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Abstract

Understanding organic reaction mechanisms is crucial for interpreting the formation1

of products at the atomic and electronic level, but still remains as a domain of knowl-2

edgeable experts. The lack of a large-scale dataset with chemically reasonable3

mechanistic sequences also hinders the development of reliable machine learning4

models to predict organic reactions based on mechanisms as human chemists do.5

Here, we propose a method that automatically generates reaction mechanisms of a6

large dataset of organic reactions using autonomously extracted reaction templates7

and expert-coded mechanistic templates. By applying this method, we labeled8

94.8% of 33k USPTO reactions into chemically reasonable arrow-pushing dia-9

grams, validated by expert chemists. Our method is simple, flexible, and can be10

expanded to cover a wider range of reactions, regardless of type or complexity. We11

envision it becoming an invaluable tool to propose reaction mechanisms, and to12

develop future reaction outcome prediction models and discover new reactions.13

1 Introduction14

The ability to predict reaction outcomes for a given set of substrates, known as forward synthesis15

prediction, plays a crucial role in successful synthetic planning [1, 2]. This encompasses not only16

the prediction of major products resulting from organic reactions but also the retrosynthetic analysis,17

which aims to identify a viable synthetic pathway to synthesize a desired target compound [3]. To18

ensure the reliability of retrosynthetic analysis, it is essential to couple retrosynthesis prediction19

models with reliable reaction outcome prediction models. While recent advances in machine learning20

models have shown promise in predicting reaction outcomes based on reactant sets [4, 5, 6, 7, 8, 9, 10],21

these models often overlook the finer details of electron movements, reactive intermediates, and22

other mechanistic information that are crucial for a comprehensive understanding of the reaction23

[11]. Consequently, there is a need for more sophisticated and accurate chemical models that can24

explicitly capture the underlying reaction mechanisms, which involve a step-by-step sequence of25

electron movements and reactive intermediates, to gain valuable insights into the stereochemistry,26

reaction kinetics, formation of byproducts, and other important reaction details.27

Arrow pushing diagrams, commonly utilized by organic chemists, provide a visual representation of28

electron rearrangements as bonds form and break [12]. While an ideal chemical model is expected to29

predict the same arrow pushing diagrams as human chemists do, a reliable chemical model that can30

predict arrow pushing diagrams has not been developed yet due to the lack of mechanistic reaction31

dataset. In an early attempt to automate this process, Chen and Baldi developed Reaction Explorer32

[13] to predict major products and mechanistic steps based on reactants and reagents utilizing a set of33

prioritized transformation rules. While it provided detailed and reasonable mechanistic descriptions,34

due to the nature of rule prioritizing, introducing a new set of rules to cover more reactions would35

require revision of significant proportion of existing ones. Hence it is challenging to be scaled up to36
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larger reaction datasets containing diverse reaction types. In a more recent effort, Bradshaw et al.37

proposed a machine learning-based electro path prediction model called ELECTRO [14] which is fast38

and scalable. However, since the model still uses only the reactant and product information to extract39

the electron movements without the chemical guidance of actual mechanisms, most of the electro40

paths predicted by the models are approximate mechanisms. This gives rises to discrepancies between41

predicted and actual reaction mechanisms, as illustrated in Figure 1 for example, and highlights42

the pressing need for a more reliable and dependable mechanistic prediction model. Due to these43

challenges, a deficiency in a comprehensive database for large-scale reaction mechanisms persists.44

Figure 1: Demonstration of the difference between the more reasonable mechanism intuitively
accepted by human chemists and the label obtained by ELECTRO for a nucleophilic acyl substitution
reaction between an alkoxide and acyl chloride. Breaking and re-forming of carbonyl bonds (green
box) account for the observed chemical reactivity and are reflected in the mechanism. On the other
hand, the label obtained by ELECTRO is focused on the changed atoms mainly, highlighted in green:
electrophile carbon, leaving group chlorine and attacking oxygen of alkoxide. The latter mechanism
omits carbonyl oxygen which is an integral part of the reaction and responsible for the reactivity of
the reacting molecule.

