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MultiColor: Image Colorization
by Learning from Multiple Color Spaces

Anonymous Authors

(a) Grayscale (b) CIE-Lab based (c) HSV based (d) MultiColor 

Figure 1: Image colorization with MultiColor. Given a grayscale image (a), colorization results with single color space (b,c) may
be bias, and our approach learns from multiple color spaces to obtain colorized image with more detailed color information (d).

ABSTRACT
Deep networks have shown impressive performance in the image
restoration tasks, such as image colorization. However, we find
that previous approaches rely on the digital representation from
single color model with a specific mapping function, a.k.a., color
space, during the colorization pipeline. In this paper, we first in-
vestigate the modeling of different color spaces, and find each of
them exhibiting distinctive characteristics with unique distribution
of colors. The complementarity among multiple color spaces leads
to benefits for the image colorization task.

We present MultiColor, a new learning-based approach to au-
tomatically colorize grayscale images that combines clues from
multiple color spaces. Specifically, we employ a set of dedicated col-
orization modules for individual color space. Within each module, a
transformer decoder is first employed to refine color query embed-
dings and then a color mapper produces color channel prediction
using the embeddings and semantic features. With these predicted
color channels representing various color spaces, a complementary
network is designed to exploit the complementarity and generate
pleasing and reasonable colorized images. We conduct extensive
experiments on real-world datasets, and the results demonstrate
superior performance over the state-of-the-arts. The code will be
available.
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1 INTRODUCTION
Image colorization is an artful process that seeks to infuse grayscale
images with color in a remarkably realistic manner [5, 8, 40, 45].
This technology is pivotal in various fields, including digital art
enhancement [33] and legacy photos/videos restoration [41, 42, 47].
The core challenge is how to predict the missing color channels
that achieve satisfactory image colorization. Overcoming the chal-
lenge requires leveraging potential models that can resolve the
interactions between color channels and grayscale.

Over the last few years, deep learning techniques have yielded
significant improvements in image colorization. Early methods [8,
36, 46] employ convolutional networks to predict the per-pixel
color distributions, while recent works [18, 21, 43, 44] take advan-
tage of pre-trained generative adversarial networks [10] or trans-
former [38] to pursue the vividness and fidelity of colorized images.
The pixels within the color image can be represented in various
color spaces, such as RGB, HSV, and CIE-Lab. Existing image col-
orization approaches usually train the model under a specific color
space. As shown in Figure 1(b,c), we observe that they may suffered
colorized results bias, especially for the contents with complex
color interactions. The color spaces are designed to support the
reproducible representations of color with unique properties, and
incorporating the properties across different color spaces is helpful
to generate pleasing and reasonable colorized images (Figure 1(d)).

In this paper, we develop a learning-based approach, namely
MultiColor, that utilizes the complementarity from multiple color
spaces for image colorization. Starting from an encoder that extracts

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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multi-scale feature maps, we employ a set of dedicated coloriza-
tion modules for individual color space. Inspired by the success of
query-based methods [4, 6, 7, 18], the colorization module for a
specific color space also employs the powerful attention mechanism
combined with a sequence of learnable queries. Specifically, a trans-
former decoder is first employed to refine color query embeddings,
and then a color mapper produces color channel prediction using
the embeddings and semantic features. In order to fully tap the
potential of multiple color spaces, we further introduce the color
space complementary network. The contributions of this paper
include the following:

• Unlike the existing works based on single color space, the
proposedMultiColor employs learnable color queries to mod-
eling various color channels of multiple color spaces, which
are utilized to generate visually reasonable colorized images.
To our knowledge, this is the first work to image colorization
with multiple color spaces.

• We design a simple yet effective color space complementary
network to combine various color information from multi-
ple color spaces, which helps maintain color balance and
consistency for the overall colorized image.

• We validate MultiColor through extensive experiments on
the ImageNet [34] colorization benchmark, and demonstrate
that MultiColor outperforms recent state-of-the-arts. Fur-
thermore, we test our model on two additional datasets
(COCO-Stuff [3] and ADE20K [48]) without finetuning, and
our approach shows very competitive results with multiple
color spaces.

