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Abstract

Recent advances have made non-autoregressive001
(NAT) translation comparable to autoregressive002
methods (AT). However, their evaluation using003
BLEU has been shown to weakly correlate with004
human annotations. Limited research compares005
non-autoregressive translation and autoregres-006
sive translation comprehensively, leaving un-007
certainty about the true proximity of NAT to AT.008
To address this gap, we systematically evaluate009
four representative NAT methods across vari-010
ous dimensions, including human evaluation.011
Our empirical results demonstrate that despite012
narrowing the performance gap, state-of-the-013
art NAT still underperforms AT under more014
reliable evaluation metrics. Furthermore, we015
discover that explicitly modeling dependencies016
is crucial for generating natural language and017
generalizing to out-of-distribution sequences.1018

1 Introduction019

Non-autoregressive translation, where the model020

generates translations in parallel, demonstrates no-021

table decoding speed advantages compared with tra-022

ditional autoregressive translation (Vaswani et al.,023

2017) and large language models for transla-024

tion (OpenAI, 2023). However, it suffers from025

performance degradation compared to autoregres-026

sive counterparts (Gu et al., 2017). The degradation027

stems from the independence assumption, which028

ignores the inter-token language dependency on029

the target side. Various methods are proposed to030

mitigate the performance gap (Ghazvininejad et al.,031

2019; Qian et al., 2020; Saharia et al., 2020; Du032

et al., 2021; Li et al., 2022; Huang et al., 2022b,c).033

Although representative methods (Saharia et al.,034

2020; Li et al., 2022; Huang et al., 2022b,c) have035

reported comparable translation performance to036

AT, almost all NAT methods are evaluated under037

BELU scores (Papineni et al., 2002). Although038

BLEU has been long adopted, recent work (Freitag039

1We release our resources on https://anonymous.com.

et al., 2022) argues that it is not a reasonable metric, 040

considerably underperforming alternative metrics 041

such as COMET (Rei et al., 2020) or large language 042

model evaluation (Kocmi and Federmann, 2023). 043

Limited work has been devoted to a systematic 044

evaluation of advanced NAT against AT, leaving a 045

significant gap in the research literature. 046

To address this gap, we conduct a comprehensive 047

evaluation of representative NAT methods, aim- 048

ing to reveal existing limitations and provide in- 049

sights for future research. Our primary focus is 050

on fully non-autoregressive methods which gen- 051

erate translations in a one-shot manner, achieving 052

the most decoding efficiency advantage. We con- 053

sider MgMO (Li et al., 2022) for advanced op- 054

timization, CTC (Saharia et al., 2020) for mod- 055

eling latent alignment, and DAT (Huang et al., 056

2022b) for explicit target-side dependency model- 057

ing. CMLM (Ghazvininejad et al., 2019) is adopted 058

as the representative iterative NAT method. All 059

models are tested on representative benchmark 060

datasets under a comprehensive evaluation , in- 061

cluding rule-based metrics, model-based metrics 062

and GPT4-based metrics (Kocmi and Federmann, 063

2023). Moreover, we conduct human evaluation 064

under the MQM framework (Freitag et al., 2021) 065

to gain further insights into the performance of 066

NAT models that may be overshadowed by global 067

automatic evaluations. 068

Automatic evaluation demonstrates varying de- 069

grees of advantage for AT over NAT models. In 070

general, DAT achieves the most competitive per- 071

formance, followed by MgMO and CTC. Under 072

rule-based evaluation metrics such as BELU and 073

chrf (Popovic, 2015), DAT can achieve compara- 074

ble or even superior performance compared to AT. 075

However, this competitiveness diminishes when 076

using model-based metrics such as COMET (Rei 077

et al., 2020) or GPT4-based evaluation, under 078

which AT significantly outperforms all NAT mod- 079

els. Fine-grained human evaluation indicates that 080
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NAT models incorporating explicit dependency081

modeling (e.g., DAT and CMLM) achieve similar082

levels of translation fluency with AT, yet suffering083

various translation accuracy errors. Compared with084

AT, NAT tends to produce more grammar or punc-085

tuation errors. Models without explicit dependency086

modeling (MgMO and CTC) suffer the most mis-087

translation and omission errors. On the other hand,088

models with latent alignments (CTC and DAT) are089

more prone to spelling and addition errors.090

Most of these errors are due to NAT’s inade-091

quate dependency modeling. Specifically, DAT’s092

addition errors occur when it generates repeated093

translations, known as n-gram repetition. This can094

be easily overlooked by BLEU evaluation, which095

measures n-gram precision, explaining why DAT096

performs well in terms of BLEU but not COMET.097

The n-gram repetition mainly stems from the weak,098

though explicit, dependency modeling. DAT lim-099

its inter-token dependency within one step using100

a one-linear-layer attention module for decoding101

efficiency. In contrast, AT can depend on the en-102

tire generation history and encode it with powerful103

Transformer blocks. To validate our assumption,104

we train an asymmetric AT with a one-layer de-105

coder and observe similar n-gram repetitions. Fur-106

thermore, adding an additional linear layer to the107

transition attention in DAT effectively reduces the108

repetition, corroborating our hypothesis.109

Apart from translation quality, we compare AT110

with NAT from the perspective of generalization111

and robustness. Empirical findings demonstrate112

that explicit dependency modeling is crucial for113

generating human-like languages and generalizing114

to out-of-distribution samples, which NAT methods115

lack or are still weak at. On the other hand, weak116

dependency exhibits stronger robustness to input117

perturbations, as it is less affected by exposure118

bias (Bengio et al., 2015; Ranzato et al., 2016).119

Future research on NAT should focus on how to120

consolidate explicit language dependency while121

maintaining decoding efficiency.122

2 Method123

We begin with a brief introduction to autoregressive124

and non-autoregressive machine translation, before125

introducing four representative NAT methods.126

2.1 Neural Machine Translation127

The machine translation task can be formally de-128

fined as a sequence-to-sequence generation prob-129

lem, where the model generates the target language 130

sequence y = {y1, y2, ..., yT } from the target vo- 131

cabulary V , given the source language sequence 132

x = {x1, x2, ..., xS} based on the conditional prob- 133

ability pθ(y|x) (θ denotes the model parameters). 134

Autoregressive Translation. Autoregressive 135

neural machine translation factorizes the condi- 136

tional probability to
∏T

i=1 p(yi|y1, ..., yt−1,x), 137

where the model is trained in a teacher-forcing way 138

with cross-entropy (XE): 139

LAT = − log p(y|x) = −
T∑
i=1

log pθ(yi|x, y<i).

