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ABSTRACT

Learning and decision making in domains with naturally high noise-to-signal ratios
– such as Finance or Healthcare – can be challenging yet extremely important. In
this paper, we study a problem of learning and decision making under a general
noisy generative process. The distribution has a significant proportion of unin-
formative data with high noise in label, while part of the data contains useful
information represented by low label noise. This dichotomy is present during both
training and inference, which requires the proper handling of uninformative data at
testing time. We propose a novel approach to learn under these conditions via a
loss inspired by the selective learning theory. By minimizing the loss, the model
is guaranteed to make a near-optimal decision by distinguishing informative data
from the uninformative data and making predictions. We build upon the strength
of our theoretical guarantees by describing an iterative algorithm, which jointly
optimizes both a predictor and a selector, and evaluate its empirical performance
under a variety of settings.

1 INTRODUCTION

Despite the success of machine learning in computer vision (Krizhevsky et al., 2009; He et al., 2016a;
Huang et al., 2017) and natural language processing (Vaswani et al., 2017; Devlin et al., 2018),
the power of ML is yet to make significant impact in other areas such as finance and public health.
One major challenge is the inherently high noise-to-signal ratio in certain domains. In financial
statistical arbitrage, the spread between two assets are usually modeled using Orstein-Uhlembeck
processes (Øksendal, 2003; Avellaneda & Lee, 2010). Spread behaves almost purely random near
zero and are naturally unpredictable. They become predictable in certain rare pockets/scenarios. For
example, when spread exceeds certain threshold, with high probability it will move toward zero,
making arbitrage possible. In cancer research, due to limited resources, only a small number of the
most popular gene mutations are routinely tested for differential diagnosis and prognosis. However,
due to the long tail distribution of mutation frequencies across genes, these popular gene mutations
can only capture a small proportion of the relevant list of driver mutations of a patient (Reddy et al.,
2017). For a significant number of patients, the tested gene mutations may not be in the relevant list
of driver mutations and its relationship w.r.t. the outcome may appear completely random. Identifying
these patients automatically will justify additional gene mutation testing.

These high noise-to-signal ratio datasets pose new challenges to learning. New methods are required
to deal with large fraction of uninformative/high-noise data in both training and testing stages. The
source of uninformative data can be either due to the random nature of the data generating process, or
due to the fact that the real causing factor is not captured during data collection. Direct application of
standard supervised learning methods to such datasets is both challenging and unwarranted. Deep
neural networks are even more affected by the presence of noise, due to their strong memorization
power (Zhang et al., 2017a): they are likely to overfit the noise and make overly confident predictions
where weak/no real structure exists.

In this paper, we propose a novel method for learning on datasets where a significant portion of
content has high noise. Instead of forcing the classifier to make predictions for every sample, we
learn to decide whether a datapoint is informative or not. Our idea is inspired by the classic selective
prediction problem (Chow, 1957), in which one learns to select a subset of the data and only predict
on that subset. However, the goal of selective prediction is very different from ours. A selective
prediction method pursues a balance between coverage (i.e. proportion of the data selected) and
conditional accuracy on the selected data, and does not explicitly model the underlying generative
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process. In particular, the aforementioned balance needs to be specified by a human expert, as
opposed to being derived directly from the data. In our problem, we assume that uninformative data
is an integral part of the underlying generative process and needs to be accounted for. By definition,
no learning method, no matter how powerful, can successfully make predictions on uninformative
data. Our goal is therefore to identify these uninformative/high noise samples, and at the same time,
to train a classifier that suffers less from the noisy data.

Our method learns a selector, g, to approximate the optimal indicator function of informative data,
g∗. We assume that g∗ exists as a part of the data generation process, but it is never revealed to us,
even during training. Instead of direct supervision, we therefore must rely on the predictor’s mistakes
to train the selector. To achieve this goal, we propose a novel selector loss enforcing that (1) the
selected data best fits the predictor, and (2) the portion of the data where we abstain from forecasting,
does not contain many correct predictions. This loss function is quite different from the loss in classic
selective prediction, which penalizes all unselected data equally.

We theoretically analyze our method under a general noisy data generation process which follows
the standard data dependent label noise model (Massart & Nédélec, 2006; Hanneke, 2009). We
distinguish informative/uninformative data via a gap in label noise ratio. A major contribution of
this paper is the derivation of theoretical guarantees for the empirical minimizer of our loss. A
minimax-optimal sample complexity bound for approximating the optimal selector is provided. We
show that optimizing the selector loss can recover nearly all the informative data in a PAC fashion
(Valiant, 1984). This guarantee holds even in a challenging setting where the uninformative data has
purely random labels, and dominates the training set.

This theoretical guarantee empowers us to expand to a more realistic setting where sample size is
limited, and the initial predictor is not sufficiently close to the ground truth. Our method extends to
an iterative algorithm, in which both the predictor and the selector are progressively optimized. The
selector is improved by optimizing our novel selector loss. Meanwhile, the predictor is improved
by optimizing the empirical risk, re-weighted based on the selector’s output; uninformative samples
identified by the selector will be down-weighed. Experiments on both synthetic and real-world
datasets demonstrate the merit of our method compared to existing baselines.

2 RELATED WORK

Learning with untrusted data aims to recover the ground truth model from a partially corrupted
dataset. Different noise models for untrusted data have been studied, including random label noise
(Bylander, 1994; Natarajan et al., 2013; Han et al., 2018; Yu et al., 2019; Zheng et al., 2020;
Zhang et al., 2020), Massart Noise (Massart & Nédélec, 2006; Awasthi et al., 2015; Hanneke,
2009; Hanneke & Yang, 2015; Yan & Zhang, 2017; Diakonikolas et al., 2019; 2020; Cheng et al.,
2020; Xia et al., 2020; Zhang & Li, 2021) and adversarial noise (Kearns & Li, 1993; Kearns et al.,
1994; Kalai et al., 2008; Klivans et al., 2009; Awasthi et al., 2017). Our noise model is similar
to General Massart Noise (Massart & Nédélec, 2006; Hanneke, 2009; Diakonikolas et al., 2019),
where the label noise is data dependent and label can be generated via a purely random coin
flipping. The major distinct formulation in our noisy generative model is the existence of some
uninformative data with high noise in label compared to informative data with low noise in label.
We characterize such uninformative/informative data structure via non-vanishing label noise ratio
gap. While there exists long history of literature studying learning classifiers with label noise in the
training stage (Thulasidasan et al., 2019; Cheng et al., 2020; Xia et al., 2020), we are the first work to
investigate learning a model for inference stage under label noise setting. We study the case where
label noise is an integral part of the generative process and thus will appear during inference stage
as well, where it must be detected and discarded once more. We view this as a realistic setup in
industries like Finance and Healthcare.

Selective learning is an active research area (Chow, 1957; 1970; El-Yaniv et al., 2010; Kalai et al.,
2012; Nan & Saligrama, 2017; Ni et al., 2019; Acar et al., 2020; Gangrade et al., 2021a). It extends
the classic selective prediction problem and studies how to select a subset of data for different learning
tasks, and has also been generalized to other problems, e.g., learning to defer human expert (Madras
et al., 2018; Mozannar & Sontag, 2020). We can summarize existing methods into 4 categories:
Monte Carlo sampling based methods (Gal & Ghahramani, 2016; Kendall & Gal, 2017; Pearce et al.,
2020), margin based methods (Fumera & Roli, 2002; Bartlett & Wegkamp, 2008; Grandvalet et al.,
2008; Wegkamp et al., 2011; Zhang et al., 2018), confidence based methods (Wiener & El-Yaniv,
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2011; Geifman & El-Yaniv, 2017; Jiang et al., 2018) and customized selective loss (Cortes et al., 2016;
Geifman & El-Yaniv, 2019; Liu et al., 2019; Gangrade et al., 2021b). Notably, several works propose
customized losses, and incorporate them into neural networks. In (Geifman & El-Yaniv, 2019), the
network maintains an extra output neuron to indicate rejection of datapoints. Liu et al. (2019) uses
Gambler loss where a cost term is associated with each output neuron and a doubling-rate-like loss
function is used to balance rejections and predictions. Thulasidasan et al. (2019) also applies an extra
output neuron for identifying noise label to improve the robustness in learning. Huang et al. (2020)
adopts a progressive label smoothing method which prevents DNN from overfitting and improves
selective risk when applied to selective classification task. Cortes et al. (2016) perform data selection
with an extra model and introduce a selective loss that helps maximize the coverage ratio, thus trading
off a small fraction of data for a better precision. Sharing a similar spirit with (Kalai et al., 2012),
(Gangrade et al., 2021b) applies an one-side prediction method to model high confidence region for
each individual class, and maximizes coverage while maintains a low risk level.

Existing works on selective prediction are all motivated by the trade off between accuracy and
coverage - i.e. one wants to make safe prediction to achieve higher precision while maintaining a
reasonable recall. Our paper is the first to investigate the case where some (or even majority) of the
data is uninformative, and thus must be discarded at test time. Unlike the selective prediction, there is
a latent ground truth indicator function of whether a data point should be selected or not. Our method
is guaranteed to identify those uninformative samples.

3 PROBLEM FORMULATION

In this section, we describe our model for the inherently-noisy data generation process that we aim to
study.
Definition 1 (Noisy Generative Process). We define Noisy Generative Process by the following
notation x ∼ Dα where

Dα ≡
{
x ∼ DU with prob. 1− α (Uninformative)
x ∼ DI with prob. α (Informative).

(1)

Let the ground truth labeling function f∗ : X → {+1,−1} be in hypothesis class F . Let ΩD ⊆ Rd

be the support of Dα. Suppose {ΩU ,ΩI} is a partition of ΩD. Let λ(x) ∈ (λ, 12 ] with λ > 0, the
latent informative/uninformative status z ∈ {+1,−1} has posterior distribution:

P[z = 1|x] ≡
{

1
2 − λ(x), if x ∈ ΩU
1
2 + λ(x), if x ∈ ΩI .

(2)

The observed data (x, y) is generated according to:
x ∼ Dα;

z ∼ P[z|x];

y ≡
{

Bernoulli(0.5), if z = −1
f∗(x), if z = 1.

(3)

Since λ(x) > 0, x from ΩU has a lower chance to be observed with true label compared to ΩI , thus
can be viewed as uninformative data, in a relative sense. On the contrary, x from ΩI can be viewed
as informative data. Our Noisy Generative Process follows standard data dependent label noise, e.g.,
Massart Noise (Massart & Nédélec, 2006) and Benign Label Noise (Hanneke, 2009; Hanneke &
Yang, 2015; Diakonikolas et al., 2019). Indeed, one can always choose λ(x) ∈ [0, 12 ] and α ∈ [0, 1] to
replicate General Massart noise. Compared to classical label noise models, the assumption λ(x) > λ
introduces a label noise ratio gap, which distinguishes the informative and uninformative data. In
Equation 3, the Bernoulli(0.5) label noise serves as a proxy for “white noise” in label corruption.
When λ(x) = 1

2 and x ∈ ΩU , Bernoulli(0.5) random label noise can be viewed as the strongest
known non-adversarial label noise, of both theoretical and practical interest (Diakonikolas et al.,
2019). Such Bernoulli(0.5) random label noise could happen when hard-to-classify examples are
shown to human annotator (Klebanov & Beigman, 2010), or when fluctuations in financial market
closely resemble random walks (Tsay, 2005).

A typical setting that is studied in this work is the case that both value of α and λ are non-vanishing,
i.e., there are significant fraction of uninformative data (large α) and the label noise ratio gap is
distinguishable between informative and uninformative data (large λ).
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Next definition describes a recoverable condition of the optimal function for the latent informa-
tive/uninformative status z.

Definition 2 (G-realizable ). Given support Ω and λ(x) ∈ (λ, 12 ], let the posterior distribution of
z be defined in Equation (2). We say Ω is G-realizable if there exists g∗ ∈ G : X → {+1,−1}
satisfying g∗(x) = 21{P[z = 1|x] > 1

2} − 1.

Ideally, one wish to select all informative data where signal dominates noise. This can be done via
recovering g∗(·), which we view as the ground truth selector we wish to recover. The G-realizable
condition is analogous to the realizability condition (Massart & Nédélec, 2006; Hanneke & Yang,
2015) in classical label noise problem. The major difference and challenge in recovering g∗(·)
compared to learning a classifier, is that there is no direct observation on the informative/non-
informative status z. The major contribution of this work is proposing a natural selector risk which
recovers g∗(·) without observing latent variable z.

Having introduced the data generation process, we now describe the learning task:

Assumption 1. Data Sn = {xi, yi}Ni=1 is i.i.d generated according to the Noisy Generative Process
(Definition 1), with f∗ ∈ F and support Ω satisfies G-realizable condition.

Given the above assumption, we are interested in the following learning task:

Problem 1 (Abstain from Uninformative Data). Under Assumption 1 with i.i.d observations from
Dα, given f̂ ∈ F sufficiently close to f∗(x), we aim to learn a selector ĝ ∈ G that is close to g∗(x).

(a) Informative/Uninformative
data

(b) Correct/Incorrect classification
result

(c) Selective classification
result

Figure 1: Illustration of the learning strategy with mixture of Gaussian data. We replace the 0-1
loss with hinge loss and train SVM models for f and g. (a) upper panel shows the original dataset
and bottom panel shows the region of informative (easy) and uninformative (hard) data. (b) shows
that the classifier has high accuracy in the informative region, but low accuracy in the uninformative
region. In (c), the selector trained with f̂ successfully recovers informative support thus resulting in
low selective risk, and we abstain from making a prediction elsewhere.

4 OUR METHOD

In this section, we present our approach for learning and abstaining in the presence of uninformative
data (Problem 1). The main challenge is that the latent informative/uninformative status of a datapoint
is unknown. Our main idea is to introduce a novel yet natural selector loss function that trains a
selector based on the performance of the best predictor (Section 4.1). In Section 4.1, we present
our main theoretical result. We show that, given any reasonably good classifier, finding a selector
minimizing the proposed selector loss, we can solve Problem 1, with minimax-optimal sample
complexity. Inspired by the theoretical results, in Section 6, we propose a heuristic algorithm that
iteratively optimizes the predictor and the selector.
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4.1 SELECTOR LOSS

In an idealized setting, when access to latent informative/uninformative variables {(xi, zi)}ni=1 is
available, recovering g∗ shares a similar spirit with learning classfier under label noise. It suffices to
minimize following classical classification risk :

Non-Realizable Risk(g;Sn) ≡
n∑

i=1

1{g(xi) ̸= zi} (4)

However, in practice z is never revealed. To learn a selector without direct supervision, we have
to leverage the performance of a predictor f . We propose to replace z in the Equation 4 with a
pseudo-informative label 1{f(x) ̸= y}, which has randomness coming from z and noisy label y.
Definition 3 (Selector Loss). Given f ∈ F and its selector g ∈ G, we define the following empirical
version of weighted 0-1 type risk w.r.t g(·) as selector risk:

RSn
(g; f, β) ≡

n∑
i=1

{β1{f(xi) ̸= yi}1{g(xi) > 0}+ 1{f(xi) = yi}1{g(xi) ≤ 0}} (5)

The selector loss is also a natural metric to evaluate the quality of the selector. This loss penalizes when
(1) the predictor makes a correct prediction on a datapoint that the selector considers uninformative
and abstains from, or (2) the predictor makes an incorrect prediction on a datapoint that the selector
considers informative. Intuitively, the loss will drive the selector to partition the domain into
informative and uninformative regions. Within the informative region, the predictor is supposed to fit
the data well, and should be more accurate. Meanwhile, within the uninformative region, the label is
random and the predictor is supposed to be more prone to error.

