
Concentrate Attention:
Towards Domain-Generalizable Prompt

Optimization for Language Models

Chengzhengxu Li1, Xiaoming Liu1, ∗, Zhaohan Zhang2, Yichen Wang3,
Chen Liu1, Yu Lan1, Chao Shen1

1Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
2Queen Mary University of London, London, UK 3University of Chicago

∗ Corresponding author
{czx.li, lcoder}@stu.xjtu.edu.cn

{xm.liu, ylan2020, chaoshen}@xjtu.edu.cn
zhaohan.zhang@qmul.ac.uk yichenzw@uchicago.edu

Abstract

Recent advances in prompt optimization have notably enhanced the performance
of pre-trained language models (PLMs) on downstream tasks. However, the po-
tential of optimized prompts on domain generalization has been under-explored.
To explore the nature of prompt generalization on unknown domains, we con-
duct pilot experiments and find that (i) Prompts gaining more attention weight
from PLMs’ deep layers are more generalizable and (ii) Prompts with more stable
attention distributions in PLMs’ deep layers are more generalizable. Thus, we
offer a fresh objective towards domain-generalizable prompts optimization named
“Concentration”, which represents the “lookback” attention from the current de-
coding token to the prompt tokens, to increase the attention strength on prompts
and reduce the fluctuation of attention distribution. We adapt this new objec-
tive to popular soft prompt and hard prompt optimization methods, respectively.
Extensive experiments demonstrate that our idea improves comparison prompt
optimization methods by 1.42% for soft prompt generalization and 2.16% for
hard prompt generalization in accuracy on the multi-source domain generalization
setting, while maintaining satisfying in-domain performance. The promising re-
sults validate the effectiveness of our proposed prompt optimization objective and
provide key insights into domain-generalizable prompts. Our codes are available at
https://github.com/czx-li/Concentrate-Attention

1 Introduction

Prompt optimization has emerged as a novel paradigm to effectively fine-tune pre-trained language
models (PLMs), demonstrating impressive performance in natural language processing (NLP) tasks,
especially under the few-shot setting Schick and Schütze [2020a,b], Liu et al. [2023a]. Unlike
traditional fine-tuning methods requiring training and saving entire model parameters Devlin et al.
[2018], prompt optimization aims to explore well-performed prompts automatically in discrete or
continuous space as a context for model input, which boosts model performance on downstream tasks.
The mainstream prompt optimization paradigms fall into two categories: hard prompt optimization
and soft prompt optimization. Hard prompt optimization relies on selecting well-performed prompts
from a pre-constructed prompt set by filtering Jiang et al. [2020], Haviv et al. [2021], Davison
et al. [2019] or gradient-free optimization method Li et al. [2024], Sun et al. [2023], Prasad et al.
[2022]. Meanwhile, soft prompt optimization searches continuous embedding as prompts via gradient
information guided by task-specific loss function Vu et al. [2021], Li and Liang [2021].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/czx-li/Concentrate-Attention

However, while prompt optimization methods are becoming the mainstream of finetuning PLMs, the
domain generalization ability of trained prompts still lacks exploration. Previous works Wu and Shi
[2022], Zhao et al. [2022], Ge et al. [2023], Guo et al. [2022] attempt to employ domain adaptation
methods to address these challenges. These works are based on the assumption of target domain
availability. They align the source domain and target domain by unsupervised feature learning. The
data reliance on these methods becomes a serious limitation for broader applications because models
are frequently exposed to unknown domains. Another branch to enhance the versatility of prompts
is pre-training. Gu et al. [2021] pre-trains prompts with 10 GB textual data. Vu et al. [2021] uses
three tasks across eight datasets for pre-training to obtain transferable prompts. As reported by Liu
et al. [2024], it requires 25-30 hours for pre-training prompts with Roberta-base on a single NVIDIA
A100. The inefficiency and high computational cost remain a stumbling block for these methods to
be widely used. More importantly, the aforementioned methods are parameterized and not applicable
to hard prompt optimization, showing low readability. More studies refer to Appendix A.