The remainder of this paper is organized as follows. Section 2 dis-
cusses related works and Section 3 briefly reviews the background
of our work. Our proposed MultiColor is described in Section 4
and extensively evaluated in image colorization experiments in
Section 5. Finally, Section 6 concludes this paper.

2 RELATEDWORK
Image Colorization aims to add color information to a grayscale
image in a realistic way. Cheng et al. [8] propose the first deep
learning based image colorization method. Zhang et al. [46] takes
grayscale image as input and predicts the corresponding ab color
channels of the image in the CIE-Lab color space. InstColor [36]
presents an approach to colorizing grayscale images that takes
into account the objects and their semantic context in the image.
Some researchers introduce rich representations from pre-trained
GAN [2, 19] into the colorization task. Besides, an adversarial learn-
ing colorization approach is employed to infer the chromaticity
of a given grayscale image conditioned to semantic clues [39].
GCPColor [44] produces vivid and diverse colorization results by
leveraging multi-resolution GAN features. BigColor [21] utilizes
color prior for images with complex structures. Despite the ex-
pansive representation space afforded by GANs, these methods
encounter several constraints, particularly when dealing with im-
ages exhibiting complex structures, resulting in inconsistent results.
Recently, Transformer [38] has been extended to image coloriza-
tion task [17, 18, 24, 43]. ColorFormer [17] utilizes a Color Memory
Assisted Hybrid-Attention Transformer (CMHAT) to generate high-
quality colorized images. The key innovation of CT2 [43] is using

color tokens, which are special tokens that are used to provide infor-
mation about the color palette of the image. DDColor [18] includes
a multi-scale image decoder and a transformer-based color decoder.
The two decoder aims to learn semantic-aware color embedding
and optimize color queries.

Current image colorization techniques are primarily based on
single color space which suffers from poor generalization ability.
For instance, the models of [17, 18, 43, 44] are built upon CIE-Lab
color space, and [8] employ the YUV color space. Although single
color space has the ability to represent image color information,
there are limitations imposed by the complexity of real-world sce-
narios, where color distribution can be more intricate and varied. To
address the limitations, this work aims to integrate multiple color
spaces, which can provide a more comprehensive representation of
color information, adaptable to different contexts. By leveraging
the diversity and richness afforded by multiple color spaces, we
can effectively broaden color scope, offering more adaptable and
flexible strategy for the colorization process.
Color Space Combination. The combined use of multiple color
spaces has garnered significant attention in the computer vision
field due to its ability to capture features at various levels. Color-
Net [11] is introduced to demonstrate the significant impact of color
spaces on image classification accuracy. Kumar et al. [23] proposed
a method for enhancing foggy images by fusing modifications of
image histograms in the RGB and HSV color space which signif-
icantly improves image contrast and reduces noise. Ucolor [26]
enriches the diversity of feature representations by incorporating
the characteristics of different color spaces into a unified structure.
Peng et al. [27] fused multiple algorithms in RGB and HSV color
spaces to improve brightness, contrast, and preserve rich details.
Wan et al. [40] leveraged the RGB color space for the initial col-
orization of super-pixels and subsequently utilized the YUV color
space for color propagation. This approach struck a harmonious
balance between efficiency and effectiveness in the image process-
ing. Mast [25] investigated loss designation in different color spaces,
revealing that the decorrelated color space can force models to learn
more robust features. DucoNet [37] explored image harmonization
in dual color spaces, supplementing entangled RGB features with
disentangled L, a, b channel feature to alleviate the workload in the
harmonization process.

3 BACKGROUND
Given a grayscale image 𝐼𝑔 ∈ R𝐻×𝑊 ×1 with height 𝐻 and width
𝑊 , the colorization model aims to generate colorized image 𝐼𝑐 ∈
R𝐻×𝑊 ×3. One popular paradigm is to predict missing color chan-
nels 𝑦 ∈ R𝐻×𝑊 ×2 and then compute 𝐼𝑐 through specific color space
mapping function F , i.e.,

𝐼𝑐 = F (𝐼𝑔, 𝑦) . (1)

Here 𝑦 can be 𝑎𝑏 color channels from CIE-Lab, 𝐻𝑆 from HSV, or
channels in other color space that represent color. Given the color
space to learn missing colors, the transform function F is fixed.
Thus, it can not be optimized along with the colorization network
during training.
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Figure 2: Color gamut of different color spaces at a specific
pixel with grayscale value 102. The corresponding values of
L, V and Y channels are 42, 0.57, and 0.4 in the respective
color space. The pentagram indicates where the color value
of this pixel in groundtruth color image appears in other
color spaces.