To overcome these limitations regarding the intrinsically approximate answer (ELECTRO) and the45

scalability (Reaction Explorer) of existing methods, we here propose a two-step method called46

MechFinder to label reaction mechanisms in a chemically reasonable and scalable manner using47

automatically extracted reaction templates and expert-coded mechanistic templates. In our method,48

we extract the most important subgraph of reaction transformation in a reaction template, and49

manually label the mechanism of each reaction template based on chemist knowledge in the form of50

mechanistic template. This adoption of dual templates (reaction templates and mechanistic templates)51

allows us then to label the mechanisms of a large number of chemical reactions automatically by52

going through the two separate models to determine the types of templates. Our method enables the53

generation of mechanistic pathways for various reaction types, including pericyclic reactions and54

those involving multiple valence bond changes, such as reductive amination. These labels serve as55

computational analogs to the conventional arrows employed in the arrow-pushing model. To evaluate56

the effectiveness of our method, we curated a subset of the USPTO-50K dataset as a benchmark and57

assessed the coverage and applicability of our approach.58

The main contribution of our work is three-fold:59

1. We proposed mechanistic template, a complementary template for human chemist to classify60

and encode the reaction mechanism for each arbitrary reaction template.61

2. Based on the reaction templates and mechanistic templates, we present MechFinder, the62

first scalable rule-based model to automatically label the chemically reasonable reaction63
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mechanisms. The generated reaction mechanisms by MechFinder are shown to be chemically64

much more reasonable than those of the previous method.65

3. We curate a high-quality reaction dataset with chemically reasonable reaction mechanisms,66

denoted here as mech-USPTO-31k, which would benefit the chemistry community to67

develop prediction models for the reactivities that are based on molecular mechanisms.68

2 Methods69

2.1 Reaction Template (RT)70

In our approach, we leverage the insight that many seemingly different organic reactions often follow71

similar patterns of electron flow, known as reaction rules, which are localized around specific atoms72

and bonds. This allows us to narrow down the scope of deriving mechanistic labels by focusing73

only on the atoms involved in the reaction. To obtain the reactivity information of a reaction dataset,74

we extract a set of reaction templates (RT) from each reaction in the dataset based on the local75

reaction template proposed in LocalRetro [15] based on RDChiral [16]. We start by identifying the76

reaction centers by comparing the chemical environments between the same atoms before and after77

the reaction. Nonetheless, we recognize that in many cases the electron movement can go beyond78

the changed atoms, such as the nucleophilic acyl substitution reaction shown in Figure 1. Therefore,79

we also include moieties that are π-conjugated to the changing atoms, such as double, triple, and80

aromatic bonds, and several mechanistically important special groups, such as carbonyl group and81

acetal group. This reaction template is simpler than the template extracted by RDChiral [16] but82

more informative than the local reaction template described in LocalRetro [15]. The overall template83

extraction is performed by the following five steps:84

1. Compare the chemical environment of each atom before and after the reaction according85

to the atom-mapping (reactant-product atom correspondence). The atoms found to have86

changes in chemical environment are identified as “changed atoms”.87

2. For each identified changed atom, we identify the neighboring atoms connected to the88

changed atom in the reactants with double, triple, or aromatic bond as “extended atoms”.89

3. To further extend the scope of RT for mechanism labeling, we manually define a set of90

mechanistically important special groups. If any of the changed atoms are identified in one91

of the special groups, all the atoms in the special groups are also added to the “extended92

atoms” list. The RT extension process is illustrated in Figure S1. The set of defined special93

groups can be found in Figure S2.94

4. After identifying the extended atoms in the reactants, we record the atoms sharing the same95

atom-map numbers in the product.96

5. Using RDKit python package [17], we extract the chemical fragment in the reactants and97

products in SMARTS format based on the identified changed atoms and extended atoms,98

and connect the fragments by a reaction symbol “»”.99

The full list of top-100 RTs can be found in Table S1.100

2.2 Mechanistic template (MT)101

Since RTs only capture the changes before and after the reaction, simply applying heuristic rules102

on RTs to generate mechanistic pathway without any in-domain chemistry knowledge poses clear103

limitations, as the example shown in Figure 1. Therefore, we additionally introduce the concepts of104

mechanistic classes (MC) and mechanistic templates (MT) to describe the actual reaction mechanism.105

