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Abstract

Understanding organic reaction mechanisms is crucial for interpreting the formation
of products at the atomic and electronic level, but still remains as a domain of knowl-
edgeable experts. The lack of a large-scale dataset with chemically reasonable
mechanistic sequences also hinders the development of reliable machine learning
models to predict organic reactions based on mechanisms as human chemists do.
Here, we propose a method that automatically generates reaction mechanisms of a
large dataset of organic reactions using autonomously extracted reaction templates
and expert-coded mechanistic templates. By applying this method, we labeled
94.8% of 33k USPTO reactions into chemically reasonable arrow-pushing dia-
grams, validated by expert chemists. Our method is simple, flexible, and can be
expanded to cover a wider range of reactions, regardless of type or complexity. We
envision it becoming an invaluable tool to propose reaction mechanisms, and to
develop future reaction outcome prediction models and discover new reactions.

1 Introduction

The ability to predict reaction outcomes for a given set of substrates, known as forward synthesis
prediction, plays a crucial role in successful synthetic planning [[1} 2]]. This encompasses not only
the prediction of major products resulting from organic reactions but also the retrosynthetic analysis,
which aims to identify a viable synthetic pathway to synthesize a desired target compound [3]]. To
ensure the reliability of retrosynthetic analysis, it is essential to couple retrosynthesis prediction
models with reliable reaction outcome prediction models. While recent advances in machine learning
models have shown promise in predicting reaction outcomes based on reactant sets [4} 15,16, (7,18}, 19} [10],
these models often overlook the finer details of electron movements, reactive intermediates, and
other mechanistic information that are crucial for a comprehensive understanding of the reaction
[L1]. Consequently, there is a need for more sophisticated and accurate chemical models that can
explicitly capture the underlying reaction mechanisms, which involve a step-by-step sequence of
electron movements and reactive intermediates, to gain valuable insights into the stereochemistry,
reaction kinetics, formation of byproducts, and other important reaction details.

Arrow pushing diagrams, commonly utilized by organic chemists, provide a visual representation of
electron rearrangements as bonds form and break [[12]]. While an ideal chemical model is expected to
predict the same arrow pushing diagrams as human chemists do, a reliable chemical model that can
predict arrow pushing diagrams has not been developed yet due to the lack of mechanistic reaction
dataset. In an early attempt to automate this process, Chen and Baldi developed Reaction Explorer
[L3] to predict major products and mechanistic steps based on reactants and reagents utilizing a set of
prioritized transformation rules. While it provided detailed and reasonable mechanistic descriptions,
due to the nature of rule prioritizing, introducing a new set of rules to cover more reactions would
require revision of significant proportion of existing ones. Hence it is challenging to be scaled up to
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larger reaction datasets containing diverse reaction types. In a more recent effort, Bradshaw et al.
proposed a machine learning-based electro path prediction model called ELECTRO [14] which is fast
and scalable. However, since the model still uses only the reactant and product information to extract
the electron movements without the chemical guidance of actual mechanisms, most of the electro
paths predicted by the models are approximate mechanisms. This gives rises to discrepancies between
predicted and actual reaction mechanisms, as illustrated in Figure [T| for example, and highlights
the pressing need for a more reliable and dependable mechanistic prediction model. Due to these
challenges, a deficiency in a comprehensive database for large-scale reaction mechanisms persists.
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Figure 1: Demonstration of the difference between the more reasonable mechanism intuitively
accepted by human chemists and the label obtained by ELECTRO for a nucleophilic acyl substitution
reaction between an alkoxide and acyl chloride. Breaking and re-forming of carbonyl bonds (green
box) account for the observed chemical reactivity and are reflected in the mechanism. On the other
hand, the label obtained by ELECTRO is focused on the changed atoms mainly, highlighted in green:
electrophile carbon, leaving group chlorine and attacking oxygen of alkoxide. The latter mechanism
omits carbonyl oxygen which is an integral part of the reaction and responsible for the reactivity of
the reacting molecule.
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To overcome these limitations regarding the intrinsically approximate answer (ELECTRO) and the
scalability (Reaction Explorer) of existing methods, we here propose a two-step method called
MechFinder to label reaction mechanisms in a chemically reasonable and scalable manner using
automatically extracted reaction templates and expert-coded mechanistic templates. In our method,
we extract the most important subgraph of reaction transformation in a reaction template, and
manually label the mechanism of each reaction template based on chemist knowledge in the form of
mechanistic template. This adoption of dual templates (reaction templates and mechanistic templates)
allows us then to label the mechanisms of a large number of chemical reactions automatically by
going through the two separate models to determine the types of templates. Our method enables the
generation of mechanistic pathways for various reaction types, including pericyclic reactions and
those involving multiple valence bond changes, such as reductive amination. These labels serve as
computational analogs to the conventional arrows employed in the arrow-pushing model. To evaluate
the effectiveness of our method, we curated a subset of the USPTO-50K dataset as a benchmark and
assessed the coverage and applicability of our approach.