Note that there are two types of errors penalized in the selector loss: an incorrect prediction on a
selected datapoint, (f(x) ̸= y) ∧ (g(x) > 0), and a correct prediction on an unselected datapoint,
(f(x) = y) ∧ (g(x) ≤ 0). Since the label noise is non-adversarial, y tends to have higher probability
of coincidence with f∗(x), introducing imbalance on the pseudo-informative label. We thus use β to
weigh these two types of errors in the loss. An analysis can be found in section A.1 on the choice
of β. Our theoretical analysis suggests that for a wide range of β, the accuracy of the selector is
guaranteed. Empirical study also shows stability with regard to these choices.

Learning a selector with the novel loss. To learn a selector, one can follow standard procedure e.g.,
empirical risk minimization(ERM), to estimate a predictor f̂ with reasonable quality. The selector
can be estimated by minimizing the selector loss ĝ = argming∈G RSn

(g, f̂ , β), conditioned on the
estimated predictor f̂ .

In Figure 1, we show an example of using the ERM strategy using SVM with 0-1 loss replaced
by hinge loss. In this case, the losses are all convex and the empirical minimizers f̂ and ĝ can be
computed exactly.

In practice, however, empirical minimization is not always possible, as optimization for complex
models (e.g., DNNs) and non-convex losses remains open. We therefore propose a heuristic algorithm
in the spirit of our theoretical results - it jointly learns f and g by minimizing the selector loss and a
reweighed classification risk iteratively (see Section 6).

5 MINIMAX-OPITMAL RISK BOUND

In this section we present our main theoretical results. The main result can be summarized in
following (informal) statement.

Main Result (Informal) For any reasonably good predictor f̂ , with sufficient data, the selector
ĝ estimated using ĝ = argming∈G RSn

(g, f̂ , β) is sufficiently close to the targets g∗ with high
probability.
Remark 1. The toolkit we use in the proof is a Bernstein type inequality for fast generalization rate
under margin condition (Massart & Nédélec, 2006; Van Erven et al., 2015; Li & Liu, 2021). We also
provide an information theoretic lower bound construction in section A.2 to show our risk bound is
minimax-optimal. Our construction of the lower bound is motivated from (Ehrenfeucht et al., 1989;
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Blumer et al., 1989) and Le Cam’s method (Yu, 1997). Due to space constraints, detailed proofs of
our theorems are provided in the Appendix. We also present our extension from finite hypothesis
class to VC-class using Local Rademacher Average tools (Bartlett et al., 2005) in section A.6. In the
analysis, we do not pursue risk bounds for learning f∗ since it has been thorough studied in existing
literatures (Blum et al., 2016; Mohri et al., 2018; Bartlett et al., 2005; Massart & Nédélec, 2006).
Instead, the theorem admits any classifier f̂ that is close to f∗ in a PAC fashion, providing additional
flexibility in choosing classifier f̂ .

Theorem 1 (Risk Bound). Let Sn = {(xi, yi)}ni=1 be i.i.d sample from Data Generative Pro-
cess described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G, |F| < ∞
|G| < ∞. Given λ, let β ∈

[
3−2λ
1+2λ + λ,min( 3+2λ

1−2λ −
λ

1−4λ2 , 10)
]
. For any f̂(·) ∈ F , let

ĝ = argmin
g∈G

RSn
(g; f̂ , β). Then for any ε > 0, there is a δ > 0 such that the following holds:

For n ≥ max{ 32β
2 log(

|G|
δ )

λε ,
24β log(

|F|
δ )

ε }, and for f̂ that satisfies one of the following condition:

• For any f̂(·) ∈ F that Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with prob at least 1− δ,

• If λ = 1
2 , for any f̂(·) ∈ F that Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε

8βα with prob at least 1− δ,

The following holds with probability at least 1− 2δ:

R(ĝ; f∗, β)−R(g∗; f∗, β) ≤ ε

Remark 2. The assumption that Ex[f̂(x) ̸= f∗(x)] ≤ ε could be achieved via an ERM on classifi-
cation loss

∑n
i=1 1{f(xi) ̸= yi} under some margin condtions (Massart & Nédélec, 2006; Bartlett

et al., 2005). In practice, one can also apply some methods beyond ERM to obtain f̂ (Namkoong
& Duchi, 2017; Zhang et al., 2017b; Huang et al., 2020). In particular, in case λ = 1

2 , the data in
support ΩU is un-learnable as y are purely random. While approximating f∗ on the full support
is not possible in general, one can control the conditional risk Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] via a
standard ERM schema (see proof in appendix Section A.5). We stress that Theorem 1 holds for any
classifier that is close to f∗, even the case where f̂ and ĝ are trained on the same dataset.

Corollary 1 (Recovering g∗). Given conditions in Theorem 1, if we choose β = 3, we have:

Ex[1{ĝ(x) ̸= g∗(x)}] ≤ 4ε(1 + 2λ)

λ
(6)

Corollary 1 suggests that by minimizing the empirical version of the loss from Definitions 3, one
can recover g∗ in a PAC fashion. The theoretical guarnatee holds even under a very challenging case
were α > 0.5 and λ = 1

2 , .e.g, majority of the data have purely random labels.

The analysis of the selector loss (Theorem 1) relies on the quality of the classifier f̂ . But since we
know that ĝ is able to abstain from uninformative data, we can retrain f̂ beyond standard ERM, with
up weighted informative data, therefore improving the accuracy of f̂ . Such circular logic naturally
leads to a practical iterative algorithm that we present in the next section.

Algorithm 1 Iterative Soft Abstain

1: Input: Data set Sn = {(x1, y1), ..., (xn, yn))}, weight parameter:β, random initial f0 and g0,
initial sample weights γ0i = 1

n ,∀i ∈ [n], meta learning rate η, number of iterations T
2:
3: for t← 1, · · · , T do
4: Optimize loss to update predictor f t :

∑n
i=1 γ

t
i{yi log(f(xi)) + (1− yi) log(1− f(xi))}

5: Approximate the ‘pseudo-informative label’ : zti = 1{1{f t(xi) > 0.5} = yi}
6: Optimize loss to update selector gt :

∑n
i=1 {zti log(g(xi)) + β(1− zti) log(1− g(xi))}

7: Update sample weights using gt : γt+1
i =

γt
i (1+η1{gt(xi)>0.5})∑n

j=1 γt
j(1+η1{gt(xj)>0.5}) .

8: end for
9: Output: fT , gT
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6 A PRACTICAL HEURISTIC ALGORITHM

Motivated by our theoretical analysis, we propose a practical algorithm sharing a similar spirit with
the selector loss. From a computational standpoint, we replace the binary loss by cross-entropy loss
instead and require that both f and g have continuous-valued output, ranging between 0 and 1 instead
of binary output {+1,−1}. The labels y also needs to be processed so that the values are in the {0, 1}
range. We also relax the requirement for minimization oracles, allowing the practical algorithm to
jointly optimize the predictor and the selector in an iterative manner. At each iteration, we update the
predictor using the informative data selected by the selector, and then update the selector based on
the predictor’s output. See Algorithm 1 for the pseudo-code. A pictorial example of Algorithm 1’s
performance can be found in Figure 3 of the Appendix.

During the joint optimization process, the predictor is counting on the selector to upweigh informative
data. By putting more effort on the informative data, we wish to improve the performance of
predictor via learning beyond ERM (Zhang et al., 2017b; Ren et al., 2018; Huang et al., 2020).
However, the initial selector is not trustworthy. To update the predictor f , we turn to a so-called
soft abstention scheme: use a weight vector γ that progressively down-weighs samples abstained by
g, in the spirit of multiplicative weights update (MWU) algorithms (Cesa-Bianchi & Lugosi, 2006;
Arora et al., 2012). Specifically, we increase the weight of i-th sample γi if the selector accepts
xi: γi = γi(1 + η · 1{g(xi) > 0.5}) and then normalize so that

∑n
i=1 γi = 1. We call this a soft

abstention approach because the algorithm decreases the weight of uninformative data gradually. We
count on MWU mechanism to serve as a soft version of the selector, allowing the classifier to put less
effort on learning uninformative data.

7 EXPERIMENTS

In this section, we test the efficacy of our heuristic algorithm (Algorithm 1) on publicly-available
datasets. The empirical study aims to answer following questions.

Q1 : Is Algorithm 1 able to approximate ground truth selector g∗ ?
The Answer is yes. The empirical result on Semi-synthetic dataset (Figure 2 in Section 7.1)
suggests that Algorithm 1 recovers ground truth selector g∗ within reasonable error range.

Q2 : How does Algorithm 1 compare to baselines on semi-synthetic dataset in recovering ground
truth selector g∗?
The results are presented in table 1 in Section 7.2. All baselines are simply not equipped with
the functionality to distinguish informative/uninformative data automatically. They all suffers
from poor estimation of α, the proportion of informative data in the dataset, which must be
given as a hyper-parameter. However, our method does not require such prior information and
provably recovers α ( which is implied by recovery of g∗), thus consistently behaves well.

Q3 : How does Algorithm 1 work on real world datasets compared to selective learning baselines?
On real world datasets, Algorithm 1 consistently gains competitive performance against other
baselines in low coverage regime, e.g., the proportion of data chosen by selector ≤ 20%. These
empirical results suggest that that our method is good at picking out strongly informative data.

Baselines. We compare our method to two of the recently proposed selective learning algorithms. (1)
SelectiveNet (Geifman & El-Yaniv, 2019), which integrates an extra neuron as a data selector in the
output layer and also introduces a loss term to control the coverage ratio; (2) DeepGambler (Liu
et al., 2019), which also maintains an extra neuron for abstention and uses a doubling-rate-like loss
term (i.e., gambler loss) to train the model. (3) We also create a third baseline that selects data using
model prediction confidence, which we refer to as Confidence. The intuition behind this heuristic
baseline is that informative data should have higher confidence compared to uninformative data.

Experiment Details and Ablation Study: Due to limited space, all experiment setting details are
given in Appendix Section B.1. Detailed ablation studies are provided in Appendix Section C.

7.1 EXPERIMENTS USING SEMI-SYNTHETIC DATA FOR Q1
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Table 1: Synthetic Data Experiment on MNIST+Fashion and SVHN
Dataset Uninformative Num. Informative Num. Criterion Confidence SLNet DeepGambler Ours

MNIST + Fashion

60000
SR(%) 59.32±0.83 45.44±0.68 45.37±1.29 10.35±0.31

15000 Precision 0.46±0.79 0.61 ± 0.01 0.61±0.01 1.00 ± 0.00
Recall 0.94±0.07 1.00 ± 0.00 1.00±0.00 0.85 ± 0.01

60000
SR(%) 39.23±0.47 28.15±0.63 27.78±0.67 12.03±1.06

30000 Precision 0.68±0.56 0.80 ±0.01 0.80±0.00 1.00 ± 0.00
Recall 0.98±0.00 1.00 ± 0.00 1.00±0.00 0.92 ± 0.04

60000
SR(%) 28.92±0.49 20.22±0.58 19.09±0.41 12.58±2.00

45000 Precision 0.79±0.29 0.88 ±0.86 0.89±0.00 1.00 ± 0.00
Recall 0.99±0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.03

60000
SR(%) 21.88±0.39 15.38±0.32 14.20±0.62 11.61±0.79

60000 Precision 0.86±0.46 0.92±0.22 0.94±0.00 1.00 ± 0.00
Recall 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.01

SVHN

33800
SR(%) 64.91± 0.89 48.61± 23.37 18.24± 2.00 7.03±0.01

9200 Precision 0.53± 0.01 0.52± 0.22 0.80± 0.02 0.93± 0.01
Recall 0.98±0.00 0.89± 0.10 0.96± 0.01 0.85± 0.01

33800
SR(%) 47.64± 0.89 28.15± 22.74 12.03± 0.99 5.41±0.97

18300 Precision 0.70± 0.01 0.75± 0.18 0.88± 0.02 0.95±0.01
Recall 0.99±0.00 0.96± 0.10 0.98± 0.01 0.88± 0.01

33800
SR(%) 36.53± 1.57 12.96± 1.70 8.65± 0.44 4.05±0.67

26200 Precision 0.79± 0.01 0.88± 0.01 0.91± 0.01 0.97±0.01
Recall 0.99±0.00 0.98± 0.00 0.98± 0.00 0.89± 0.01

33800
SR(%) 34.48± 1.15 12.10± 1.21 8.31± 0.64 4.43±0.86

28400 Precision 0.80± 0.01 0.89± 0.01 0.92± 0.01 0.96±0.01
Recall 0.99±0.00 0.98± 0.00 0.98± 0.00 0.89± 0.01

Figure 2: Recover g∗ using Algorithm 1
under different label noise ratio gap λ.

Dataset Construction: We explicitly control the
support of informative/uninformative data. For
MNIST+FashionMNIST dataset, images from MNIST are
set to be uninformative and images from Fashion-MNIST
are set to be informative. For SVHN(Netzer et al., 2011)
dataset, class 5-9 are set to be uninformative and class
0-4 are set to be informative. Datasets are constructed
with different values of informative data fraction α and
label noise ratio gap λ according to the noisy generative
process. We inject label noise accordingly to Definition 1
by setting λ(x) = λ. We shuffle the labels of infor-
mative/uninformative data according to different values
of λ and mix informative/uninformative data according
to α. In particular, we choose α ∈ {25%, 50%} and
λ ∈ {0.3, 0.35, 0.4}.
Results and Discussion. The average accuracy of the selector given by Algorithm 1 compared to
the ground truth selector is presented in Figure 2. As one can observe, Algorithm 1 recovers g∗
within reasonable error range. In addition, the accuracy improves as λ increases, which supports our
bound in Equation 1. MNIST+FashionMNIST data turns out to be more challenging than SVHN in
recovering g∗. We believe this is because informative data in MNIST+FashionMNIST has 10-classes,
which is more challenging for learning a predictor f̂ compared to SVHN with 5 classes. The quality
of selector ĝ suffers from imprecise f̂ .