The MC is defined as a group of reactions following the same reaction mechanism, including one or106

multiple RTs. For a given MC, we then hand-code the MT which describes the direction of electron107

movements in the form of a sequence of arrow-pushing diagrams, representing the attacking and108

electron-receiving moieties to incorporate chemistry knowledge.109

The proposed MTs are represented by categorizing the arrows that illustrate the movement of electron110

pairs in organic reactions into four groups: lone pair to atom, lone pair to bond, bond to atom, and111

bond to bond. Technically, the lone pairs of atoms are simply annotated by their atom-map numbers112
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and the electron pairs from bonds are annotated by pairs of atom-map number. The full list of 63113

MTs hand-coded from top-100 RTs extracted from the USPTO dataset can be found in Table S2.114

The proposed MT has four notable features: (1) Because the atom types are specified in RTs but not115

in MT, multiple RTs often share the same MT. For example, different nucleophiles in substitution116

reactions can lead to different RTs but the same MTs (Figure 2a). An example illustrating this feature117

is provided in Figure S3. (2) In some cases, a single RT can match different MTs depending on the118

specific chemical environment. In these cases, we design particular criteria to assign the correct MT119

to the obtained RT. For example, the decision of assigning SN1 and SN2 depends on the alkane120

group connected to the leaving group (Figure 2b). List of all criteria used in MechFinder along with121

example reactions can be found in Figure S4. (3) For many reactions, the reaction can only occur122

when additional reagents are added, and the reaction mechanism can only be labeled if these reagents123

exist. For these reactions, we put the necessary additional reagents into the reactant set to complete124

the mechanism (Figure 2c). (4) Since the mechanistic pathway labeled by this method is based on125

the movement of electron pairs, reaction mechanisms beyond this scope such as organometallic or126

radical reactions cannot be labeled by the current method (Figure 2d).127

It is noteworthy that, the mechanism derivation for certain groups of reactions inevitably requires the128

involvement of additional moieties beyond those present in the extracted RT. To address the limitation129

associated with the locality, we have incorporated technical maneuverability into our method to130

capture the important mechanistic elements. The framework and examples can be found in Figure S5.131

Figure 2: The four features of a proposed mechanistic template (MT). (a) Multiple RTs can match
a single MT if they share the same mechanism. (b) One RT can lead to different MTs according
to the criteria of the belonging MT. (c) Necessary reagents are added to complete the mechanistic
pathway labeling. (d) Reactions whose mechanisms do not follow an arrow-pushing diagram cannot
be labeled.

132

3 Results133

3.1 Mechanistic annotation based on dual templates134

In this paper, we introduce a mechanism labeling framework called MechFinder utilizing RTs and135

MTs introduced above. The process of using MechFinder to label the reaction mechanisms in a136

reaction dataset is divided into two phases: the expert annotation phase and the automatic labeling137

phase, as shown in Figure 3a and 3b.138

During the expert annotation phase (Figure 3a), we first extracted N (N = 100 in the current dataset139

used) unique RTs from all the X reactions (X = 33,099 in the current dataset used) in the reaction140
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dataset. For each RT, we sampled k representative reactions to manually label the mechanism by141

three steps shown in Figure 3c:142

1. RT extraction. We extracted reaction template focused on the reaction center, describing143

the local changes in atomic configuration upon a chemical transformation. The extrac-144

tion process also yields an atom-map lookup table, recording the one-to-one atom-map145

correspondence between the input reaction and the extracted RT.146

2. MT identification. Having RT for the given reaction, the MC and MT is identified by147

manual labeling in the expert annotation phase (but, once mapped, automated in the actual148

large-scale mechanism generation).149

3. Mechanistic sequence acquisition. The mechanistic pathway for the input reaction is150

labeled by aligning the atom-map numbers from the MT to the input reaction according to151

the atom-map lookup table.152

The number of sampled reactions k in the expert annotation phase is defined by the complexity of153

the encountered RT. For simple reactions like nucleophilic acyl substitution, we only sample one154

reaction to label the MT. For more complex reactions like SNAr reaction, we sample more reactions155

to include more cases where the electron withdrawing groups (EWG) are located at different positions156

