

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MULTILINGUAL ROUTING IN MIXTURE-OF-EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model’s performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model’s ability to leverage language-universal experts in all languages.

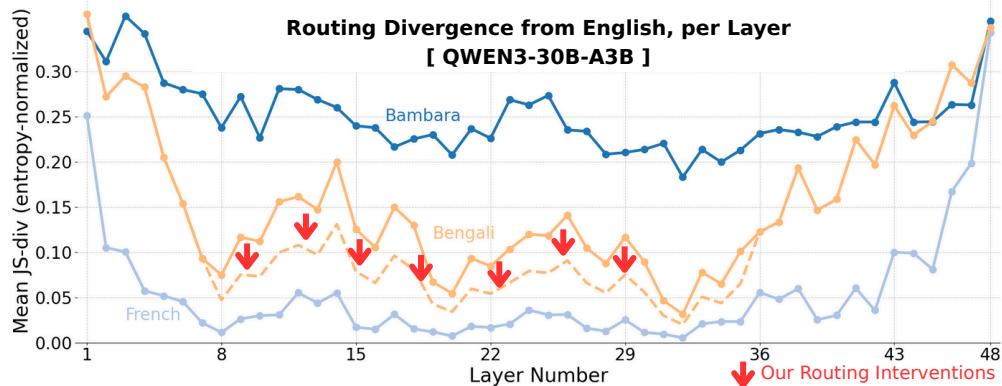


Figure 1: Visualization of the typical divergence in MoE routing weights across model layers between English and a high-, medium-, and low-resource language. There is consistently lower divergence in the middle layers, where experts are shared across languages. Languages the model does not understand (e.g. Bambara) fail to leverage similar experts as top languages. In this work, we also present a steering method that activates similar experts to English (red arrows) and results in improved multilingual generalization (e.g. an increase in MGSM-Bengali from 0.776 to 0.824).

1 INTRODUCTION

Sparse mixture-of-expert (MoE) architectures (Shazeer et al., 2017) are the new dominant paradigm in Large Language Models (LLMs) because they enable tremendous parameter scaling while maintaining manageable inference costs (Artetxe et al., 2022; Du et al., 2022). In terms of interpretability, MoEs present a trade-off compared to dense models. Their sparsity enables more redundancy

054 in parameterization (Dai et al., 2024; Li et al., 2025) and the routing mechanisms are sensitive and
 055 variable (Yang et al., 2025b). However, their discrete expert activation facilitates the analysis of
 056 which model components are responsible for the end result.

057 Despite remarkable progress in LLM multilingual capabilities enabled by scaling, the highly
 058 English-centric pre- and post-training of most models means performance gaps remain large for
 059 most languages beyond a select few. In recent years, significant effort has been devoted to interpreting
 060 the internal mechanisms that enable multilinguality. This has generally unveiled shared feature
 061 spaces in the middle part of the model, which are pivotal to the cross-lingual transfer of model capa-
 062 bilities (Kojima et al., 2024; Wendler et al., 2024; Bandarkar et al., 2025; Wu et al., 2025). However,
 063 this work has been limited to *dense* LLMs, whereas sparse activation patterns in MoE architectures
 064 lead to different computational structures whose impact on feature representations remains unex-
 065 plored.

066 In this work, we investigate multilingual behavior in mixture-of-experts LLMs. To begin with, a data
 067 analysis comparing routing across parallel datasets yields numerous coherent findings. Studying
 068 QWEN3-30B-A3B (Yang et al., 2025a), PHI-3.5-MOE (Abdin et al., 2024), GPT-OSS-20B OpenAI
 069 (2025), and OLMOE (Muennighoff et al., 2025), we find that, despite their sparsity, they adopt
 070 similar mechanisms as dense LLMs; leveraging language-agnostic parameters in intermediate model
 071 layers—if anything in a clearer, more modular way. In addition, language performance is strongly
 072 correlated to its cross-lingual routing alignment to English. We further highlight how multilingual
 073 expert specialization impacts router entropy and token-to-token routing similarity.

074 We build upon this observation by showing that the model’s ability to call upon shared experts is a
 075 key driver of multilingual performance. We investigate this via manual interventions into the MoE
 076 block’s forward pass to encourage or discourage the activation of specialized experts. We explore
 077 steering the routers in different model layers, intervention strengths, and types of experts. In the end,
 078 we find that we can improve multilingual task performance when activating experts important for
 079 solving that task in English. We experiment with QWEN3, PHI-3.5-MOE, and GPT-OSS—all fully
 080 post-trained and state-of-the-art LLMs—and find that these inference-time interventions consistently
 081 yield statistically significant improvements on two tasks requiring domain knowledge, MGSM (Shi
 082 et al., 2023) and the medicine subset of GLOBAL-MMLU (Singh et al., 2025). **The specific condi-
 083 tions under which our intervention works provides strong validation that our initial interpretability
 084 analysis uncovered verifiable MoE mechanisms for processing multilingual text.**

085 Through this routing data analysis and the resulting intervention experiments, we demonstrate that
 086 improved expert-sharing leads to the generalization of such complex capabilities. By demon-
 087 strating that simple inference-time interventions yield substantial improvements, our work reveals a vast
 088 potential for improving multilingual performance in MoE LLMs. This result motivates the develop-
 089 ment of other methods that promote cross-lingual expert sharing, such as during training.

092 2 RELATED WORK ON MULTILINGUAL LLMs

093
 094 Before the massive scaling of decoder-only LLMs, smaller encoder-decoder models were subject
 095 to the *curse of multilinguality*, where adding more languages hurt performance in other languages
 096 due to limited representational capacity (Conneau et al., 2020; Pfeiffer et al., 2022). Cross-lingual
 097 embedding alignment was commonplace with such models in order to unify feature spaces and facil-
 098 itate multilingual generalization (Zhou et al., 2016; Schwenk & Douze, 2017; Ouyang et al., 2021;
 099 Patra et al., 2023). But with the shift to decoder-only LLMs, this approach became no longer viable.
 100 Nonetheless, these LLMs implicitly learn shared feature representations. As noted previously, many
 101 works have concluded through different approaches that the middle decoder layers of an LLM con-
 102 tain joint language representations (albeit English-centric), while the first and last layers primarily
 103 map language-specific representations to and from this space (Kojima et al., 2024; Wendler et al.,
 104 2024; Tang et al., 2024; Alabi et al., 2024). As models have become larger and more trained, this
 105 phenomenon has become more evident (Chen et al., 2025) and modular (Bandarkar et al., 2025).

106 **Kargaran et al. (2025) finds that middle-layer embedding alignment is strongly related to perfor-
 107 mance in modern LLMs.** Wu et al. (2025) finds that this semantic space extends beyond natural
 108 languages, to encompass numbers, computer languages, and different input modalities.

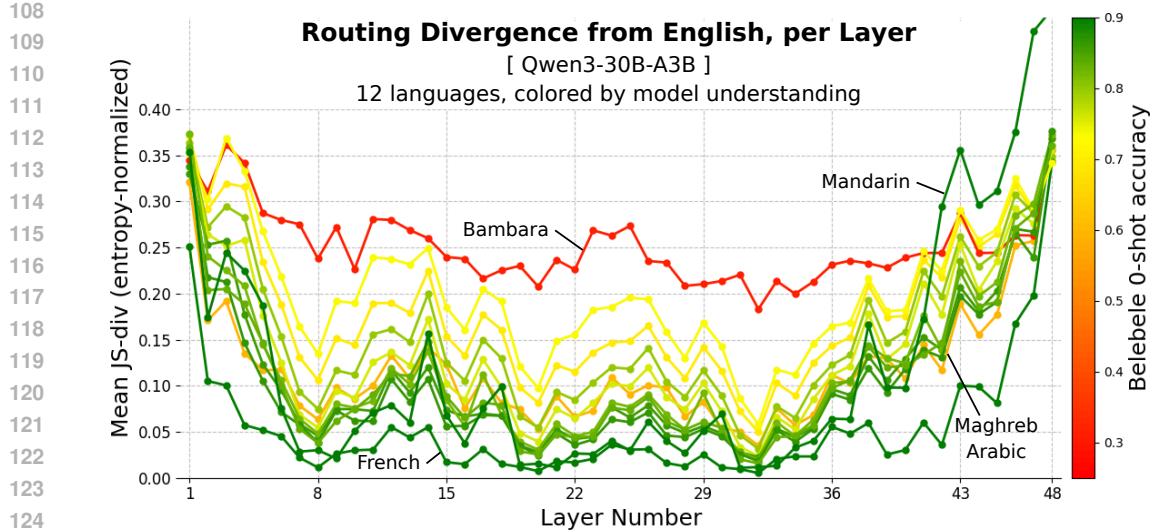


Figure 2: Visualization with more languages of routing divergence from English across model layers based on Qwen3-30B-A3B, where the U-shape can be seen for all. Each line is colored by how well the model understands that language (BELEBELE accuracy), highlighting a strong correlation between the two. We label a few notable plotted languages, but provide the same graph (along with 3 more models) colored to better distinguish languages in Appendix A.2.

Extending these findings, recent works argue that stronger representational alignment improves multilingual performance (Ravisankar et al., 2025). This has been demonstrated through methods that steer models towards language-shared representations (Mahmoud et al., 2025; Lu et al., 2025) or away from language-specific representations (Lim et al., 2025; Zhao et al., 2025). Prompting methods that encourage the use of English as a pivot language can also boost cross-lingual transfer (Shi et al., 2023; Zhang et al., 2024; Yong et al., 2025). LCM team et al. (2024) introduces an LLM that autoregresses over language-neutral “concept” embeddings instead of subword tokens, which exhibits strong multilingual generalization.

Bridging multilingual research and MoEs, recent works leverage MoE modularity for massively multilingual machine translation (NLLB Team et al., 2022; Zhao et al., 2024). In LLMs, Zheng et al. (2025) scales multilinguality through MoE upcycling (Komatsuzaki et al., 2023) in final layers.