(1) 140

During inference, the model sequentially generates 141

tokens based on previous predictions. 142

Non-autoregressive Translation. In contrast, 143

non-autoregressive machine translation (Gu et al., 144

2017) ignores the dependency between target to- 145

kens and factorizes the probability as
∏T

i=1 p(yi|x), 146

where tokens at each time step are predicted inde- 147

pendently. Vanilla NAT models are optimized with 148

XE loss with target dependency ignored: 149

LNAT = − log p(y|x) = −
T∑
i=1

log pθ(yi|x), (2) 150

with an additional loss for length prediction: 151

Llength = − log pθ(T |x). (3) 152

Challenges of NAT. The major difficulty of non- 153

autoregressive translation lies in that the decoder 154

side relies solely on the source-side information 155

without any target inputs, e.g., history predictions 156

in AT. Autoregressive models utilize previous to- 157

ken predictions to select the next token from the 158

distribution over the whole vocabulary space: 159

pθ(yi|y<i,x) = softmax(WPTransformer(y<i,x),
(4) 160

where WP is the vocabulary projection weight. The 161

inter-token dependency involves layers of Trans- 162

former blocks. In contrast, NAT models generate 163

translations in a "one-shot" manner, ignoring or 164

weakening the strong language dependency on the 165

target side. As a result, vanilla NAT is not capa- 166

ble of properly modeling the highly multi-modal 167

distribution of target translations, i.e., a source sen- 168

tence can have multiple valid translations. Various 169

methods aim to alleviate the conditional indepen- 170

dence assumption. In this work, we consider four 171
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representative methods: (1) alternative optimiza-172

tion with model architecture unchanged (Li et al.,173

2022); (2) introducing latent alignments based on174

an upsampled decoder prediction (Saharia et al.,175

2020); (3) building shallow but explicit target-side176

dependency (Huang et al., 2022b); and (4) iterative177

decoding (Ghazvininejad et al., 2019).178

2.2 NAT with Advanced Optimization179

Instead of exerting token-by-token cross-entropy180

supervision, Li et al. (2022) propose multi-181

granularity optimization (MgMO) to collect multi-182

granularity feedback on generations sampled from183

the models and gather them for backpropagation:184

LMO = −
K∑
k=1

qθ(h
k|x)R(hk,yk), (5)185

where K is the sample space size. qθ(h
k|x) is186

defined as the normalized probability for each hy-187

pothesis hk:188

qθ(h
k|x;α) = p̂θ(h

k|x)α∑
h′∈K(x) p̂θ(h

′|x)α
, (6)189

where K(x) denotes the sample space and α con-190

trols the distribution sharpness. R(h,y) is a re-191

ward function that encourages the generations to be192

similar with references under various granularity.193

MgMO requires no architecture modification and194

thus maintains decoding efficiency.195

2.3 NAT with Latent Alignments196

Saharia et al. (2020) introduce latent alignment197

models, e.g., Connectionist Temporal Classifica-198

tion (CTC) (Graves et al., 2006), to mitigate the199

target-side independence assumption. CTC utilizes200

a sequence of discrete latent alignment variables201

to monotonically align the non-autoregressive pre-202

dictions of the model and target side tokens. The203

marginal probability over latent alignments a is204

derived as:205

LLA = − log pθ(y|x)

= − log
∑

a∈β(y)

pθ(y|a,x)pθ(a|x), (7)206

where β(y) is a function that returns all possi-207

ble alignments for a sequence y. Then a =208

{a1, . . . , aM} is predicted by the decoder output209

states H = {h1, . . . ,hM}, where ai ∈ V ∪ {“_”}.210

“_” is a special blank token to allow many-to-one211

and null alignment. For instance, for a target se- 212

quence “thank you”, valid alignments a include “_ 213

thank thank you” and “thank _ you _”. The de- 214

coder state length is set as several times the source 215

sequence length to allow long translations. The 216

alignment probability pθ(a|x) is derived by: 217

pθ(a|x) =
M∏
i=1

pθ(ai|x) 218

=

M∏
i=1

softmax(WPhi). (8) 219

Since ai ∈ V ∪ {“_”}, the posterior probability of 220

y becomes: 221

pθ(y|a,x) =

{
1 if a ∈ β(y)

0 otherwise.
(9) 222

MgMO and CTC avoid token-by-token CE su- 223

pervision by introducing segment-level optimiza- 224

tion or marginalizing latent alignments. However, 225

they suffer independence assumption in generating 226

tokens (Equation 2) or alignments (Equation 8). 227

Consequently, both MgMO and CTC cannot inher- 228

ently handle multi-modal problems and heavily rely 229

on techniques such as knowledge distillation (Zhou 230

et al., 2020a) to mitigate this limitation. 231

2.4 NAT with Explicit Dependency 232

Huang et al. (2022b) propose directed Acyclic 233

Transformer (DAT) to construct explicit depen- 234

dencies, by formalizing an alignment as a path 235

in a direct acyclic graph. Similar to CTC, the de- 236

coder state length is upsampled to M and H = 237

[h1, . . . ,hM ] denotes the decoder output hidden 238

states, which are defined as the vertex states. The 239

probability of path a is redefined as the position 240

transition probability: 241

pθ(a|x) =
∏
i

pθ(ai+1|ai,x) =
∏
i

Eai,ai+1 , 242

where E ∈ RM×M is the transition matrix normal- 243

ized by rows. a = {a1, a2, . . . , aT } is a possible 244

path represented by a sequence of vertex indexes 245

of the vertex states H, i.e., ai ∈ {1, 2, 3, . . . ,M}. 246

Specifically, the transition matrix is obtained by: 247

E = softmax(
QKT

√
d

), (10) 248

Q = HWQ, K = HWK, 249
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where d is the hidden size, WQ and WK are learn-250

able matrices. Conditioned on the vertex states in251

H and the selected path a, the posterior probability252

of y is computed as:253

pθ(y|a,x) =
T∏
i=1

Pθ(yi|ai,x)254

=
T∏
i=1

softmax(Wphai), (11)255

where hai is the representation of the i-th vertex256

on the path a.257

Different from previous NAT methods, DAT ex-258

plicitly models token dependencies through vertex259

transitions. DAT first parallelly predicts a subset260

of all possible tokens for translating the source261

sentence and stores it as H, whose size is usually262

several times (e.g., 8) that of the source sequence.263

In contrast to Equation 4, the inter-token depen-264

dency is a one-step local transition for each vertex265

hi, to determine the next token from the rest of the266

set, i.e., {hi+1, . . . ,hM}:267

pθ(y) =
T∏
i=1

pθ(yai |yai−1), (12)268

pθ(yai |yai−1) = softmax(WPhargmax(Eai−1,ai )
),

(13)
269

where yai is the predicted token of the i-th vertex270

on the path a2. The explicit though weak depen-271

dency modelled by one-layer linear weights WQ272

and WK alleviate the necessity of knowledge dis-273

tillation, yet suffering n-gram repeating issues (dis-274

cussed in Section 4.3).275

2.5 NAT with Iterative Refinement276

The iterative NAT model (Ghazvininejad et al.,277

2019) is typically trained with conditional masked278

language modeling (CMLM) to build inter-token279

dependencies:280

LCMLM = −
∑

yt∈Y(y)

logpθ(yt|Ω(y,Y(y)),x),

(14)281

where Y(y) is a randomly selected subset of tar-282

get tokens and Ω denotes a function that masks a283

selected set of tokens in Y(y). During decoding,284

starting from a sequence of initiative tokens, e.g.,285

“<unk>”, CMLM models iteratively refine trans-286

lations from previous iterations to generate target287

language sequences.288

2We omit conditional dependency on x for simplicity.