3.1 Suboptimal of Using Single Color Space
Color space refers to specific organization of colors which can be
represented as tuples of numbers. Each of them offers a special
perspective on color representation [9, 20, 31]. For instance, the
CIE-Lab color space is designed to approximate human vision and
perception which is device-independent and perceptually uniform,
allowing for accurate color reproduction across different mediums
and devices. The HSV color space is a cylindrical color model that
represents colors based on hue, saturation, and value components
representing image colors according to perceptual attributes. And
the YUV color space separates the brightness from the color infor-
mation components and is widely applied in video systems.

For the image colorization task, there are only the brightness
values for each pixel in the input grayscale image. As various color
spaces are utilized to define and reproduce colors in different digital
imaging systems, they have with own distinct characteristics and
limitations. The brightness can be mapped to one channel of the
color spaces, such as the L channel in CIE-Lab and the V channel
in HSV. Here we visualize the gamut of different color spaces at
a specific brightness value in Figure 2. We can observe that the
illustrated colors in different color spaces are inconsistent, and
colors missing from one color space may appear in another color
space. For example, the bright green color in the upper left corner
of the YUV color space disappears in the other color spaces of the
corresponding brightness values.

We believe that colorization learning in different color spaces
will have different preferences. The channel values in different
color spaces can be complementary, and utilizing information from
multiple color spaces can boost the quality of generated colorized
images. A variety of color spaces facilitate a more nuanced and com-
prehensive understanding of the color representation. The strategy

of multiple color spaces provides a wider range of color representa-
tions to accurately convey the subtle changes and complexity of
colors in images. Combining the information from different spaces
has the potential to overcome learning bias in single space. Through
the utilization of multiple color spaces, we can harness their comple-
mentary attributes, facilitating a more comprehensive and nuanced
depiction of color information. In the following section, we will
present our approach to leverage the potential of multiple color
spaces to colorize the grayscale images.

4 IMAGE COLORIZATION BY MULTICOLOR
Figure 3 illustrates the architecture of the MultiColor framework.
It contains three components. The encoder aims to extract multi-
scale feature maps that represent image contents. The colorization
modules operate on the learned color queries and generate color
channels for individual color space. Finally, the color space com-
plementary network is utilized to combine the color channels of
multiple color spaces to generate colored images.We describe below
each individual component in detail.

4.1 Encoder
The encoder takes the grayscale image 𝐼𝑔 as input and estimates
multi-scale semantic features, which are the essential foundation for
the subsequent operations.We follow [18] and adopt ConvNeXt [28]
for the feature extractor. The upsampling operation comprises four
sequential stages which incrementally enlarge the spatial resolu-
tion of the features, and each stage is made up of an upsampling
layer and a concatenation layer. Specifically, the upsampling layer
is implemented through convolution and pixel-shuffle, while the
concatenation layer also incorporates a convolution, integrating fea-
tures from corresponding stages of the feature extractor by shortcut
connections. The encoder generates 4 intermediate feature maps
𝐹 = {𝐹1, 𝐹2, 𝐹3, 𝐹4} with resolutions of 𝐻16 ×

𝑊
16 ,

𝐻
8 ×𝑊

8 , 𝐻4 ×𝑊
4 and

𝐻 ×𝑊 . Thanks to the downsampling and upsampling operations,
our method can capture a complete feature pyramid. These multi-
scale features are used as the input of the color space modeling
stage to guide the optimization of the color query embeddings and
color channels.