3 MIXTURE-OF-EXPERTS PRELIMINARIES

MoE LLMs differ from traditional decoder-only transformer architectures by replacing the multi-layer perceptron (MLP) component of each model layer with E MLPs, referred to as “experts”. For each input token, a router (or “gating network”) calculates a set of logits and sends the token embedding to the top- K experts only. The K output hidden states are then aggregated, typically via a weighted sum. MoE models are often trained with an auxiliary load-balancing loss (Shazeer et al., 2017; Fedus et al., 2022) that penalizes uneven expert utilization, introducing some redundancy in expert specialization. Xue et al. (2024) finds that in sparse MoE, routing is often independent of context and token-to-expert mappings are established early in pretraining.

4 INTERPRETABILITY ANALYSIS

4.1 DATA

For this analysis, we primarily use the FLORES-200 translation dataset (Goyal et al., 2022) because of its parallel texts and inclusion of many diverse languages. While no dataset can truly be without domain or style, we use FLORES and its wide array of topics to represent the baseline, *generic* domain. Conveniently, FLORES has an associated reading comprehension evaluation dataset, BELEBELE (Bandarkar et al., 2024), which we use to tie in language performance. We carefully select a

162 subset of 12 languages (plus English), diverse in scripts, families, and resource-levels that allow us
 163 to explore numerous relationships (See the list in the Appendix A.3).
 164

165 **4.2 MODELS**
 166

167 We look at four prominent open-source MoE LLMs: OLMOE (Muennighoff et al., 2025), QWEN3-
 168 30B-A3B (Yang et al., 2025a), PHI-3.5-MOE (Abdin et al., 2024), GPT-OSS-20B (OpenAI, 2025).
 169 All have been trained primarily on English data, but the technical reports of QWEN3, GPT-OSS, and
 170 PHI-3.5-MOE emphasize their multilingual capabilities. Presumably, these three have been pre- and
 171 post-trained on significant non-English data. Meanwhile, the older and smaller OLMOE is English-
 172 only, exhibiting much poorer multilingual performance. These models all differ in their architectural
 173 width, sparsity, and depth. We provide model details and checkpoint specifics in Appendix A.1.
 174

175 **4.3 ROUTING DIVERGENCE**
 176

177 We begin by collecting routing data on FLORES for each language across layers. Due to the diffi-
 178 culty of cross-lingual token alignment, we average the post-softmax routing weights across tokens
 179 to obtain each sequence’s *expert importance distribution*. Given a language *lang* and model layer *l*:

- 180 • let *E* be the number of experts in the Mixture-of-Experts (MoE) layer.
- 181 • let *N* be the number of sequences in the corpus.
- 182 • let L_i be the sequence length (number of tokens) of the *i*th sequence.
- 183 • let $\mathbf{p}_{i,t}^{(\text{lang},l)}$ be the routing weights for the *t*th token of the *i*th sequence from language *lang*, at layer
 184 *l*. This is an *E*-dimensional probability; If \mathbf{z} are the logits, then $\mathbf{p}_{i,t}^{(\text{lang},l)} = \text{softmax}(\mathbf{z}_{i,t}^{(\text{lang},l)})$.

$$185 \quad \mathbf{q}_i^{(\text{lang},l)} = \frac{1}{L_i} \sum_{t=1}^{L_i} \mathbf{p}_{i,t}^{(\text{lang},l)} \quad \in [0, 1]^E \quad (1)$$

186 The expert importance \mathbf{q} for the *i*th sample is the mean-pooled routing weights across tokens
 187 ($\mathbf{q} \in [0, 1]^E$ and $\sum \mathbf{q} = 1$). We consider alternatives, such as averaging discrete activation counts
 188 rather than routing probabilities, but these yield sharper, higher-variance distributions that are more
 189 difficult to mean-pool. Another option is to use only the last token’s routing weight (or average the
 190 last few), as is sometimes done with hidden states. However, routing weights vary more strongly
 191 across tokens than hidden states, due to factors like part-of-speech, token type, and positional con-
 192 text. Therefore, sequence-wide weight-averaging provides a more stable and representative measure
 193 of routing behavior.
 194

195 For each non-English sequence, we use *entropy-normalized* Jenson-Shannon divergence ($D_{\text{H-JS}}$) to
 196 compare its expert importance distribution to that of its paired English sequence. Routing entropy
 197 consistently decreases across model layers and therefore needs to be accounted for when compar-
 198 ing JS-divergence (a symmetric variant of KL-divergence) across layers. We revisit this trend in
 199 Section 4.4 and detail our entropy normalization in Appendix A.4. Finally, we average these diver-
 200 gences across all sequences in the corpus to get a metric for routing divergence from English for
 201 each layer and language.
 202

$$203 \quad \text{Div}^{(\text{lang},l)} = \frac{1}{N} \sum_{i=1}^N D_{\text{H-JS}}(\mathbf{q}_i^{(\text{eng},l)} || \mathbf{q}_i^{(\text{lang},l)}) \quad \in [0, 1] \quad (2)$$

204 This designed metric reveals highly interpretable patterns across languages, models, and layers.
 205

206 **Finding 1**

207 For all languages, there is much higher routing divergence from English in the first and last layers
 208 than in the intermediate layers. The overall trend is this U-shape for all languages (See Figure 2).
 209

210 And while this trend is the most pronounced and least noisy for QWEN3, this general trend is com-
 211 mon to all four models evaluated (See Appendix A.2). As mentioned, OLMOE has very poor
 212 multilingual capabilities and this could explain why the big majority of languages studied do not
 213 exhibit this U-shape (See Figure A.2). However, French (fra) and Chinese (zho), high-resource lan-
 214 guages it can somewhat process, display this U-shape clearly. GPT-OSS (Figure A.3) displays this
 215 trend clearly and is the only one where divergence is higher in the first layers than the last. PHI-3.5-
 MOE (Figure A.4) displays this trend, but only if you exclude the first two layers—PHI-3.5-MOE

216 perplexingly activates the same few experts in the first layer for all languages. We are unable to find
 217 an explanation for this, but this could imply very poor load-balancing.
 218

219 This aligns with findings from dense LLMs that reveal language-universal representation spaces in
 220 the middle layers of LLMs. If the representations are aligned, the routing would also be. This means
 221 that other factors, perhaps semantic ones rather than lexical ones, determine routing here. Generally,
 222 these MoE LLMs have implicitly learned to call upon similar experts across languages. While
 223 English is the main pivot language for all models studied, we find similar trends when graphing with
 224 another focus language. Trends are more flattened if lower-resource languages are used as the focus.
 225

Finding 2

226 We find a strong correlation between cross-lingual routing alignment in intermediate layers and
 227 language performance. See Figure 2 for a visualization of this phenomenon on QWEN3.
 228

229 This figure displays a strikingly strong relationship between a model’s ability in a language (line
 230 color) and how aligned its routing is with English. This is true across the model layers except the
 231 first and last ones. Generally, the highest-resource languages form the strongest U-shape, with very
 232 low routing divergence in the middle layers. For Bambara, an example for a language we know the
 233 models are all very poor at (near-random BELEBELE performance), the LLMs fail to map its inputs
 234 to this semantic space, maintaining high routing divergence throughout. In the middle layers of all
 235 models, the correlation coefficient r between the routing divergence from English and BELEBELE
 236 accuracy is always strong. For OLMOE, $r \in [-0.95, -0.80]$ for all middle layers. Meanwhile,
 237 GPT-OSS is the weakest ($r \in [-0.40, -0.60]$), with PHI-3.5-MOE and QWEN3 in between. Recall
 238 that BELEBELE directly evaluates understanding on those same FLORES passages. **When graphing
 divergence from Chinese, French, or other high-resource languages as opposed to English, we find
 very similar results.**
 239

240 Across all layers, language similarity is also correlated with routing similarity. This is very expected
 241 in the first and last layers, where token overlap and structural similarity lends itself to shared param-
 242 eterization. Even so, the impact of language families continues into the middle layers where we find
 243 that even here, related language pairs like (Bengali, Assamese), (Farsi, Arabic), or even (Romanized
 244 Arabic, MSA) have much lower routing divergence between them than unrelated pairs like (Bengali,
 245 French), and (Oriya, Serbian). And while this confounds our analysis relating language ability and
 246 routing alignment, we find that language relationships only explain a small part of the trends.
 247

248 We additionally explore do-
 249 mains instead of languages to
 250 compare. We select AlpaCare-
 251 MedInstruct (Zhang et al.,
 252 2023) to represent the medical
 253 domain, GSM8K-Instruct
 254 (Cobbe et al., 2021) the math-
 255 ematical domain, and the
 256 English FLORES split as the
 257 baseline. For these domains,
 258 routing divergence from the
 259 generic domain exhibits the
 260 *opposite* pattern: higher
 261 divergence exists in the middle
 262 layers (more of a \cap -shape).
 263 However, these patterns are
 264 weaker, as domains are less
 265 different than languages.
 266 Nevertheless, this suggests
 267 separation of parameterization
 268 between multilinguality and
 269 task-specific capabilities, as
 270 has been observed in dense
 271 models (Bandarkar et al., 2025). We revisit this language-task *modularity* (Choenni et al., 2024;
 272 Bandarkar & Peng, 2025) in Section 5.2, as it is fundamental to our intervention methodology.
 273

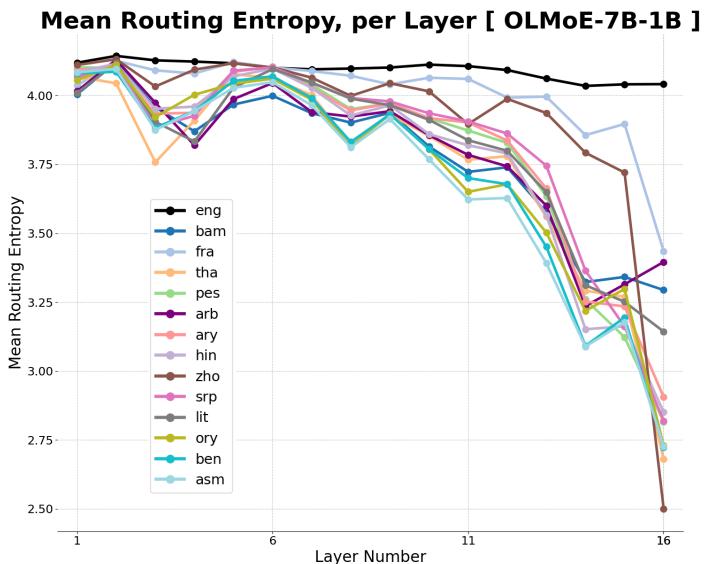


Figure 3: Routing Entropy per Layer for OLMOE.