Figure 1: Domain generalization capabilities across
various prompting methods (ICL Brown et al.
[2020], RL Deng et al. [2022], Soft Lester et al.
[2021]) in sentiment classification tasks.

Recognizing the problems mentioned above, we
focus on improving the domain generalization
ability of prompts with three constraints: (i) do
so with no knowledge about the target domain,
(ii) do so with little training cost, (iii) do so with
easy adaptation on both soft prompt and hard
prompt optimization. To get started, we test the
popular prompt optimization methods on cross-
domain setting (i.e., training prompts on one
domain and testing them on out-of-distribution
target domain1) and show the results in Figure 1.
Interestingly, these optimized prompts exhibit
(i) great performance drop in general (by an
average of 8.49%) on target domain, validating
the existence of research gap mentioned above,
(ii) different domain generalization ability in
particular (Acc. drops by 2.61% in best case
and by 18.64% in worst case), indicating the
existence of distinct prompt “nature” that contributes to its generalizability.

Since prompts are functional in the model inference stage in which the model looks up contexts to
generate new tokens through the attention mechanism, we probe the attention pattern on prompts
during forward propagation with the question “what nature do well-generalized prompts have?” and
get the following findings (F) via pilot experiments (§3):

F1: Prompts gaining more attention weight from PLMs’ deep layers are more generalizable.
F2: Prompts with more stable attention distributions in PLMs’ deep layers generalize better.

Hence, we propose the idea of Concentration, representing the capability of prompts to get the
attention stably from PLMs. We suggest that the concentration indicates the domain generalization
ability for prompts, which can be a forebode ahead of the downstream tests.

With the principle of concentration §3, we propose two algorithms that could piggyback upon popular
prompt optimization methods for both hard and soft prompts to improve the domain generalization
ability of prompts. In the parameterized optimization process of soft prompt §4.1, where the loss
function acts as objective, we introduce the concentration-reweighting loss. It minimizes the attention
weight on the original input sequence, so as to make the model concentrate on prompts stably for
different inputs. In the non-parameterized optimization process of hard prompt §4.2, where the prompt
set is first filtered and matched with different inputs by trained agents, we propose the concentration-
oriented metric and reward. They aim to filter out and match the input with concentration-worthy
hard prompts. Experiments show that our method respectively improves the target domain accuracy
by 1.42% and 2.16% over the soft prompt and hard prompt optimized comparison methods, while
maintaining in-domain capability.

1The ∗ represents using CR Hu and Liu [2004] as the source domain and the † represents using SST-2 Socher
et al. [2013] as the source domain. All results shown use MR Pang and Lee [2005] as the target domain.

2

2 Preliminary

This section briefly introduces definitions of the Multi-source Few-shot Domain Generalization
(MFDG) problem, which is the primary application scenario of our work.

MFDG Setting. A text classification task, e.g., sentiment classification, is defined as T : X → Y ,
where Y is the task’s label space and X is the feature space. We denote M(X) to be the marginal
distribution over X , and P (Y) to be the prior distribution over Y . The domain is then defined by
DT = {X ,M(X), P (Y), P (Y |X)}. Under the domain generalization setting, the source task is the
same as the target task, i.e., Ts equals to Tt. But for the source domain DTs

and target domain DTt
,

at least one of the underlying probability distribution, i.e., M(X), P (Y), or P (Y |X), is different.

In our MFDG problem, the training set is sampled from N source domains Dtrain ∼
{
Dn

Ts

}N

n=1
and

the model is tested on an unknown target domain Dtest ∼ DTt
. Also, we follow Perez et al. [2021] to

simulate the few-shot learning setting, which means |Dtest| ≫ |Dtrain|.