3 Experiment and Setup 289

Datasets and Models. We conduct experiments 290

on WMT16 En⇒Ro and WMT21 De⇒En with 4 291

representative NAT methods apart from the vanilla 292

NAT and AT. For knowledge distillation, We train 293

an autoregressive model on the raw data as the 294

teacher model to generate the distilled dataset. De- 295

tails can be found in Appendix C. 296

Evaluation. For translation quality, we adopt 297

four commonly used metrics, which include two 298

rule-based metrics, i.e., BLEU score(Papineni et al., 299

2002) and chrf (Popovic, 2015), and two model- 300

based metrics, i.e., COMET (Rei et al., 2020) and 301

BLEURT (Sellam et al., 2020). Specifically, for 302

COMET, we utilize the wmt22-comet-da model 303

(Rei et al., 2022), and for BLEURT, the BLEURT- 304

20 model (Pu et al., 2021) is employed. Kocmi 305

and Federmann (2023) propose a GPT-based met- 306

ric, namely GEMBA, to evaluate translation quality, 307

and demonstrate state-of-the-art correlation with 308

human labels. We adopt GEMBA-GPT4-DA based 309

on GPT-4 (OpenAI, 2023) as an advanced evalua- 310

tion metric. For human evaluation, we follow (Fre- 311

itag et al., 2021), an evaluation methodology based 312

on the Multidimensional Quality Metrics (MQM) 313

framework, which provides a hierarchical analysis 314

of translation errors. Human evaluation details can 315

be found in Appendix D. 316

4 Translation Quality 317

4.1 Automatic Evaluation 318

The automatic evaluation results on WMT16 319

En⇒Ro and WMT21 De⇒En are presented in Ta- 320

ble 1. DAT obtains the most competitive perfor- 321

mance compared with the AT counterpart across all 322

automatic metrics, followed by MgMO and CTC. 323

MgMO and CTC achieve stronger performance 324

than the representative iterative method, CMLM, 325

when considering COMET and GEMBA which 326

have shown better correlation with human annota- 327

tion (Rei et al., 2020; Kocmi and Federmann, 2023). 328

Notably, MgMO obtains comparable performance 329

with CTC, without modifying model architecture. 330

Reliance on Knowledge Distillation. In both 331

translation directions, all fully non-autoregressive 332

methods except DAT and CMLM suffer more from 333

training without distillation. Typically, the vanilla 334

NAT models suffer a decrease of more than 7 335

BLEU points without KD. For strong NAT methods 336

such as MgMO and CTC, on WMT21 De⇒En, the 337
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Model BLEU↑ chrf↑ COMET↑ BLEURT↑ GEMBA↑ Speed↑

WMT16 En⇒Ro

w/o Knowledge Distillation

AT (Vaswani et al., 2017) 34.39† 58.48 78.90† 69.89† 86.18† 1.0×
NAT (Gu et al., 2017) 23.75 50.72 65.78 53.91 67.29 15.9×
MgMO (Li et al., 2022) 30.97 56.65 73.54 63.19 80.04 14.9×
CTC (Saharia et al., 2020) 32.73 57.77 74.26 63.99 81.16 14.5×
DAT (Huang et al., 2022b) 33.18 57.35 76.14 66.72 83.72 13.8×
CMLM (Ghazvininejad et al., 2019) 31.97 56.78 74.11 63.34 78.72 2.7×

w/ Knowledge Distillation

AT (Vaswani et al., 2017) 33.92 58.45 78.49† 69.26† 86.22† 1.0×
NAT (Gu et al., 2017) 30.97 56.52 72.60 62.12 77.47 15.8×
MgMO (Li et al., 2022) 32.86 57.40 75.52 65.36 82.73 14.9×
CTC (Saharia et al., 2020) 33.28 58.28 75.54 65.71 82.94 14.5×
DAT (Huang et al., 2022b) 33.25 57.89 76.59 67.01 84.27 13.7×
CMLM (Ghazvininejad et al., 2019) 32.71 56.76 72.36 63.42 76.67 2.7×

WMT21 De⇒En

w/o Knowledge Distillation

AT (Vaswani et al., 2017) 31.89 60.25 84.26† 71.94† 92.91† 1.0×
NAT (Gu et al., 2017) 16.85 43.46 55.87 44.80 36.94 15.5×
MgMO (Li et al., 2022) 28.89 58.11 77.76 64.08 83.51 13.8×
CTC (Saharia et al., 2020) 27.35 56.53 75.38 61.79 79.14 13.5×
DAT (Huang et al., 2022b) 31.69 59.60 81.12 69.00 88.29 13.1×
CMLM (Ghazvininejad et al., 2019) 29.36 57.79 76.39 65.00 82.07 2.4×

w/ Knowledge Distillation

AT (Vaswani et al., 2017) 32.04 60.85 84.72† 72.53† 93.39† 1.0×
NAT (Gu et al., 2017) 27.55 56.56 75.50 62.72 76.89 15.2×
MgMO (Li et al., 2022) 30.32 59.36 81.15 67.76 89.17 13.8×
CTC (Saharia et al., 2020) 30.52 59.83 80.06 67.24 86.91 13.4×
DAT (Huang et al., 2022b) 32.26 60.80 83.32 71.44 92.05 13.1×
CMLM (Ghazvininejad et al., 2019) 30.25 58.40 77.14 65.63 82.98 2.4×

Table 1: Automatic evaluation results of different translation models on WMT16 En⇒Ro and WMT21 De⇒En,
considering both raw data and distillation data settings. We encompass a wide range of metrics including rule-based
metrics (BLEU and chrf), model-based metrics (COMET and BLEURT) and LLM-based metrics (GEMBA). Bold
numbers represent the best performance and underlined numbers denote the top 3 performance. † denotes translation
quality of AT is significantly better than all other NAT models with a p < 0.01 (Koehn, 2004).

BLEU scores decrease by more than 2 and 3 points,338

respectively. On the contrary, the performance of339

DAT and CMLM is as similarly affected as the AT340

counterpart, due to explicit dependency modeling341

similar to AT. In the subsequent sections, we utilize342

knowledge distillation by default to analyze NAT343

models in the best-performing setting.344

Evaluation Metrics. We consider a set of rep-345

resentative metrics to comprehensively compare346

NAT methods with AT. We perform significance347

tests on all pairs of NAT models and their AT348

counterparts across all metrics. Except for DAT,349

current NAT methods significantly underperform350

AT methods in various evaluation metrics includ-351

ing rule-based (BLEU and chrf), model-based352

(COMET and BLEURT), and GPT4-based met-353

rics (GEMBA), particularly in the raw data setting.354

A notable observation is that DAT models are more 355

competitive with AT models when evaluated using 356

rule-based metrics, which assess the similarity be- 357

tween generated text and references. In contrast, 358

AT models outperform DAT models significantly 359

under model-based metrics or GPT4 evaluation 360

(GEMBA). These metrics evaluate translation qual- 361

ity by measuring semantic similarity between two 362

sentences based on parametric knowledge. To gain 363

a deeper understanding of this phenomenon, we 364

conduct human evaluation using a systematic and 365

fine-grained framework, i.e., MQM (Freitag et al., 366

2021), to further compare NAT with AT. 367

4.2 Human Evaluation 368

The evaluation results, obtained by averaging the 369

error counts from three translators, are presented in 370

Table 2. We omit human evaluation on the vanilla 371
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Model MQM↓ FLC. Err↓ ACC. Err↓ NON. Err↓

AT 176.67 34.33 142.00 0.33
MgMO 301.33 52.00 240.00 9.33
CTC 360.67 63.33 280.67 16.67
DAT 229.33 38.00 183.67 0.33
CMLM 375.67 47.33 153.33 175.00

Table 2: Human evaluation results under MQM frame-
work. MQM denotes weighted error counts of three
major error types: fluency (FLC.), accuracy (ACC.) and
non-translation (NON.).