7.2 EXPERIMENTS USING SEMI-SYNTHETIC DATA FOR Q2

Dataset Construction: The construction of informative/uninformative data follows Section 7.1.
We uniformly shuffle the labels for uninformative data and keep original labels of informative
data. Informative and uninformative datasets are mixed in different proportions as proxy for noisy
generative process with different α. The construction of dataset mimics the noisy generative process
with λ = 1

2 . The choice of λ ensures that the informative data has no label noise. Such noiseless
setting allows three baselines to estimate/set α to the best of their ability, according to accuracy of
estimated predictor f̂ .

Evaluation Metric. We use three criteria to jointly evaluate a selective learning outcome. (1)
Selective risk (SR). Selective risk is the empirical risk measured over data points selected by the
algorithm. This is a metric that is also adopted in (Geifman & El-Yaniv, 2019; Liu et al., 2019). (2)
Precision. Precision is the proportion of true informative data point among all the data picked out
by the selector. (3) Recall. Recall is the proportion of true informative samples picked out by the
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selector out of all the informative samples in the dataset. SR evaluates the quality of the classifier,
Precision and Recall are the standard ML metrics for the selector. An ideal algorithm should have
low SR, high precision and high recall.

Results and discussion. Table 1 presents the results of MNIST+FashionMNIST and SVHN dataset
with different fractions (α) of informative data. The selective learning methods, SelectiveNet and
DeepGambler, perform poorly because they require prior information α to be given as input. The
estimation of α turns out to be very challenging in practice due to the presence of noisy uninformative
data. In contrast, our method provably recovers α automatically and is robust against the choice
of hyper-parameter (β). The ablation study in Appendix Fig 7 exhibits this stability: our method
consistently behaves well given different values of β. A thorough exploration of the estimation of
α and corresponding performance of baselines is provided in Appendix Tables 10,11 and 12. We
also provide ablation study on the MWU mechanism in Figure 4 and Table 13, showing its ability to
weight up informative data and improve algorithm’s performance.

7.3 EXPERIMENTS USING REAL-WORLD DATA FOR Q3

In this section, we report our empirical study on 3 publicly-available datasets: (1) breast ultrasound
images (BUS) (Al-Dhabyani et al., 2020), (2) lending club dataset (LC), and (3) Oxford realized
volatility (Volatility) data set (Heber et al., 2009). We aim to demonstrate the potential application of
the proposed algorithm in real-world application and its advantages in selecting useful information
out of noisy dataset.

Evaluation Metric. Unlike synthetic experiments, in real-world data set, the ground-truth labels
showing which data is informative and which is uninformative is not available. Metrics like preci-
sion/recall are not applicable. Instead, we report the selective risk of each algorithm given different
coverage level. Specifically, we pick testing data points that have top coverage% selective confidence
given by each selector, and calculate the testing selective risk at different coverage level accordingly.

Result and Discussion. From Table 2, we can see our method gains competitive performance against
other baselines at low coverage level. This suggests that our method is especially good at picking
out strongly informative data. Strongly informative data are easier to learn thus the classifier is more
consistent with the ground-truth model. Such low risk regime can be captured by our selector loss,
leading to low selective risk.

Table 2: Real-World Experiments: Selective Risk v.s Coverage
Dataset Coverage Confidence SLNet DeepGambler Ours

Volatility

0.02 0.072±0.002 0.074±0.000 0.267±0.033 0.046±0.002
0.05 0.088±0.002 0.091±0.000 0.281±0.013 0.073±0.003
0.10 0.118±0.005 0.127±0.003 0.327±0.012 0.116±0.004
0.20 0.160±0.003 0.200±0.004 0.374±0.008 0.192±0.005

BUS

0.02 0.040±0.007 0.014±0.020 0.000±0.000 0.000±0.000
0.05 0.040±0.007 0.014±0.020 0.000±0.000 0.000±0.000
0.10 0.040±0.007 0.014±0.020 0.000±0.000 0.042±0.059
0.20 0.040±0.007 0.063±0.026 0.073±0.015 0.083±0.029

LC

0.02 0.469±0.014 0.212±0.022 0.153±0.024 0.136±0.013
0.05 0.286±0.008 0.207±0.015 0.170±0.026 0.177±0.013
0.10 0.239±0.008 0.218±0.009 0.190±0.024 0.221±0.010
0.20 0.248±0.005 0.251±0.004 0.218±0.021 0.271±0.007

8 CONCLUSION AND FUTURE WORK

In this work, we take the first step towards principled learning in domains where a lot of data is
naturally uninformative/highly noisy and should be discarded in learning and inference stage. We
propose a general noisy generative process that formally describes such setting. A novel loss is
designed for the training of the selector model with theoretical guarantees. Based on this loss, we
design a heuristic algorithm that jointly learns the predictor and selector. Our empirical study support
merit of our methods. We believe the Noisy Generative Process can be generalize to solve different
problem, such as active learning (Cohn et al., 1994) and out of distribution generalization (Arjovsky
et al., 2019). We look forward to these extensions in future work.
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9 REPRODUCIBILITY STATEMENT

We describe a synthetic data generation procedure, evaluation metrics in Appendix section 7. For the
convenience of the reader to reproduce the experiment, we also summarize the experiment setting
and give implementation details in section B.1. The source code as well as parameters to reproduce
the experimental results will be made available together with the publication of the paper.

10 ETHICS STATEMENT

This paper focuses on a theoretical discussion about learning from data that contains different portion
of non-informative samples. Our experiments only use publicly available datasets. Our discussion,
analysis, or data shouldn’t raise any ethics-related issues. The learning method proposed in this paper,
however, can be potentially used in applications with fairness and privacy concerns. It our future
efforts in this area, we aim to address and resolve possible negative impact.
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A THEORETIC RESULTS DETAILS

In this appendix section, we present the missing proofs as well as additional empirical results.

A.1 PRELIMINARY

We describe the risk for selector loss on (x, y) ∼ X × Y ⊂ Rd × {+1,−1}.

R(g; f, β) := Ex,y

[
β1{g(x) = 1}1{f(x) ̸= y}+ 1{g(x) ̸= 1}1{f(x) = y}

]
(7)

The choice of β should ensure that given Bayes optimal classifier f∗(·), g∗(·) is the minimizer for
the selector risk R(g; f∗, β). We have that given f∗, the risk gap between any selector g and g∗ is
R(g; f∗, β)−R(g∗; f∗, β) could be written as:

R(g; f∗, β)−R(g∗; f∗, β)
= Ex,y

[
β1{g(x) = 1}1{g∗(x) = 1}1{f∗(x) ̸= y}

+β1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) ̸= y}
+1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) = y}

]
+1{g(x) ̸= 1}1{g∗(x) ̸= 1}1{f∗(x) = y}

]
−Ex,y

[
β1{g(x) = 1}1{g∗(x) = 1}1{f∗(x) ̸= y}

+β1{g(x) ̸= 1}1{g∗(x) = 1}1{f∗(x) ̸= y}
+1{g(x) ̸= 1}1{g∗(x) ̸= 1}1{f∗(x) = y}
+1{g(x) = 1}1{g∗(x) ̸= 1}1{f∗(x) = y}

]
= Ex

[{
β

(
1

4
+
λ(x)

2

)
− 3

4
+
λ(x)

2

}
1{g(x) = 1}1{g∗(x) ̸= 1}

]
+Ex

[{3

4
+
λ(x)

2
− β

(
1

4
− λ(x)

2

)}
1{g(x) ̸= 1}1{g∗(x) = 1}

]

(8)

Since λ(x) is data dependent, to ensure that R(g, f∗, β) ≥ R(g∗; f∗, β) for all g ∈ G, it suffices to
pick β

(
1
4 +

λ(x)
2

)
− 3

4 +
λ(x)
2 > 0 and 3

4 +
λ(x)
2 − β

(
1
4 −

λ(x)
2

)
> 0, we need β ≥ sup

x

3−2λ(x)
1+2λ(x) and

β ≤ inf
x

3+2λ(x)
1−2λ(x) which implies that it suffices to pick β ∈

[
3−2λ
1+2λ ,

3+2λ
1−2λ

]
.
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Assuming λ(x) ≥ λ, we pick β within certain margin of the above interval: by picking
[
3−2λ
1+2λ +

λ, 3+2λ
1−2λ −

λ
1−4λ2

]
we have

R(g; f∗, β)−R(g∗; f∗, β) ≥ λ

4(1 + 2λ)
Ex[1{g(x) ̸= g∗(x)}] (9)

A.2 PROOF OF INFORMATION THEORETIC LOWER BOUND

In this section we quantify the hardness of recovering g∗, from an information theoretic perspective.
Let (x, y) ∼ X × Y ⊂ Rd × {+1,−1}, we set X : {τ · e|e ∈ {e1, ..., ed}, |τ | ≤ 1} where ej
represents the j-th cannonical basis. Let w be vector of ones, w = 1, we set f∗(x) = 21{w⊤x >
0} − 1. Let G be the hypothesis class that contains g∗(x). In our lower bound construction |G| = 2d

and g(x) =
∑d

j=1 1{x⊤ej ̸= 0}
{
−1{∥x∥ ≥ 1−α}·ζj+1{∥x∥ ≤ α}·ζj−1{α ≤ ∥x∥ ≤ 1−α}

}
where ζ ∈ {+1,−1}d. For example, suppose for each j = 1, . . . , d, ej is the vector with the jth
entry one and the other entries zero. Then for x = τ · ej for some j ∈ {1, . . . , d}, f∗(x) is 1 if τ is
positive and it is −1 if τ is negative. Moreover, g(x) is −ζj if ∥τ∥ ≥ 1− α, it is ζj if ∥τ∥ ≤ α, and
it is −1 otherwise.

Let σ ∈ {+1,−1}d be a d-dimensional Rademacher vector and we set g∗(x) =
∑d

j=1 1{x⊤ej ̸=
0}

{
−1{∥x∥ ≥ 1−α} ·σj +1{∥x∥ ≤ α} ·σj−1{α ≤ ∥x∥ ≤ 1−α}

}
where σ ∈ {+1,−1}d. In

another word, the support of Dα = ∪dj=1Ω
j where Ωj : {x|x = τ · ej}. If σj = −1, the informative

part of Ωj is {x|∥x∥ ≥ 1 − α} otherwise the informative part of Ωj becomes {x|∥x∥ ≤ α}.
Assuming f∗(x) is deterministic and let S = {(xi, yi)}ni=1 be generated from following process
which we denote as Q:

σ ∼ Unif{+1,−1}d

g∗(x) =

d∑
j=1

{
1{x⊤ej ̸= 0}

{
− 1{∥x∥ ≥ 1− α} · σj

+ 1{∥x∥ ≤ α} · σj − 1{α ≤ ∥x∥ ≤ 1− α}
}}

Generate S = {(xi, yi)}ni=1 according to:

j ∼
{
j = 1, with prob 1− ε

λ

j ∼ Unif{2, ..., d} with prob ε
λ .

τ ∼ Unif [−1, 1]
x = τ · ej

y =

{
f∗(x), with prob 3

4 + g∗(x)λ
2

−f∗(x) with prob 1
4 −

g∗(x)λ
2

(10)

LetA be any (potentially randomized) algorithm that takes dataset Sσ as input where Sσ is generated
from the process described in Equation 10. Let ĝ be the hypothesis ouput of algorithm A. For a
parameter β we define

R(A(Sσ), β) = R(ĝ(x), f∗, β) = Ex,y

[
β1{ĝ(x) = 1}1{f∗(x) ̸= y}+ 1{ĝ(x) ̸= 1}1{f∗(x) = y}

]
.

(11)
Theorem 2. Consider the noisy generative process defined in Definition 1 with Ω being G-realizable.
For any ε ≤ λ, to achieve

ESn
[R(A(Sn), f

∗, β)−R(g∗, f∗, β)] ≤ ε

8(1 + 2λ)

with β ∈
[
3−2λ
1+2λ + λ, 3+2λ

1−2λ −
λ

1−4λ2

]
,any algorithm A will take at least log(|G|)

λε many samples.

Proof. The lower bound construction is presented in Equation 10. Note when λ = 1
2 , y becomes

purely random. Our lower bound construction in case λ = 1
2 works for any f that is consistent with
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f∗ on ΩI . From equation (9) the risk gap R(ĝ, f∗, β)−R(g∗, f∗, β) averaged over σ and Sσ can
be written as

EσESσ [R(ĝ, f
∗, β)−R(g∗, f∗, β)]

≥ λ

4(1 + 2λ)
EσESσ

[
Ex[1{ĝ(x) ̸= g∗(x)}]

∣∣∣∣σ]
≥ λ

4(1 + 2λ)
EσESσ

{ d∑
j=2

Px

[
x ∈ Ωj ]Px

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]∣∣∣∣σ}

≥ ε

4(1 + 2λ)d

d∑
j=2

Eσ

{
ESσ

[
Px

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]]∣∣∣∣σ}

(12)

In the last inequality we use the fact that Px[x ∈ Ωj ] = ϵ/(λd) for j ≥ 2.

Let σ/j be a Rademacher vector conditional on coordinates {1, ..., j − 1, j + 1, ...d}. Let σ{−j} be
a vector equal to σ except at the jth entry. Above equation becomes:

EσESσ [R(ĝ, f
∗, β)−R(g∗, f∗, β)]

≥ ε

8(1 + 2λ)d

d∑
j=2

Eσ/j

{
ESσ

[
Px

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]]

+ ES
σ{−j}

[
Px

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]]∣∣∣∣σ/j

}
=

1

2d−1

∑
σ/j∈{+1,−1}d−1

ε

8(1 + 2λ)d

d∑
j=2

{
PSσ,x

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]

+ PS
σ{−j} ,x

[
ĝ(x) ̸= g∗(x)

∣∣x ∈ Ωj
]}

(13)

We make our notation more specific. Let A(Sσ) = ĝσ and A(Sσ{−j}) = ĝσ−j . Notice that g∗(x)
also depends on σ. We let g∗σ be g∗(x) conditioned on σ and g∗σ−j be g∗(x) conditioned on σ{−j}.
In particular, for all x ∈ Ωj , g∗σ−j (x) ̸= g∗σ(x) could happen only when α ≥ ∥x∥ or ∥x∥ ≥ 1− α.
So equation 13 becomes

EσESσ [R(ĝ, f
∗, β)−R(g∗, f∗, β)]

≥ 1

2d−1

∑
σ/j∈{+1,−1}d−1

ε

8(1 + 2λ)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗σ(x)

∣∣x ∈ Ωj
]

+ PS
σ{−j} ,x

[
ĝσ−j (x) ̸= g∗σ−j (x)

∣∣x ∈ Ωj
]}

=
1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗σ(x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]

+ PS
σ{−j} ,x

[
ĝσ−j (x) ̸= g∗σ−j (x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]}

=
1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗σ(x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]

+ PS
σ{−j} ,x

[
ĝσ−j (x) ̸= −g∗σ(x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]}

(14)
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Next we make Equation14 independent of x.