270
271

4.4 ROUTING ENTROPY AND CONSISTENCY

272

Finding 3

273
274

Routing entropy decreases (in other words, routing confidence increases) across model layers for all languages, but this decrease happens at a much higher rate for non-English languages.

275
276
277
278
279
280
281
282
283

We calculate the entropy H of each routing weight distribution and then average across tokens in the datasets. As tokens pass through the model, routers increasingly know which experts to send them to, perhaps because representations become more refined or experts more diverse (Lo et al., 2025). This lowering entropy occurs for English, but is much stronger for non-English languages, as can be seen for OLMOE in Figure 3. For non-English languages in particular, the final layer displays a major drop. While the entropy graphs look quite different for each model (See Appendix A.5), these broader trends are visible for all. **A potential explanation is a small number of experts specialized for generating non-English text in the final layers, while English can route to a larger number of experts. More options to route in English would lead to higher routing entropy.**

284
285
286
287
288
289

We additionally analyze the token-to-token routing variance across languages and layers. To do so, we randomly sample 500 pairs of tokens per sequence and take the Jaccard similarity of the two sets of activated experts. This gives a robust estimate for the expected similarity across all 2^L token pairs. We then average across sequences, giving a measure of *intra*-sequence routing agreement for each layer. We show this metric for PHI-3.5-MOE with a subset of languages in Figure 4 as an example. Other models and languages display very similar patterns.

290
291
292

Finding 4

For non-English languages, there is generally higher routing consistency across tokens *within a sequence* than in English. In the last layers, it is **much** higher than English.

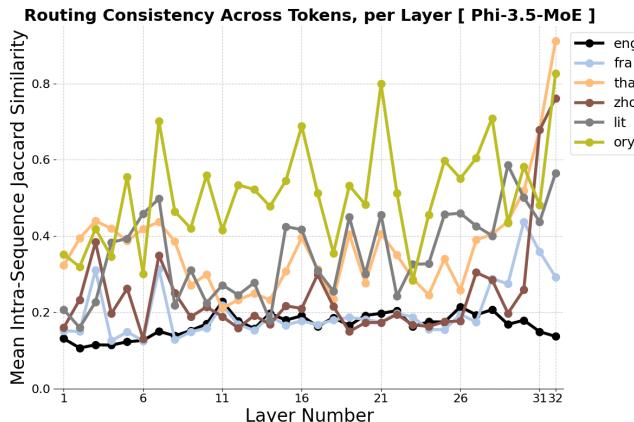


Figure 4: Token routing consistency (within a sequence), across layers in PHI-3.5-MOE.

307
308
309
310
311
312

reinforce the idea that the model has dedicated multilingual generation experts in the last decoder layers, while English tokens have more possible experts to be routed to.

313
314

5 INTERVENTION METHODOLOGY

315
316

5.1 EVALUATION TASKS AND DATA

317
318
319
320
321
322
323

We choose as our target evaluation tasks the multilingual mathematical reasoning benchmark, MGSM (Shi et al., 2023), and the medicine subset of the multiple-choice benchmark, GLOBAL-MMLU (Singh et al., 2025). Both are fully parallel test sets that require domain-specific knowledge and reasoning, and therefore present a good evaluation of cross-lingual ability transfer in comparison to FLORES and BELEBELE, which serve more as pure linguistic signals. To identify math domain experts, we use GSM8K-Instruct (Chen et al., 2024), which constitutes the training set of GSM8K (Cobbe et al., 2021) augmented with instructions. Once again, we use the AlpaCare MedInstruct dataset (Zhang et al., 2023) to represent the medical domain. We note that GSM8K is distribution-

Routing consistency, itself, also correlates with performance, with the lowest resource languages having the highest token-to-token agreement. High-resource languages have lower consistency, but still mostly above that of English across model layers. This can be explained by the English-heavy pretraining using a load-balancing loss, which would lead to a large number of specialized experts for English tokens. In contrast, multilingual tokens rely on fewer experts, resulting in reduced token-to-token variation. In the last layers, the models will consistently send tokens in the same non-English language to the same expert. Both entropy and our consistency metric

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
ally identical to (English) MGSM, while MedInstruct is only similar to the evaluation data in broad domain. We continue to use FLORES as the baseline (see Section 4.1).

5.2 EXPERT IDENTIFICATION

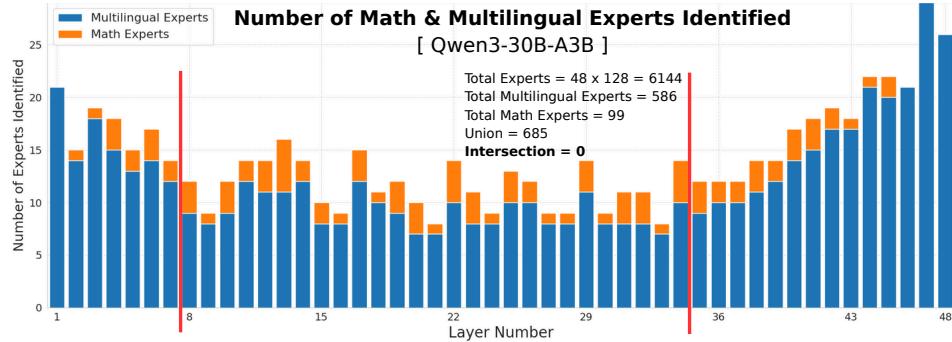


Figure 5: Plot of the Number of Identified Experts per Layer, with $\tau = 0.3$ for QWEN3. The red vertical bars delimit the region in which we intervene.

Although the goal of Section 4 was to understand layer-wise patterns, the goal here is to identify specialization in individual experts. To do so, we use discrete activation counts instead of routing weights to better discern the most responsible experts. Similarly to Fayyaz et al. (2025), we calculate the *relative* frequency of activation, that is the proportion of tokens that an expert figured in the top- k , $a_i/L_i \in [0, 1]^E$. While that work uses paired samples, we cannot pair our data across domains and thus average this activation proportion across sequences in the corpus. Then, for each expert, we take the difference Δ in those averages between the task or language dataset and the baseline. Concretely:

$$\Delta = \frac{1}{N^{(1)}} \sum_{i=1}^{N^{(1)}} \frac{a_i}{L_i} - \frac{1}{N^{(2)}} \sum_{j=1}^{N^{(2)}} \frac{a_j}{L_j} \in [-1, 1]^E \quad (3)$$

We find that this method helps clearly identify specialized experts. This is because the resulting Δ s are heavily *right-skewed*. The large majority of experts are around zero, or right below, while a small percentage of experts have strong positive values (See Appendix A.7 for a visualization). These experts, activated much more often on the domain or language dataset compared to the baseline, are therefore specialized. This also shows that, empirically, FLORES is sufficiently “generic” to serve as a baseline. To select the experts to intervene on, we use a tunable positive-valued threshold τ . Therefore, the k^{th} expert is selected for intervention if $\Delta_k > \tau$. Given the high number of languages available, we define a multilingual expert as one where *for any language*¹, $\Delta_k > \tau$.

Finding 5

There is **no** overlap between multilingual-specialized experts and task (math or medicine) experts.

We find multilingual experts in all layers, but as expected, we find a lower prevalence in the middle (See Figure 5 for an example). The *degree* of specialization is also much lower here (lower Δ_k -values). Math and medicine experts are more evenly distributed across the model and generally have lower Δ_k -values. If $\tau \geq 0.3$, we detect absolutely no expert simultaneously specialized for a task and multilinguality across all four models. In other words, the set of experts that are activated more in non-English languages is completely separate from those activated more in the math and medicine domains than the general domain. This is consistent with the routing divergence trends and is a very convincing display of language-task modularity in MoE LLMs.

5.3 ROUTING INTERVENTIONS

The above produces a set of experts to boost (\mathbb{A}^+) or suppress (\mathbb{A}^-). Then, during the forward pass through the MoE block, our method intercepts the router logits and alters them. This not only has an impact on the sparse activation of experts, but also how heavily each output is weighed during aggregation. Thus, we intervene prior to the softmax operation to not destabilize this weighted sum.

¹We do investigate with identifying individual-language experts, but intervention results end up the same.

378 **Soft intervention** Our first style of intervention simply steers the original logit of the target expert.
 379 Because every router produces logits in a very different range, we elect to steer by adding/subtracting
 380 values (λ) proportional to the standard deviation of all E logits, $s(\mathbf{z})$. Our approach is quite different
 381 from Wang et al. (2025), which steers by rather multiplying the weights by a factor. Empirically, we
 382 find smaller $|\lambda| \leq 1.0$ to work best. Concretely, to steer the k^{th} expert (in \mathbb{A}^+ or \mathbb{A}^-):

$$\mathbf{z}'_k \leftarrow \mathbf{z}_k + \lambda \cdot s(\mathbf{z}) \quad (4)$$

385 **Hard intervention** We replicate the *force*-activation and -deactivation method from Fayyaz et al.
 386 (2025), which sets a logit to the maximum or minimum value among all experts on a given token,
 387 forcing its selection or non-selection. We also add a random perturbation ε for edge cases (See
 388 Appendix A.6). So, if expert $k \in \mathbb{A}^+$:

$$\mathbf{z}'_k \leftarrow \max(\mathbf{z}) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, 10^{-6}) \quad (5)$$

391 Or rather $\min(\mathbf{z})$ if $k \in \mathbb{A}^-$. We note that deactivation is a less significant intervention than activation:
 392 deactivation removes one of many options, rather than forcing one of the few activations.