MFDG Objective. Traditional prompting methods often rely on a crucial assumption that the training
and testing sets come from the same underlying distribution Dtrain,Dtest ∼ DTt

. In this context, the
objective of prompting is to optimize high-quality prompt z∗ that maximizes the expected metric of
the prediction on the target domain DTt :

z∗ = argmax
z

E(x,y)∼DTt
[r(y, pLM(z ⊕ x))] , (1)

where r is a function that evaluates the quality of the predicted answers when using the prompts z.
For MFDG, the optimization objective is:

z∗ = argmax
z

EDTt∈G

[
E(x,y)∼DTt

[r(y, pLM(z ⊕ x))]
]
, (2)

where G is the set of unknown target domains. In a nutshell, Eq. 1 searches the prompts well-
performed within the known domain, while Eq. 2 explores the prompts that perform well across
unknown domains.

3 Concentration Benefits Generalization

In this section, we present pilot experiments to analyze the correlation between domain generalizability
and attention concentration of prompts using RoBERTa-Large Liu et al. [2019] as the backbone.
Appendix C.1 shows the specific form of prompts used in the pilot experiment. From the effect of
prompts in forward propagation, we analyze (i) how much each prompt is concentrated by the LM,
and (ii) how stable the concentration is to formulate the correspondence.

Background. Attention mechanisms are widely studied for PLM interpretability Wang et al. [2022],
Clark et al. [2019], Lin et al. [2019], Htut et al. [2019]. As for prompt optimization, Wang et al.
[2023] provide insights that label words in in-context learning aggregate most of the attention weights
in deep layers of PLM, which majorly determine the final prediction. Inspired by this, we further
explore the attention weight on the whole prompt sequence and its impact on prompt generalizability
from a global perspective.

Definition 3.1. Let z = (z1, z2, ..., zL) and x = (e1, e2, ..., eT) be prompt and original input with
z, x ∈ S, where S is the set of all possible textual sequences over the vocabulary. Let fθl be
the attention block2 in layer l of a PLM parameterized by θl. Then concentration is a function
Concentration : S → R+

Concentration(z ⊕ x; θl) =
∑
zi∈z

fθl(zi ⊕ x). (3)

Heuristicly, concentration represents the “lookback” attention from current decoding token to prompt
tokens, as shown in Figure 2.

2The attention block refers to key-query attention mechanism which is broadly used in transformers-based
models. The normalized, inner product of “keys” k and “queries” q is computed in the forward pass activations
of attention block.

3

Review <mask>: the script is dark … Sentiment : negative Review : … Sentiment :

ConcentrationPrompt Input

Figure 2: Illustration of Concentration. The tokens in the blue square are prompt, and those in yellow
are input sequences. Concentration represents the model’s attention on prompt tokens in forward pass
when decoding <mask> token.

Definition 3.2. Let z = (z1, z2, ..., zL) and x = (e1, e2, ..., eT) be prompt and original input
with z, x ∈ S, where S is the set of all possible textual sequences over the vocabulary. Let
D = (x1, x2, ..., xM) be the input dataset. Let fθl be the attention block in layer l of a PLM. Then
concentration strength is a function Strength : D → R+

Strength((z,D); θl) =
1

|D|
∑
xi∈D

Concentration(z ⊕ xi; θl). (4)

Concentration strength represents the average concentration across the input dataset.

Definition 3.3. Let D = (x1, x2, ..., xM) be the set of textual sequences sampled from target domain
DTt , where xi ∈ S. Then the concentration fluctuation is a function Fluctuation : D → R+

Fluctuation((z,D); θl) =
√

1

|D|
∑
xi∈D

[Concentration(z ⊕ xi; θl))− Strength((z,D); θl)]2. (5)

Concentration fluctuation demonstrates the variance of concentration strength for different inputs.