AT MgMO CTC DAT CMLM

ACC/Addition

ACC/Untranslated Text

ACC/Mistranslation

ACC/Omission

ACC/Punctuation

FLC/Register

FLC/Grammar

FLC/Spelling

FLC/Character Encoding

FLC/Inconsistency

Non-translation

Major-level Error

AT MgMOCTC DATCMLM

Minor-level Error

0

5

10

15

20

25

Er
ro

r C
ou

nt

Figure 1: Heatmap visualization of MQM evaluation:
darker colours indicate larger error counts for certain
error types. The left side presents major-level errors
while the right side shows minor-level errors.

NAT due to its poor performance under automatic372

evaluation. The performance ranking of human373

evaluation aligns with the automatic evaluation: AT374

performs the best, followed by DAT, MgMO, CTC,375

and CMLM. Models with explicit dependency mod-376

eling (AT, DAT and CMLM) generate more fluent377

translations than those without (MgMO and CTC).378

, with fewer fluency errors. Despite comparable flu-379

ency to AT, DAT exhibits low translation accuracy.380

All NAT methods, particularly CMLM, generate381

non-translations in certain cases.382

A fine-grained error visualization is presented383

in Figure 1. The mistranslation error type at the384

major level has the highest proportion among all385

models, with the models lacking explicit depen-386

dency (MgMO and CTC) producing the most er-387

rors. AT performs generally better than NAT except388

for a considerable number of omission errors. In389

contrast, NAT models tend to generate translations390

with additional or duplicated content (addition),391

particularly CTC and DAT which increase decoder392

length to model latent alignments. These two mod-393

els also exhibit more spelling errors. Compared to394

AT, NAT models tend to produce more punctuation395

errors and grammar errors. Similar to AT, MgMO396

Ref. AT NAT MgMO CTC DAT CMLM

0.00 0.50 27.64 16.47 1.85 0.00 14.52

0.00 0.10 31.10 23.50 1.60 0.00 12.60

Table 3: Uni-gram repetition ratios on WMT16 En⇒Ro
(first row) and WMT21 De⇒En (second row). The term
“Ref.” refers to the reference translation

and CTC translations also frequently lack partial 397

source content (omission). 398

We explore human annotations to understand 399

typical patterns. Regarding omission errors, AT 400

often exhibits incomplete generation at the sen- 401

tence’s end. On the other hand, MgMO and CTC 402

frequently omit content throughout the entire sen- 403

tence, such as missing adjectives or verbs. The 404

NAT’s grammar errors primarily stem from incor- 405

rect verb tense and singular/plural usage, resulting 406

from its limited language dependency modeling. 407

The case study indicates that, for CTC, the major 408

addition errors are attributed to generating words 409

with spelling errors, which are regarded as irrele- 410

vant content by annotators. For DAT, these addi- 411

tion errors stem from n-gram repetition, where the 412

model generates a repeated segment from the pre- 413

vious context. For example, “By the beginning of 414

November, there are seven races until the beginning 415

of November.” To give an intuitive representation, 416

we present several cases for the aforementioned er- 417

ror types in Appendix G. All these patterns can be 418

attributed to inadequate language dependency mod- 419

eling with limited or redundant decoding length. 420

4.3 Effects of Explicit Dependency 421

Repetition Ratio. We first examine token repeti- 422

tion ratio (Zhou et al., 2020a; Ghazvininejad et al., 423

2020; Du et al., 2021) in model translations, which 424

is the ratio of generations with repeated tokens, 425

e.g., “He is is a lawyer”. The results are shown in 426

Table 3. We can observe that models without latent 427

alignment modeling (NAT, MgMO and CMLM) 428

suffer severe token repetition during generation. 429

N-gram Repetition. Besides consecutive uni- 430

gram repetition, a more subtle phenomenon is non- 431

adjacent n-gram repetition. Such a repetition can be 432

overlooked under traditional metrics such as BLEU 433

score, which only calculates the n-gram precision 434

of the generations. Consequently, translations that 435

contain n-gram repetition may even achieve higher 436

BLEU scores. This could explain why DAT per- 437

forms better than AT under rule-based metrics but 438
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Figure 2: N-gram repetition of different models
(WMT21 De⇒En), where the x-axis represents the size
of the n-gram and the y-axis represents the count.

not under model-based or GPT4-based metrics. We439

collect the n-gram repetition count for each model,440

as shown in the left part of Figure 2. We can ob-441

serve that DAT demonstrates a stronger tendency442

to generate repeating n-grams with higher counts443

across various n-gram granularity (2 to 10), which444

aligns with a substantial number of addition errors445

in human evaluation.446

Enhancing Dependency Modeling. DAT uti-447

lizes one-linear-layer attention modules to model448

local vertex transitions. Such explicit dependency449

modeling can be limited when dealing with long450

sequence generation. For example, consider the451

sentence "By the beginning of November, there are452

seven races until the beginning of November." In453

this case, both the beginning and the end of the454

sentence are valid positions for the temporal prepo-455

sitional phrase "the beginning of November" In456

DAT, at the vertex state corresponding to the token457

"races," only information from that current vertex458

state is used to determine the index of the next459

vertex state using one-linear-layer attention layers.460

In contrast, AT considers all previously generated461

tokens and utilizes Transformer decoder layers to462

determine the next token. Under weak dependency463

modeling in DAT, early generations can be ignored464

and repeated phrases can be falsely pointed to (e.g.,465

“the beginning of November”). To validate this466

assumption, we train an asymmetrical AT model467

with a shallow decoder to simulate weak depen-468

dency modeling, and a deep encoder to guarantee469

model size. As shown in Figure 2 (right-side), AT-470

11/1 (11-layer encoder and 1-layer decoder) also471

tends to generate repeated n-grams, and adding one472

decoder layer (AT-10/2) mitigates this issue. Nev-473

ertheless, AT-11/1 performs better than DAT as it474

relies on the entire generation history rather than475

just considering the current token. To alleviate this476

issue without influencing decoding efficiency, we477

introduce an additional linear layer for both Q and478
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Seuqence Length

40
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Figure 3: Translation quality (COMET) w.r.t. source
sequence length on WMT21 De⇒En.

K to strengthen the token transition modeling. This 479

refined model is referred as DAT∗ (Appendix H). 480

With 0.7% additional parameters compared to DAT 481

alone, we observe that DAT∗ exhibits less n-gram 482

repetition while maintaining decoding speed. We 483

present a case study of how DAT∗ alleviates n-gram 484

repetition in Appendix G. Nevertheless, DAT∗ is 485

limited in a one-step local transition foundation and 486

cannot fundamentally resolve n-gram repetition. 487

5 Generalization and Robustness 488

Length Generalization. Figure 3 illustrates that 489

all models experience a decline in performance 490

as the length of the source sequence increases, al- 491

beit at varying rates. AT surpasses all NAT meth- 492

ods in length generalization. Models incorporating 493

explicit dependency (e.g., AT, DAT, and CMLM) 494

exhibit slower degradation compared to others. No- 495

tably, CTC and CMLM experience severe perfor- 496

mance drops on sequences longer than 60. 497

Cross-domain Generalization. Figure 4 illus- 498

trates the cross-domain performance averaged 499

across 5 domains. Models with explicit depen- 500

dency, such as AT and DAT, achieve high cross- 501

domain performance. On the other hand, CTC and 502

CMLM demonstrate substantial degradation in per- 503

formance when tested on out-of-domain datasets 504

This is due to CTC models generating spelling er- 505

rors and CMLM models propagating errors from 506

early steps. These issues are further exacerbated in 507

cross-domain testsets that contain more terminolo- 508

gies, leading to subpar performance. The complete 509

results can be found in Appendix I. 510

Compositional Generalization. We measure 511

compositional generalization on GoGnition (Li 512

et al., 2021) which evaluates the ability to trans- 513

late unseen phrases of simple and known semantic 514
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Figure 4: Average cross-domain performance
(COMET) of WMT21 De⇒En models on out-of-
domain testsets.