393 Either way, the intervened routing is still far from homogenized across languages. Even hard intervention
 394 only forces 1 or 2 experts into the top-K selection (where K is typically 4 or 8). The router still produces a full logit distribution for every token and selects most experts as before. The
 395 intervention is a targeted nudge to ensure the task-relevant experts are strongly considered.

397 5.4 INTERVENTION EXPLORATION

399 The search space of possible such interventions is large, given (1) the choice of model layers, (2) the
 400 types of specialized experts to target (task or multilingual experts), (3) the threshold τ that controls
 401 expert selection, and finally (4) the direction and (5) strength of intervention. To limit the exponentially
 402 large search space of model layers (1), we leverage our layer-wise interpretability analysis
 403 of where strong relationships exist between alignment and (linguistic) performance, i.e., the middle
 404 layers. Specifically, we use the divergence graphs (Figure 2, Appendix A.2) to demarcate which
 405 layers constitute this middle zone (See “Target layers” in Table 1). For example, we hypothesize
 406 that boosting alignment would help most in QWEN3’s layers 8 to 35 (one-indexed).

407 We started by exploring the milder deactivation of experts rather than force-activation. As baselines,
 408 we deactivated multilingual or task experts in all layers or in random subsets, which led to sub-
 409 stantial performance degradation. Leveraging our hypothesis, we found that a significant number of
 410 multilingual experts in the middle layers could be suppressed without causing major performance
 411 degradation. Similarly, task experts in the early and late layers could be deactivated with minimal
 412 negative impact. Deactivating in the exact opposite layers, for each, led to a large drop. While
 413 deactivation only led to worse performance, these patterns resonated with our hypothesis of implicit
 414 language-task modularity. This informed our subsequent strategy.

415 Generally speaking, random or even slightly suboptimal interventions to the router lead to perfor-
 416 mance degradation. This highlights the sensitivity of intervening in heavily-trained MoE routers and
 417 the potential to over-/under-weight particular experts during inference.

418 Table 1: Summary of Intervention Results. Target layers are the model layers where the intervention
 419 takes place. The expert-selection threshold τ and intervention method are described in Section 5.
 420 Given the target layers and τ -value, we provide the number of experts selected for steering.

Model name	Total layers	Target layers	τ (Δ_k thresh.)	Interven. method	#Experts selected	Non-Eng original	AVG intervened
MGSM							
						<i>10 non-English languages, 250 samples, 2-shot exact-match \uparrow</i>	
QWEN3-30B-A3B	48	(8,35)	0.4	soft, $\lambda=0.5$	22	76.4%	78.0%
PHI-3.5-MoE	32	(8,17)	0.3	soft, $\lambda=0.5$	12	57.5%	58.9%
GPT-OSS-20B	24	(4,19)	0.3	hard	9	68.9%	71.5%
<i>Global-MMLU, Medical Subset</i>							
						<i>13 non-English languages, 420 samples, 0-shot accuracy \uparrow</i>	
QWEN3-30B-A3B	48	(8,35)	0.5	hard	23	68.2%	69.1%
PHI-3.5-MoE	32	(8,17)	0.25	soft, $\lambda=0.5$	2	57.8%	58.8%
GPT-OSS-20B	24	(4,19)	0.3	soft, $\lambda=0.5$	6	63.8%	64.5%

432 6 INTERVENTION RESULTS

434 Given the lack of improvement from any deactivation schema, we ultimately turn to the more invasive
 435 strategy of boosting or force-activating specialized experts and get interesting results:
 436

437 **Finding 6**

438 For all models and tasks, steering the router to use the same middle-layer experts that it activates
 439 for a task in English leads to a statistically significant improvement in multilingual performance.

440 As discussed, we identify task experts using English in-domain data and the above methodology.
 441 Then we intervene to encourage or force the activation of such experts in the middle layers when
 442 evaluating on multilingual splits of the benchmark. As displayed in Tables 1 and 2, this intervention
 443 method is very consistent in its positive increase for 3 models and 2 evaluation tasks. These gains
 444 can be seen across the diverse range of languages, even a bit bigger for lower-resource languages.
 445 While the magnitude is modest (1-2 points), this is substantial given the simplicity of the test-
 446 time intervention relative to the massive scale of training and sophistication of the LLMs. It is
 447 also statistically significant when considered across languages. The gains for medicine are less
 448 pronounced than for math, likely because the dataset for identification is only vaguely related to the
 449 evaluation data.

450 **Hyperparameters** The models all differed in their MoE configurations (See Appendix 4.2) and
 451 magnitudes of Δ -values, requiring model-specific tuning for the expert-selection threshold τ and
 452 the strength of intervention (e.g., hard or soft). For soft interventions, $|\lambda| = 0.5$ tended to be the
 453

454 Table 2: Per-Language Intervention Results. Intervention specifics are provided in Table 1.

455 MGSM		250 samples, 2-shot exact-match \uparrow					
456 Language	457	458 GPT-OSS-20B		459 QWEN3-30B-A3B		460 PHI-3.5-MOE	
461 en	462	463 base	464 intervened	465 base	466 intervened	467 base	468 intervened
469 bn*	470	471 56.0%	472 57.6% (+1.6)	473 77.6%	474 79.6% (+2.0)	475 20.8%	476 23.2% (+2.4)
477 de	478	479 69.2%	480 76.8% (+7.6)	481 82.4%	482 83.2% (+0.8)	483 79.2%	484 81.6% (+2.4)
485 es	486	487 76.4%	488 78.8% (+2.4)	489 89.2%	490 89.2% (0.0)	491 85.6%	492 85.6% (0.0)
493 fr	494	495 71.6%	496 71.6% (0.0)	497 78.8%	498 82.4% (+3.6)	499 70.0%	500 69.2% (-0.8)
501 ja	502	503 77.6%	504 76.8% (-0.8)	505 80.0%	506 82.0% (+2.0)	507 75.6%	508 77.2% (+1.6)
509 ru	510	511 70.4%	512 76.0% (+5.6)	513 78.0%	514 82.0% (+4.0)	515 79.2%	516 78.8% (-0.4)
517 sw*	518	519 52.4%	520 62.0% (+9.6)	521 48.4%	522 51.6% (+3.2)	523 19.6%	524 20.8% (+1.2)
525 te*	526	527 71.6%	528 74.0% (+2.4)	529 62.0%	530 62.4% (+0.4)	531 4.0%	532 4.4% (+0.4)
533 th	534	535 58.0%	536 58.4% (+0.4)	537 84.8%	538 80.4% (-4.4)	539 65.2%	540 68.4% (+3.2)
541 zh	542	543 86.0%	544 83.2% (-2.8)	545 83.2%	546 86.8% (+3.6)	547 76.0%	548 79.6% (+3.6)
549 non-en AVG	550	551 68.9%	552 71.5% (+2.6)	553 76.4%	554 78.0% (+1.5)	555 57.5%	556 58.9% (+1.4)
557 low-res * AVG	558	559 60.0%	560 64.5% (+4.5)	561 62.7%	562 64.5% (+1.9)	563 14.8%	564 16.1% (+1.3)
469 GLOBAL-MMLU, Medicine Subset							
470 420 samples, 0-shot accuracy \uparrow							
471	472	473 base	474 intervened	475 base	476 intervened	477 base	478 intervened
479 en	480	481 79.0%	482 78.1% (-0.9)	483 82.4%	484 83.1% (+0.7)	485 75.5%	486 75.5% (0.0)
487 ar	488	489 58.1%	490 58.8% (+0.7)	491 64.5%	492 64.9% (+0.4)	493 55.2%	494 56.9% (+1.7)
495 bn*	496	497 63.3%	498 64.7% (+1.4)	499 63.6%	500 65.5% (+1.9)	501 39.0%	502 40.5% (+1.5)
503 de	504	505 71.0%	506 70.4% (-0.6)	507 75.7%	508 75.2% (-0.5)	509 68.6%	510 70.2% (+1.6)
511 es	512	513 71.2%	514 72.1% (+0.9)	515 76.4%	516 78.6% (+2.2)	517 70.5%	518 71.9% (+1.4)
519 fr	520	521 71.4%	522 71.9% (+0.5)	523 77.9%	524 79.3% (+1.4)	525 71.7%	526 73.1% (+1.4)
527 hi	528	529 64.0%	530 63.6% (-0.4)	531 66.2%	532 66.3% (+0.1)	533 55.2%	534 53.1% (-2.1)
535 id	536	537 66.7%	538 67.4% (+0.7)	539 75.2%	540 75.7% (+0.5)	541 66.0%	542 68.3% (+2.3)
543 it	544	545 67.1%	546 67.1% (+0.0)	547 76.7%	548 76.6% (-0.1)	549 71.4%	550 71.4% (+0.0)
551 ja	552	553 65.5%	554 67.1% (+1.6)	555 72.9%	556 72.6% (-0.3)	557 63.8%	558 64.5% (+0.7)
559 ko	560	561 60.7%	562 61.9% (+1.2)	563 68.3%	564 68.8% (+0.5)	565 56.7%	566 55.7% (-1.0)
567 pt	568	569 69.3%	570 69.8% (+0.5)	571 75.7%	572 77.6% (+1.9)	573 50.7%	574 51.7% (+1.0)
575 sw*	576	577 50.2%	578 51.8% (+1.6)	579 43.6%	580 46.4% (+2.8)	581 40.5%	582 41.9% (+1.4)
583 yo*	584	585 46.2%	586 47.6% (+1.4)	587 42.1%	588 42.6% (+0.5)	589 40.0%	590 42.9% (+2.9)
591 zh	592	593 68.3%	594 68.3% (0.0)	595 76.0%	596 77.1% (+1.1)	597 59.8%	598 60.5% (+0.7)
599 non-en AVG	600	601 63.8%	602 64.5% (+0.7)	603 68.2%	604 69.1% (+0.9)	605 57.8%	606 58.8% (+1.0)
607 low-res * AVG	608	609 53.2%	610 54.7% (+1.5)	611 49.8%	612 51.5% (+1.7)	613 39.8%	614 41.8% (+1.9)