EσESσ [R(ĝ, f
∗, β)−R(g∗, f∗, β)]

≥ 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
PSσ,x

[
ĝσ(x) ̸= g∗σ(x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]

+ PS
σ{−j} ,x

[
ĝσ−j (x) ̸= −g∗σ(x)

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]}

=
1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
ESσ,x

[
1{ĝσ(x) ̸= g∗σ(x)}

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]

+ ES
σ{−j} ,x

[
1{ĝσ−j (x) ̸= −g∗σ(x)}

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]}

=
1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
ESσ,x

[
1{ĝσ ̸= g∗σ}

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]

+ ES
σ{−j} ,x

[
1{ĝσ−j ̸= −g∗σ}

∣∣x ∈ Ωj , α ≥ ∥x∥, or, ∥x∥ ≥ 1− α
]}

=
∗

1

2d−1

∑
σ∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
PSσ

[
ĝσ ̸= g∗σ

]
+ PS

σ{−j}

[
ĝσ−j ̸= −g∗σ

]}

=
1

2d−1

∑
σ∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
1− PSσ

[
ĝσ ̸= −g∗σ

]
+ PS

σ{−j}

[
ĝσ−j ̸= −g∗σ

]}

≥ 1

2d−1

∑
σ/j∈{+1,−1}d−1

αε

8(1 + 2λ)d

d∑
j=2

{
1− ∥Q(n)

σ −Q(n)

σ{−j}∥TV

}
(15)

where Q(n)
σ , Q

(n)

σ{−j} is the product distribution of n samples for Sσ andSσ−j . The last step of
inequality follows from the Le Cam’s method. In the Equation ∗ we use the fact that for all x s.t.,
∥x∥ ≤ α or ∥x∥ ≥ 1− α, 1{ĝσj (x) ̸= g∗σj (x)} = 1{ĝσj ̸= g∗σj} is free of x.

Let Qσ be distribution of Sσ and Qσ{−j} be distribution of Sσ−j . The total variation distance can be
bounded using the Hellinger distance, which is denoted asH(·, ·). Below we bound the TV distance
using Hellinger distance.

∥Q(n)
σ −Q(n)

σ{−j}∥TV

≤H(Q(n)
σ , Q

(n)

σ{−j})

√
1−
H2(Q

(n)
σ , Q

(n)

σ{−j})

4

≤
√
nH(Qσ, Qσ{−j})

√
1−
H2(Q

(n)
σ , Q

(n)

σ{−j})

4
H2(Q

(n)
σ ,Q

(n)

σ{−j} )≤nH2(Qσ,Qσ{−j} )

≤
√
nH(Qσ, Qσ{−j})

(16)
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Now we bound the Hellinger distance.

H2(Qσ, Qσ{−j})

=

∫
x,y

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

=

∫
x∈Ωj ,∥x∥≤α

∫
y=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+

∫
x∈Ωj ,∥x∥≥1−α

∫
y=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+

∫
x∈Ωj ,∥x∥≤α

∫
y ̸=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

+

∫
x∈Ωj ,∥x∥≥1−α

∫
y ̸=f∗(x)

(√
Qσ(x, y)−

√
Qσ{−j}(x, y)

)2
dxdy

=
αε

dλ

{(√
3

4
+
λ

2
−

√
3

4
− λ

2

)2

+

(√
1

4
+
λ

2
−
√

1

4
− λ

2

)2}
≤3αελ

d

(17)

Thus we can bound the total variation distance as:

∥Q(n)
σ −Q(n)

σ{−j}∥TV ≤
√

3nαελ

d
(18)

Note inequality 18 together with inequality 13 we have and inequality 15

EσESσ [R(A(Sσ), β)−R(g∗, f∗, β)]
=EσESσ [R(ĝ, f

∗, β)−R(g∗, f∗, β)]

≥ d− 1

d

αε

8(1 + 2λ)

(
1−

√
3nαελ

d

) (19)

Above implies sup
σ∈{+1,−1}d

ESσ [R(A(Sσ), f
∗, β) − R(g∗, f∗, β)] ≥ EσESσ [R(A(Sσ), β) −

R(g∗, f∗, β)] ≥ d−1
d

αε
8(1+2λ)

(
1−

√
3nαελ

d

)
. Since |G| = 2d, any algorithm A will needs number

of samples at least n = Ω

(
log |G)|
λεα

)
so that there is a hope to achieve

sup
σ

ESσ [R(A(Sσ), β)]−R(g∗, f∗, β) ≤
αε

32(1 + 2λ)
.

Replacing αε with α finishes the proof.

Remark 3. From the second inequality in Equation 12, it can be observed that the construction of
information theoretic lower bound for risk function R(g, β) can also be applied to construction an
Ω(log(|G|/(λε))) sample complexity lower bound for Ex[g(x) ̸= g∗(x)]. Thus our Corollary 1 also
achieves minimax-optimal rate for recovering g∗ for family of Noise Generative Process.

A.3 PROOF OF SAMPLE COMPLEXITY UPPER BOUND

Here we prove Theorem 1 in which we bound the risk gap R(g; f∗, β)−R(g∗; f∗, β). Recall that
the empirical version of the selector loss is

RSn
(g; f, β) =

1

n

n∑
i=1

{
β1{g(xi) = 1}1{f(xi) ̸= yi}+ 1{g(xi) = 1}1{f(xi) = yi}

}
.

18
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Our high level approach is as follows. We first analyze the gap between RSn
(ĝ; f∗, β) and

RSn
(g∗; f∗, β) and provide an upper bound for it. Then we use this upper bound to get an up-

per bound for the gap between R(ĝ; f∗, β) and R(g∗; f∗, β) using concentration properties and
Bernstein inequality.

CASE I: f̂(·) ∈ F and Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with probability at least 1− δ. To upper bound

RSn
(ĝ; f∗, β)−RSn

(g∗; f∗, β), we use RSn
(ĝ; f̂ , β) and RSn

(g∗; f̂ , β) as a middle step. Since ĝ
is the empirical risk minimizer, we have

RSn
(ĝ; f̂ , β) ≤ RSn

(g∗; f̂ , β). (20)

Next we leverage on the fact that f̂ is consistent with f to establish an inequality in following fashion:

RSn
(ĝ; f∗, β) ≤ RSn

(g∗; f∗, β) + const · ε
Note we have that

RSn
(ĝ; f̂ , β)

=
1

n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

}

+
1

n

n∑
i=1

1

{
f̂(xi) = f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

}
(21)

Recall that

RSn(ĝ; f
∗, β) =

1

n

n∑
i=1

[
β1{ĝ(xi) = 1}1{f∗(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f∗(xi) = yi}

]
.

So

RSn
(ĝ; f̂ , β)

= RSn
(ĝ; f∗, β)

− 1

n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f∗(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f∗(xi) = yi}

}

+
1

n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}{
β1{ĝ(xi) = 1}1{f̂(xi) ̸= yi}+ 1{ĝ(xi) = 1}1{f̂(xi) = yi}

}

≥ RSn
(ĝ; f∗, β)− β − 1

n

n∑
i=1

1

{
f̂(xi) ̸= f∗(xi)

}
(22)

Recall that in the theorem assumptions we have Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β with probability at least

1−δ. By Lemma 2, if n ≥ 24β2 log(|F|/δ)
ε we have with probability at least 1−δ, 1

n

∑n
i=1 1{f̂(xi) ̸=

f∗(xi)} ≤ ε
4β , so we have

RSn(ĝ; f̂ , β) ≥ RSn(ĝ; f
∗, β)− ε/4

With a similar approach we get that

RSn
(g∗; f̂ , β) ≤ RSn

(g∗; f∗, β) + ε/4

Thus using (20) we have following inequality holds with probability at least 1− δ
RSn(ĝ; f

∗, β) ≤ RSn(g
∗; f∗, β) + ε/2. (23)

To get a bound for R(ĝ; f∗, β) − R(g∗; f∗, β), we first define ℓ(g; f,x, y) = β1{g(x) =
1}1{f(x) ̸= y} + 1{g(x) = 1}1{f(x) = y}. Note that at this point we think of β as fixed
and so we have not included it in the arguments of ℓ(·) for simplicity.
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Observe that RSn
(g, f∗, β) = 1

n

∑n
i=1 ℓ(g; f

∗,xi, y) and R(g, f∗, β) = Ex,y

[
ℓ(g; f∗,x, y)

]
for

any g. First we have the following simple inequality directly taken from (23).

R(ĝ, f∗, β)−R(g∗, f∗, β)
= Ex,yℓ(ĝ; f

∗,x, y)− Ex,yℓ(g
∗; f∗,x, y)

≤RSn(g
∗; f∗, β)−RSn(ĝ; f

∗, β)− (Ex,yℓ(g
∗; f∗,x, y)− Ex,yℓ(ĝ; f

∗,x, y)) + ε/2

(24)

By defining ∆ℓ(g∗, g,x, y) = ℓ(g∗; f∗,x, y) − ℓ(g; f∗,x, y) for any g, we can express the above
inequality as follows:

Ex,yℓ(ĝ; f
∗,x, y)− Ex,yℓ(g

∗; f∗,x, y)

≤ 1

n

n∑
i=1

∆ℓ(g∗, ĝ,xi, y)− Ex,y∆ℓ(g
∗; ĝ,x, y) + ε/2

(25)

To bound 1
n

∑n
i=1 ∆ℓ(g

∗, ĝ,xi, y)− Ex,y∆ℓ(g
∗; ĝ,x, y) with high probability over all Sn, we need

to find a bound on 1
n

∑n
i=1 ∆ℓ(g

∗, g,xi, y)−Ex,y∆ℓ(g
∗; g,x, y) that is true for all g simultaneously

with high probability. We have :

PSn

[
∃g ∈ G,

{
1

n

n∑
i=1

∆ℓ(g∗, g;xi, yi)− Ex,y[∆ℓ(g
∗, g;x, y)]

≥ n

β
log(|G|/δ) +

√
2V ar(∆(g∗, g;x, y)) log(|G|/δ)

n

}]
≤

∑
g∈G

PSn

[
1

n

n∑
i=1

∆ℓ(g∗, g;xi, yi)− Ex,y[∆ℓ(g
∗, g;x, y)]

≥ n

β
log(|G|/δ) +

√
2V ar(∆(g∗, g;x, y)) log(|G|/δ)

n

]
(26)

Now to bound 1
n

∑n
i=1 ∆ℓ(g

∗, g,xi, y)− Ex,y∆ℓ(g
∗; g,x, y) we use Bernstein inequality. For that

we need to bound V arx,y[∆ℓ(g
∗, g,x, y)]. We first expand ∆ℓ(g∗, g,x, y).

∆ℓ(g∗, g,x, y) =ℓ(g∗; f∗,x, y)− ℓ(g; f∗,x, y)
=β1{g∗(x) = 1}1{f∗(x) ̸= y}+ 1{g∗(x) = 1}1{f∗(x) = y}
−β1{g(x) = 1}1{f∗(x) ̸= y} − 1{g(x) = 1}1{f∗(x) = y}

So we have

∆2ℓ(g∗, g,x, y)

= β2

[
1{g∗(x) = 1}+ 1{g(x) = 1} − 21{g(x) = 1}1{g∗(x) = 1}

]
1{f∗(x) ̸= y}

+

[
1{g∗(x) = 1}+ 1{g(x) = 1} − 21{g(x) = 1}1{g∗(x) = 1}

]
1{f∗(x) = y}

=

(
β2
1{f∗(x) ̸= y}+ 1{f∗(x) = y}

)[
1{g(x) = 1}1{g∗(x) ̸= 1}+ 1{g(x) ̸= 1}1{g∗(x) = 1}

]
≤ β2

1{g∗(x) ̸= g(x)}
(27)

Hence we conclude that V arx,y[∆ℓ(g
∗, g,x, y)] ≤ Ex,y∆

2ℓ(g∗, g,x, y) ≤ β2Ex[1{g∗(x) ̸=
g(x}]. On the other hand, Equation 8 implies thatR(g; f∗, β)−R(g∗; f∗, β) ≥ λ

1+2λEx[1{g∗(x) ̸=
g(x}]. Thus we can use the following inequality to achieve fast rate of convergence using the
Bernstein Inequality:

V arx,y[∆ℓ(g
∗, g;x, y)] ≤ β2(1 + 2λ)

λ
{R(g; f∗, β))−R(g∗; f∗, β)}. (28)
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We use following version of the Bernstein Inequality, with X1, ..., Xn i.i.d random variable uniformly
bounded by b:

P
(
1

n

n∑
i=1

Xi − E[X] <
b

n
log(1/δ) +

√
2V ar(X) log(1/δ)

n

)
≥ 1− δ

Using union bounds, the Bernstein Inequality implies that with probability for all g ∈ G simultane-
ously:

PSn

[{
1

n

n∑
i=1

∆ℓ(g∗, g;xi, yi)− Ex,y[∆ℓ(g
∗, g;x, y)]

}

≤β
n
log

(∣∣G∣∣/δ)+
√

2V ar(∆(g∗, g;x, y)) log
(∣∣G∣∣/δ)

n

]
≥ 1− δ

(29)

Thus by applying inequality 29 with ĝ we have:

PSn

[{
1

n

n∑
i=1

∆ℓ(g∗, ĝ;xi, yi)− Ex,y[∆ℓ(g
∗, ĝ;x, y)]

}

≤β
n
log

(∣∣G∣∣/δ)+
√

2V ar(∆(g∗, ĝ;x, y)) log
(∣∣G∣∣/δ)

n

]
≥ 1− δ

By inequality 23, we have 1
n

∑n
i=1 ∆ℓ(g

∗, ĝ;xi, yi) = RSn(g
∗; f∗, β) − RSn(ĝ; f

∗, β) ≥ −ε/2
holds with probability 1 − δ. Note R(ĝ; f∗, β)) − R(g∗; f∗, β) = −Ex,y[∆ℓ(g

∗, ĝ;x, y)]. So we
have

PSn

[
{R(ĝ; f∗, β)−R(g∗; f∗, β)}

≤β
n
log

(∣∣G∣∣/δ)+
√

2β2(1 + 2λ){R(ĝ; f∗, β))−R(g∗; f∗, β)} log
(∣∣G∣∣/δ)

λn
+ ε/2

]
≥1− 2δ

The choice of n ≥ 16β2 log(
|G|
δ )

λε ensures that with probability at least 1 − 2δ, R(ĝ; f∗, β) −
R(g∗; f∗, β) ≤ ε.