Model AT DAT DAT∗

Instance-level CTER↓ 28.42% 43.66% 42.52%
Aggregate-level CTER↓ 62.88% 79.49% 79.12%

Table 4: Compositional generalization performance.

units. The results are shown in Table 4 3. Instance-515

level CTER and Aggregate-level CTER denote516

the compound translation error rates of translating517

novel compounds. Despite the narrowing gap in518

in-domain and out-of-domain testsets, we observe519

a significant difference in compositional general-520

ization between DAT and AT. This discrepancy is521

reflected in higher error rates, indicating a disparity522

in dependency modeling capabilities.523

Robustness to Input Perturbations. Finally, we524

explore models’ robustness to different input per-525

turbations, including random replacement, deletion526

and permutation (Details in Appendix C), with re-527

sults shown in Figure 5. In contrast to previous528

findings that suggest explicit modeling provides529

advantages, models without explicit incorporation530

of modeling (e.g., MgMO and CTC) are less af-531

fected by input noises. This can be because explicit532

dependency generation may introduce exposure533

bias (Bengio et al., 2015; Ranzato et al., 2016),534

where errors occurring at early time steps (AT and535

DAT) or iterative steps (CMLM) can accumulate536

and propagate into future predictions, making them537

susceptible to input perturbations. For complete538

results, please refer to Appendix J.539

To the best of our knowledge, this is the first540

comparison of NAT and AT in terms of general-541

ization and robustness. In addition to the disparity542

in translation performance on benchmark datasets,543

inadequate language dependency modeling causes544

NAT methods to significantly lag behind AT. How-545

ever, this weak dependency does provide an advan-546

tage in resisting input perturbations.547

3We only evaluate AT and DAT as they do not rely on
knowledge distillation.

Replacement Deletion Permutation

AT

NAT

MgMO

CTC

DAT

DAT*

CMLM

-24.54 -14.29 -26.07
-24.00 -14.75 -29.43
-20.07 -12.40 -24.65
-19.72 -12.02 -24.24
-23.16 -14.45 -27.04
-22.18 -14.30 -27.18
-24.12 -16.17 -26.21 30

25

20

15

10

5

COM
ET Score Decrease (%

)

Figure 5: Translation performance (COMET) decreases
(%) on noisy testsets of WMT21 De⇒En, with darker
colours indicating greater degradation.

6 Related Work 548

We discuss several representative NAT methods 549

in Section 2. A more detailed discussion on NAT 550

advances is presented in Appendix A. Different 551

from surveys (Xiao et al., 2023; Li et al., 2023) that 552

conduct a comprehensive survey on recent NAT 553

advances, we focus on comparing NAT with AT 554

comprehensively. Our work is also related to pre- 555

vious work analyzing neural machine translation 556

(Appendix B). Zhou et al. (2020a) find that knowl- 557

edge distillation boosts NAT performance by reduc- 558

ing data complexity. Agrawal et al. (2022) discuss 559

knowledge transfer in the context of multilingual 560

NAT. Huang et al. (2022a) understand the learning 561

process of NAT both theoretically and empirically. 562

Differently, we focus on systematically comparing 563

common NAT techniques with their AT counter- 564

parts in a systematic manner to showcase existing 565

performance gaps for future research. 566

7 Conclusion 567

We compared representative NAT methods with 568

AT under a comprehensive evaluation that encom- 569

passes a set of evaluation dimensions, including 570

human evaluation. Our research aims to fill in the 571

research gap of the real competitiveness of NAT 572

to AT. Both automatic and human evaluations in- 573

dicated that despite the narrowing gap, NAT meth- 574

ods underperform AT, with varying error patterns 575

such as translation omission, spelling errors and 576

n-gram repetitions. Our empirical results and anal- 577

yses demonstrated that explicit dependency model- 578

ing is crucial for generating human-like languages, 579

although strong dependence can suffer explore bias. 580

Future research on NAT should focus on how to 581

consolidate explicit language dependency while 582

maintaining decoding efficiency. 583
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Limitations584

We systematically evaluate NAT and AT, highlight-585

ing performance gaps for future research. How-586

ever, there are limitations: Firstly, we assess state-587

of-the-art NAT models using research-oriented588

datasets (WMT, OOD, CG), which mainly con-589

sist of English-centric text with a formal style and590

limited topic range. Secondly, each NAT model is591

annotated with only 100 samples. This may not592

cover all potential error types. Finally, we focus593

primarily on fully non-autoregressive methods due594

to their superior decoding efficiency. Our results595

are also limited to training-from-scratch methods;596

extending conclusions to large language models is597

left for future work.598

Ethical Considerations599

We honor the ACL Code of Ethics. No private data600

or non-public information is used in this work. For601

human annotation, we hired three annotators who602

have degrees in English Linguistics or Applied Lin-603

guistics. Before formal annotation, annotators were604

asked to annotate 100 samples randomly extracted605

from the dataset, and based on average annotation606

time we set a fair salary (i.e., 32 dollars per hour)607

for them. During their training annotation process,608

they were paid as well. The annotation does not609

involve any personally sensitive information. The610

annotation strictly follows the annotation guide of611

MQM (Freitag et al., 2021), with details presented612

in Appendix D. We adhere to the terms of compa-613

nies offering commercial LLM APIs and express614

our gratitude to all global collaborators for their615

assistance in utilizing these APIs.616
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A Recent Advances in NAT941

