially decreases.

Moreover, the results are found to hold even when the data
has some level of noise. Figure 3 shows that when the data

Implicitly Learned Invariance and Equivariance in Linear Regression

0 200 400 600 800 1000
Epoch

10 2

10 1

As
ym

m
et

ry
 lo

ss

Figure 2. Learning x+ y given x, y as inputs, with the symmetry
being x ↔ y. Here there are only 20 points in the input, with As-
sumption 1 not being enforced. The asymmetry loss exponentially
decreases also in this case. The number of epochs was increased
to compensate for the smaller dataset.

has Gaussian noise with a standard deviation as high as
0.5, the asymmetry loss still exhibits its typical exponential
decay. As the asymmetric weights do not depend on the
labels, some level of robustness to noise is unsurprising.

0 20 40 60 80 100
Epoch

10 4

10 3

10 2

10 1

As
ym

m
et

ry
 lo

ss

Noise std
0.0
0.1
0.3
0.5
0.7

Figure 3. Learning |x| with various levels of Gaussian noise. Stan-
dard deviations as high as 0.5 all exhibit relatively typical asym-
metry loss curves.

E. Learned Equivariance Experiments
To verify Theorem 4.2 we use a setting similar to that in
the previous Appendix. We train a linear predictor with
the same hyperparameters used for the learned invariance
experiments. This is done over a dataset with an x ↔ y

permutation symmetry, with the labels being
(
y2 x2

)T
.

The asymmetry loss for this setup is shown in Figure 4.

Note that here the symmetric components of a matrix

(
w11 w12

w21 w22

)
for a x ↔ y symmetry are w11+w22

2 and
w12+w21

2 . The asymmetric components are naturally thus
w11−w22

2 and w12−w21

2 .

F. Wide Neural Networks
As sufficiently wide neural networks (NNs) are well ap-
proximated by linear models (Lee et al., 2019), one would
expect these results to be seen there as well. However, in
practice NNs are known to struggle when learning data with
symmetries if not given suitable geometric priors (Bronstein
et al., 2021, p.9). This raises the question, why don’t NNs
exhibit implicitly learned invariance and equivariance?

Formally, when the hidden layers’ width approaches infinity
the network fw(x) is well approximated by its linearized
version (Jacot et al., 2018; Chizat et al., 2018; Lee et al.,
2019),

f lin
t (x) = f0(x) +∇wf0(x)|(w=w0)∆w, (10)

where f0 is the network at initialization and ∆w := w(t)−
w0. This limit holds regardless of depth. As the weights
are symmetrically distributed, in the infinite width case f0
approaches 0 for all inputs.

Another approach to the infinite width limit is given by the
Conjugate Kernel (Cho & Saul, 2009; Daniely et al., 2016;
Lee et al., 2017; Hu & Huang, 2021), a kernel describing
the covariance matrix after a certain layer. Explicitly it is
XT

l Xl, where Xl ≡ fl(X) are the outputs after the l-th
layer. At infinite width this kernel is known to describe the
linear regression model Xlwl+1, where wl+1 are the l+1-th
layer’s weights (Rahimi & Recht, 2007).

In both cases the linearized neural network acts as a fea-
ture kernel, transforming the input data to some high-
dimensional space.

F.1. Kernelized Group Representations

Because the network acts as a kernel when linearized, one
could argue that this work’s main theorems do not hold as it
seems that the group element acting on the input x would
not translate to it acting on the weights.

However, this does not rule out the option of the kernelized
features having a different group representation than the
original ones. If ϕ(x) is the kernel and g̃ is a group element’s
representation with respect to the kernelized features, this
implies that g̃ϕ(x) = ϕ(gx). This can occur for standard
kernels, as is illustrated in the following example.

Example F.1. Assume that a given linear regression prob-
lem’s features are

(
x y

)T
and that there is a x ↔ y

permutation symmetry. Using cycle notation, the group
acting on the features is G := {I2, (1 2)}. If a sec-

Implicitly Learned Invariance and Equivariance in Linear Regression

0 20 40 60 80 100
Epoch

10 2

10 1

100

As
ym

m
et

ry
 lo

ss

(a)

1.00

0.75

0.50

0.25

0.00
Asymm. comps.

0

1

2

3

4
Symm. comps.

0 50 100
Epochs

0.00

0.25

0.50

0.75

1.00

0 50 100
Epochs

0

1

2

3

4

(b)

0

1

2

3

4
Asymm. comps.

0.00

0.25

0.50

0.75

1.00
Symm. comps.

0 50 100
Epochs

4

3

2

1

0

0 50 100
Epochs

0.00

0.25

0.50

0.75

1.00

(c)

Figure 4. Empirical verifications of Theorem 4.2 on the given task. As each matrix has 2 × 2 = 4 components there are 2 symmet-
ric/asymmetric components respectively. (a) Shows that the predictions’ antisymmetric part decays exponentially, as per Theorem 4.2(c).
(b) and (c) show that the components that respect/disrespect the symmetry are decoupled from one another, as per Theorem 4.2(b). In (b)
the asymmetric components are initialized to be identical while the symmetric are different, with the opposite case given in (c).

ond order polynomial kernel is used to get the features(
x y x2 xy y2

)T
the group’s action on these new

features is given by G̃ := {I5, (1 2)(3 5)}.

We empirically verify this holds when the network acts as a
kernel. For every group element a matrix g̃ is found, such
that ∇wf0(gx) ≈ g̃∇wf0(x) if linearizing with respect to
the weights and where g̃xl = fl(gx) if using the Conjugate
Kernel (CK). The results and how g̃ is found are detailed in
Appendix G. As this shows that the group’s action approx-
imately translates to the kernelized features, the theorems
from the previous section hold for the linearized network.