CASE II: λ = 1
2 , f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε

8βαβ with probability at
least 1− δ. When λ = 1

2 , achieving Ex[f̂(x) ̸= f∗(x)] ≤ ε
8β is in general impossible. One can

only approximate f∗(·) on the informative support ΩI since y is generated by coin flipping when
x ∈ ΩU . For simplicity of analysis, we introduce a ‘pseudo’ version of f∗(·) denoted as f̃∗. Let F̃
be following hypothesis class:{

f̃

∣∣∣∣f̃(x) = {
f1(x), x ∈ ΩU

f2(x), x ∈ ΩI
, f1 ∈ F , f2 ∈ F

}

and we let f̃∗(·) be:

f̃∗(x) =

{
f̂(x), x ∈ ΩU

f∗(x), x ∈ ΩI

Clearly, f̃∗ ∈ F̃ . Note such hypothesis class is only introduced in analysis and is potentially
impractical. The cardinality of hypothesis class |F̃ | ≤ |F|2. The construction of f̃∗ is to make
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R(g(x), f̃∗, β)−R(g∗(x), f̃∗, β) ≥ 0 for all g ∈ G. To see this:

R(g(x), f̃∗, β)−R(g∗(x), f̃∗, β)

=Ex,y

[
β1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) ̸= y}

−1{g(x) = 1}1{g∗(x) ̸= 1}1{f̃∗(x) = y}

+1{g(x) ̸= 1}1{g∗(x) = 1}1{f̃∗(x) = y}

−β1{g(x) ̸= 1}1{g∗(x) = 1}1{f̃∗(x) ̸= y}
]

=

{
β

2
− 1

2

}
Ex

[
1{g(x) = 1}1{g∗(x) ̸= 1}

+Ex

[
1{g(x) ̸= 1}1{g∗(x) = 1}

]
≥ 0

(30)

Meanwhile f̃∗(·) also satisfies the property that Ex[f̃
∗(x) ̸= f̂(x)] ≤ ε

8β with probability at

least 1 − δ. Thus by Lemma 2, if n ≥ 24β2 log(
|F|
δ )

ε we have with probability at least 1 − δ,
1
n

∑n
i=1 1{f̂(xi) ̸= f̃∗(xi)} ≤ ε

8β .

The rest of the proof is the same as the proof in CASE I by replacing f∗ with f̃∗, leveraging on the
fact that R(g∗(x), f̃∗, β) = R(g∗(x), f∗, β).

Remark 4. Let us point out that our proposed selective strategy is different from the consistent
selective strategy in (El-Yaniv et al., 2010). Instead of rejecting by looking for consistent output
from all hypothesis in the version space, our approach deals with one single reasonably accurate
hypothesis (the empirical minimizer). We leverage empirical mistakes made by the predictor in order
to learn a selector, aiming to reject (only) the mistakes in a data driven manner. This avoids dealing
with the issues found in Theorem 14 in (El-Yaniv et al., 2010), where the selector fails to select any
data points.
Remark 5. In (Cortes et al., 2016), a second hypothesis for the selector is introduced and analyzed,
and at the same time, multiple commonly used loss functions are scrutinized and generalization
results are provided. The major difference between this work and (Cortes et al., 2016; Geifman
& El-Yaniv, 2019) is the motivation pertaining to selective learning. While in (Cortes et al., 2016;
Geifman & El-Yaniv, 2019) the selective loss is designed from a coverage ratio perspective, i.e.
one wants to trade coverage ratio for a higher precision (selective loss), our approach is designed
to distinguish data that is naturally unlearnable and unpredictable. This difference leads to an
alternative theoretical result. While the analysis in (Cortes et al., 2016) focuses on selective risk, our
theoretical analysis focuses on the quality of the selector in distinguishing informative/uninformative
data, without adjusting rejection cost given by human.

A.4 MISSING PROOF FOR COROLLARY 6

It can be easily verified that β = 3 is in the interval β ∈
[
3−2λ
1+2λ + λ,min( 3+2λ

1−2λ −
λ

1−4λ2 , 10)
]
. By

the choice of β, from (9) we have

R(ĝ, f∗, β)−R(g∗, f∗, β) ≥ λ

4(1 + 2λ)
Ex[1{ĝ(x) ̸= g∗(x)}],

together with the conclusion in Theorem 1 that
R(ĝ; f∗, β)−R(g∗; f∗, β) ≤ ε

we can conclude that Equation 6 holds.

A.5 MISSING PROOF FOR CONTROLLING CONDITIONAL RISK Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ]

Lemma 1 (Sauer–Shelah Lemma(See (Blum et al., 2016; Mohri et al., 2018; Sauer, 1972))). Let
dvc(G) be the VC-dimension of hypothesis class G, for all n ∈ N,

BG(n) ≤
dvc∑
i=0

(
n
i

)
≤

(
en

dvc(G)

)dvc(G)
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Definition 4 (Growth Function(Vapnik & Chervonenkis, 2015)). Let G be the hypothesis class of
function f and Fx1,...,xn

= {
(
f(x1), ..., f(xn)

)
: f ∈ F} ⊆ {+1,−1}n. The growth function is

defined to be the maximum number of ways in which n points can be classified by the function class:
BF (n) = supx1,...,xn

|Fx1,...,xn
|.

Theorem 3. For every ε > 0, there is a δ > 0 such that under Assumption 1, given a set of samples
Sn = {(x1, y1), ..., (xn, yn)} drawn i.i.d. from the Noisy Generative Process and

f̂ = argmin
f∈F

n∑
i=1

1{f(xi) ̸= yi},

if n is chosen such that

n ≥
32

[
dV C(F) log(1ε ) + log( 1δ )

]
ϵ2α2

,

then with probability at least 1− 2δ:

Ex,y[f̂(x) ̸= y] ≤ 1

2
(1− α) + 2ϵα.

Furthermore,
Px[f

∗(x) ̸= f̂(x)|x ∈ ΩI ] ≤ 2ϵ

Proof. We first bound the probability of the event that Ex,y[f̂(x) ̸= y] ≤ 1
2 (1− α) + 2ϵα.

By Lemma 3 and Hoeffiding inequality we have:

PSn [sup
f∈F
| 1
n

n∑
i=1

1{f(xi) ̸= yi} − Ex,y[1{f(x) ̸= y}]| ≥ t] ≤ 4BF (2n)e−
nt2

32 (31)

By setting t = αϵ and n ≥ 32(4 log(BF (2n))+log( 1
δ ))

α2ϵ2 we have with probability of at least 1− δ:

1

n

n∑
i=1

1{f̂(xi) ̸= yi} − Ex,y[1{f̂(x) ̸= y}] ≤ αϵ

2

The term BF (2n) could be bounded by Sauer’s lemma. Next we apply the fact that f̂ =

argminf∈F
1
n

∑n
i=1 1{f̂(xi) ̸= yi}. We have:

Ex,y[1{f̂(x) ̸= y}] ≤ αϵ

2
+

1

n

n∑
i=1

1{f̂(xi) ̸= yi} ≤
αϵ

2
+

1

n

n∑
i=1

1{f∗(xi) ̸= yi}

Since 1
n

∑n
i=1 1{f∗(xi) ̸= yi} ≤ 1

2 (1− α) + ϵα with failure probability at most δ (Lemma 5), we
have with probability at least 1− 2δ:

Ex,y[1{f̂(x) ̸= y}] ≤ 1

2
(1− α) + 2ϵα.

Next we prove the claim that:
Px∼DI

[f∗(x) ̸= f̂(x)] ≤ 2ϵ.

Since Ex,y[1{f̂(x) ̸= y}] ≤ 1
2 (1− α) + 2ϵα:

Ex,y[1{f̂(x) ̸= y}]

=E(x,y)∼Dα
[1{f̂(x) ̸= y}]

=E(x,y)∼Dα
[1{f̂(x) ̸= y}|x ∈ ΩU ]︸ ︷︷ ︸

1
2

P(x,y)∼Dα
[x ∈ ΩU ]︸ ︷︷ ︸

1−α

+E(x,y)∼Dα
[1{f̂(x) ̸= y}|x ∈ ΩI ]︸ ︷︷ ︸

P(x,y)∼Dα [1{f̂(x) ̸=f∗(x)}|x∈ΩI ]

P(x,y)∼Dα
[x ∈ ΩI ]︸ ︷︷ ︸

α

=
1

2
(1− α) + αPx∼Dα

[f̂(x) ̸= f∗(x)|x ∈ ΩI ]

≤1

2
(1− α) + 2ϵα

=⇒Px∼Dα
[1{f̂(x) ̸= f∗(x)}|x ∈ ΩI ] ≤ 2ϵ

(32)
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A.6 EXTENTION TO VC-CLASS

In order to leverage the margin condition of distribution of z to obtain a minimax-optimal general-
ization rate, we leverage on the Local Rademacher Average tool. Our analysis tool largely follows
from (Bousquet et al., 2003; Bartlett et al., 2005). Throughout this section, ≲ and ≳ represent as
shorthand for the ≤ and ≥ that ignores universal constants.

Definition 5 (L2-Covering Number). (Wellner et al., 2013) Let x1:n be set of points. A set of U ⊆ Rn

is an ε-cover w.r.t L2-norm of F on x1:n, if ∀f ∈ F , ∃u ∈ U , s.t.
√

1
n

∑n
i=1 |[u]i − f(xi)|2 ≤ ε,

where [u]i is the i-th coordinate of u. We define the covering number N2(ε,F ,x1:n) :

N2(ε,F ,x1:n) := min{|U |: U is an ε-cover of F on x1:n}

Let N2(ε,F , n) be the maximum cardinality of N2(ε,F ,x1:n) over all x1:n. Formally N2(ε,F , n)
is defined as:

N2(ε,F , n) := sup
x1:n∈Xn

min{|U |: U is an ε-cover of F on x1:n}

Definition 6 (Local Rademacher Average (Bartlett et al., 2005; Bousquet et al., 2003)). Let σ1:n be
Rademacher sequence of length n, the Empirical Local Rademacher Complexity at distributional and
empirical radius r ≥ 0 for the class F are defined as

Rn(F , Pf2 ≤ r) ≡ Eσ1:n
[ sup
f∈F,Exf(x)2≤r

1

n

n∑
i=1

σif(xi)]

Rn(F , Pnf
2 ≤ r) ≡ Eσ1:n

[ sup
f∈F, 1

n

∑n
i=1 f(xi)2≤r

1

n

n∑
i=1

σif(xi)]

and their distributional Average as: R(F , Pf2 ≤ r) ≡ ESn [Rn(F , Pf2 ≤ r)] andR(F , Pnf
2 ≤

r) ≡ ESn [Rn(F , Pnf
2 ≤ r)].

Definition 7 (Star Hull). (Bartlett et al., 2005; Bousquet et al., 2003) The star hull of set of functions
F is defined as

∗F ≡ {αf : f ∈ F , α ∈ [0, 1]}
Definition 8 (Sub-Root Function). (Bartlett et al., 2005; Massart & Nédélec, 2006; Bousquet et al.,
2003) A function ψ : R→ R is sub-root if

• ψ is non-decreasing

• ψ is non-negative

• ψ(r)/
√
r is non-increasing

And we say r∗ is a fixed point of ψ if ψ(r∗) = r∗.

Theorem 4. [Risk Bound VC-Class] Let Sn = {(xi, yi)}ni=1 be i.i.d sample from Data Generative
Process described in Definition 1 under Assumption 1, with f∗(·) ∈ F and g∗(·) ∈ G with VC-
dimension dV C(F) < ∞ dV C(G) < ∞. Given λ, let β ∈

[
3−2λ
1+2λ + λ,min( 3+2λ

1−2λ −
λ

1−4λ2 , 10)
]
.

For any f̂(·) ∈ F , let ĝ = argmin
g∈G

RSn(g; f̂ , β). Then for any ε > 0, there is a δ > 0 such that the

following holds: For

n ≳ max{
β4dV C(G) log(1ε ) + β4 log( 1δ )

λε
,
βdV C(F) log(dV C(F)

ε ) + β log( 1δ )
)

ε
}.

and for f̂ that satisfies one of the following condition:

• For any f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)] ≲ ε
β with probability at least 1− δ,
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• If λ = 1
2 , for any f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≲ ε

βα with probability
at least 1− δ,

The following holds with probability at least 1− 3δ:

R(ĝ; f∗, β)−R(g∗; f∗, β) ≲ ε

Proof. The major difference from the proof for Theorem 1 is the fact that G and F are not finite
hypothesis class. To achieve fast generalization rate, we leverage the Local Rademacher Complexity
Tool from (Bartlett et al., 2005).

CASE I : f̂(·) ∈ F and Ex[f̂(x) ̸= f∗(x)] ≲ ε
β with probability at least 1− δ.

We use a proof similar to the one in Theorem 1 up to Equation 21. Since F is a VC-class, we will
invoke Lemma 8 instead of Lemma 2. Since n ≳

β(dV C(F) log( 1
ε )+log( 1

δ ))

ε , it can be achieved with
probability at least 1− δ that

RSn(ĝ; f̂ , β) ≥ RSn(ĝ; f
∗, β)− ε/4

and
RSn

(g∗; f̂ , β) ≤ RSn
(g∗; f∗, β) + ε/4.

Thus following hold with probability at least 1− δ:

RSn
(ĝ; f∗, β) ≤ RSn

(g∗; f∗, β) +
ε

2
. (33)

Next we turn to bound the risk gap using R(ĝ; f∗, β)−R(g∗; f∗, β) using concentration property of
inequality 33. Similar to the proof in Theorem 1, we define ℓ(g; f,x, y) = β1{g(x) = 1}1{f(x) ̸=
y}+ 1{g(x) ̸= 1}1{f(x) = y}. Based on ℓ, we define following hypothesis class:

∆ ◦ ℓ ◦ G ≡
{
∆ℓ(g; g∗,x, y) = ℓ(g; f∗,x, y)− ℓ(g∗; f∗,x, y) : g ∈ G

}
. (34)

To invoke Lemma 6, we need to establish some hypothesis classH that satisfies condition V ar[h] ≤
BE[h]. Next we show ∆ ◦ ℓ ◦ G satisfies the condition that V ar[h] ≤ BE[h] and thus we can apply
Lemma 6 withH = ∆ ◦ ℓ ◦ G. To begin with, one can apply Equation 27 to show that,

1{g∗(x) ̸= g(x)} ≤ ∆2ℓ(g; g∗,x, y) ≤ β2
1{g∗(x) ̸= g(x)}

Above implies that V arx,y[∆ℓ(g
∗, g,x, y)] ≤ Ex,y∆

2ℓ(g∗, g,x, y) ≤ β2Ex[1{g∗(x) ̸= g(x}].
On the other hand, Equation 8 implies that

R(g; f∗, β)−R(g∗; f∗, β) ≥ λ

1 + 2λ
Ex[1{g∗(x) ̸= g(x}].

Thus we have following holds:

V arx,y[∆ℓ(g; g
∗,x, y)] ≤ β2(1 + 2λ)

λ
Ex,y{∆ℓ(g; g∗,x, y)} (35)

Thus we can apply Lemma6 withH = ∆ ◦ ℓ ◦ G, T (h) = E[h2] and B = β2(1+2λ)
λ .

Now we find a subroot function ψ(r) that

ψ(r) ≥ β2(1 + 2λ)

λ
ERn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}.