4.2 Modeling in Individual Color Space
As shown in the left of Figure 3, the colorization module contains
two key parts, i.e., the transformer decoder and the color mapper.
The transformer decoder aims to refine 𝑁 learnable color queries
through the multi-scale features. The color mapper predicts differ-
ent color channels by receiving the refined color embedding and
the feature map from the encoder. The whole pipeline follows the
meta-architecture of Mask2Former [6].
Transformer Decoder. Standard transformer decoder [22] is em-
ployed to transform color queries by cross-attention and multi-head
self-attention mechanisms. Color query embeddings (X𝑐 ∈ R𝑁×𝐶 )
are refined by interacting with image features of resolution 𝐻

16 ×
𝑊
16 ,

𝐻
8 × 𝑊

8 and 𝐻
4 × 𝑊

4 . The transformer decoder can be formulated
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Figure 3: The architecture of the proposed framework. Given a grayscale image, multi-scale semantic features are obtained
with the encoder. Multiple modeling color space operations can produce various color channels of different color spaces. For
each colorization module, transformer decoder refines learnable color queries based on the multi-scale features, and color
mapper aims to generate color channels of multiple color spaces. Finally, the Color Space Complementary Network (CSCNet) is
introduced to transform the multiple color channels into colorized images.

as follows:

X𝑙
′
𝑐 = CA(𝑓𝑄 (X𝑙−1𝑐 ), 𝑓𝐾 (𝐹 𝑗 ), 𝑓𝑉 (𝐹 𝑗 )) + X𝑙−1𝑐 (2)

X𝑙
′′
𝑐 = MHSA(LN(X𝑙

′
𝑐 )) + X𝑙

′
𝑐 (3)

X𝑙𝑐 = LN(FFN(LN(X𝑙
′′
𝑐 )) + X𝑙

′′
𝑐 ) (4)

where X𝑙𝑐 is color query embeddings at the 𝑙 th layer, 𝐹 𝑗 is the 𝑗 th in-
termediate feature map. CA(·), MHSA(·), FFN(·), LN(·) indicate cross-
attention, multi-head self-attention, feed-forward network, layer
normalization; 𝑓𝑄 , 𝑓𝐾 and 𝑓𝑉 are linear transformations. We per-
form these sets of alternate operations 𝐿3 times in the 3-layer trans-
former decoder. Specifically, the first three layers receive feature
maps 𝐹1, 𝐹2 and 𝐹3, respectively. This pattern is repeated for all
following layers.
Color Mapper. The color mapper combines the feature map of
the last upsampling layer in the encoder and the refined color
embedding of the transformer decoder to produce color channels.
The structure is shown in Figure 4, and it can be formulated as:

𝑦 = Conv(X𝐿𝑐 · 𝐹4) (5)

Color queries

H×W×C

×
H×W×N

Color
Mapper Color channels

…

Conv
F4

Figure 4: The structure of color mapper.

where 𝐹4 ∈ R𝐻×𝑊 ×𝐶 is the feature map, X𝐿𝑐 ∈ R𝑁×𝐶 is the refined
color embedding from the transformer decoder, Conv is 1× 1 convo-
lution layer, and 𝑦 ∈ R𝐻×𝑊 ×2 is the predicted color channels from
individual color space.

Since there are 𝑛𝑐 colorization modules representing multiple
color spaces, we denote the predictions as {𝑦1, 𝑦2, · · · , 𝑦𝑛𝑐 }.

4.3 Color Space Complementary Network
The goal of CSCNet is to produce colorized image according to the
brightness value and color channels. A straightforward approach
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Table 1: Configuration of the CSCNet. “conv𝑘 , 𝑐” indicates the 𝑘th convolutional layer with 𝑐 output channels. By default 𝐿𝑖 = 1.

Block1 Block2 Block3 Block4 Block5
conv1, 32
BN+ReLU
conv2, 32
BN+ReLU

 × 𝐿1


conv1, 64
BN+ReLU
conv2, 64
BN+ReLU

 × 𝐿2


conv1, 128
BN+ReLU
conv2, 128
BN+ReLU

 × 𝐿3


conv1, 64
BN+ReLU
conv2, 64
BN+ReLU

 × 𝐿4


conv1, 32
BN+ReLU
conv2, 3
BN+ReLU


is to employ a transform function like Eq. (1). Here we employ an
alternative approach by using a transform network Φ(·), i.e.,

𝐼𝑐 = Φ(𝐼𝑔, 𝑦) (6)

There are two benefits for this design. First, using the differen-
tiable transform network keeps the model training in an end-to-end
manner. Different from the fixed mapping function F , the whole
process with Φ is parameter-optimizable. Second, it is easier to
extend under the multiple color spaces scenarios, as there exists no
direct mapping function that converts multiple color space infor-
mation into a single color space.