486 most successful, as larger λ likely disrupted the weights for aggregation too significantly. Generally,
 487 intervening on a very small numbers of targeted experts leads to improvements. QWEN3 requires the
 488 strictest selection threshold τ , while PHI-3.5-MOE works best with minimal interventions (though
 489 with 2 experts-per-token, each intervention has much greater impact). For GPT-OSS on MGSM, the
 490 effectiveness of *hard*-activation with $\tau = 0.3$ is surprising because here, an expert active on as low
 491 as 35% of domain tokens in English would be force-activated on *all* tokens during evaluation.
 492

493 **Sensitivity to Target Layers** Despite the above differences across models, the sensitivity to target
 494 layers far exceeds that to these tunable hyperparameters for all models. As foreshadowed by the
 495 results on deactivation, we find the most important to be *location* of the intervention. We leveraged
 496 our divergence graphs (Figure 2, Appendix A.2) to determine layers for intervention, but using layers
 497 slightly outside of this zone led to significant performance degradation rather than improvement.
 498 This strict delimitation of the language-universal middle layers is notable, implying that intervening
 499 this way into layers with “intentional” cross-lingual routing differences undermines the model. In
 500 addition, these results also validate the efficacy of the visualizations from the routing analysis in
 501 revealing these boundaries. Combining with other interventions, such as activating multilingual
 502 experts in the top and bottom layers, tends to nullify the gains from these precise middle layer
 503 interventions. In the end, our experiments show that only by targeting a small number of task-
 504 specific experts in these precise, language-universal middle layers can we achieve consistent positive
 505 gains in multilingual performance.

506 Overall, the baselines and number of conditions under which these interventions do not work high-
 507 light how difficult it is to intervene in the heavily-trained model routers without hurting performance.
 508 As a result, the consistent improvements from our small-scale test-time intervention are notable. The
 509 layer-wise conditions under which it happens imply that the inability of such MoE LLMs to activate
 510 similar middle-layer task-experts across languages is a limitation for cross-lingual transfer.

511 7 CONCLUSION AND FUTURE WORK

512 All our analyses of sparse activation patterns converge on a key finding: the most important multilingual
 513 specialization of MoE experts occurs in early and late model layers, with experts in the middle
 514 layers serving as language-universal mechanisms for multilingual generalization. The strongest ev-
 515 idence for multilingual specialization exists in the last layers, where we find lower entropy and high
 516 token-to-token consistency in non-English languages. When identifying experts specialized for mul-
 517 tilingual capabilities or over our two domains, math and medicine, we surprisingly find full separation
 518 in the sets of experts. Our manual interventions that steer routers to replicate English activation pat-
 519 terns yield consistent multilingual improvements. The specific conditions under which these inter-
 520 ventions lead to positive improvement imply validate our initial analysis and highlight the existence
 521 of the model’s learned mechanism to attempt to leverage similar experts in the middle layers, even
 522 if not always successful. These results suggest a causal relationship between cross-lingual routing
 523 alignment and cross-lingual transfer. These findings collectively motivate future work on methods
 524 that enhance cross-lingual routing alignment and the sharing of specialized experts, such as during
 525 training. Additionally, the distinct and modular separability of parameters between language-shared
 526 and language-specific functions suggests opportunities for architectural or training approaches that
 527 exploit this natural division.

528 529 REPRODUCIBILITY

530 All details for reproducibility have been provided in Sections 4, 5, and 6, including but not limited
 531 to: model checkpoints, evaluation details, formulas, metrics, expert identification method, and inter-
 532 vention methods. Certain details have been presented in the Appendix (A.1, A.4, and A.6), but are
 533 referenced from the main text. The implementation of the intervention method was done with vLLM
 534 (Kwon et al., 2023) and evaluations with the LM Evaluation Harness (Gao et al., 2024).

535 536 REFERENCES

537 538 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
 539 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,

- 540 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
 541 dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
 542 Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
 543 Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
 544 Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
 545 Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
 546 Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
 547 Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
 548 Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
 549 Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
 550 Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
 551 de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
 552 Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
 553 Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
 554 Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
 555 Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
 556 long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
 557 Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan
 558 Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
 559 phone, 2024. URL <https://arxiv.org/abs/2404.14219>.
- 560 Jesujoba Alabi, Marius Mosbach, Matan Eyal, Dietrich Klakow, and Mor Geva. The hidden
 561 space of transformer language adapters. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 562 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
 563 guistics (Volume 1: Long Papers)*, pp. 6588–6607, Bangkok, Thailand, August 2024. Asso-
 564 ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.356. URL <https://aclanthology.org/2024.acl-long.356/>.
- 565 Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victo-
 566 ria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giridharan Anantharaman, Xian Li,
 567 Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian
 568 O’Horo, Jeffrey Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Veselin Stoyanov.
 569 Efficient large scale language modeling with mixtures of experts. In Yoav Goldberg, Zornitsa
 570 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in
 571 Natural Language Processing*, pp. 11699–11732, Abu Dhabi, United Arab Emirates, December
 572 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.804. URL
 573 <https://aclanthology.org/2022.emnlp-main.804/>.
- 574 Lucas Bandarkar and Nanyun Peng. The unreasonable effectiveness of model merging for cross-
 575 lingual transfer in llms, 2025. URL <https://arxiv.org/abs/2505.18356>.
- 576 Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald
 577 Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele
 578 benchmark: a parallel reading comprehension dataset in 122 language variants. In Lun-Wei Ku,
 579 Andre Martins, and Vivek Sriku-
 580 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
 581 guistics (Volume 1: Long Papers)*, pp. 749–775, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.44.
 582 URL <https://aclanthology.org/2024.acl-long.44/>.
- 583 Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, and
 584 Bing Liu. Layer swapping for zero-shot cross-lingual transfer in large language models. In
 585 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=vQhn4wrQ6j>.
- 586 Nuo Chen, Zinan Zheng, Ning Wu, Ming Gong, Dongmei Zhang, and Jia Li. Breaking lan-
 587 guage barriers in multilingual mathematical reasoning: Insights and observations. In Yaser
 588 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Com-
 589 putational Linguistics: EMNLP 2024*, pp. 7001–7016, Miami, Florida, USA, November 2024.
 590 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.411. URL
 591 <https://aclanthology.org/2024.findings-emnlp.411/>.

- 594 Yuxin Chen, Yiran Zhao, Yang Zhang, An Zhang, Kenji Kawaguchi, Shafiq Joty, Junnan Li, Tat-
 595 Seng Chua, Michael Qizhe Shieh, and Wenzuan Zhang. The emergence of abstract thought in
 596 large language models beyond any language, 2025. URL <https://arxiv.org/abs/2506.09890>.
- 598 Rochelle Choenni, Ekaterina Shutova, and Dan Garrette. Examining modularity in multilingual LMs
 599 via language-specialized subnetworks. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
 600 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 287–301, Mexico
 601 City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 602 *findings-naacl.21*. URL <https://aclanthology.org/2024.findings-naacl.21/>.
- 603 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 604 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 605 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 606 2021.
- 607 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
 608 Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
 609 supervised cross-lingual representation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie
 610 Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association
 611 for Computational Linguistics*, pp. 8440–8451, Online, July 2020. Association for Computational
 612 Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL <https://aclanthology.org/2020.acl-main.747/>.
- 613 Damaï Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
 614 Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang
 615 Sui, and Wenfeng Liang. DeepSeekMoE: Towards ultimate expert specialization in mixture-of-
 616 experts language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings
 617 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 618 Papers)*, pp. 1280–1297, Bangkok, Thailand, August 2024. Association for Computational Lin-
 619 guistics. doi: 10.18653/v1/2024.acl-long.70. URL <https://aclanthology.org/2024.acl-long.70/>.
- 620 Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Quoc V.
 621 Le, Zhifeng Chen, James Laudon, Anselm Levskaya, Mohammad Norouzi, Adams Wei Yu,
 622 Xiaoqiang Zheng, Jing Li, Yonghui Wu, and Zongwei Zhou. Glam: Efficient scaling of lan-
 623 guage models with mixture-of-experts. In *International Conference on Machine Learning*, vol-
 624 ume 162 of *Proceedings of Machine Learning Research*, pp. 5547–5569. PMLR, 2022. URL
 625 <https://proceedings.mlr.press/v162/du22c.html>.
- 626 Mohsen Fayyaz, Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Ryan Rossi, Trung
 627 Bui, Hinrich Schütze, and Nanyun Peng. Steering moe llms via expert (de)activation, 2025. URL
 628 <https://arxiv.org/abs/2509.09660>.
- 629 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion parameter
 630 models with simple and efficient sparsity. *The Journal of Machine Learning Research*, 23(1),
 631 January 2022. ISSN 1532-4435.
- 632 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 633 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 634 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 635 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 636 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.
- 637 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
 638 jana Krishnan, Marc'Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The Flores-101 eval-
 639 uation benchmark for low-resource and multilingual machine translation. *Transactions of the
 640 Association for Computational Linguistics*, 10:522–538, 2022. doi: 10.1162/tacl_a_00474. URL
 641 <https://aclanthology.org/2022.tacl-1.30/>.
- 642 Amir Hossein Kargaran, Ali Modarressi, Nafiseh Nikeghbal, Jana Diesner, François Yvon, and
 643 Hinrich Schuetze. MEXA: Multilingual evaluation of English-centric LLMs via cross-lingual