The main contribution of our work is three-fold:
1. We proposed mechanistic template, a complementary template for human chemist to classify
and encode the reaction mechanism for each arbitrary reaction template.

2. Based on the reaction templates and mechanistic templates, we present MechFinder, the
first scalable rule-based model to automatically label the chemically reasonable reaction
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mechanisms. The generated reaction mechanisms by MechFinder are shown to be chemically
much more reasonable than those of the previous method.

3. We curate a high-quality reaction dataset with chemically reasonable reaction mechanisms,
denoted here as mech-USPTO-31k, which would benefit the chemistry community to
develop prediction models for the reactivities that are based on molecular mechanisms.

2 Methods

2.1 Reaction Template (RT)

In our approach, we leverage the insight that many seemingly different organic reactions often follow
similar patterns of electron flow, known as reaction rules, which are localized around specific atoms
and bonds. This allows us to narrow down the scope of deriving mechanistic labels by focusing
only on the atoms involved in the reaction. To obtain the reactivity information of a reaction dataset,
we extract a set of reaction templates (RT) from each reaction in the dataset based on the local
reaction template proposed in LocalRetro [[15] based on RDChiral [16]]. We start by identifying the
reaction centers by comparing the chemical environments between the same atoms before and after
the reaction. Nonetheless, we recognize that in many cases the electron movement can go beyond
the changed atoms, such as the nucleophilic acyl substitution reaction shown in Figure |1} Therefore,
we also include moieties that are w-conjugated to the changing atoms, such as double, triple, and
aromatic bonds, and several mechanistically important special groups, such as carbonyl group and
acetal group. This reaction template is simpler than the template extracted by RDChiral [[16] but
more informative than the local reaction template described in LocalRetro [[15]. The overall template
extraction is performed by the following five steps:

1. Compare the chemical environment of each atom before and after the reaction according
to the atom-mapping (reactant-product atom correspondence). The atoms found to have
changes in chemical environment are identified as “changed atoms”.

2. For each identified changed atom, we identify the neighboring atoms connected to the
changed atom in the reactants with double, triple, or aromatic bond as “extended atoms”.

3. To further extend the scope of RT for mechanism labeling, we manually define a set of
mechanistically important special groups. If any of the changed atoms are identified in one
of the special groups, all the atoms in the special groups are also added to the “extended
atoms” list. The RT extension process is illustrated in Figure S1. The set of defined special
groups can be found in Figure S2.

4. After identifying the extended atoms in the reactants, we record the atoms sharing the same
atom-map numbers in the product.

5. Using RDK:it python package [17], we extract the chemical fragment in the reactants and
products in SMARTS format based on the identified changed atoms and extended atoms,

TR

and connect the fragments by a reaction symbol “»”.

The full list of top-100 RTs can be found in Table S1.

2.2 Mechanistic template (MT)

Since RTs only capture the changes before and after the reaction, simply applying heuristic rules
on RTs to generate mechanistic pathway without any in-domain chemistry knowledge poses clear
limitations, as the example shown in Figure[I} Therefore, we additionally introduce the concepts of
mechanistic classes (MC) and mechanistic templates (MT) to describe the actual reaction mechanism.
The MC is defined as a group of reactions following the same reaction mechanism, including one or
multiple RTs. For a given MC, we then hand-code the MT which describes the direction of electron
movements in the form of a sequence of arrow-pushing diagrams, representing the attacking and
electron-receiving moieties to incorporate chemistry knowledge.