(ortho or para) with respect to the leaving group to label the MT with different criteria.157

Figure 3: Overall pipeline of (a) expert annotation and (b) automatic mechanism labeling with
MechFinder. (c) Example of the process of labeling a SN2 reaction. First, we extract the RT of the
reaction focused on reacting atoms (nitrogen, alkyl group, and chlorine with atom-map numbers of 6,
9, and 8, respectively) along with the lookup table containing one-to-one correspondence between
template map numbers and atom-map numbers in the original reaction. Next, we manually identify
the MC for extracted LRT as “SN2 reaction” which has its unique MT characterized by the inherent
electron flow of reactive moieties. Upon replacement of template map numbers in the MT (1, 2, 3) by
the corresponding atom-map numbers in the original reaction (6, 9, 8) using the lookup table, we
finally obtain mechanistic sequence for the given reaction.

During the automatic labeling phase (Figure 3b), we follow the same three steps described in the158

set-up phase (Figure 3c) but replacing the manual labeling step (step 2) by looking up the previously159

labeled MT for the identified RT during the manual labeling phase to label the reactions in the160

reaction dataset. More examples of automatic mechanism labeling by MechFinder can be found in161

Supplementary Information.162
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3.2 Dataset163

In our benchmark experiments, we used the reaction data extracted from USPTO grant patents164

collected by Lowe [18], an organic reaction dataset extensively used in benchmarking various165

reaction prediction approaches. In particular, we demonstrate the results using USPTO-50K dataset166

curated by Schneider et al. [19] without reagent information. Since our approach only addresses167

arrow-pushing diagram representable mechanisms, we removed organometallic and radical reactions168

based on extracted RT. In addition, we applied LocalMapper to refine the atom-mapping of reactions169

because MechFinder is highly dependent on the quality of correct atom-mapping. Thus, 33,099170

reactions are finally obtained after the above pre-processing procedure. We refer to this reaction171

subset as USPTO-33K dataset in this paper.172

3.3 Quantitative results173

From a total of 33,099 reactions in the USPTO-33K dataset, we identified 400 RTs based on their174

precise atom-mappings. Among these, we categorized the 100 most frequently occurring RTs (shared175

by the most chemical reactions) into 63 distinct MCs (X=33,099, N=100, M=63) aligned with the176

conceptual framework of arrow-pushing-diagram-representable reaction mechanisms. The chosen177

top 100 RTs cover 94.8% of the USPTO-33K dataset reactions. To this end, our method generated178

the mechanistic annotation of 31,364 reactions that can be described by arrow-pushing-diagrams.179

This is the first large-scale mechanism dataset for organic reactions in the present literature, and we180

denote it as mech-USPTO-31k.181

We analyze the number of labeled reactions by increasing the number of labeled MTs and labeled182

RTs between top-1 to top-100 most popular RTs in Figure 4a. We found that labeling the top 10 most183

popular RTs with 11 MTs can successfully cover 58.4% of the total reactions, and labeling the top 50184

most popular RTs with 40 MTs can cover 87.7% of the total reactions. The coverage increments of185

adding a new MT drop exponentially with the decreasing RTs popularity. We inspect the frequency186

of the reactions in the mech-USPTO-31K dataset relative to the obtained label length to gain insight187

toward the complexity of the labeled reactions in terms of the lengths of the mechanistic pathways188

(Figure 4b). The majority of reactions exhibit 2-, 4-, 8- and 12-steps, which are mainly within the189

top-10 RTs. Remarkably, certain reactions feature lengthy sequences such as Swern oxidation [20] in190