- 648 alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 649 (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 27001–27023,
 650 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
 651 5. doi: 10.18653/v1/2025.findings-acl.1385. URL <https://aclanthology.org/2025.findings-acl.1385/>.
- 652
- 653 Takeshi Kojima, Itsuki Okimura, Yusuke Iwasawa, Hitomi Yanaka, and Yutaka Matsuo. On the mul-
 654 tilingual ability of decoder-based pre-trained language models: Finding and controlling language-
 655 specific neurons. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the*
 656 *2024 Conference of the North American Chapter of the Association for Computational Lin-*
 657 *guistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6919–6971, Mexico
 658 City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 659 *naacl-long.384*. URL <https://aclanthology.org/2024.naacl-long.384/>.
- 660
- 661 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
 662 Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
 663 mixture-of-experts from dense checkpoints. In *The Eleventh International Conference on Learn-*
 664 *ing Representations*, 2023. URL <https://openreview.net/forum?id=T5nUQDrM4u>.
- 665
- 666 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 667 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 668 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 669 *Systems Principles*, 2023.
- 670
- 671 LCM team, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen
 672 Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà, David
 673 Dale, Hady Elsahar, Kevin Heffernan, Jo ao Maria Janeiro, Tuan Tran, Christophe Ropers,
 674 Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger
 675 Schwenk. Large Concept Models: Language modeling in a sentence representation space. 2024.
 676 URL <https://arxiv.org/abs/2412.08821>.
- 677
- 678 Junzhuo Li, Bo Wang, Xiuze Zhou, Peijie Jiang, Jia Liu, and Xuming Hu. Decoding knowledge
 679 attribution in mixture-of-experts: A framework of basic-refinement collaboration and efficiency
 680 analysis. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 681 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
 682 (*Volume 1: Long Papers*), pp. 22431–22446, Vienna, Austria, July 2025. Association for Com-
 683 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1093. URL
 684 <https://aclanthology.org/2025.acl-long.1093/>.
- 685
- 686 Zheng Wei Lim, Alham Fikri Aji, and Trevor Cohn. Language-specific latent process hinders cross-
 687 lingual performance, 2025. URL <https://arxiv.org/abs/2505.13141>.
- 688
- 689 Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang, and Jie Fu. A closer look into mixture-of-
 690 experts in large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings*
 691 *of the Association for Computational Linguistics: NAACL 2025*, pp. 4427–4447, Albuquerque,
 692 New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-
 693 7. doi: 10.18653/v1/2025.findings-naacl.251. URL <https://aclanthology.org/2025.findings-naacl.251/>.
- 694
- 695 Meng Lu, Ruochen Zhang, Carsten Eickhoff, and Ellie Pavlick. Paths not taken: Understanding and
 696 mending the multilingual factual recall pipeline, 2025. URL <https://arxiv.org/abs/2505.20546>.
- 697
- 698 Omar Mahmoud, Buddhika Leknath Semage, Thommen George Karimpanal, and Santu Rana. Im-
 699 proving multilingual language models by aligning representations through steering, 2025. URL
 700 <https://arxiv.org/abs/2505.12584>.
- 701
- Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
 Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
 Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. OLMoe:
 Open mixture-of-experts language models. In *The Thirteenth International Conference on Learn-*
ing Representations, 2025. URL <https://openreview.net/forum?id=xXTkbTBmqq>.

- 702 NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
 703 Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler
 704 Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia-Gonzalez,
 705 Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
 706 non Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
 707 Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko,
 708 Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. No language left behind:
 709 Scaling human-centered machine translation. 2022.
- 710 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.
- 711 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang.
 712 ERNIE-M: Enhanced multilingual representation by aligning cross-lingual semantics with mono-
 713 lingual corpora. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
 714 Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language
 715 Processing*, pp. 27–38, Online and Punta Cana, Dominican Republic, November 2021. Associa-
 716 tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.3. URL <https://aclanthology.org/2021.emnlp-main.3/>.
- 717 Barun Patra, Saksham Singhal, Shaohan Huang, Zewen Chi, Li Dong, Furu Wei, Vishrav Chaud-
 718 hary, and Xia Song. Beyond English-centric bitexts for better multilingual language represen-
 719 tation learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings
 720 of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 721 Papers)*, pp. 15354–15373, Toronto, Canada, July 2023. Association for Computational Linguis-
 722 tics. doi: 10.18653/v1/2023.acl-long.856. URL <https://aclanthology.org/2023.acl-long.856/>.
- 723 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, and Mikel Artetxe.
 724 Lifting the curse of multilinguality by pre-training modular transformers. In Marine Carpuat,
 725 Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022
 726 Conference of the North American Chapter of the Association for Computational Linguistics:
 727 Human Language Technologies*, pp. 3479–3495, Seattle, United States, July 2022. Associa-
 728 tion for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.255. URL <https://aclanthology.org/2022.naacl-main.255/>.
- 729 Kartik Ravisankar, Hyojung Han, and Marine Carpuat. Can you map it to english? the role of cross-
 730 lingual alignment in multilingual performance of llms, 2025. URL <https://arxiv.org/abs/2504.09378>.
- 731 Holger Schwenk and Matthijs Douze. Learning joint multilingual sentence representations with
 732 neural machine translation. In Phil Blunsom, Antoine Bordes, Kyunghyun Cho, Shay Cohen,
 733 Chris Dyer, Edward Grefenstette, Karl Moritz Hermann, Laura Rimell, Jason Weston, and Scott
 734 Yih (eds.), *Proceedings of the 2nd Workshop on Representation Learning for NLP*, pp. 157–167,
 735 Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/
 736 W17-2619. URL <https://aclanthology.org/W17-2619/>.
- 737 Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
 738 ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
 739 experts layer. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=B1ckMDqlg>.
- 740 Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
 741 Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
 742 guage models are multilingual chain-of-thought reasoners. In *The Eleventh International Confer-
 743 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=fR3wGCK-IXp>.
- 744 Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David Ifeoluwa Adelani, Jian Gang
 745 Ngui, Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine
 746 Susanto, Raymond Ng, Shayne Longpre, Sebastian Ruder, Wei-Yin Ko, Antoine Bosselut, Alice
 747 Oh, Andre Martins, Leshem Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza

- 756 Ermis, and Sara Hooker. Global MMLU: Understanding and addressing cultural and linguistic
 757 biases in multilingual evaluation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 758 hammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for*
 759 *Computational Linguistics (Volume 1: Long Papers)*, pp. 18761–18799, Vienna, Austria, July
 760 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.919. URL <https://aclanthology.org/2025.acl-long.919/>.
- 762 Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
 763 Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
 764 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of*
 765 *the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 766 *Papers)*, pp. 5701–5715, Bangkok, Thailand, August 2024. Association for Computational Lin-
 767 *guistics*. doi: 10.18653/v1/2024.acl-long.309. URL <https://aclanthology.org/2024.acl-long.309/>.
- 768
- 769 Mengru Wang, Xingyu Chen, Yue Wang, Zhiwei He, Jiahao Xu, Tian Liang, Qiuzhi Liu, Yunzhi
 770 Yao, Wenxuan Wang, Ruotian Ma, Haitao Mi, Ningyu Zhang, Zhaopeng Tu, Xiaolong Li, and
 771 Dong Yu. Two experts are all you need for steering thinking: Reinforcing cognitive effort in
 772 moe reasoning models without additional training, 2025. URL <https://arxiv.org/abs/2505.14681>.
- 773
- 774 Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in En-
 775 glish? on the latent language of multilingual transformers. In Lun-Wei Ku, Andre Martins, and
 776 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 777 putational Linguistics (Volume 1: Long Papers)*, pp. 15366–15394, Bangkok, Thailand, August
 778 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.820. URL
 779 <https://aclanthology.org/2024.acl-long.820/>.
- 780
- 781 Zhaofeng Wu, Xinyan Velocity Yu, Dani Yogatama, Jiasen Lu, and Yoon Kim. The semantic hub
 782 hypothesis: Language models share semantic representations across languages and modalities.
 783 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=FrFQpAgnGE>.
- 784
- 785 Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
 786 You. Openmoe: An early effort on open mixture-of-experts language models. *arXiv preprint*
 787 *arXiv:2402.01739*, 2024.
- 788
- 789 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 790 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 791 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 792 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 793 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 794 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 795 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 796 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 797 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.
- 798
- 799 Xingyi Yang, Constantin Venhoff, Ashkan Khakzar, Christian Schroeder de Witt, Puneet K.
 800 Dokania, Adel Bibi, and Philip Torr. Mixture of experts made intrinsically interpretable.
 801 In *Forty-second International Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=6QERrXMP2>.
- 802
- 803 Zheng-Xin Yong, M. Farid Adilazuarda, Jonibek Mansurov, Ruochen Zhang, Niklas Muennighoff,
 804 Carsten Eickhoff, Genta Indra Winata, Julia Kreutzer, Stephen H. Bach, and Alham Fikri Aji.
 805 Crosslingual reasoning through test-time scaling, 2025. URL <https://arxiv.org/abs/2505.05408>.
- 806
- 807 Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
 808 Alpacare: Instruction-tuned large language models for medical application, 2023.
- 809
- Zhihan Zhang, Dong-Ho Lee, Yuwei Fang, Wenhao Yu, Mengzhao Jia, Meng Jiang, and Francesco
 Barbieri. PLUG: Leveraging pivot language in cross-lingual instruction tuning. In Lun-Wei Ku,