The proposed MTs are represented by categorizing the arrows that illustrate the movement of electron
pairs in organic reactions into four groups: lone pair to atom, lone pair to bond, bond to atom, and
bond to bond. Technically, the lone pairs of atoms are simply annotated by their atom-map numbers
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and the electron pairs from bonds are annotated by pairs of atom-map number. The full list of 63
MTs hand-coded from top-100 RTs extracted from the USPTO dataset can be found in Table S2.

The proposed MT has four notable features: (1) Because the atom types are specified in RTs but not
in MT, multiple RTs often share the same MT. For example, different nucleophiles in substitution
reactions can lead to different RTs but the same MTs (Figure [2h). An example illustrating this feature
is provided in Figure S3. (2) In some cases, a single RT can match different MTs depending on the
specific chemical environment. In these cases, we design particular criteria to assign the correct MT
to the obtained RT. For example, the decision of assigning Sy1 and Sy?2 depends on the alkane
group connected to the leaving group (Figure[2b). List of all criteria used in MechFinder along with
example reactions can be found in Figure S4. (3) For many reactions, the reaction can only occur
when additional reagents are added, and the reaction mechanism can only be labeled if these reagents
exist. For these reactions, we put the necessary additional reagents into the reactant set to complete
the mechanism (Figure [Zc). (4) Since the mechanistic pathway labeled by this method is based on
the movement of electron pairs, reaction mechanisms beyond this scope such as organometallic or
radical reactions cannot be labeled by the current method (Figure [2{).

It is noteworthy that, the mechanism derivation for certain groups of reactions inevitably requires the
involvement of additional moieties beyond those present in the extracted RT. To address the limitation
associated with the locality, we have incorporated technical maneuverability into our method to
capture the important mechanistic elements. The framework and examples can be found in Figure S5.
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Figure 2: The four features of a proposed mechanistic template (MT). (a) Multiple RTs can match
a single MT if they share the same mechanism. (b) One RT can lead to different MTs according
to the criteria of the belonging MT. (c) Necessary reagents are added to complete the mechanistic
pathway labeling. (d) Reactions whose mechanisms do not follow an arrow-pushing diagram cannot
be labeled.

3 Results

3.1 Mechanistic annotation based on dual templates

In this paper, we introduce a mechanism labeling framework called MechFinder utilizing RTs and
MTs introduced above. The process of using MechFinder to label the reaction mechanisms in a
reaction dataset is divided into two phases: the expert annotation phase and the automatic labeling
phase, as shown in Figure 3h and [3p.

During the expert annotation phase (Figure [3p), we first extracted N (N = 100 in the current dataset
used) unique RTs from all the X reactions (X = 33,099 in the current dataset used) in the reaction
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dataset. For each RT, we sampled k representative reactions to manually label the mechanism by
three steps shown in Figure [3:

1. RT extraction. We extracted reaction template focused on the reaction center, describing
the local changes in atomic configuration upon a chemical transformation. The extrac-
tion process also yields an atom-map lookup table, recording the one-to-one atom-map
correspondence between the input reaction and the extracted RT.

2. MT identification. Having RT for the given reaction, the MC and MT is identified by
manual labeling in the expert annotation phase (but, once mapped, automated in the actual
large-scale mechanism generation).

3. Mechanistic sequence acquisition. The mechanistic pathway for the input reaction is
labeled by aligning the atom-map numbers from the MT to the input reaction according to
the atom-map lookup table.

The number of sampled reactions k in the expert annotation phase is defined by the complexity of
the encountered RT. For simple reactions like nucleophilic acyl substitution, we only sample one
reaction to label the MT. For more complex reactions like Sy Ar reaction, we sample more reactions
to include more cases where the electron withdrawing groups (EWG) are located at different positions
(ortho or para) with respect to the leaving group to label the MT with different criteria.