19 steps, multi-component imidazole synthesis from a carboxylic acid and diamine substrate in 22191

steps and Vilsmeier formylation [21] in 23 steps. These findings underscore the versatility of our192

labeling method, which accommodates a wide spectrum of reactions, irrespective of their intricacy.193

The top 10 most popular RTs and their corresponding MTs are shown in Figure 4c. The most194

popular RT, covering 16.6% of the reactions in the mech-USPTO-31k dataset, corresponds to DCC195

condensation, which requires 12 mechanistic steps. The top-2 and top-8 RTs indicate SNAr reactions196

but use different nucleophiles. Similarly, the top-3 and top-5 RTs indicate SN1 or SN2 reactions.197

The mechanisms of top-4 and top-10 RTs can be represented by the MTs showing nucleophilic attack198

to the carbonyl (or sulfonyl) group. The top-6 is Boc group deprotection in acid and the top-7 RT is199

reductive amination.200

4 Discussion and Limitations201

Since we only consider organic reactions, whose mechanisms can be represented by arrow-pushing202

diagrams showing the movement of electron pairs, the current capacity of the proposed method is203

limited by the inability to label the mechanisms of organometallic and radical reactions. In the case of204

organometallic reactions, proposed mechanisms are alternate steps of one or more among oxidative205

addition, migratory insertion, reductive elimination, and β-hydride elimination which follow different206

patterns of electron movements. Mechanistic labeling of those reactions should include a model207

with different computational representations of electron movements. Building such model reflecting208

those patterns would enable extending the coverage to include organometallic reactions in the labeled209

dataset. The case of radical reactions is similar in the sense that, some modification to our current210

mechanistic representation to incorporate fishhook arrows showing the movement of single electrons211

would enable their labeling as well.212

Although not addressed in this article, our method should be further improved to include stereochemi-213

cal analysis. The popularity and importance of stereo- and enantio-selective syntheses in chemical214
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Figure 4: The quantitative results of automatic generation of mechanistic pathways for the USPTO-
33K reaction dataset using MechFinder. (a) Number of labeled reactions and MTs as a function of
the number of most popular RTs from 1 to 100. (b) Distribution of mechanistic pathway lengths,
displaying the frequency of n-step reactions in the labeled dataset. (c) The top 10 most popular RTs
and the 6 MTs associated with each RT. Note that RTs are expressed in SMARTS format and do not
contain any hydrogen. The depictions are simplified for reading convenience.

7



and drug industry make comprehensive stereochemical elucidation necessary [22]. Because the215

stereochemical outcome of an organic reaction is governed by the stereochemistry of each mech-216

anistic step, one may account for reaction stereochemistry by extending arrow-pushing diagrams217

with stereochemical definitions [23]. In that way, the overall stereochemistry of the reaction can be218

explicated.219

5 Conclusion220

In this work, we presented a computational approach, MechFinder, to automatically generate reason-221

able mechanistic sequences for organic reactions by capturing the patterns of electron movements222

in sequence from the large reaction dataset. An expert-coded mechanistic dictionary containing223

a many-to-one mapping of extracted reaction templates (RTs) and mechanistic templates (MTs)224

provides the basis for the accurate acquisition of so-called mechanistic labels, or reaction mechanisms.225

With the direct utilization of this technique we were able to reliably generate reaction mechanisms226

for nearly 95% of the USPTO-33k dataset automatically by manually labeling 100 RTs and 63227

MTs. This is the first systematic mechanism dataset of this scale for organic reactions which we228

denote as mech-USPTO-31k. The reaction coverage of the method can be further improved by229

defining computational representations for organometallic and radical reactions. Having a large-scale230

mechanism dataset such as mech-USPTO-31k automatically generated here, we envisage that an231

interpretable and more reliable machine learning model for reaction prediction can be built and232

trained on it. Since these mechanism-based ML models will make predictions based on the plausible233

mechanisms, rather than based on the learning just the reactant and product information, they will234

have less bias towards the known reactions and potentially provide an exciting opportunity to develop235

and discover new chemical reactions beyond human intuitions.236
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