ICL RL ICL * Soft RL * Soft *

Prompting Method

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
nc

en
tra

tio
n S

tre
ng

th

Concentration Strength Comparison
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23

ICL RL ICL * Soft RL * Soft *

Prompting Method

0.3

0.4

0.5

0.6

0.7

Co
nc

en
tra

tio
n S

tre
ng

th

Concentration Fluctuation Comparison

50

55

60

65

70

75

80

85

90

Ge
ne

ra
liz

ati
on

 A
cc

. %

86.15% 84.90% 83.85%

63.40% 63.15%

55.53%

50

55

60

65

70

75

80

85

90

Ge
ne

ra
liz

ati
on

 A
cc

. %

86.15% 84.90% 83.85%

63.40% 63.15%

55.53%

Figure 3: Left: concentration strength of various prompting methods in the last 5 layers (layers 19 to
23). Right: boxplots of the concentration strength in the last layer. Overall, prompts that exhibit good
domain generalization gain higher concentration strength and lower concentration fluctuation. The
concentration strength of each layer is shown in Appendix C.2.

Our pilot experiment unveils following insights: (i) Prompts with larger Concentration Strength
achieve better performance in domain generalization. For instance, Figure 3(left) shows that tokens
of ICL†, the best-performed method, gain more than 0.8 of Concentration Strength at the 21st layer
and over 0.7 at the 23rd layer. (ii) Prompts with lower Concentration Fluctuation tend to generalize to
target domain better. As shown in Figure 3(right), Soft† and ICL∗ are concentrated at a similar level,
but ICL∗ generalizes better while its stability is better. (iii) High Concentration Strength and low
Concentration Fluctuation together contribute most to prompt generalizability. The best-performed
ICL† has most Concentration Strength and lowest Concentration Fluctuation across all comparison
prompts. These discoveries inspire us to adjust the objective for soft prompt§4.1 and hard prompt§4.2
optimization towards increasing Concentration Strength while decreasing Concentration Fluctuation.

4

4 Concentrative Prompt Optimization

4.1 Concentrative Soft Prompt Optimization

Our Objective:
Solve Eq.7

Finding F_1:
More Attention

Weight

Prompted Inputs

Optimize Soft

PromptBased on F_1:
Minimize L_cs (Eq.8)

Based on F_2:
Minimize L_cf (Eq.9)

Cross-Entropy

Finding F_2:
More Stable Attention

Distribution

Figure 4: Framework for Soft Prompt Optimization.

To devise soft prompt optimization with the
guidance of concentration, we first visit the
optimization objective of mainstream meth-
ods (e.g., prompt tuning Lester et al. [2021],
prefix tuning Li and Liang [2021], p-tuning
v2 Liu et al. [2021]).

These methods optimize follow log-
likelihood objective given a trainable prompt
z and a fixed PLM parameterized by θ for
the input x:

max
z

logP (y|(z ⊕ x); θ). (6)

According to our findings in §3, domain-generalizable prompts should be high in concentration
strength and low in concentration fluctuation. Thus, we reformulate Eq. 6 to get the objective for
domain-generalizable prompts:

max
z

(logP (y|(z ⊕ x); θ) + Strength((z,Dtrain); θ)) s.t. min
z

Fluctuation((z,Dtrain); θ). (7)

Towards the reformulated objective above, we propose the concentration-reweighting loss for soft
prompt optimization methods. The framework for soft prompt optimization is shown in Figure 4.
First, we minimize the concentration strength on input x to improve concentration strength on prompt
z by designing loss function Lcs as:

Lcs = 1− Strength((z,Dtrain); θ). (8)

In addition, to reduce concentration fluctuation of prompts, we propose to use every token’s con-
centration strength as hidden state feature of prompts, denoted as Ci = (c1, c2, ..., cL) where L is
the length of prompts. We design a contrastive loss to cluster C with same label together to reduce
concentration fluctuation:

Lcf =

|Dtrain|∑
i=1

−1
P (i)

∑
p∈P (i)

log
exp(sim(Ci,Cp)/τ)∑|Dtrain|

j=1 1i ̸=j exp(sim(Ci,Cj)/τ)
, (9)

where P (j) represents the input with the same label as the j-th input in the dataset Dtrain, sim(.) is
used to calculate the cosine similarity between feature embeddings, 1i ̸=j is an indicator function, i.e.,
1i̸=j ∈ {0, 1} = 1 if and only if i ̸= j, and τ is a temperature parameter used to adjust the scale of
the similarity score.