X unlabeled kN labeled X unlabeled X labeled
reactions reactions reactions reactions

! I b

Manual labeling class lookup

N reaction M mechanistic N reaction M mechanistic
templates templates templates templates

Reaction Reaction template
o 7

7
[e)
1 11 1 9 4 Template extraction R,
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Cl 10 R 1 Ry 3 2 =n
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|
istic class & Reaction with mechanistic label
- - o’ o
— S\2 reaction @ Mechanistic sequence acquisition , e/ N 1 1, 69 1é|
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Figure 3: Overall pipeline of (a) expert annotation and (b) automatic mechanism labeling with
MechFinder. (c) Example of the process of labeling a Sn?2 reaction. First, we extract the RT of the
reaction focused on reacting atoms (nitrogen, alkyl group, and chlorine with atom-map numbers of 6,
9, and 8, respectively) along with the lookup table containing one-to-one correspondence between
template map numbers and atom-map numbers in the original reaction. Next, we manually identify
the MC for extracted LRT as “Sx2 reaction” which has its unique MT characterized by the inherent
electron flow of reactive moieties. Upon replacement of template map numbers in the MT (1, 2, 3) by
the corresponding atom-map numbers in the original reaction (6, 9, 8) using the lookup table, we
finally obtain mechanistic sequence for the given reaction.

During the automatic labeling phase (Figure [3b), we follow the same three steps described in the
set-up phase (Figure[3k) but replacing the manual labeling step (step 2) by looking up the previously
labeled MT for the identified RT during the manual labeling phase to label the reactions in the
reaction dataset. More examples of automatic mechanism labeling by MechFinder can be found in
Supplementary Information.
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3.2 Dataset

In our benchmark experiments, we used the reaction data extracted from USPTO grant patents
collected by Lowe [[L8]], an organic reaction dataset extensively used in benchmarking various
reaction prediction approaches. In particular, we demonstrate the results using USPTO-50K dataset
curated by Schneider et al. [19] without reagent information. Since our approach only addresses
arrow-pushing diagram representable mechanisms, we removed organometallic and radical reactions
based on extracted RT. In addition, we applied LocalMapper to refine the atom-mapping of reactions
because MechFinder is highly dependent on the quality of correct atom-mapping. Thus, 33,099
reactions are finally obtained after the above pre-processing procedure. We refer to this reaction
subset as USPTO-33K dataset in this paper.

3.3 Quantitative results

From a total of 33,099 reactions in the USPTO-33K dataset, we identified 400 RTs based on their
precise atom-mappings. Among these, we categorized the 100 most frequently occurring RTs (shared
by the most chemical reactions) into 63 distinct MCs (X=33,099, N=100, M=63) aligned with the
conceptual framework of arrow-pushing-diagram-representable reaction mechanisms. The chosen
top 100 RTs cover 94.8% of the USPTO-33K dataset reactions. To this end, our method generated
the mechanistic annotation of 31,364 reactions that can be described by arrow-pushing-diagrams.
This is the first large-scale mechanism dataset for organic reactions in the present literature, and we
denote it as mech-USPTO-31k.

We analyze the number of labeled reactions by increasing the number of labeled MTs and labeled
RTs between top-1 to top-100 most popular RTs in Figure fp. We found that labeling the top 10 most
popular RTs with 11 MTs can successfully cover 58.4% of the total reactions, and labeling the top 50
most popular RTs with 40 MTs can cover 87.7% of the total reactions. The coverage increments of
adding a new MT drop exponentially with the decreasing RTs popularity. We inspect the frequency
of the reactions in the mech-USPTO-31K dataset relative to the obtained label length to gain insight
toward the complexity of the labeled reactions in terms of the lengths of the mechanistic pathways
(Figure[dp). The majority of reactions exhibit 2-, 4-, 8- and 12-steps, which are mainly within the
top-10 RTs. Remarkably, certain reactions feature lengthy sequences such as Swern oxidation [20]] in
19 steps, multi-component imidazole synthesis from a carboxylic acid and diamine substrate in 22
steps and Vilsmeier formylation [21] in 23 steps. These findings underscore the versatility of our
labeling method, which accommodates a wide spectrum of reactions, irrespective of their intricacy.