Given the predicted color channels {𝑦1, 𝑦2, · · · , 𝑦𝑛𝑐 } from the
colorization modules, the color space complementary network Φ𝑐𝑠𝑐
learn the color mapping from multi-color channels so that more
color representation can be better explored for image colorization.
The complementary network based on multiple color spaces can
be formulated as:

𝐼𝑐 = Φ𝑐𝑠𝑐 (𝐼𝑔, 𝑦1, 𝑦2, ..., 𝑦𝑛𝑐 ) (7)

The detailed structure of the CSCNet is listed in Table 1. The
network is lightweight and consists of five blocks. Each block con-
tains the convolution operation which is followed by batchnorm
(BN) layer and rectified linear unit (ReLU) layer. Different settings of
conv1 and conv2 will be examined in the ablation study. The scale
of the output in each block is the same as the input feature. Note
that, the output of block5 is 3, corresponding to the 3 channels of
produced colorized image.

4.4 Training Objective
We adopt the following losses to train our image colorization net-
work, including color channel loss, perceptual loss, adversarial loss,
and colorfulness loss.
Color Channel Loss represents the low-level supervision of colors.
Here 𝐿1 loss is applied to perform color channel level supervision
in predicted color channels and groundtruth color channels, i.e.,

L𝑐𝑐 =
∑︁
𝑖

𝜆𝑖𝑐



𝑦𝑖 − 𝑦𝑖



1 (8)

where 𝑦𝑖 (𝑦𝑖 ) and 𝜆𝑖𝑐 are the predicted (groundtruth) color channels
and weight for the 𝑖th color space.
Perceptual Loss.We adopt perceptual loss to capture high-level
semantics and try to simulate human perception of image quality.
We adopt a pre-trained VGG-16 [35] to extract features from both
the colorized image 𝐼𝑐 and the groundtruth color image 𝐼𝑐 and
compute the loss as follow,

L𝑝𝑒𝑟 =
∑︁
𝑗

𝜆 𝑗


𝜙 𝑗 (𝐼𝑐 ) − 𝜙 𝑗 (𝐼𝑐 )




1 (9)

where 𝜙 𝑗 (.) denotes the first convolutional layer of 𝑗 th block of
VGG-16 ( 𝑗 = 1, 2, 3, 4, 5). 𝜆 𝑗 is the weight of the corresponding layer.
Adversarial Loss. We also exploit the difference on the whole
image level with the Adversarial Loss [10]. Specifically, we use the
popular PatchGAN discriminator 𝐷 [16], and the adversarial loss
L𝑎𝑑𝑣 is defined as follow:

L𝑎𝑑𝑣 = E𝐼𝑐 [log𝐷 (𝐼𝑐 )] + E𝐼𝑐 [1 − log𝐷 (𝐼𝑐 )] (10)

Colorfulness Loss. Following [18], we also introduce colorfulness
loss L𝑐 to generate more colorful and visually pleasing images:

L𝑐 = 1 − [𝜎𝑟𝑔𝑦𝑏 (𝐼𝑐 ) + 0.3 · 𝜇𝑟𝑔𝑦𝑏 (𝐼𝑐 )]/100 (11)

where 𝜎𝑟𝑔𝑦𝑏 (·) and 𝜇𝑟𝑔𝑦𝑏 (·) denote the standard deviation and
mean value on the sRGB color space [12].
Full Objective. Therefore the full objective L for the image col-
orization network is formed as:

L = 𝜆𝑐𝑐L𝑐𝑐 + 𝜆𝑝𝑒𝑟L𝑝𝑒𝑟 + 𝜆𝑎𝑑𝑣L𝑎𝑑𝑣 + 𝜆𝑐L𝑐 (12)

where 𝜆𝑐𝑐 , 𝜆𝑝𝑒𝑟 , 𝜆𝑎𝑑𝑣 , and 𝜆𝑐 are the trade-off parameters for dif-
ferent terms.