To find ψ(r), we show some analysis on the Local Rademacher Average
ERn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}.
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ERn(∆ ◦ ℓ ◦ G, r) =ESnσ1:n
[ sup
g∈G,Ex,y [∆2ℓ(g;g∗)]≤r

1

n

n∑
i=1

σi∆ℓ(g; g
∗)]

≤ESnσ1:n
[ sup
g∈G,Ex[1(g ̸=g∗)]≤r

1

n

n∑
i=1

σi∆ℓ(g; g
∗)]︸ ︷︷ ︸

1(g ̸=g∗)≤∆2ℓ(g;g∗)

≤βESnσ1:n
[ sup
g∈G,Ex[1(g ̸=g∗)]≤r

1

n

n∑
i=1

σi1g(xi) ̸= g∗(xi))]︸ ︷︷ ︸
|∆ℓ(g1;g

∗)−∆ℓ(g2;g
∗)|≤β|1(g1 ̸=g∗)−1(g2 ̸=g∗)|

Talagrand Contraction Inequality (Ledoux & Talagrand, 1991)

(36)

In the last inequality, we use the fact that

|∆ℓ(g1; g∗)−∆ℓ(g2; g
∗)| ≤ |ℓ(g1)− ℓ(g2)| ≤ β|1(g1 ̸= g2)| = β|1(g1 ̸= g∗)− 1(g2 ̸= g∗)|.

Define 1 ◦ G ≡ 1{g(x) ̸= g∗(x), g ∈ G}. The indicator function 1{g(x) ̸= g∗(x) is a Boolean
function taking g as input, thus dV C(1 ◦ G) ≤ dV C(G). Thus we have

β2(1 + 2λ)

λ
ERn{∆ℓ(g; g∗) ∈ H : E[h2] ≤ r}

≤β
3(1 + 2λ)

λ
ERn{1{g(x) ̸= g∗(x)} ∈ 1 ◦ G : E[1{g(x) ̸= g∗(x)}] ≤ r}

(37)

Above implies that we can pick ψ(r) to be

ψ(r) =
β3(1 + 2λ)

λ
ERn{∗1 ◦ G : E[1{g(x) ̸= g∗(x)}] ≤ r}+ +11β2 log n

n
(38)

By Equation 49, we have:

Ex,y[∆ℓ(ĝ; g
∗,x, y)] ≤ 2

n

n∑
i=1

∆ℓ(ĝ; g∗;xi, yi) +
1500λ

β2
r∗ +

log(1/δ)(11β + 52
λ )

n
(39)

By inequality 33, we have 1
n

∑n
i=1 ∆ℓ(ĝ; g

∗;xi, yi) = RSn
(ĝ; f∗, β) − RSn

(g∗; f∗, β) ≤ ε/2

holds with probability 1− δ. By Lemma 7 we have r∗ ≲ β6

λ2

dV C(G) logn
n . Plugging in Equation 49

we have that n ≳
β4(dV C(G) log( 1

ε )+log(1/δ))

λε suffices to achieve Ex,y[∆ℓ(ĝ; g
∗,x, y)] ≲ ε.

CASE II: λ = 1
2 , f̂(·) ∈ F that satisfies Ex[f̂(x) ̸= f∗(x)|x ∈ ΩI ] ≤ ε

8αβ with probability at
least 1− δ.
The proof is similar to the one in Theorem 1 except for that we need to bound the VC-dimension
of pseudo hypothesis class F . Since f̃ can be viewed as Boolean function given f1(x), f2(x)
as input, with two hypothesis f1, f2 ∈ F , by Lemma 3.2.3 in (Blumer et al., 1989) we know
dV C(F̃) ≤ 2dV C(F) log(dV C(F)). The rest of the proof follows from the one in Theorem 1.

Next we present our extension of information theoretic lower bound to VC-class. The lower bounds
suggest that the risk bound in Theorem 4 is tight up to some logarithmic factor.
Theorem 5. There exists noisy generative process defined in Definition 1 with Ω being G-realizable,
for any ε ≤ λ, to achieve

ESn
[R(A(Sn), f

∗, β)−R(g∗, f∗, β)] ≤ ε

8(1 + 2λ)

with β ∈
[
3−2λ
1+2λ +λ, 3+2λ

1−2λ −
λ

1−4λ2

]
, any algorithmA will take at least dV C(G)

log(dV C(G))λε many samples.

Proof. The proof follows from the proof of Theorem 2 except for the fact that we need to have an
upper bound on the VC-dimension of our hypothesis construction G. Since G consists of composition
of interval hypothesis and each individual interval has VC-dimension at most 3. By Lemma 3.2.3 in
(Blumer et al., 1989) we know dV C(G) ≤ 6d log(d) which implies a dV C(G)

log(dV C(G))λε lower bound.
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A.7 TECHNICAL LEMMAS

Lemma 2. Let Sn = {(xi, yi)} be i.i.d sample from Data Generative Process described in Defini-

tion 1. For every ε > 0, there exist a δ > 0 such that if n ≥ 3 log(
|F|
δ )

ε , following inequality holds
simultaneously for all f ∈ F with |F| <∞ with probability at least 1− δ

1

n

n∑
i=1

1{f(xi) ̸= f∗(xi)} < Ex1{f(x) ̸= f∗(x)}+ ε (40)

Proof. By taking union bound one can ensure that

PSn

[
sup
f∈F

{∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx1{f(x) ̸= f∗(x)}
∣∣ ≥ nEx1{f(x) ̸= f∗(x)}+ nε

}]

≤PSn

[ ⋃
f∈F

{∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx1{f(x) ̸= f∗(x)}
∣∣ ≥ nEx1{f(x) ̸= f∗(x)}+ nε

}]

≤
∑
f∈F

PSn

[∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx1{f(x) ̸= f∗(x)}
∣∣ ≥ nEx,y1{f(x) ̸= f∗(x)}+ nε

]
(41)

We next apply following version of Chernoff inequality with a ≥ 1: Let X =
∑n

i=1Xi where
Xi ∈ {0, 1}. Then

P[X ≥ (1 + a)EX] ≤ exp (− a2

2 + a
EX) ≤ exp (−a

3
EX)

P[X ≤ (1− a)EX] ≤ exp (−a
2

2
EX) ≤ exp (−a

3
EX)

So we have
P[|X − EX| ≥ aEX] ≤ exp (−a

3
EX)

For any fixed f ∈ F , let a = ε/Ex1[f(x) ̸= f∗(x)], by Chernoff Inequality we have

PSn

[∣∣ n∑
i=1

1{f(xi) ̸= f∗(xi)} − nEx,y1{f(x) ̸= f∗(x)}
∣∣ ≥ nEx1{f(x) ̸= f∗(x)}+ nε

]
≤ exp (−nEx1{f(x) ̸= f∗(x)}a

3
) = exp (−nε

3
)

(42)

Using (41) and setting δ = |F| exp(−nϵ/3) finishes the proof.

Lemma 3. Suppose Sn = {(x1, y1), ..., (xn, yn)} are i.i.d sampled , L(f, x, y) ∈ [0, b] and
LSn

(f) = 1
n

∑n
i=1 L(f,xi, yi). Given parameter t such that

nt2 ≥ 2b2

then we have:
PSn∼D[sup

f∈F
|LSn(f)− L(f)| ≥ t] ≤ 4BF (2n)e−

nt2

4b2

Proof: For sample sets Sn and S′
n, if we have |LSn

(f)− L(f)| ≥ t and |LS′
n
(f)− L(f)| ≤ t

2 then
we get that |LSn

− LS′
n
| ≥ t

2 . Thus we have

1{sup
f∈F
|LSn(f)− L(f)| ≥ t} · 1{sup

f∈F
|LS′

n
(f)− L(f)| ≤ t

2
}

≤ 1{sup
f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2
}

(43)
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Taking expectation w.r.t Sn ∼ D and S′
n ∼ D we have

PSn∼D
[
sup
f∈F
|LSn(f)− L(f)| ≥ t

]
· PS′

n∼D
[
sup
f∈F
|LS′

n
(f)− L(f)| ≤ t

2

]
≤ PSn,S′

n∼D
[
sup
f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2

] (44)

Next we lower bound P
[
sup
f∈F
|LSn

(f) − L(f)| ≥ t
2

]
. Since L(f, x, y) ∈ [0, b] and so

V ar(L(f, x, y)) ≤ b2/4, using nt2 ≥ 2b2 we have that:

PSn∼D
[
sup
f∈F
|LSn

(f)− L(f)| ≥ t

2

]
≤ 4V ar(LSn

)

nt2
≤ 1

2

So we have PS′
n

[
sup
f∈F
|LS′

n
(f)− L(f)| ≤ t

2

]
≥ 1

2 . Combining this inequality with (44) we have

PSn∼D[sup
f∈F
|LSn(f)− L(f)| ≥ t]

≤2PSn,S′
n∼D[sup

f∈F
|LSn

(f)− LS′
n
(f)| ≥ t

2
]

=2PSn,S′
n∼D[ sup

f(x)∈FS2n

|LSn(f)− LS′
n
(f)| ≥ t

2
]

≤2PS2n

[
PSn=S2n−S′

n
[ sup
f(x)∈FS2n

|LSn(f)− LS′
n
(f)| ≥ t

2
|S2n]

]
≤2PS2n

[ ⋃
f(x)∈FS2n

PSn=S2n−S′
n
[|LSn(f)− LS′

n
(f)| ≥ t

2
|S2n]

]
≤2PS2n

[
2|FS2n

|e−
nt2

4b2 |S2n]
]

≤2PS2n

[
sup
S2n

|FS2n |e
−nt2

4b2 |S2n]
]

≤2 sup
S2n

|FS2n
|PS2n

[
e−

nt2

4b2 ]
]

≤2BF (2n)e−
nt2

4b2

(45)

Lemma 4 (Hoeffding’s Inequality). Let Z1, ..., Zn be independent bounded random variables with
Zi ∈ [a, b] for all i, where −∞ < a < b <∞. Then for all t > 0:

P(
1

n
|

n∑
i=1

Zi − E[Zi]| ≥ t) ≤ 2e
− 2nt2

(b−a)2 (46)

Lemma 5. Consider a set of samples S = {(x1, y1), ..., (xn, yn)} drawn i.i.d. from the Noisy
Generative Process and f∗ in the hypothesis class F satisfying f(x) ∈ {−1,+1}. If:

n ≥
3 log(1δ )

ϵ2α2

Then we have with probability at least 1− δ :

1

n

n∑
i=1

1{f∗(xi) ̸= yi} ≤
1

2
(1− α) + αε (47)

Proof:

Since 1{f(x) ̸= y} is bounded in the interval [0, 1] and given f∗ ∈ F , 1{f(xi) ̸= yi}, i ∈ [n] form
a set of n independent random variables. By setting b− a = 1, t = αϵ in Equation 46, the choice of
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n ensures that −2nt2

(b−a)2 ≤ 6 log(δ). Thus

PSn∼Dα
[| 1
n

n∑
i=1

1{f∗(xi) ̸= yi} − Ex,y[1{f∗(x) ̸= y}]| ≥ ϵα] ≤ δ.

where we have
E(x,y)∼Dα

[1{f∗(x) ̸= y}]
=E(x,y)∼Dα

[1{f∗(x) ̸= y}|x ∈ ΩU ]P[x ∈ ΩU ]︸ ︷︷ ︸
1
2P[x∈ΩU ]: Since y is labeled by coin flipping in ΩU

+ E(x,y)∼Dα
[1{f∗(x) ̸= y}|x ∈ ΩI ]P[x ∈ ΩI ]︸ ︷︷ ︸

0: Since y is labeled by f∗ with 0 Bayes Risk in ΩI

=
1

2
(1− α)

(48)

This way we have:

PSn∼Dα [|
1

n

n∑
i=1

1{f∗(xi) ̸= yi} −
1

2
(1− α)| ≥ ϵα] ≤ δ.

which implies that Equation 47 holds with probability at least 1− δ.

Lemma 6 (Theorem 3.3 in (Bartlett et al., 2005)). Let F be a class of functions with range in [a, b]
and assume that there are some functional T : H → R+ and some constant B such that for every
h ∈ H, V ar(h) ≤ T (h) ≤ BP [h]. Let ψ be a subroot function and r∗ be the fixed point of ψ.
Assume the ψ satisfies, for any r ≥ r∗,

ψ(r) ≥ BERn{h ∈ H : T (h) ≤ r}

Then with c1 = 704 and c2 = 26, for any K > 1 and every t > 1 with probability at least 1− e−t,

∀h ∈ H, P [h] ≤ K

K − 1
Pnh+

c1K

B
r∗ +

t(11(b− a) + c2BK)

n
(49)

Also with probability at least 1− e−t,

∀h ∈ H, Pn[h] ≤
K + 1

K
Ph+

c1K

B
r∗ +

t(11(b− a) + c2BK)

n
(50)

where Pf = Ex[h(x)] and Pn = 1
n

∑n
i=1 h(xi).

Lemma 7. Given hypothesis class F : X → [−b, b] with some universal constant b and its VC-
dimension dV C(F) <∞. Define following sub-root function with B ≥ 1:

ψ(r) = 100BERn{∗F , r}+
11b2 log n

n
.