Various techniques have been proposed to address942

the performance limitations of NAT. Guo et al.943

(2020); Liu et al. (2021); Ding et al. (2021a); Qian944

et al. (2020) devise dedicated training curriculums945

to reduce the learning difficulty of NAT models,946

whereas Zhou et al. (2020b); Ding et al. (2021c,b)947

propose improved distillation training. Latent vari-948

able modeling has received significant attention949

in enhancing NAT performance (Libovický and950

Helcl, 2018; Kaiser et al., 2018; Ma et al., 2019;951

Saharia et al., 2020; Bao et al., 2022, 2021). Typi-952

cally, Huang et al. (2022b) explicitly models target953

dependency as paths in a directed acyclic graph.954

Another line of research focuses on enhancing the955

cross-entropy loss or alternating to metric-based956

objectives (Sun et al., 2019; Shao et al., 2020;957

Ghazvininejad et al., 2020; Du et al., 2021; Shao958

et al., 2019; Li et al., 2022). In contrast to fully959

non-autoregressive methods mentioned earlier, an-960

other approach decomposes one-shot generation961

into multiple iterative non-autoregressive genera-962

tions (Gu et al., 2019; Ghazvininejad et al., 2019;963

Huang et al., 2022c). Schmidt et al. (2022) align964

common NAT techniques and compare translation965

quality and speed implications under uniform envi-966

ronments. Despite claiming improved performance967

and comparability with autoregressive models (AT),968

these approaches are limited in their evaluation us-969

ing rule-based metrics like BLEU score (Papineni970

et al., 2002), which demonstrates poor correlation971

with human preference (Rei et al., 2020; Freitag972

et al., 2022).973

B Analysis Research in NMT974

Voita et al. (2021) interpret NMT’s learning pro-975

cess during training, and Ferrando et al. (2022);976

Yan et al. (2022) interpret and analyze model pre-977

dictions during inference. Müller et al. (2020)978

study NMT generalization ability to novel domains,979

whereas Li et al. (2021) demonstrate that NMT’s980

weak compositional generalization capability. Ad-981

ditional metrics proposed by Niu et al. (2020) quan-982

tify the effects of input perturbations. Hallucina-983

tion, which refers to the generation of unrelated984

outputs by the model, has also been extensively985

studied (Xu et al., 2023; Guerreiro et al., 2023).986

C Experiment Setup987

Datasets To evaluate general translation perfor-988

mance, we choose WMT16 En⇒Ro, a widely used989

benchmark dataset for non-autoregressive transla- 990

tion. In addition, we select a large-scale benchmark 991

dataset, i.e., WMT21 De⇒En, which consists of 992

101.35M parallel sentences and is further filtered to 993

88.66M. We apply BPE (Sennrich et al., 2016) on 994

the concatenated training sets with 32,000 opera- 995

tions. Knowledge distillation is commonly used for 996

training NAT models (Gu et al., 2017; Sun et al., 997

2019; Ghazvininejad et al., 2019, 2020). We train 998

an autoregressive Transformer base model on the 999

raw dataset as the teacher model and use it to gen- 1000

erate the distilled dataset. To assess cross-domain 1001

translation, we employ the test sets from (Müller 1002

et al., 2020), which encompass test instances from 1003

5 domains: medical, IT, koran, law, and subtitles, 1004

and we evaluate the models (trained on WMT21 1005

De⇔En) on these test sets. For compositional gen- 1006

eralization, we utilize CoGnition (Li et al., 2021) 1007

with its original data configurations. Following 1008

the approach in (Edunov et al., 2018), we measure 1009

model robustness on the WMT21 De⇒En testset 1010

by introducing three types of input noise: (1) word 1011

deletion with a probability of 0.1; (2) word replace- 1012

ment with "<unk>" with a probability of 0.1; (3) 1013

word swapping within a range of 3 words with a 1014

probability of 0.1. 1015

Model Settings We adhere to the best- 1016

performing model configuration outlined in the 1017

corresponding papers (Vaswani et al., 2017; Gu 1018

et al., 2017; Saharia et al., 2020; Li et al., 2022; 1019

Huang et al., 2022b; Ghazvininejad et al., 2019). 1020

For all models, we utilize Transformer with a 1021

Transformer_Base configuration: both the encoder 1022

and decoder comprise 6 layers with 8 attention 1023

heads. The hidden dimension is set to 512, while 1024

the feedforward layer dimension is set to 2,048. 1025

The model is trained using Adam (Kingma and 1026

Ba, 2015) optimizer. We apply a weight decay 1027

of 0.01 and label smoothing of 0.1. The learning 1028

rate initially increases to 5 · 10−4 within the first 1029

10K steps and subsequently decays exponentially. 1030

All results are based on models trained on the KD 1031

dataset unless otherwise stated. For inference, we 1032

present results obtained through beam search with 1033

a beam size of 5. In the case of iterative models 1034

such as CMLM, we set the number of iterative 1035

steps as 10. We utilized 4 NVIDIA V100 GPUs 1036

for our computations, dedicating two days for the 1037

CTC process and five days for DA. Other methods 1038

were executed within one day each. 1039
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Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Table 5: MQM error weighting (Freitag et al., 2021).

D Human Annotation1040

We follow Freitag et al. (2021), an evaluation1041

methodology based on the Multidimensional Qual-1042

ity Metrics (MQM) framework, which provides a1043

hierarchical analysis of translation errors. We adopt1044

two common error hierarchy categories: Accuracy1045

and Fluency. Accuracy covers fine-grained 4 error1046

sub-types such as Addition, Omission, Mistransla-1047

tion and Untranslated Text, whereas Fluency covers1048

Punctuation, Spelling, Grammar, Register, Incon-1049

sistency and Character Encoding. Translations that1050

are too badly garbled to permit error classification1051

are classified as Non-translation. In addition to1052

the error type, each error is also annotated with a1053

severity label: minor and major. We follow the1054

error weighting in Freitag et al. (2021) to compute1055

the weighted error counts for each system. An-1056

notation details are presented in Appendix E. We1057

hire three expert translators to conduct side-by-side1058

human evaluations on the 5 German-English trans-1059

lation models, i.e., AT, NAT, MgMO, CTC, DA1060

and CMLM. We randomly sample 100 translations1061

from the WMT21 De⇒En testset and ask transla-1062

tors to annotate translation errors for each instance1063

following the MQM annotation guideline. We aver-1064

age the error counts from the 3 annotators as human1065

evaluation results. For conducting human annota-1066

tion, we hired three annotators who have degrees1067

in English Linguistics or Applied Linguistics. Be-1068

fore formal annotation, annotators were asked to1069

annotate 100 sampled translations from 5 systems,1070

and based on average annotation time we set a fair1071

salary (i.e., 32 dollars per hour) for them. During1072

their training annotation process, they were paid as1073

well.1074

E MQM Annotation1075

We present the details of the error type description1076

in Table 6, the error severity description in Table 71077

and error weights in Table 5.1078

F Human Evaluation Results 1079

The annotation results (average from 3 translators) 1080

are presented in Table 8. 1081

G Case Study 1082

We present a case study to showcase the n-gram rep- 1083

etition phenomenon in Table 9. We present several 1084

cases to showcase the spelling errors of CTC and 1085

DAT in Table 10. A case study of omission errors 1086

is shown in Table 11. A case study of grammar and 1087

punctuation errors is shown in Table 12. A case 1088

study of how DAT∗ alleviates n-gram repetition is 1089

presented in Table 13. 1090

H Model Details of DAT∗ 1091

To strengthen the inter-token dependency of DAT, 1092

we increase the depth of the transition model by en- 1093

coding Q in Equation 10 with an additional linear 1094

layer: 1095

Q∗ = ReLU(Q)W∗
Q, (15) 1096

where ReLU is the rectified linear unit activation 1097

function. The same applies to K. We refer to this 1098

model as DAT∗. 1099

I Cross-domain Performance 1100

The complete cross-domain performance on 5 1101

De⇒En out-of-domain testsets are presented in 1102

Table 14. 1103

Compositional generalization in NMT refers to 1104

the model’s generality to translate compounds (e.g., 1105

phrases) of known semantic units (e.g., words). We 1106

test AT and DAT on the CoGnition dataset since 1107

they do not rely on knowledge distillation, and 1108

present the results in Table 4. As shown, DAT 1109

underperforms the AT counterpart in compositional 1110

generalization by a considerable margin, due to its 1111

weak dependency modeling. DAT∗ 1112

J Robustness to Noisy Input 1113

The translation performance on the WMT21 1114

De⇒En testsets with different types of noises are 1115

shown in Table 15, where “None” denotes the per- 1116

formance on the original testset without noise. 1117
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Error Category Description

Accuracy Addition Translation includes information not present in the source or repeated content.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated.

Fluency Punctuation Incorrect punctuation (for locale or style).
Spelling Incorrect spelling or capitalization.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (eg, inappropriately informal pronouns).
Inconsistency Internal inconsistency (not related to terminology).
Character encoding Characters are garbled due to incorrect encoding.

Non-translation Impossible to reliably characterize the 5 most severe errors.

Table 6: MQM hierarchy (Freitag et al., 2021).

Severity Description

Major Errors that may confuse or mislead the reader due to significant change in meaning or because they appear
in a visible or important part of the content.