5 EXPERIMENTS
5.1 Experimental Setting
Datasets.We conduct experiments on three datasets: ImageNet [34],
COCO-Stuff [3] and ADE20K [48]. We use the training part of Im-
ageNet to train our method and evaluate it on the validation part
(val50k). ImageNet (val5k) is the first 5k images of the validation
set. Besides, in order to show the generalization of our method,
we test on COCO-Stuff and ADE20K validation sets without any
fine-tuning.
Evaluation Metrics. To comprehensively evaluate the perfor-
mance of our method, we use Fréchet inception distance (FID) [14]
and colorfulness score (CF) [12]. FID measures the distribution
similarity between generated images and groundtruth images, and
CF reflects the vividness of generated images. It is worth noting
that a high colorfulness score does not always mean good visual
quality, because it encourages rare colors, leading to unreal col-
orization results. Therefore, we provide the absolute CF differ-
ence (ΔCF) between the colorized images and the groundtruth
images. Besides, we provide Peak Signal-to-Noise Ratio (PSNR) [15]
for reference, although it is a widely held view that the pixel-
level metrics may not well reflect the actual colorization perfor-
mance [13, 17, 30, 36, 39, 44].
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Table 2: Quantitative comparison of different methods on benchmark datasets. Best and second best results are in bold and
underlined respectively. ↑ (↓) indicates higher (lower) is better.

Method
ImageNet (val5k) ImageNet (val50k) COCO-Stuff ADE20K

FID↓ CF↑ ΔCF↓ PSNR↑ FID↓ CF↑ ΔCF↓ PSNR↑ FID↓ CF↑ ΔCF↓ PSNR↑ FID↓ CF↑ ΔCF↓ PSNR↑
DeOldify [1] 6.59 21.29 16.92 24.11 3.87 22.83 16.26 22.97 13.86 24.99 13.25 24.19 12.41 17.98 17.06 24.40
CIC [46] 8.72 31.60 6.61 22.64 19.17 43.92 4.83 20.86 27.88 33.84 4.40 22.73 15.31 31.92 3.12 23.14
InstColor [36] 8.06 24.87 13.34 23.28 7.36 27.05 12.04 22.91 13.09 27.45 10.79 23.38 15.44 23.54 11.50 24.27
GCPColor [44] 5.95 32.98 5.23 21.68 3.62 35.13 3.96 21.81 13.97 28.41 9.83 24.03 13.27 27.57 7.47 22.03
ColTran [24] 6.44 34.50 3.71 20.95 6.14 35.50 3.59 22.30 14.94 36.27 1.97 21.72 12.03 34.58 0.46 21.86
CT2 [43] 5.51 38.48 0.27 23.50 4.95 39.96 0.87 22.93 13.15 36.22 2.02 23.67 11.42 35.95 0.91 23.90
BigColor [21] 5.36 39.74 1.53 21.24 1.24 40.01 0.92 21.24 12.58 36.43 1.81 21.51 11.23 35.85 0.81 21.33
ColorFormer [17] 4.91 38.00 0.21 23.10 1.71 39.76 0.67 23.00 8.68 36.34 1.90 23.91 8.83 32.27 2.77 23.97
DDColor [18] 3.92 38.26 0.05 23.85 0.96 38.65 0.44 23.74 5.18 38.48 0.24 22.85 8.21 34.80 0.24 24.13

MultiColor [ours] 2.17 38.24 0.03 24.69 0.42 38.89 0.20 24.58 2.59 38.10 0.14 24.53 3.65 35.21 0.17 25.37

Implementation Details. In order to keep fair comparison with
the sota methods, we follow some experimental settings with pre-
vious methods [17, 18]. Our method is implemented using Py-
Torch [32]. The network are trained from scrach with AdamW [29]
optimizer and set 𝛽1 = 0.9, 𝛽2 = 0.99, weight decay = 0.01. For the
upsampling stages in encoder, the feature dimensions are 512, 512,
256, and 256, respectively. We empirically set 𝑁=100 for the color
queries in colorization modules. The hyper-parameter 𝜆𝑖𝑐 controls
the color information weight of different color spaces. We set them
to 0.1 for CIE-Lab, 10 for HSV and YUV. Besides, we set 𝜆 𝑗 to 0.0625,
0.125, 0.25, 0.5 and 1 when 𝑗 = 1, 2, 3, 4, 5, respectively. We set 𝜆𝑐𝑐
to 1.0, 𝜆𝑝𝑒𝑟 to 5.0, 𝜆𝑎𝑑𝑣 to 1.0, and 𝜆𝑐 to 0.5. The whole network
is trained in an end-to-end self-supervised manner for 400,000 it-
erations with batch size of 16. The learning rate is initialized to
1𝑒−4, which is decayed by 0.5 at 80,000 iterations and every 40,000
iterations thereafter. All the images are resized to 256 × 256. During
training, we adopt color augmentation [18, 21] to real color images.
The experiments are conducted on 4 Tesla A100 GPUs.