F.2. Difficulties in Learned Invariance/Equivariance

A crucial requirement for the invariance/equivariance to be
learned is that there is sufficient data. This is defined based
on if KG is PD, which requires there to be at least as many
samples as there are features. In the linearized NN case
the number of features is the network’s number of parame-
ters. As the linearized NNs predictor is as per Equation 10,
wherever XTX appeared in the previous results it should
be replaced with ∇wf0(X)T∇wf0(X), which we shall call
the empirical weights kernel (EWK). Note that this is not
the empirical tangent kernel given in Jacot et al. (2018) and
Lee et al. (2019) as it acts on the weights instead of the in-
puts. Here f0 is interpreted as acting row-wise on the design
matrix X’s inputs. The EWK’s rank is at most the number
of samples, such that if the network is overparameterized it
will necessarily be singular. This results in KG also being
singular, preventing the symmetry from being fully learned.
Intuitively, because the data does not span the feature space
the system is underdetermined, therefore permitting subop-
timal solutions with respect to the symmetry.

These conclusions stay the same when approximating the
linearized network using the CK, with the number of rel-
evant parameters being reduced to the last layer’s width.
Here XTX should be replaced with XT

LXL, with L being
the network’s number of layers.

However, this still does not rule out two cases that could
allow circumventing these limitations. First, if the network
is underparameterized, and second, if the weights are ini-
tialized to be in a direction that KG spans. Both of these
regimes are difficult to realize because the EWK and CK’s
spectrums are dominated by relatively small eigenvalues.
This has been shown for the CK by Fan & Wang (2020),
while we demonstrate it empirically for the EWK in Ap-
pendix I. Even while these kernels are not singular, the
abundance of small eigenvalues makes the majority of di-
rections in weight space almost degenerate.

While this poses a difficulty, initializing the weights to be in
a non-degenerate direction should still be possible. However,
if the kernels change during training such that the weights
are partially contained within a degenerate direction then
this will not hold. As Fan & Wang (2020) have shown, this
is indeed the case—even for networks with widths on the
order of 102 − 103 the CK’s eigenvalues noticeably shift
during training. Failed empirical attempts to induce learned
invariance are detailed in Appendix H.

G. Finding Kernelized Representations
We want to find a matrix g̃ such that g̃f(x) ≈ f(gx). We
do this by minimizing the squared error |g̃f(x)− f(gx)|22,
where as f(x), f(gx) are known this can be solved in closed
form. When given a design matrix X as input, the minimizer
is g̃ = (f(X)T f(X))†f(X)T f(Xg). The resulting errors

Implicitly Learned Invariance and Equivariance in Linear Regression

are given in Table 1 for the network acting on data with an
S3 symmetry.

H. Attempts at Inducing Invariance
While the results in Appendix F pose a difficulty, initializ-
ing the weights to be in a non-degenerate direction should
still be possible. One would expect this to allow the net-
work to learn the symmetry as then the asymmetric weights
would fully decay. However, if the kernels change during
training such that the weights are partially contained within
a degenerate direction then this will not hold. As Fan &
Wang (2020) have shown, this is indeed the case—even for
networks with widths on the order of 102 − 103 the CK’s
eigenvalues noticeably shift during training.

However, there are more ways to induce learned invariance
in networks. Chizat et al. (2018) show that lazy training,
where a network barely deviates from its linearised version’s
dynamics, can occur in narrow networks. This results from
the loss and network’s outputs being scaled in a certain
manner. While this could theoretically make even finite
width, underparameterised networks have dynamics similar
to those of their infinite width versions, following their
procedure did not induce learned invariance in practice. This
may be because it is harder to find the group’s action on the
induced kernel when the networks have a low width, as there
are fewer parameters to optimise. Further understanding
this subject is an interesting avenue for future work.

I. EWK Spectrum
The empirical spectrum of the EWK is given in Figure 5.
We see that a significant portion of the eigenvalues are small,
showing that many directions in weight-space would thus
be degenerate and difficult to learn. While a scaling of the
features would increase the eigenvalues, it would not change
the many orders of magnitude difference between them.

10 6 10 4 10 2 100 102 104 106

Eigenvalue

100

101

of
 e

ig
en

va
lu

es

Figure 5. Empirical spectrum of EWK eigenvalues. The eigenval-
ues that are less than 0.2, which is about a third of them, would
require more than 1000 epochs with a learning rate of 10−2 with
full-batch gradient descent to have their corresponding weights
decay by 90%. Zero eigenvalues are not displayed, with them
accounting for 2% of all the eigenvalues. This is for an MLP with
a single hidden layer with 100 neurons and 105 points from [0, 1]3,
such that the network has 501 parameters and is underparameter-
ized. The EWK is in this case accordingly a 501× 501 matrix.

Implicitly Learned Invariance and Equivariance in Linear Regression

Group kernelisation error
S3 group elements

(1 2) (1 2 3)

E [|∇wf(x)−∇wf(gx)|] 1.1 · 10−2 1.3 · 10−2

E [|g̃∇wf(x)−∇wf(gx)|] 2.4 · 10−3 1.0 · 10−3

E [|xl − fl(gx)|] 1.4 · 10−2 1.5 · 10−2

E [|g̃xl − fl(gx)|] 8.1 · 10−4 8.1 · 10−4

Table 1. Error induced when using a kernelized representation of the group elements relative to baselines. Absolute values represent L2

norms. The first two columns are when linearizing the network relative to the weights while the last two are when using the CK. Finding
approximate kernelized representations of the group action reduces the error by factors of 5-20 relative to the baselines. This is done for
an MLP with one hidden layer with 100 neurons. For the CK xl is a vector of the last post-activations.