Let r∗ be fixed point of ψ(r) so that r∗ = ψ(r∗), suppose n ≥ dV C(F), we have

r∗ ≲
B2dV C(F) log( n

dV C(F) )

n

Proof. The proof largely follows from the proof in Corollary 3.7 in (Bartlett et al., 2005). We
include here for completeness. Since f is uniformly bounded by b, for any r ≥ ψ(r), Corollart 2.2 in
(Bartlett et al., 2005) implies that with probability at least 1− 1

n , {f ∈ ∗F : Pf2 ≤ r} ⊆ {f ∈ ∗F :

Pnf
2 ≤ 2r}. Let E be event that {f ∈ ∗F : Pf2 ≤ r} ⊆ {f ∈ ∗F : Pnf

2 ≤ 2r} holds, above
implies

ERn{∗F , Pf2 ≤ r}
≤P[E ]E[Rn{∗F , Pf2 ≤ r}|E ] + P[Ec]E[Rn{∗F , Pf2 ≤ r}|Ec]

≤E[Rn{∗F , Pnf
2 ≤ 2r}] + b

n

(51)
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Since r∗ = ψ(r∗), r∗ satisfies

r∗ ≤ 100BERn{∗F , Pnf
2 ≤ 2r∗}+ b+ 11b2 log n

n
. (52)

Next we leverage Dudley’s chaining bound (Dudley, 2014) to upper bound ERn{∗F , Pnf
2 ≤ 2r∗}

using integral of covering number. We first bound the covering number of a star hull of F . It follows
from (Bartlett et al., 2005) Corollary 3.7 that

logN2(ε,F ,x1:n) ≤ log

{
N2

(
ε

2
,F ,x1:n

)(
⌈2
ε
⌉+ 1

)}
And covering number logN2(ε,F , n) can be bounded using VC-dimension of F using Haussler’s
bound on the covering number (Haussler, 1995; Wellner et al., 2013):

logN2

(
ε

2
,F , n

)
≤ c1dV C log

(
1

ε

)
where c1 is some universal constant. Now we are ready to apply the chaining bound, it follows from
Theorem B.7 (Bartlett et al., 2005) that

E[Rn(∗F , Pnf
2 ≤ 2r∗)]

≤ c2√
n
E
∫ √

2r∗

0

√
logN2(ε, ∗F ,x1:n)dε

≤ c2√
n
E
∫ √

2r∗

0

√
logN2

(
ε

2
,F ,x1:n

)(
⌈2
ε
⌉+ 1

)
dε

≤c3

√
dV C(F)r∗ log(1/r∗)

n

≤c3

√
d2V C(F)
n2

+
dV C(F)r∗ log(n/edV C(F))

n

(53)

Where c2 and c3 are some universal constants. Together with Equation 52 one can solve for r∗ ≲
B2dV C(F) log( n

dV C (F)
)

n

Lemma 8. Let Sn = {(xi, yi)} be i.i.d sample from Data Generative Process described in Def-
inition 1. For every ε > 0, there exist a δ > 0 such that if n ≳

dV C(F) log( 1
ε )+log( 1

δ )

ε , following
inequality holds simultaneously for all f ∈ F with dV C(F) <∞, with probability at least 1− δ

1

n

n∑
i=1

1{f(xi) ̸= f∗(xi)} ≲ Ex1{f(x) ̸= f∗(x)}+ ε (54)

Proof. The proof invokes Lemma 6, in particular, the Equation 50. Let 1◦F : 1{f(x) ̸= f∗(x), f ∈
F} be the hypothesis class H in Lemma 6. Since f∗ is a deterministic boolean function, it does
not increase the number of points that can be shattered by F . We have dV C(1 ◦ F) ≤ dV C(F). In
particular, we choose the functional T (·) = E[·] and it is easy to verify that

V ar(1{f(x) ̸= f∗(x)}) ≤ Ex[1{f(x) ̸= f∗(x)}] = Ex[1
2{f(x) ̸= f∗(x)}].

Let ψ(r) = 100ERn{∗F ,Ef ≤ r}+ 11 logn
n . We have

ERn{F ,Ef2 ≤ r} ≤ ERn{∗F ,Ef2 ≤ r} ≤ 100ERn{∗F ,Ef2 ≤ r}+
11 log n

n
= ψ(r)

Since local Rademacher averages of the star-hull is sub-root function, we know for all r ≥ r∗,
ψ(r) ≥ ψ(r∗) = r∗. By Equation 50 in Lemma 6 we have

1

n

n∑
i=1

1{f(xi) ̸= f∗(xi)} ≤ 2Ex1{f(x) ̸= f∗(x)}+ 15r∗ +
log(1/δ) + 5200

n
ε (55)

Next we bound r∗. A direct application of Lemma 7 show that

r∗ ≲
dV C(1 ◦ F) log( n

dV C(1◦F) )

n
≲
dV C(F) log( n

dV C(F) )

n
.

The rest of the proof follows from plugging r∗ in Equation 50 and removing absolute constants.
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A.8 ILLUSTRATIVE EXAMPLE FOR ALGORITHM 1

(a) Ground Truth
value

(b) Classifier in
1-st iteration

(c) Classifier in
12-th iteration

(d) Algorithm up-weighs
informative data

Figure 3: Illustration of Algorithm 1 when λ = 1
2 . a) shows a mix of informative/uninformative

data. b) and c) show classifiers trained on weighted samples with different number of iterations. By
up-weighing the informative datapoints, the algorithm progressively improves the classifier. d) shows

the sum of weights of informative over total selected, i.e
∑

i:xi∈ΩI
γi∑n

i γi
( See γ in Algorithm 1): the

algorithm converges to an all-informative dataset.

Figure 4: We show case the effecacy of the MWU mechanism on MNIST dataset. We plot the weight
of informative data as a function of training epoch and the ratio of informative data. The y axis is the

percentage of weight put on the iformative data, i.e
∑

i:xi∈ΩI
γi∑n

i γi
in the notation of Algorithm 1.

B MORE EXPERIMENT RESULTS AND DETAILS

B.1 EXPERIMENT SETTING AND IMPLEMENTATION DETAILS

Extension to multi-class. Our method extends to the multi-class setting naturally. In the case
of K-class classification, our selector loss remains the same while the predictor becomes f(x) =
f(x)1:K : X → ∆K where ∆K is the K-simplex. Meanwhile, we use multi-class cross entropy loss
to train the classifier. The pseudo-informative label becomes ẑi = 1{argmaxk∈[K] f(xi)k = yi}.

Semi-Synthetic Experiment Setting. For experiments in Section 7.1 and 7.2We use same backbone
TinyCNN models for all baselines. It is a light-weight CNN with 2 convolutional layers and 3 fully
connected layers . We adopt same training scheme for all baseline algorithm. We use Adam optimizer
with learning rate 1e-3 and weight weight decay rate 1e-4. We train 220 epochs using batch size 196
for all baselines and the leanring rate is reduced by 50% at 45th epoch and 90th epoch.

For experiments in Section 7.2, we use the default hyper-parameters for every method as recommended
in the respective original paper (i.e., internal selective learning-specific defaults, as reported in
(Geifman & El-Yaniv, 2019; Liu et al., 2019), and β = 2 and MWU step-size η = 2 for our algorithm
). It simulates a practical scenario where hyper-parameter optimization is impossible, since the
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ground truth regarding which datapoints are actually informative is never revealed. For SelectiveNet,
the default hyper-parameters are the weight for coverage rate penalty λsl = 32 and the weight for
selective net loss a = 0.5. For DeepGambler, the sole hyper-parameter “reward” should lie between
1 and 10, and we choose the default value recommended by the author which is 2.2.

For the SVHN experiment, we use ResNet18 (He et al., 2016b) as the backbone model for every
candidate. We set the batch size to 128, and use Adam as the optimizer with learning rate 1e-3 and
weight decay 1e-4. We train each algorithm for 162 epochs, and shrink our learning rate at both
epoch 45 and 90 by half each time.

We assume that the ratio of informative data, α, is unknown to all methods. This is necessary in
practice; the ratio and strength of noise are not known in most real world scenarios. For SelectiveNet
and DeepGambler, such ratio is a required input. To run these baselines, we first run the original
backbone for 60 epochs, and then estimate α using backbone’s training accuracy. Assume that the
backbone fits all of the informative data perfectly and also makes some correct guesses on noisy data
with probability 1

num of classes , then the frequency estimation of α is α̂ = num of classes∗train acc−1
num of classes−1 , which

is the estimation of α we give to baselines. Note such estimation can only be applied when λ = 1
2 .

Real-World Experiment Setting. We use same backbone model for all baseline methods. Specifi-
cally, we use a 1-layer LSTM for volatility data. We use VGG16 Simonyan & Zisserman (2014) for
BUS data. We use a 3-layer multi-layer perceptron for LC data. We adopt same training scheme for all
baseline algorithm. We use Adam optimizer with learning rate 1e-4 and weight decay rate 1e-4 for all
experiments. The learning rate is reduced by 50% every 10 epochs. We use batchsize 128 for volatility
data, batch size 32 for BUS data and batch size 256 for LC data, which is determined according to the
size of the data. We further split the training set and perform 30 random hyper-parameter searching
for each baseline. For BUS and LC, we set the training epoch to be 50. For financial time-series
volatility data, since each baseline is quite sensitive to the running epoch, we add the training epoch
as a hyper-parameter searching dimension during the HPO process.

B.2 REAL-WORLD DATASET DESCRIPTION

The first dataset is the Oxford realized volatility (Volatility) (Heber et al., 2009) data set containing
5-min realized volatility of 31 stock indices from 2000 to 2022 which contains 155107 records in
total. We use past volatility and returns as features, and the task here is to predict whether the next
day volatility will be higher than current one, making it a binary classification. We choose data from
2000 to 2020 as our training set and the rest for the testing (2020 Jan. to 2021 Oct.). This data set is
used as an example to show our algorithm’s possible application in selectively forecasting financial
time series.

The second one is the dataset of breast ultrasound images (BUS) (Al-Dhabyani et al., 2020). BUS
contains 780 gray-scale breast ultrasound images among women in ages between 25 and 75 years
old. These images have average size 500 × 500 pixels and can be categorized into 3 classes (487
benign, 210 malign and 133 healthy). We randomly choose 80% of data as training dataset and the
rest 20% for testing. We are going to use this dataset as an example to show a possible application of
our algorithm in automatic diagnosis. The machine can generate diagnosis result only on selected
cases and deliver unsure cases to human expert for further investigation.
1The third one is the lending club dataset (LC). Lending club is a peer-to-peer lending company that
matches borrowers with investors through an online platform. The lending club dataset (LC) contains
loan data of its customers from 2007 to 2018. We compare different version of existing dataset of LC
and remove all inconsistent and incomplete records. There are different status of loans record in this
dataset, we keep 3 types of these record that consist the major part of the dataset (261442 charged off
cases, 1035418 fully paid cases and 25757 late cases). We use 20% of the dataset as the testing set.
This example shows our algorithm can be use to grant loan given on different risk preference.

Table 3 presents the original accuracy given by neural network on each of these 3 real-world data set.
For all dataset, the neural network without using selection mechanism cannot give reliable inference.
In mortgage granting, high risk like this can cause significant loss. In medical diagnosis which is
healthy issue critical, a diagnosis with miss-diagnose rate as high as 15% is not acceptable. However,
if we apply our selective algorithm, we can see that the risk on all dataset sharply reduced. In BUS

1url:https://www.kaggle.com/datasets/wordsforthewise/lending-club/download?datasetVersionNumber=3
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dataset, we can even almost perfectly guarantee the diagnosis result empirically for our most confident
cases. These evidence are of practical interest.

Table 3: DNN Original Risk on Each Dataset
Volatility BUS LC

Risk 0.340±0.002 0.152±0.008 0.392±0.001

C ABLATION STUDY

C.1 ABLATION STUDY: EFFECT OF INFORMATIVE RATIO α.

We provide several ablation studies that further elucidate the reasons of our advantages. We stick
with case that λ = 1

2 so that baselines are able to estimate the value of α according to the ’no label
noise’ assumption for informative data. Firstly, we try to reduce the total data size by sampling the
original dataset. We test each baseline with these partial dataset to evaluate their performance under
data shortage scenario. The results are presented in Appendix Table 4 and Table 5. In this study, we
follow the setting of our synthetic experiment and fully shuffle the labels of the uninformative data
and keep all the informative data intact. We can see that in this setting, our method still outperform
all baselines.

Then we conduct experiments where we reveal the ground truth α to each baseline. We test all
baselines on both complete dataset and partial dataset. We always completely permute labels of
MNIST to impose high label noise in uninformative data and keep informative data clean. The results
are presented in Appendix Table 6 - 9. We can see that even in the "easier" scenario, where every
algorithm is handed the true α, our method still wins out. We believe that this is partially due to the
MWU mechanism. We will have a section discussing MWU later.

Finally, we provide a ablation study investigation the effect of the choice of epoch to estimate the
α. For all baselines, the estimation of α is a non-trivial step, yet it is crucial to the results. We
hypothesize that this is the main cause of the suboptimal performance of these baselines. Here we
provide additional results by training for 120 epochs instead of 60 in section 7.2. The estimation error
for α at 120 epochs is shown in Table 10. One can see that the error’s magnitude is significant. This
results in worse performance of both selector and classifier (Tables 11 and 12). Our method’s result
stay the same as it in Table 1, since it doesn’t require α as an input.

Table 4: (MNIST - Partial Dataset - Unknown α) Uninformative/Informative MNIST/Fashion using
25% shuffled data as proxy for noise.

Uninformative Data Num. Informative Data Num. Criterion Confidence SLNet DeepGambler Ours

15000
SR(%) 79.87± 0.40 74.03± 1.38 73.22±0.51 20.24 ± 9.25

3750 Precision 0.22± 0.00 0.29± 0.02 0.30± 0.01 1.00± 0.00
Recall 0.85± 0.00 1.00± 0.00 1.00± 0.00 0.88± 0.07

15000
SR(%) 65.83± 0.22 57.76± 1.97 58.13±0.68 13.71±0.24

7500 Precision 0.38± 0.00 0.48± 0.02 0.48± 0.01 1.00± 0.00
Recall 0.92± 0.01 1.00± 0.01 1.00± 0.00 0.83± 0.01

15000
SR(%) 55.99± 0.49 47.39± 1.85 46.96±0.50 13.06±1.86

11250 Precision 0.49± 0.01 0.60± 0.02 0.60± 0.01 0.99± 0.00
Recall 0.94± 0.01 1.00± 0.00 1.00± 0.00 0.84± 0.02

15000
SR(%) 48.51± 0.25 39.23± 0.90 39.85±0.36 19.10±4.50

15000 Precision 0.57± 0.00 0.68± 0.00 0.68± 0.00 0.99± 0.01
Recall 0.95± 0.00 1.00± 0.00 1.00± 0.00 0.91± 0.04

C.2 ABLATION STUDY: EFFECT OF MULTIPLICATIVE WEIGHT UPDATE

As mentioned in the discussion of α’s effect, we can see that our method win in the "easier" scenario,
where every algorithm is handed the true α, our method still wins out. We believe that this is partially
due to the MWU mechanism. It guides the classifier to put more emphasis on the informative data.
This is confirmed via an ablation study reported in Table 13: when MWU is turned off, our algorithm’s
performance deteriorates.
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Table 5: (SVHN - Partial Dataset - Unknown α) Uninformative/Informative SVHN using 25% of
shuffled classes as proxy for noise.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

9200
SR(%) 74.47± 4.15 64.68± 20.32 34.48± 13.46 14.36 ± 0.08

2285 Precision 0.41± 0.05 0.37± 0.22 0.68± 0.13 0.87± 0.07
Recall 0.94± 0.01 0.85± 0.23 0.83± 0.24 0.80± 0.02

9200
SR(%) 61.44± 0.64 48.42± 23.42 26.42± 1.68 7.46 ± 0.87

4600 Precision 0.57± 0.00 0.58± 0.17 0.77± 0.02 0.94± 0.07
Recall 0.95± 0.01 0.97± 0.03 0.96± 0.01 0.85± 0.01

9200
SR(%) 52.41± 0.71 25.64± 3.01 20.83± 2.06 7.25±0.77

6900 Precision 0.65± 0.00 0.76± 0.03 0.82± 0.02 0.94± 0.01
Recall 0.96± 0.00 0.96± 0.03 0.97± 0.01 0.87± 0.01

9200
SR(%) 49.45± 0.45 24.69± 3.08 18.81± 1.47 7.22±0.54

9200 Precision 0.67± 0.00 0.77± 0.03 0.83± 0.01 0.94± 0.01
Recall 0.96± 0.00 0.98± 0.00 0.98± 0.00 0.88± 0.01

Table 6: (MNIST - Full Data Setting - Known α) Results on a synthetic dataset consisting of
uninformative MNIST data and informative Fashion-MNIST data using the entire MNIST.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