Minor Errors that don’t lead to loss of meaning and wouldn’t confuse or mislead the reader but would be noticed,
would decrease stylistic quality, fluency or clarity, or would make the content less appealing.

Table 7: MQM severity levels (Freitag et al., 2021).

AT MGMO CTC DA CMLM

Maj. Min. Maj. Min. Maj. Min. Maj. Min. Maj. Min.

ACC/Addition 0.33 1.33 2.00 3.33 6.33 7.00 8.67 6.00 1.33 0.67
ACC/Untranslated Text 1.00 0 1.00 0.00 1.33 0.67 1.00 0.00 0.00 0.00
ACC/Mistranslation 14.33 4.00 29.67 3.67 26.67 6.33 19.33 6.00 22.33 7.67
ACC/Omission 11.00 3.67 13.33 4.33 18.00 4.67 5.00 1.33 4.33 5.00
ACC/Punctuation 0.00 1.67 0.00 7.67 0.00 3.33 0.00 3.00 0.33 2.33
FLC/Register 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00
FLC/Grammar 1.33 4.00 3.00 7.67 2.33 7.33 1.67 5.00 5.67 8.00
FLC/Spelling 0.00 1.67 1.00 1.67 3.67 8.33 0.33 3.00 0.67 1.00
FLC/Character Encoding 4.00 0.33 2.67 0.00 2.67 0.00 3.33 0.00 0.00 1.00
FLC/Inconsistency 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00 0.00
Non-Translation 0.00 0.00 0.33 0.00 0.67 0.00 0.33 0.00 7.00 0.00

Table 8: Human Evaluation Results - Error Counts by Type (Averaged from Three Translators’ Annotations).
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Case 1

Source Sentence In Sachen Kindergarten- respektive Krippenplätzen hat sie bereits Kontakt mit einer örtlichen
Einrichtung aufgenommen.

Reference Sentence Regarding kindergarten respectively nursery places she has already established contact with the
local facilities.

DAT Translation She has already made contact with a local institution in terms of kindergarten and crib places,

she has already made contact with a local institution .

DAT∗ Translation In terms of kindergarten or crib places, she has already contacted a local institution.

Case 2

Source Sentence 31 Spieler begrüßte er an der Säbener Straße, darunter auch die neuen Akteure um Edel-Einkauf
Leroy Sané, der erstmals nach seinem Wechsel von Manchester City alle neuen Kollegen auf dem
Platz traf.

Reference Sentence He greeted 31 players at the Säbener Straße, among them the new players around special purchase
Leroy Sané who met all new colleagues on the field for the first time after his transfer from
Manchester City.

DAT Translation He welcomed 31 players on Säbener Straße, including the new players
for fine shopping Leroy Sané, who met all new colleagues on the square
for the first time after his move from Manchester City , met all the new colleagues on the

pitch for the first time after his move from Manchester City .

DAT∗ Translation He welcomed 31 players on Säbener Straße, including the new players around fine shopping Leroy
Sané, who met all new colleagues on the pitch for the first time after his move from Manchester
City.

Case 3

Source Sentence In der Stadt Oakland in Kalifornien wurde ein Gerichtsgebäude in Brand gesteckt.

Reference Sentence A courthouse was set on fire in Oakland, California.

DAT Translation In the city of Oakland, California , a courthouse was set on fire

in the city of Oakland, California .

DAT∗ Translation A courthouse was set on fire in the city of Oakland, California.

Case 4

Source Sentence Die Windkraftwerke auf der deutschen Nordsee haben in den ersten sechs Monaten des Jahres
11,51 Terawattstunden Strom in das Netz eingespeist.

Reference Sentence The wind power plants of the German North Sea delivered 11.51 terawatt hours electricity to the
net in the first six months of the year.

DAT Translation In the first six months of the year , the wind power plants on the German North Sea fed 11.51

terawatt hours of electricity into the grid in the first six months of the year .

DAT∗ Translation The wind power plants on the German North Sea fed 11.51 terawatt hours of electricity into the
grid in the first six months of the year.

Case 5

Source Sentence Bis Anfang November stehen sieben Rennen an.

Reference Sentence Until the beginning of November seven races are planned.

DAT Translation By the beginning of November , there are seven races until the beginning of November .

DAT∗ Translation There are seven races until the beginning of November.

Table 9: A case study of n-gram repeating of DAT models, comparing with DAT∗ which enhances dependency
modeling by adding a linear layer. The text in the grey background denotes the repeated segment.
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Case 1

Source Sentence Sie steckten vor einem Jugendgefängnis Bauwagen in Brand, die Polizei setzte Blend-
granaten und Pfefferspray ein.

Reference Sentence They set construction trailers on fire in front of a youth detention center, the police used
stun grenades and pepper spray.

CTC Translation They set construction fire in front of a youth prison, the police used glgrenades (glare
grenades) and pepper spray.

Case 2

Source Sentence Es gebe aber keine Anhaltspunkte, dass die Anzahl von illegalen Autorennen tatsächlich
steige.

Reference Sentence However, there are no real indications that the number of illegal car races does in fact
increase.

CTC Translation However, there is no indicevidence (indication/evidence) that the number of illegal car
races is actually increasing.

Case 3

Source Sentence Auf der A81 registriert die Polizei sogar mehr Rennen als auf jeder anderen Bundesauto-
bahn.

Reference Sentence The police registers even more races on the A81 than on any other federal autobahn.

CTC Translation On the A81, the police registregister (register) even more races than on any other federal
highway.

Case 4

Source Sentence Im 24-Stunden-Vergleich wurden in Wien 60 Corona-Neuinfektionen gemeldet - in
Niederösterreich gab es 22 Neuinfektionen.

Reference Sentence In a 24 hour comparison 60 Corona new infections were reported in Vienna - in Lower
Austria there were 22 new infections.

DAT Translation In a 24-hour comparison, 60 corona (Corona) new infections were reported in Vienna -
in Lower Austria there were 22 new infections.

Case 5

Source Sentence "Ich denke es ist uns gelungen, Rakoczy-Flair zu verbreiten", sagt Kurdirektorin Sylvie
Thormann.

Reference Sentence “I think we still succeeded in spreading Rakoczy flair,” said the Kurstadt director, Sylvie
Thormann.

DAT Translation “I think we have succeeded in spreading rakoczy (Rakoczy) flair,“ says Prime Director
Sylvie Thormann

Table 10: A case study of spelling errors of CTC and DAT. The text in the gray background indicates segments
with spelling errors, followed by the correct spelling enclosed in brackets.
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Case 1

Source Sentence In diesem Jahr sind die Fluten besonders schlimm, was Wissenschaflter auf den Klimawan-
del zurückführen.

Reference Sentence The floods were especially bad this year, which scientists have connected to climate
change.

CTC Translation This year, the floods are particularly bad, which scientists (have connected) to climate
change.

Case 2

Source Sentence Den Punkterekord im englischen Fußball verpasste Coach Jürgen Klopp mit seinem Team
nur knapp.

Reference Sentence Coach Jürgen Klopp with his team only narrowly missed the points record in English
soccer.

CTC Translation Coach Jürgen Klopp narrowly missed the (points) and his team in English football.

Case 3

Source Sentence Zuletzt hatten Thole/Wickler im September des vergangenen Jahres beim World Tour
Final in Rom gespielt.

Reference Sentence Thole/Wickler recently played in the World Tour Final in Rome in September of last year.

CTC Translation Thole/Wickler last (year) played at the World Tour Final in Rome (in) September.

Case 4

Source Sentence Acht Filme drehte sie mit dem Herzensbrecher.