Also, we utilize the cross-entropy classification loss Lce Mao et al. [2023]. The concentration-
reweighting loss for soft prompt optimization is formulated as:

Lcr = λceLce + λcsLcs + λcfLcf, (10)

where λce, λcs and λcf weights different losses in training process. More details are in Appendix D.

4.2 Concentrative Hard Prompt Optimization

In contrast to soft prompt optimization, hard prompt optimization searches suitable prompt in discrete
space in a non-parameterized fashion. Previous hard prompt optimization searches can be divided
into distribution-level Prasad et al. [2022], Deng et al. [2022] and input-level Li et al. [2024], Lu
et al. [2022]. Although distribution-level prompt optimization can generally improve reasoning
ability, motivated by the fact that no prompt is perfect for all inputs Sun et al. [2023], we focus on
improving the generalization ability of input-level optimization methods. Generally, the mainstream
of input-level optimization technique for hard prompts could be encapsulated as: filter (by metric)
and match (by RL agents). The findings of concentration could be applied to this optimization
process by adjusting filter metric and agent reward. We illustrate the framework for hard prompt
optimization in Figure 5.

5

Our Objective:
Solve Eq.7

Finding F_1:
More Attention

Weight

Inputs Data

Original Prompts
Set

Manual, In-Context...

MARL
Prompt Matching

Global Concentration Score

Based on F_2:
M_cf (Eq.11)

 Based on F_1:
Strength (Eq.4)

I
think ...

PLM Backbone

Multi Prompts Input

Finding F_2:
More Stable Attention

Distribution

Figure 5: Framework for Hard Prompt Optimization.

Filter Metric. For previous filter metric only
considering the overall accuracy on training
set, we introduce a new metric called Global
Concentration Score (GCS), which involves
our ideas of concentration strength and con-
centration fluctuation.

Towards optimization objective Eq.7, we use
concentration strength as first metric to filter
out prompts which cannot get much concen-
tration from model. Metric for reducing con-
centration fluctuation could be regarded as
minimizing Kullback-Leibler (KL) divergence between the concentration features Ci of input with
same label and the average of Ci on whole inputs set Dtrain:

Mcf(z,Dtrain) =
∑
y∈Y

∑
i∈Dtrain(y)

KL(Softmax(Ci) ∥ Softmax(Cy
avg)), (11)

where Y is label space and Dtrain(y) is the input set labeled y in data set Dtrain. Also, we follow the
setting of Li et al. [2024] calculating the difference of the probability pLM that the xi is correctly
labeled yture and wrongly labeled as yfalse by a base PLM to improve the overall accuracy:

Macc(z,Dtrain) =
∑

xi∈Dtrain

(pLM(yture|z ⊕ xi)− pLM(yfalse|z ⊕ xi)). (12)

Finally, we combine the above three metrics as one comprehensive metric, i.e., Global Concentration
Score (GCS), to assess the quality of prompts:

GCS(z,Dtrain) = αaccMacc(z,Dtrain) + αcsStrength((z,Dtrain); θ) + αcfMcf(z,Dtrain), (13)

where αacc, αcs and αcf are the weights that balance accuracy, concentration strength, and concentra-
tion fluctuation, respectively.

Prompt Matching. Previous methods mostly use a single RL agent to match appropriate prompts
for each input Li et al. [2024], Lu et al. [2022], Sun et al. [2023]. Due to the large prompt space,
the effective exploration of reinforcement learning agents is limited Dulac-Arnold et al. [2019].
Furthermore, in the MFDG setting, inputs from different domains often have different state spaces,
action spaces, and reward scales, then using a single agent often leads to the strategy converging to
sub-optimality. To overcome these challenges, we redefine the discrete prompt matching problem
in the MFDG setting as a multi-agent reinforcement learning (MARL) problem and propose a new
matching algorithm.