5.2 Comparison with Prior Arts
To evaluate the performance of our method, we compare our results
with previous state-of-the-art image automatic colorization, includ-
ing CNN-based methods (CIC [46], InstColor [36]), GAN-based
methods (GCPColor [44], BigColor [21]), and transformer-based
methods (ColTran [24], CT2 [43], ColorFormer [17], DDColor [18]).
Quantitative Comparison. Table 2 shows the quantitative com-
parisons. For the ImageNet [34], COCO-Stuff [3] and ADE20K [48]
datasets, the results of previous methods are reported by [17, 18].
For themissing results of GCPColor [44], CT2 [43] and BigColor [21]
in COCO-Stuff dataset, we show the results by running their offi-
cial codes. On the ImageNet, our method achieves the lowest FID
value, indicating its capability to produce high-quality and realistic
colorization results. Besides, our method gains the lowest FID on
the COCO-Stuff and ADE20K datasets, demonstrating its strong
generalization ability. The lower ΔCF indicates more precise col-
orization results, and we achieve the lowest ΔCF across all datasets,
suggesting its effectiveness in achieving natural and lifelike col-
orization results. Furthermore, the best scores on PSNR demonstrate

MultiColor colorizes images with plausible colors. MultiColor out-
performs all previous work with significant margins.
Qualitative Comparison. Figure 5 presents visualization of image
colorization results. We display comparisons of images in differ-
ent scenes from the ImageNet validation dataset. Note that the GT
images are provided for reference only but the evaluation crite-
rion should not be color similarity. A noticeable trend is that our
results exhibit a more vivid appearance. We can see that the ball
colorization (Row 1) of previous methods looks unnatural and in-
troduces color bleeding effects in contrast to our consistent dark
blue. Meanwhile, our method produces saturated results for the
hue of the background (lawn). InstColor [36] employs a pre-trained
detector to detect objects and cannot color the whole image well
(Column 2). GCPColor [44] and ColorFormer [17] usually lead to
incorrect semantic colors and low color richness. DDColor [18] may
produce rare colors. Instead, our method maintains the consistent
color and captures the details as shown in row 2, 3 and 4 of Figure 5.
Furthermore, our method can yield more diverse and lively colors
for whole image as shown in the last row of Figure 5.

5.3 Ablation Study
We now perform a series of ablation studies to analyze MultiColor.
We first verify the effectiveness of modeling multiple color spaces
strategy, and then study the effect of some other settings about the
CSCNet. Finally, we investigate the effect of the feature scales. All
ablation results are evaluated on the ImageNet val-5k dataset.
Color Space. Table 3 shows the effectiveness of the strategy for
modeling multiple color spaces. We can observe that the incorpo-
ration of multiple color spaces significantly facilitates colorization
performance. Additionally, we visualize the colorized results of the
ablation experiments in Figure 6. In single color space, the overall
color of the colorized images may be incorrect semantic colors
and low color richness. The combination of multiple color spaces
makes the restored colors more realistic and higher saturation. For
example, the color of the chicken is more consistent with human
perception (Row 1). Such a remarkable promotion benefits from
complementarity among multiple color spaces, which can capture
not only saturation of hues but also color contrast.
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Figure 5: Visual comparison of competing methods on automatic image colorization.

Table 3: Results with different color spaces.