- 810 Andre Martins, and Vivek Srikanth (eds.), *Proceedings of the 62nd Annual Meeting of the Asso-*
 811 *ciation for Computational Linguistics (Volume 1: Long Papers)*, pp. 7025–7046, Bangkok, Thai-
 812 *land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.*
 813 *379. URL <https://aclanthology.org/2024.acl-long.379/>.*
- 814 Weixiang Zhao, Jiahe Guo, Yang Deng, Tongtong Wu, Wenxuan Zhang, Yulin Hu, Xingyu Sui,
 815 Yanyan Zhao, Wanxiang Che, Bing Qin, Tat-Seng Chua, and Ting Liu. When less language is
 816 more: Language-reasoning disentanglement makes llms better multilingual reasoners, 2025. URL
 817 <https://arxiv.org/abs/2505.15257>.
- 818 Xinyu Zhao, Xuxi Chen, Yu Cheng, and Tianlong Chen. Sparse moe with language guided rout-
 819 ing for multilingual machine translation. In *The Twelfth International Conference on Learning*
 820 *Representations*, 2024. URL <https://openreview.net/forum?id=ySS7hH1smL>.
- 821 Guorui Zheng, Xidong Wang, Juhao Liang, Nuo Chen, Yuping Zheng, and Benyou Wang. Ef-
 822 ficiently democratizing medical LLMs for 50 languages via a mixture of language family ex-
 823 perts. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 824 <https://openreview.net/forum?id=JSB171dSUU>.
- 825 Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. Cross-lingual sentiment classification with bilingual
 826 document representation learning. In Katrin Erk and Noah A. Smith (eds.), *Proceedings of the*
 827 *54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 828 pp. 1403–1412, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
 829 10.18653/v1/P16-1133. URL <https://aclanthology.org/P16-1133/>.
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863

864

865

A APPENDIX

866

867

868

869

870

871

872

873

874

A.1 MODEL DETAILS

Table A.1: Details of the MoE LLMs Discussed

Model	Total Params	Active Params	Model Layers	Num. Experts	Active Experts	Checkpoint & Citation
OLMOE	7B	1.0B	16	64	8	OLMoE-1B-7B-0125-Instruct Muennighoff et al. (2025)
PHI-3.5-MOE	42B	3.8B	32	16	2	Phi-3.5-MoE-instruct
GPT-OSS	20B	3.6B	24	32	4	Abdin et al. (2024) gpt-oss-20B OpenAI (2025)
QWEN3	31B	3.3B	48	128	8	Qwen3-30B-A3B Yang et al. (2025a)

A.2 ROUTING DIVERGENCE PLOTS FOR ALL MODELS

See Appendix A.3 for language code mappings.

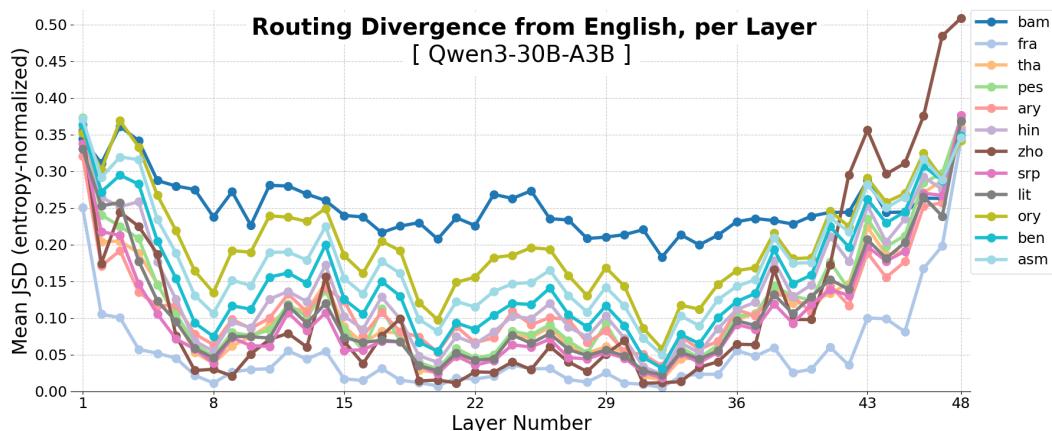


Figure A.1: Mean entropy-normalized JS-Div per OLMoE layer for 12 non-English languages. This is the same plot as Figure 2, simply colored for language labeling.

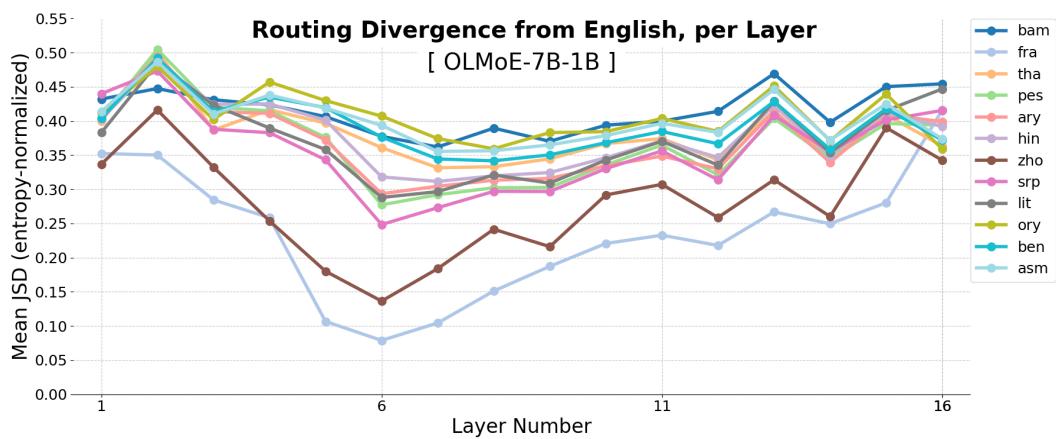


Figure A.2: Mean entropy-normalized JS-Div per OLMoE layer for 12 non-English languages. We note OLMoE's poor multilingual capabilities.

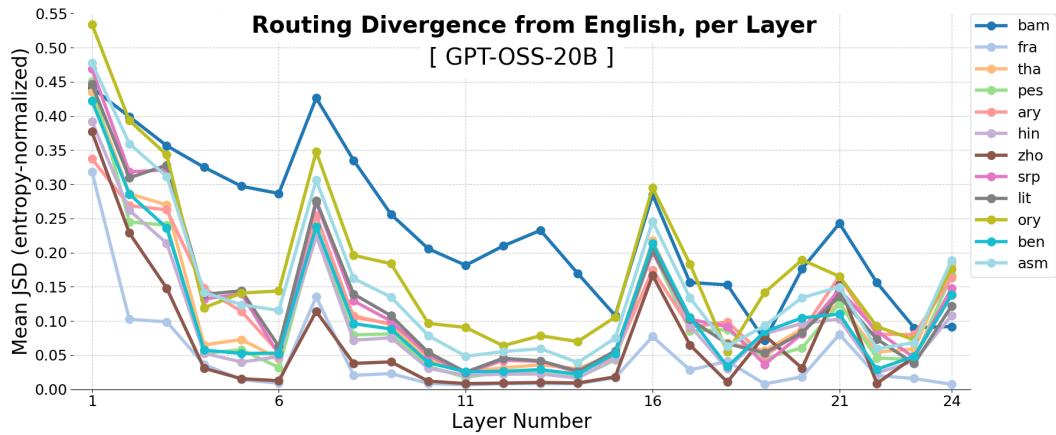


Figure A.3: Mean entropy-normalized JS-Div per GPT-OSS layer for 12 non-English languages.

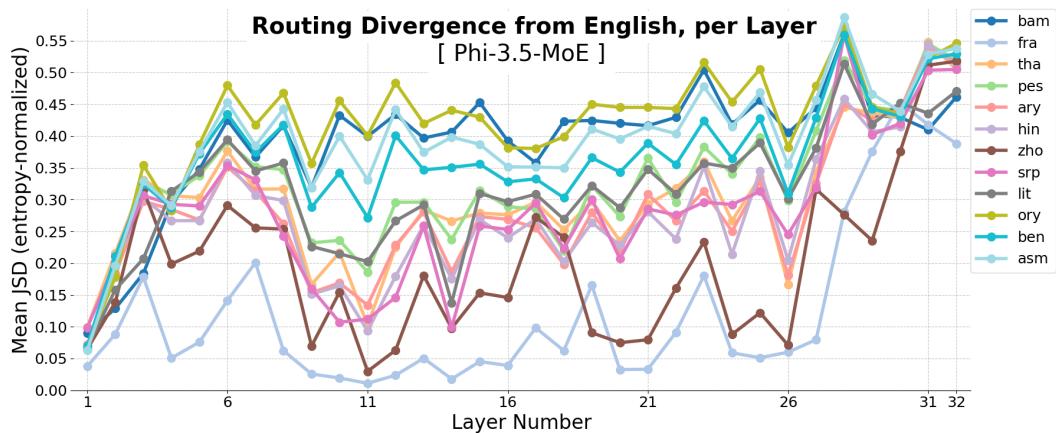


Figure A.4: Mean entropy-normalized JS-Div per PHI-3.5-MoE layer for 12 non-English languages. Compared to the others, PHI-3.5-MoE does not display the same U-shape, as the first few layers surprisingly have very low divergence, especially the first layer. We verified and saw that a small subset of available experts were being called for all languages in layer 1, which is behavior that requires further investigation.