We build our matching algorithm based on the Multi-Agent Proximal Policy Optimization (MAPPO)
algorithm Yu et al. [2022]. Specifically, we configure one reinforcement learning (RL) agent for
each source domain, collectively forming a multi-agent ensemble N = {1, 2, . . . , N}. In order to
effectively share learning experience in different domains, all agents share the same value network
vϕ(.) while having independent strategy networks {πωn

(.)}Nn=1, where ϕ and ωn are the learnable
parameters. Also, we define a set of prompts Zn for each source domain, which serves as the action
space for the corresponding RL agent. These prompts can come in various forms, including manual
prompts Bach et al. [2022], original training inputs Brown et al. [2020], Dong et al. [2022], or
LLM-generated Li et al. [2024], Lu et al. [2021]. Here, an action an implies that agent n selects a
specific prompt zn from its designated prompt set Zn.

At each step t of the training phase, given a state snt = PLM(xt), which is the last hidden layer
embedding of input xt, the n-th agent selects an action ant by policy πωn

(ant |snt). This action
corresponds to choosing prompt znt . We combine xt and znt , feed them into the PLM for downstream
tasks, and calculate the reward rnt . The agent’s parameters are then optimized based on rnt .

The rewards received by the RL agent are used as feedback to directly guide the optimization direction
of the strategy. In this work, we aim to ensure that the prompts selected by the RL agent have good
generalization capabilities. Therefore, we reuse Strength(.; θ) as a part of our reward function,
specifically rnt is defined as:

rnt = αaccMacc(z
n
t , {xt}) + αcsStrength(z, {xt} ; θ). (14)

6

In the testing phase, we use an ensemble decision-making approach to apply the prompts. The prompts
selected by each agent are input into the PLM to perform downstream tasks, and the results are
combined. For a given input x and its corresponding selected prompts {zn}Nn=1, the final prediction
obtained by PLM for label y can be expressed as:

P (y|x) = softmax(

N∑
n=1

pLM(y|x, zn)). (15)

Our intention is to divide the action space of agents into smaller, more manageable subspaces and
make it easier for agents to make the best decisions. The detailed training and testing processes,
along with specific agent settings, are presented in Appendix E.

5 Experiments

To demonstrate the effectiveness of our findings for domain generalization, we conduct extensive
experiments on tasks of sentiment classification and natural language inference (NLI). We select
the SST-2 Socher et al. [2013], MR Pang and Lee [2005], and CR Hu and Liu [2004] datasets for
sentiment classification, and the WNLI, QNLI, and RTE datasets from GLUE Wang et al. [2018] for
NLI tasks3. Each task involves designating one dataset as the target domain and the others as source
domains. Detailed descriptions of the datasets and domain divisions are provided in Appendix B.1.

We choose RoBERTa-largeLiu et al. [2019] for all downstream tasks for our hardware resources,
and it has been widely used in previous prompt optimization works Li et al. [2024], Deng et al.
[2022], Zhang et al. [2022]. Admittedly, at the time of writing this article, various efforts to optimize
prompts have surfaced. However, our goal is not to build a better training method based on previous
problems, but to pose a new problem, e.g., learning prompts with strong domain generalization
ability. We therefore select three of the most well-known methods as baseline in the fields of
soft prompt optimization and hard prompt optimization respectively. In addition, in order to more
comprehensively demonstrate the performance of our method, we also select two distribution-level
discrete prompt optimization methods as comparison methods. The baseline methods and their
implementations are described in Appendix B.2 and B.3.

5.1 Out-of-domain Performance Comparison

Domain Generalization Result for Soft Prompt. As shown in Table 1, the concentration strength
loss Lcs and the concentration fluctuation loss Lcf, in most experimental settings, enhance the domain
generalization of three soft prompt optimization methods. And, the combination of Lcs and Lcf, i.e.,
the concentration-reweighting loss Lcr, further improves the domain generalization ability of soft
prompts, achieving the best results in all experimental settings. Specifically, Lar (both) boosts the
average accuracy of Prompt Tuning, Prefix Tuning, and P-Tuning v2 by 1.47%, 1.78%, and 1.02%,
respectively, highlighting its effectiveness in promoting the learning of domain-invariant properties
in soft prompts. In addition, using only Lcs or Lcf alone may sometimes impair the performance
of soft prompts, such as Prompt Tuning and P-Tuning v2 methods when QNLI data is used as the
target domain. This indicates that concentration strength and concentration fluctuation are both
indispensable for domain generalization ability of the prompts, and enhancing only one aspect may
be harmful to the domain generalization performance of the prompts.