CIE-Lab HSV YUV FID↓ CF↑ ΔCF↓ PSNR↑
✓ 6.74 41.83 3.62 22.35

✓ 5.24 40.24 2.03 22.67
✓ 7.00 42.23 4.02 22.23

✓ ✓ 2.62 37.92 0.29 24.03
✓ ✓ 3.28 37.69 0.52 23.97

✓ ✓ 2.23 38.87 0.66 24.15
✓ ✓ ✓ 2.17 38.24 0.03 24.69

CSCNet Settings.We use stack of blocks for the complementary
network as shown in Table 1. The relationship between the number

Table 4: The impact of the block number in CSCNet. 𝐿1 to 𝐿4
corresponds to the layer numbers as in Table 1.

[𝐿1, 𝐿2, 𝐿3, 𝐿4] FID↓ CF↑ ΔCF↓ PSNR↑
[1, 0, 0, 0] 4.35 40.33 2.12 23.07
[1, 1, 0, 0] 3.64 39.51 1.30 23.55
[1, 1, 1, 0] 2.43 38.54 0.33 24.47
[1, 1, 1, 1] 2.17 38.24 0.03 24.69

of the blocks and the colorization performance is presented in
Table 4. Fewer blocks have a limited capability to colorize grayscale
images. When we increase the number of blocks step-by-step, the
performance is boosted on all metrics.
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Figure 6: Visualization results by learning from different color spaces. The numbers on top of each image indicate CF / ΔCF.

Table 5: Different kernels in CSCNet.

conv1, conv2 FID↓ CF↑ ΔCF↓ PSNR↑
1 × 1, 1 × 1 2.28 38.36 0.15 24.49
3 × 3, 3 × 3 2.21 38.27 0.06 24.56
5 × 5, 5 × 5 2.23 38.30 0.09 24.53
1 × 1, 3 × 3 2.17 38.24 0.03 24.69
1 × 1, 5 × 5 2.21 38.28 0.07 24.62

Table 6: Effectiveness of different feature scales.

Feature Scales FID↓ CF↑ ΔCF↓ PSNR↑
𝐹1 4.25 37.28 0.93 23.47

(a) 𝐹2 3.67 37.52 0.69 23.86
𝐹3 3.14 37.87 0.34 24.25
𝐹1 + 𝐹2 2.81 37.94 0.27 24.35

(b) 𝐹2 + 𝐹3 2.56 38.03 0.18 24.47
𝐹1 + 𝐹2 + 𝐹3 2.17 38.24 0.03 24.69

We also analyze the influence of the kernel size of the blocks. As
shown in Table 5, we can see that convolutional kernels of different
sizes have an effect on performance. We choose the convolutional
operation of 1 × 1 and 3 × 3 as it achieves the best results.
Feature Scales. Recall that the multi-scale features are generated
from the upsampling operations of encoder. As shown in Table 6(a),
we list the metrics generated by performing the framework on a
single-scale feature only. We can observe that a feature with higher
resolution tends to boost performance. Table 6(b) shows the results
of our approach from multi-scale feature maps. It verifies that the
multi-scale features for modeling color space is beneficial for image
colorization. Figure 7 shows the visualization of features scale.
Number of Transformer Decoder Operation.We vary the num-
ber of transformer decoder operation 𝐿

3 to evaluate its effectiveness.
The number is set to 3 in our default settings. Other operation
number are also tried and the results are shown in Table 7. With
the increase of the number, FID decreases from 4.22 to 2.17, and the
PSNR increases from 23.77 to 24.69 dB.

Figure 7: Visualization results of ablation on feature scales.

Table 7: Results with different number of the Transformer
decoder operation.

Number FID↓ CF↑ ΔCF↓ PSNR↑
1 4.22 36.14 2.07 23.77
2 3.06 37.56 0.65 24.33
3 2.17 38.24 0.03 24.69

6 CONCLUSION
In this paper, we propose a novel framework for image colorization
by learning from multiple color spaces. MultiColor combines vari-
ous color information of multiple color spaces, for powerful and
robust representation competence. Specifically, Transformer de-
coder progressively refines color query embeddings by leveraging
multi-scale image features of encoder, followed by producing color
channels of various color spaces through color mapper. Further-
more, we propose color space complementary network to combine
color channels and achieve internal color space information comple-
mentation. Extensive experiments indicate that MultiColor achieve
satisfactory colorization results.
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