971

972 A.3 LANGUAGE CODE INDEX
973974 Table A.2: The FLORES codes are used by FLORES and BELEBELE, while the 2-letter codes are
975 used by MGSM and GLOBAL-MMLU. Our plots display the 3-letter code for brevity. We omit
976 some abbreviations in order clarify which languages were used in which component of this work.
977

978 FLORES Code	979 Language	980 Script	981 2-letter (evaluations)	982 3-letter (analysis)
980 arb_Arab	981 Modern Standard Arabic	982 Arab	983 ar	984 arb
981 asm_Beng	982 Assamese	983 Beng	984	985 asm
982 bam_Latn	983 Bambara	984 Latn	985	986 bam
983 ben_Beng	984 Bengali	985 Beng	986 bn	987 ben
984 deu_Latn	985 German	986 Latn	987 de	988
985 eng_Latn	986 English	987 Latn	988 en	989
986 spa_Latn	989 Spanish	990 Latn	991 es	992
987 fra_Latn	992 French	993 Latn	994 fr	995 fra
988 hin_Deva	995 Hindi	996 Deva	997 hi	998 hin
989 ind_Latn	998 Indonesian	999 Latn	1000 id	1001
990 ita_Latn	1001 Italian	1002 Latn	1003 it	1004
991 jpn_Jpan	1004 Japanese	1005 Jpan	1006 ja	1007
992 kor_Hang	1007 Korean	1008 Hang	1009 ko	1010
993 lit_Latn	1009 Lithuanian	1010 Latn	1011 lit	1012
994 ory_Orya	1012 Odia	1013 Orya	1014	1015 ory
995 pes_Arab	1015 Western Persian	1016 Arab	1017	1018 pes
996 por_Latn	1017 Portuguese	1018 Latn	1019 pt	1020
997 rus_Cyril	1019 Russian	1020 Cyril	1021 ru	1022
998 srp_Cyril	1021 Serbian	1022 Cyril	1023 srp	1024
999 swh_Latn	1023 Swahili	1024 Latn	1025 sw	1026
1000 tha_Thai	1026 Thai	1027 Thai	1028 th	1029 tha
1001 tel_Telu	1029 Telugu	1030 Telu	1031 te	1032
1002 yor_Latn	1032 Yoruba	1033 Latn	1034 yo	1035
1003 zho_Hans	1035 Chinese (Simplified)	1036 Hans	1037 zh	1038 zho

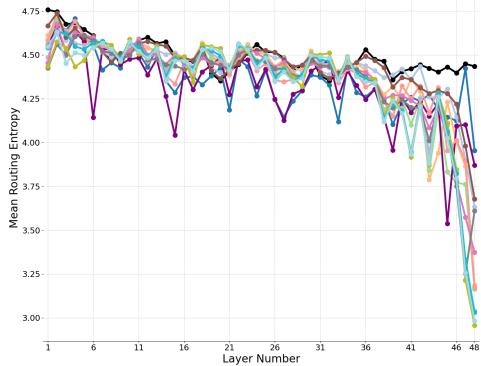
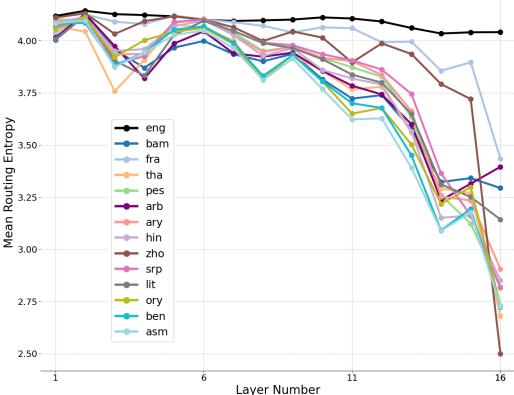
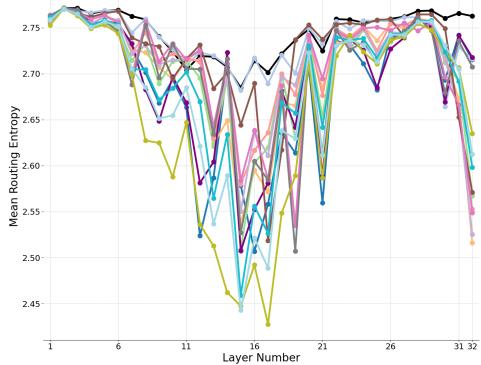
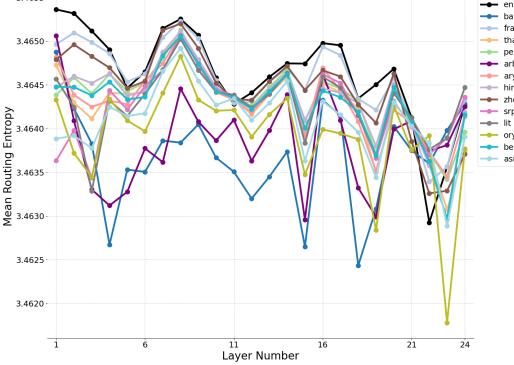
1004 A.4 ENTROPY-NORMALIZATION
10051006 Our decision to normalize our divergence metrics comes from the strong per-layer entropy patterns
1007 we see in the models (See Section 4.4 and Appendix A.5). KL-divergence, sometimes referred to
1008 as “relative entropy”, is highly sensitive on entropy and therefore so is JS-divergence. With entropy
1009 decreasing across model layers near-monotonically, using simple JS-divergence meant our plots
1010 were overshadowed by the trends in entropy and therefore choose to control for it. This divergence
1011 metric properly compares divergence between scenarios when both are flattened distributions (high
1012 entropy) or peaked distributions (low entropy).1013 We normalize JS-divergence by approximating the theoretical maximum divergence given the en-
1014 tropy of the two distributions. The normalization factor F is computed as $\log E - H_{avg}$, where
1015 E is the vector size (number of experts) and H_{avg} is the average entropy of the two distributions.
1016 This normalization accounts for the fact that distributions with different entropy have different upper
1017 bounds for JSD. Concretely, using the same notation as Section 4.3:

1018
$$D_{JS}(\mathbf{q}^{(1)} || \mathbf{q}^{(2)}) = \frac{1}{2}(D_{JS}(\mathbf{q}^{(1)} || \bar{\mathbf{q}}) + D_{KL}(\mathbf{q}^{(2)} || \bar{\mathbf{q}})) \quad \text{where } \bar{\mathbf{q}} = \frac{1}{2}(\mathbf{q}^{(1)} + \mathbf{q}^{(2)}) \quad (6)$$

1019
$$F = \log E - \frac{1}{2}(H(\mathbf{q}^{(1)}) + H(\mathbf{q}^{(2)})) \quad (7)$$

1020
$$D_{H-JS}(\mathbf{q}^{(1)} || \mathbf{q}^{(2)}) := \frac{1}{F} D_{JS}(\mathbf{q}^{(1)} || \mathbf{q}^{(2)}) \quad (8)$$

1021 As a reminder, E is the size of $\mathbf{q}^{(1)}, \mathbf{q}^{(2)}$ and corresponds to the number of experts.
1022

1026 A.5 ENTROPY PLOTS FOR ALL MODELS
1027
10281029 **Mean Routing Entropy, per Layer [Qwen3-30B-A3B]**
10301042 Figure A.5: Caption for figure 3.
10431044 **Mean Routing Entropy, per Layer [OLMoE-7B-1B]**
10451046 Figure A.6: Caption for figure 4.
10471048 **Mean Routing Entropy, per Layer [Phi-3.5-MoE]**
10491050 Figure A.7: Caption for figure 1.
10511052 **Mean Routing Entropy, per Layer [GPT-OSS-20B]**
10531054 Figure A.8: Caption for figure 2.
10551056 A.6 MINUTE DETAILS FOR HARD INTERVENTION
1057

1058 Similar to Fayyaz et al. (2025), we guard against the potential of breaking the top-k logic by adding
1059 a random perturbation in Equation 5. In the case where the the number of experts selected for force-
1060 activation is not less than the model’s experts-per-token (k), the LLM would otherwise throw an error
1061 trying to pick k experts from $> k + 1$ experts with exactly the same maximum value (at least with
1062 our vLLM implementation). Tiny random perturbation ensures the values are not identical and the
1063 top-k can be chosen. We note, however, the activation of the experts are not technically guaranteed
1064 under this hard-intervention. However, this ends up being inconsequential as, empirically, we find
1065 that hard-intervening on so many experts at once derails the model anyways. This even holds true
1066 for PHI-3.5-MOE where only 2 experts are activated.
1067
1068
1069

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081

A.7 EXAMPLE PLOT FOR DIFFERENCE IN RELATIVE FREQUENCY OF ACTIVATION

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

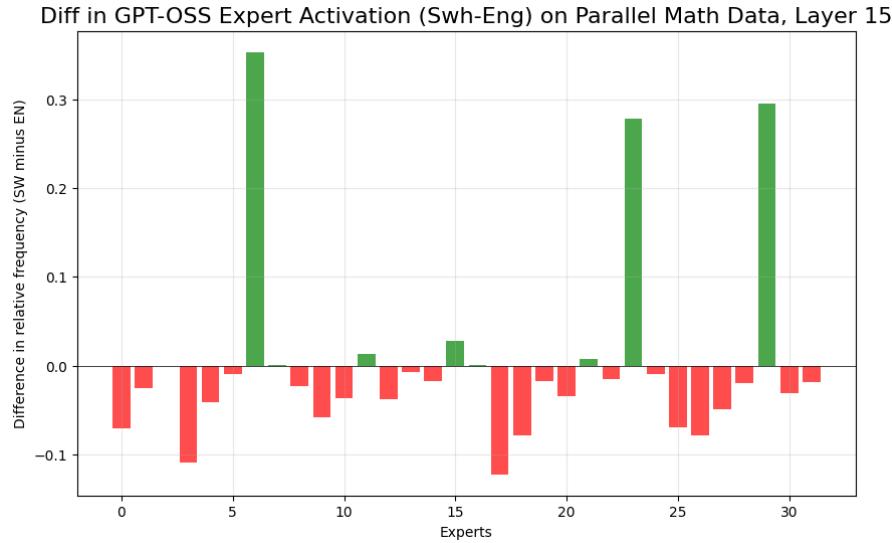


Figure A.9: Example of visualization of our metric for selecting specialized experts. This is the Δ described in Section 5.2, the difference in activation relative frequency as defined in Equation 3. Here we display an example; Δ between Swahili and English (on FLORES).

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133