To more comprehensively illustrate the utility of the concentration-reweighting loss, we delve into
Appendix D for complete concentrative soft prompt optimization algorithm, extensive exploration
on performance stability to prompt initialization and utility to decoder-only models of our method.
Additionally, we provide quantitative analysis and visual representation to illustrate the impact of
concentration-reweighting loss Lcr on soft prompts.

Domain Generalization Result for Hard Prompt. As shown in Table 1, with the introduction
of filtering metric and prompt matching framework, our approach effectively enhances the domain
generalization capabilities of various existing methods. Among them, the improvements to the
DP2O method achieved the best performance in all experimental setups. Compared to the original

3For simplicity, these datasets are denoted by their initial letters (S, M, C, W, Q, and R respectively).

7

Sentiment NLI

Paradigms Methods S+M→C C+M→S S+C→M Q+R→W W+R→Q Q+W→R

Prompt
Tuning

Lester et al. [2021]

Vanilla PT 64.733.82 65.512.65 65.123.85 41.201.55 49.831.47 49.661.67

PT with Lcs 65.833.83 66.382.42 65.332.37 41.531.56 49.602.37 49.431.41

PT with Lcf 65.093.72 67.402.43 65.402.33 42.172.03 49.221.59 49.731.31

PT with both 66.193.69 69.542.52 65.892.32 42.481.72 50.311.33 50.421.34

Prefix
Tuning

Li and Liang [2021]

Vanilla Prefix 65.913.24 83.250.41 75.510.91 50.260.31 51.880.29 50.020.28

Prefix with Lcs 66.233.37 84.320.48 76.580.82 50.690.33 51.440.28 49.770.22

Prefix with Lcf 66.823.19 83.700.39 77.170.75 51.730.32 52.120.28 50.730.26

Prefix with both 68.292.97 85.070.42 77.530.43 52.050.30 53.320.25 51.260.27

P-Tuning
v2

Liu et al. [2021]

Vanilla Pv2 65.921.61 83.841.69 75.890.36 50.630.31 52.761.01 51.311.37

Pv2 with Lcs 66.061.77 83.321.59 75.070.35 51.370.37 50.930.92 50.201.30

Pv2 with Lcf 66.721.62 84.121.51 76.410.33 51.320.38 52.641.04 51.281.22

Pv2 with both 67.071.53 84.861.42 77.260.37 51.870.28 53.830.95 51.571.16

GrIPS
Prasad et al. [2022] - 80.072.57 84.281.38 85.191.12 54.372.40 52.771.73 53.521.66

RLPrompt
Deng et al. [2022] - 86.051.32 89.360.91 85.951.90 52.772.82 53.822.34 54.631.39

Manual
Prompt

Bach et al. [2022]

Vanilla MP 52.734.43 55.813.31 50.851.58 41.701.17 50.800.84 51.601.50

MP with MARL 56.371.18 58.420.46 52.150.49 44.271.02 51.360.84 52.181.23

MP with Metric 54.632.12 57.841.65 51.791.75 42.860.94 51.020.68 52.031.14

MP with both 56.760.40 59.440.32 53.150.35 45.050.28 52.030.25 52.461.24

In-Context
Demo

Brown et al. [2020]

Vanilla IC 84.332.15 84.811.39 80.212.17 50.861.28 52.630.94 58.042.23

IC with MARL 85.335.03 87.022.74 82.141.65 52.823.29 53.751.32 59.872.07

IC with Metric 84.703.17 85.102.12 82.604.91 51.194.80 52.724.31 59.464.64

IC with both 87.292.72 88.491.52 83.520.98 52.941.59 54.240.73 60.321.20

DP2O
Li et al. [2024]