Reference Sentence She filmed eight films with the heart breaker.

MgMO Translation She filmed eight films with the (heart) breaker.

Case 5

Source Sentence Frankfurt/Main - Der siebenmalige Zeitfahrweltmeister Tony Martin kann sich durchaus
vorstellen, seine Radsport-Karriere fortzusetzen.

Reference Sentence Frankfurt/Main - The seven-time time trial specialist Tony Martin can clearly picture
continuing his bicycling career.

MgMO Translation Frankfurt/Main - The seven-time time-trial world champion Tony Martin can (clearly)
imagine continuing his cycling career.

Table 11: A case study of omission errors of CTC and MgMO. The text indicated within brackets highlights the
segments missed by models.

18



Case 1

Source Sentence Auf der A81 registriert die Polizei sogar mehr Rennen als auf jeder anderen Bundesauto-
bahn.

Reference Sentence The police register even more races on the A81 than on any other federal autobahn.

DA Translation On the A81, the police registered (register) even more races than on any other federal
motorway.

Case 2

Source Sentence Auch in der amerikanischen Metropole Seattle lieferten sich Demonstranten am Samstag
Zusammenstöße mit der Polizei.

Reference Sentence In the American metropolis of Seattle demonstrators also ran into clashes with police on
Saturday.

CTC Translation In the American metropolis of Seattle, demonstrators also clashes (clash/clashed) with
the police on Saturday.

MgMO Translation In the American metropolis of Seattle, demonstrators also clashes (clash/clashed) with
the police on Saturday.

Case 3

Source Sentence Die Polizei war seit dem frühen Abend mit zahlreichen Beamten im Einsatz, im gesamten
Stadtgebiet war ein größeres Polizeiaufgebot zu sehen.

Reference Sentence The police was in use with numerous officers since the early evening, a major police
detachment was observed in the entire city area.

CMLM Translation The police have been working (worked) since the early evening with numerous officials,
with a larger police squad throughout the city.

Case 4

Source Sentence Zuletzt hielten sich noch einige Dutzend Menschen auf dem Platz auf, verließen ihn jedoch
vor Beginn der Sperrstunde um 1 Uhr.

Reference Sentence Until last, some dozens of people were still present at the place, however, they also left
before beginning of the curfew at 1 a.m.

CTC Translation Finally, a few dozen people stayed on the square, but left it before the start of the curfew
at 1 o clock (o’clock).

Case 5

Source Sentence Wie die Polizei mitteilt, kam es danach wieder zu Auseinandersetzungen zwischen den
beiden Personen.

Reference Sentence Another scuffle followed between the two persons, according to the police.

MgMO Translation As the police say, there were clashes between the two people (.)

Table 12: A case study of grammar and punctuation errors. The text in the gray background indicates segments
with errors, followed by the correct format enclosed in brackets.
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Case 1

Source Sentence Bis Anfang November stehen sieben Rennen an.

Reference Sentence Until the beginning of November seven races are planned.

DAT Vertex Predictions <BOS> By The Seven There Seven races are been races By the As of early beginning of
the beginning of of November , there there will there will be be been are been are seven
seven event@@ seven races races have seven seven the races p@@ races are place have
run are been planned in p@@ ending scheduled until the run scheduled p@@ ending up
by beginning the early beginning beginning of early of November November beginning
November . <EOS>

DAT Translation By the beginning of November , there are seven races until

the beginning of November .

DAT∗ Vertex Predictions <BOS> There are Seven Seven There By seven races By are The are been seven races
scheduled As until the beginning by the early early beginning of November early
November of November , there will are are be have seven been up be are seven seven
appear@@ seven races races have seven are races run are been scheduled p@@ place
until play be scheduled take place until the beginning beginning beginning of in early of
early early November . <EOS>

DAT∗ Translation There are seven races until the beginning of November .

Case 2

Source Sentence Bei der Kollision fliegen Hand- und Fußbremshebel weg.

Reference Sentence When they collided hand and foot brake pedals break off.

DAT Vertex Predictions <BOS> During The Hand Flying Hand@@ brake and In case During the case During
the event of the col@@ col@@ Col@@ ding col@@ col@@ sion li@@ sion col@@
li@@ li@@ sion , sion , the is li@@ des leaves fly , the Hand le@@ es Hand@@ away
Hand held of Hand of hand hand hand@@ wr@@ held hand and hand le@@ hand le@@
ver ver and ver foot le@@ ver ver and foot b@@ le brake foot foot brake foot bra@@
k@@ king brake brake brake le@@ vers fly le@@ le@@ le@@ le@@ vers vers vers
are vers are fly fly fly fle@@ vers fly fly flying fly from the away f@@ away away away
during the event col@@ li@@ ding col@@ sion col@@ li@@ sion sion <EOS>

DAT Translation During the collision , hand and foot brake levers fly away during the collision .

DAT∗ Vertex Predictions <BOS> Hand@@ -@@ Hand Hand@@ Flying In brake -@@ During and The foot
col@@ le@@ vers away Col@@ during the event of the col@@ li@@ ding col@@
col@@ col@@ sion li@@ sion li@@ sion , li@@ breaks involves session li@@ li@@
sion there , fly brake re@@ moves fly away of the Hand@@ Hand vers by Hand hand
hand@@ held of hand hand hand le@@ - and hand brake brake hand le@@ and vers and
and foot F@@ foot foot oot and foot foot under@@ king brake brake brake brake le@@
le@@ bra@@ vers arms vers are fly col@@ le@@ vers vers fly are fly fly flying f@@
fly ail away during away the col@@ A@@ way away away during the col@@ col@@
li@@ sion li@@ way <EOS>

DAT∗ Translation During the collision , hand and foot brake levers fly away.

Table 13: A case study of vertex predictions of DAT and DAT∗ models. The text in the grey background denotes the
repeated segment in DAT. Tokens in bold denote the set of related vertex predictions that construct the phrase “the
begging of November”. generating repeated n-grams via finding a better vertex transition path, due to its stronger
dependency modelling.
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Model IT Koran Law Medical Subtitles Average

AT 78.29 62.08 85.44 79.25 75.09 76.03
NAT 32.97 33.10 34.53 32.61 34.90 33.62
MgMO 72.39 57.89 79.00 73.27 69.24 70.36
CTC 50.39 46.66 49.71 57.20 73.10 55.41
DAT 77.86 61.15 85.07 78.78 74.76 75.52
CMLM 61.67 38.30 71.94 59.97 47.42 55.86
DAT* 77.57 61.33 84.05 78.78 74.65 75.28

Table 14: Cross-domian translation performance (COMET). Bold numbers represent the best performance.

Model None Replace Delete Permutation

AT 84.72 63.93 (-20.79) 72.61 (-12.11) 62.63 (-22.09)
NAT 75.50 57.38 (-18.12) 64.36 (-11.14) 53.28 (-22.22)
CMLM 77.14 58.53 (-18.61) 64.67 (-12.47) 56.92 (-20.22)
CTC 80.06 64.27 (-15.79) 70.44 (-9.62) 60.65 (-19.41)
MgMO 81.15 64.86 (-16.29) 71.09 (-10.06) 61.15 (-20.00)
DAT 83.32 64.02 (-19.30) 71.28 (-12.04) 60.79 (-22.53)
DAT* 83.20 64.75 (-18.45) 71.30 (-11.90) 60.59 (-22.61)

Table 15: Results of translation performance (COMET) on noisy testsets of WMT21 De⇒En.
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