60000
SR(%) 10.00 ± 0.32 10.11 ± 0.42 9.77 ± 0.51 9.18 ± 0.49

15000 Precision 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Recall 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

60000
SR(%) 9.41 ± 0.20 9.91 ± 0.48 9.39 ± 0.26 9.03 ± 0.73

30000 Precision 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Recall 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

60000
SR(%) 8.63 ± 0.23 9.39 ± 0.35 9.13 ± 0.51 8.58 ± 0.26

45000 Precision 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Recall 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

60000
SR(%) 8.11 ± 0.08 8.21 ± 0.12 8.16 ± 0.05 8.04 ± 0.49

60000 Precision 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Recall 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 7: (MNIST - Partial Data Setting - Known α) Results on a synthetic dataset consisting of
uninformative MNIST data and informative Fashion-MNIST data using 25% of MNIST.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

15000
SR(%) 16.71± 0.31 13.50± 0.30 14.11±5.65 11.38 ± 0.49

3750 Precision 0.94± 0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00
Recall 0.90± 0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00

15000
SR(%) 13.93± 0.40 13.34± 1.23 11.20 ± 0.22 11.29±0.44

7500 Precision 0.96± 0.01 0.99± 0.01 1.00± 0.00 1.00± 0.00
Recall 0.95± 0.02 0.93± 0.16 1.00± 0.00 1.00± 0.00

15000
SR(%) 12.29± 0.31 11.45± 0.37 10.61±0.12 10.42 ± 0.48

11250 Precision 0.97± 0.01 1.00± 0.00 1.00± 0.00 0.99± 0.00
Recall 0.95± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00

15000
SR(%) 11.76± 0.20 11.24± 0.35 10.12±0.28 9.97±0.33

15000 Precision 0.97± 0.01 1.00± 0.00 1.00± 0.00 0.99± 0.01
Recall 0.95± 0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00

Table 8: (SVHN - Full Data Setting - Known α) Results on a synthetic dataset consisting of
uninformative SVHN and informative SVHN using the entire uninformative data.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

33800
SR(%) 6.45± 0.93 58.06± 35.91 4.58± 0.61 4.48±0.43

9200 Precision 0.93± 0.01 0.41± 0.36 0.96± 0.00 0.96± 0.00
Recall 0.89± 0.01 0.37± 0.34 0.86± 0.02 0.86± 0.01

33800
SR(%) 4.30± 0.31 80.42± 1.55 3.08± 0.15 2.91±0.21

18300 Precision 0.96± 0.00 0.35± 0.00 0.97± 0.00 0.97± 0.00
Recall 0.91± 0.01 0.38± 0.05 0.90± 0.01 0.88± 0.01

33800
SR(%) 4.49± 0.68 5.22± 0.90 3.86± 0.11 3.65±0.17

26200 Precision 0.96± 0.68 0.95± 0.01 0.97± 0.00 0.96± 0.00
Recall 0.94± 0.01 0.92± 0.03 0.94± 0.00 0.93± 0.01

33800
SR(%) 10.87± 0.68 8.27± 5.03 7.65± 0.47 6.39±0.76

28400 Precision 0.89± 0.00 0.92± 0.05 0.92± 0.01 0.93± 0.01
Recall 0.98± 0.00 0.95± 0.04 0.97± 0.01 0.95± 0.01

C.3 ABLATION STUDY: EFFECT OF NOISE RATIO GAP λ.

We inject different level of noise into each part of the data according to Definition 1 by setting
λ(x) = λ. The higher the λ is, the larger the gap of the information noise ratio between informative
and uninformative partition. Specifically, for informative data, we inject 100 ∗ ( 12 − λ)% uniform
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Table 9: (SVHN - Partial Data Setting - Known α) Results on a synthetic dataset consisting of
uninformative SVHN and informative SVHN using 25% uninformative data.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

9200
SR(%) 30.13± 34.94 55.91± 29.49 7.65±0.48 11.74± 2.32

2285 Precision 0.70± 0.35 0.19± 0.10 0.93± 0.01 0.90± 0.02
Recall 0.67± 0.34 0.16± 0.13 0.78± 0.02 0.80± 0.06

9200
SR(%) 10.41± 0.26 36.46± 28.65 9.70± 1.05 8.12 ± 0.87

4600 Precision 0.91± 0.00 0.68± 0.24 0.90± 0.03 0.93± 0.01
Recall 0.87± 0.01 0.69± 0.24 0.79± 0.04 0.78± 0.08

9200
SR(%) 8.51± 0.85 34.97± 30.15 7.49±0.47 7.67±0.63

6900 Precision 0.92± 0.02 0.73± 0.21 0.94± 0.01 0.92± 0.02
Recall 0.91± 0.02 0.74± 0.22 0.83± 0.04 0.86± 0.01

9200
SR(%) 9.06± 0.82 13.66± 1.39 7.88± 0.29 7.57±0.51

9200 Precision 0.91± 0.01 0.88± 0.02 0.93± 0.01 0.92± 0.01
Recall 0.94± 0.01 0.92± 0.01 0.88± 0.03 0.91± 0.01

Table 10: Real α and Estimation Error (120 epochs)
Uninformative Data Num. Informative Data Num. α̂− α α

60000 60000 0.05 ± 0.00 0.50
60000 45000 0.08 ± 0.00 0.33
60000 30000 0.11 ± 0.00 0.25
60000 15000 0.17 ± 0.01 0.20
15000 15000 0.33 ± 0.01 0.50
15000 11250 0.40 ± 0.01 0.33
15000 7500 0.49 ± 0.01 0.25
15000 3750 0.63 ± 0.01 0.20

Table 11: (MNIST - Full Dataset - Unknown α - Run 120 Epochs for α̂). Results on a synthetic
dataset consisting of uninformative MNIST and informative Fashion-MNIST using the entirety of
shuffled MNIST as proxy for noise.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

60000
SR(%) 51.81 ± 0.47 53.0 ± 1.00 53.0 ± 1.00 10.35 ± 0.31

15000 Precision 0.54 ± 0.00 0.52 ± 0.01 0.53 ± 0.01 1.00 ± 0.00
Recall 0.94 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.85 ± 0.01

60000
SR(%) 31.86 ± 0.73 35.00 ± 1.00 34.0 ± 1.00 12.03 ± 1.06

30000 Precision 0.76 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 1.00 ± 0.00
Recall 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.04

60000
SR(%) 22.29 ± 0.59 26.0 ± 0.00 24.00 ± 0.00 12.58 ± 2.00

45000 Precision 0.79 ± 0.29 0.88 ± 0.86 0.89 ± 0.00 1.00 ± 0.00
Recall 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.03

60000
SR(%) 16.29 ± 0.42 11.00 ± 2.00 18.00 ± 0.00 11.61 ± 0.79

60000 Precision 0.92 ± 0.00 0.98 ± 0.02 0.90 ± 0.00 1.00 ± 0.00
Recall 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00 0.97 ± 0.01

Table 12: (MNIST - Partial Data Setting - Unknown α-Run 120 epochs for α̂) Results on a synthetic
dataset consisting of uninformative MNIST data and informative Fashion-MNIST data using 25% of
MNIST.

Uninformative Data Num. Informative Data Num. Criterion Confidence SelectiveNet DeepGambler Ours

15000
SR(%) 72.06 ± 0.68 78.00 ± 1.00 78.00 ± 0.00 11.38 ± 0.49

3750 Precision 0.29 ± 0.01 0.24 ± 0.01 0.24 ± 0.00 1.00 ± 0.00
Recall 0.70 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

15000
SR(%) 54.60 ± 0.44 65.00 ± 1.00 64.00 ± 0.00 11.29±0.44

7500 Precision 0.49 ± 0.00 0.40 ± 0.01 0.41 ± 0.00 1.00 ± 0.00
Recall 0.80 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

15000
SR(%) 44.17 ± 0.72 55.00 ± 1.00 54.00 ± 0.00 10.42 ± 0.48

11250 Precision 0.60 ± 0.01 0.50 ± 0.01 0.52 ± 0.00 0.99 ± 0.00
Recall 0.85 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

15000
SR(%) 37.08 ± 0.26 48.00 ± 1.00 46.00 ± 0.00 9.97 ± 0.33

15000 Precision 0.68 ± 0.00 0.58 ± 0.01 0.61 ± 0.00 0.99 ± 0.01
Recall 0.87 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

label noise (each class has chance ( 12 −λ) to be flipped into the other classes). For uninformative data,
we inject 100 ∗ 1

2 ∗ (
1
2 + λ)% uniform label noise. We test each baseline on these semi-synthesized

dataset. The result is presented in Table 14.

For all baselines, we give λ as prior information to calculate α according to the realized accuracy of
predictor f̂ . In Table 14, we can see that our method can effectively recover informative data out of
the uninformative ones compared with existing baselines. We put a † on top of selective risk number
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Table 13: (MNIST - Full Data Setting - Known α - Turn off MWU) Results on a synthetic dataset
consisting of uninformative MNIST data and informative Fashion-MNIST data using the entire
MNIST.

Uninformative Data Num. Informative Data Num. SR Recall Precision
60000 60000 0.09±0.00 0.99±0.01 0.99±0.01
60000 45000 0.09±0.00 1.00±0.00 1.00±0.00
60000 30000 0.10±0.00 1.00±0.00 1.00±0.00
60000 15000 0.10±0.00 1.00±0.00 1.00±0.00
15000 15000 0.11±0.01 1.00±0.00 1.00±0.00
15000 11250 0.11±0.00 1.00±0.00 1.00±0.00
15000 7500 0.12±0.00 1.00±0.00 1.00±0.00
15000 3750 0.12±0.00 1.00±0.00 1.00±0.00

where the corresponding algorithm fail to select reasonable amount of data (low recall) and thus
result in degenerated performance. All baselines have the same problem with learning given noisy
labels. The key input α cannot be properly estimated due to the poor accuracy, which in turn leads to
poor selection result. Our method doesn’t have this issue because it learns to abstain uninformative
data and thus doesn’t require knowing α.)

Table 14: Synthetic Experiment on MNIST+FashionMNIST: Fix α and Vary λ
λ Criterion Confidence SLNet DeepGambler Ours

0.30
SR(%) 0.00± 0.00† 38.57±9.95 66.67±57.73 28.27±4.62
Precision 0.67±0.58 0.96±0.07 0.67±0.58 0.78±0.26
Recall 0.00±0.00 0.08±0.07 0.00±0.00 0.28±0.08

0.35
SR(%) 0.00± 0.00† 44.11±51.03 0.00± 0.00† 27.92±2.39
Precision 1.00±0.00 0.60±0.53 1.00±0.00 0.92±0.14
Recall 0.00±0.00 0.11±0.18 0.00±0.00 0.51±0.03

0.40
SR(%) 33.33±57.73 27.59±6.29 33.33±57.73 23.46±4.13
Precision 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.01
Recall 0.00±0.00 0.33±0.57 0.00±0.00 0.55±0.06

C.4 ABLATION STUDY: CHOICE OF HYPER-PARAMETER

In this section, we provide ablation study on sensitivity of different algorithms w.r.t their hyper-
parameter. We study under the same setting as Table 1 and 4. For SelectiveNet, we first fix λsl to 32
(default setting that is recommended by the author in the original paper) and then we vary a from 0.1
to 0.7. Then we fix a to be 0.5 (default setting) and then we vary λsl from 1 to 66. For DeepGambler,
we vary o from 1 to 7. For our algorithm, we progressively increase the hyper-parameter β from 4
to 10. As presented in Fig 7, Fig 5 and Fig 6, the baselines’ performance relies heavily on their key
hyperparameters. On the other hand, our method is much more robust w.r.t. its hyperparameter, β.

We can see that the performance of all baselines are quite sensitive to the choice of hyper-parameters
and are expected to experience large fluctuations. In contrast, our algorithm is more stable with
regard to the choice of hyper-parameters. This empirical observation supports that the choice of β
is flexible, as it is stated in Theorem 1. Furthermore, in all scenarios, our algorithm’s performance
is better than these two baselines as following. Firstly, our selector has better precision such that
we can recover almost all informative data while the two baselines cannot. These two baselines
tend to select the whole data set indistinguishably (low precision and high recall). Secondly, these
baselines consistently show deteriorated risk performance compared against ours, mainly because of
their selector fails to pick informative data.

We also present the convergence curve of each evaluation metric for the partial data blind setting
where α = 50% in Fig 8. We pick different combination of β and MWU step-size η. We can see
that both recall and precision can converge in a very quick and smooth manner. The performance of
our algorithm is very robust against different combination of hyper-parameter. There can be some
slightly recall drop and precision increase when β is chosen to be some extreme values, e.g., β = 10.
We include such case to illustrate that while the method is not sensitive to hyper-parameter β, the
trade off between precision and recall, controlled by β, do exists.

36



Under review as a conference paper at ICLR 2023

Selective Risk (%) Precision Recall

Figure 5: Ablation Study on Hyper-parameter o - DeepGambler.

Selective Risk (%) Precision Recall

Figure 6: Ablation Study on Hyper-parameter a and λsl - SelectiveNet.

Selective Risk (%) Precision Recall

Figure 7: Ablation Study on Hyper-parameter β - Our Method.

C.5 ABLATION STUDY: SELECTIVE RISK v.s COVERAGE LEVEL

In this section, we also the ablation study where we vary the coverage threshold and compare the
selective risk of each baseline under the same coverage level (See Figure C.5). Each baseline is
trained with a corrupted dataset containing 50% and 20% informative data. We use the same setting

37



Under review as a conference paper at ICLR 2023

Figure 8: Convergence Curve. Experiment on Partial MNIST with α = 50%

as we did in section 7.2. The selective risk is computed by selecting the top coverage% confident
data point. The selection confidence is measured using each baseline’s selector module.

The ideal coverage(α) is indicated by the black dash line on the plot. An selective learning algorithm
achieves the ideal coverage if it just cover all informative data. Coverage rate goes beyond ideal level
will make the algorithm select uninformative data, which has purely random label in this case. We
can see that when coverage ratio is within reasonable range compared to ground truth α, our method
outperforms all baselines. The advantage of our method is bigger when the noise ratio is high, where
all other baselines show a reverse-shape coverage v.s selective risk curve. This curve implies an sever
noise-over fitting issue of baseline method given few data under high noise regime.
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Figure 9: Coverage v.s Selective Risk Curve under Different Hyper-parameter Setting. We refer
‘conf’ to Confidence, ‘slnet’ to Selective-Net, ’dg’ to DeepGambler. We plot the curve of different
methods with varying hyper-parameters, e.g., β for our method, λ and α for Selective-Net, warm up
epoch and O for DeepGambler.
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