The top 10 most popular RTs and their corresponding MTs are shown in Figure k. The most
popular RT, covering 16.6% of the reactions in the mech-USPTO-31k dataset, corresponds to DCC
condensation, which requires 12 mechanistic steps. The top-2 and top-8 RTs indicate S Ar reactions
but use different nucleophiles. Similarly, the top-3 and top-5 RTs indicate Sy 1 or Sy2 reactions.
The mechanisms of top-4 and top-10 RTs can be represented by the MTs showing nucleophilic attack
to the carbonyl (or sulfonyl) group. The top-6 is Boc group deprotection in acid and the top-7 RT is
reductive amination.

4 Discussion and Limitations

Since we only consider organic reactions, whose mechanisms can be represented by arrow-pushing
diagrams showing the movement of electron pairs, the current capacity of the proposed method is
limited by the inability to label the mechanisms of organometallic and radical reactions. In the case of
organometallic reactions, proposed mechanisms are alternate steps of one or more among oxidative
addition, migratory insertion, reductive elimination, and S-hydride elimination which follow different
patterns of electron movements. Mechanistic labeling of those reactions should include a model
with different computational representations of electron movements. Building such model reflecting
those patterns would enable extending the coverage to include organometallic reactions in the labeled
dataset. The case of radical reactions is similar in the sense that, some modification to our current
mechanistic representation to incorporate fishhook arrows showing the movement of single electrons
would enable their labeling as well.

Although not addressed in this article, our method should be further improved to include stereochemi-
cal analysis. The popularity and importance of stereo- and enantio-selective syntheses in chemical
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Figure 4: The quantitative results of automatic generation of mechanistic pathways for the USPTO-
33K reaction dataset using MechFinder. (a) Number of labeled reactions and MTs as a function of
the number of most popular RTs from 1 to 100. (b) Distribution of mechanistic pathway lengths,
displaying the frequency of n-step reactions in the labeled dataset. (c) The top 10 most popular RTs
and the 6 MTs associated with each RT. Note that RTs are expressed in SMARTS format and do not

contain any hydrogen. The depictions are simplified for reading convenience.



215
216
217
218
219

220

221
222
223
224
225
226
227
228
229
230
231
232

234
235
236

237

238
239

[o5)

240
241
242

243
244

245
246
247

and drug industry make comprehensive stereochemical elucidation necessary [22]. Because the
stereochemical outcome of an organic reaction is governed by the stereochemistry of each mech-
anistic step, one may account for reaction stereochemistry by extending arrow-pushing diagrams
with stereochemical definitions [23]]. In that way, the overall stereochemistry of the reaction can be
explicated.

5 Conclusion

In this work, we presented a computational approach, MechFinder, to automatically generate reason-
able mechanistic sequences for organic reactions by capturing the patterns of electron movements
in sequence from the large reaction dataset. An expert-coded mechanistic dictionary containing
a many-to-one mapping of extracted reaction templates (RTs) and mechanistic templates (MTs)
provides the basis for the accurate acquisition of so-called mechanistic labels, or reaction mechanisms.
With the direct utilization of this technique we were able to reliably generate reaction mechanisms
for nearly 95% of the USPTO-33k dataset automatically by manually labeling 100 RTs and 63
MTs. This is the first systematic mechanism dataset of this scale for organic reactions which we
denote as mech-USPTO-31k. The reaction coverage of the method can be further improved by
defining computational representations for organometallic and radical reactions. Having a large-scale
mechanism dataset such as mech-USPTO-31k automatically generated here, we envisage that an
interpretable and more reliable machine learning model for reaction prediction can be built and
trained on it. Since these mechanism-based ML models will make predictions based on the plausible
mechanisms, rather than based on the learning just the reactant and product information, they will
have less bias towards the known reactions and potentially provide an exciting opportunity to develop
and discover new chemical reactions beyond human intuitions.
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