Vanilla DP2O 89.060.76 90.750.91 86.530.80 54.840.62 54.850.37 59.780.79

DP2O with MARL 87.363.17 91.602.39 86.034.03 54.712.21 53.131.97 60.623.47

DP2O with Metric 86.791.32 90.131.07 86.600.83 53.211.16 54.020.79 60.541.47

DP2O with both 89.630.52 92.870.33 87.850.47 56.420.36 55.320.33 61.270.81

Table 1: Performance comparison of text classification tasks in accuracy with MFDG setting. We use
double horizontal lines to separate soft prompt optimization and hard prompt optimization methods.
“-” denotes the distribution-level discrete prompt optimization methods which are not considered in
our concentrative hard prompt optimization method, as stated in §4.2.

DP2O, our method improve the average accuracy on sentiment classification and NLI tasks by
1.34% and 0.85% respectively. These results demonstrate the effectiveness of our proposed filtering
metrics and surrogate rewards in selecting universal prompts from a pre-constructed set of prompts.
Additionally, we find that compared to filtering metrics, the prompt matching framework brings a
higher performance improvement to discrete prompts. This is because our reward function design
adeptly guides the agent to match inputs with prompts that have strong cross-domain capabilities,
even when faced with an unfiltered set of prompts. We also analyze our method from multiple aspects
in Appendix E.

Overall Comparison. In the MFDG setting, hard prompts generally outperform soft prompts. As
illustrated in Table 1, the best-performed hard prompt optimization method achieves a significant
average accuracy of 73.88%, compared to only 64.61% for the best soft prompts. We hypnosis that
hard prompts embed discrete tokens into the model input, providing precise guidance during testing
and making it easy for PLMs to associate semantics fo input text sequence with the task. And soft
prompts rely on indirectly influencing model inference by searching in continuous space with only
the guidance of objective function, which might cause overfitting on source domain.

5.2 In-domain Performance Comparison

We also compare the in-domain performance between our proposed optimization objective and
traditional training objective. And we report not only model performance tested on in-domain

8

Sentiment NLI

Paradigms Methods SST-2 CR MR Avg. WNLI QNLI RTE Avg. Avg Gap

Prompt
Tuning

Vanilla PT 73.843.52 75.891.72 74.172.32 74.63 47.641.02 49.710.93 54.731.72 50.69 +6.66
PT with both 72.612.72 76.072.24 74.372.12 74.35 46.791.52 49.500.98 54.211.49 50.17 +4.71

Prefix
Tuning

Vanilla Prefix 87.392.98 77.370.79 82.650.65 82.47 55.880.37 60.270.44 54.820.31 56.99 +6.93
Prefix with both 87.293.12 76.731.28 83.320.83 82.45 56.180.35 59.740.32 55.380.42 57.10 +5.19

P-Tuning
v2

Vanilla Pv2 86.711.57 77.651.49 82.270.42 82.21 55.570.73 60.731.64 55.161.83 57.15 +6.29
Pv2 with both 87.031.32 77.711.50 82.050.54 82.08 56.310.69 60.461.37 55.201.69 57.32 +5.38

Manual
Prompt

Vanilla MP 61.623.42 57.752.92 53.132.33 57.50 44.272.80 53.420.98 52.630.60 50.11 +3.22
MP with both 61.332.32 56.071.61 53.470.42 56.96 44.050.89 53.771.35 52.600.39 50.14 +0.40

In-Context
Demo

Vanilla IC 85.911.42 85.570.92 83.751.39 85.08 52.371.45 53.420.72 59.730.81 55.17 +1.65
IC with both 86.331.34 85.140.87 84.312.12 85.26 52.251.62 52.960.49 59.360.73 54.86 +0.93

DP2O Vanilla DP2O 93.620.72 90.760.50 88.580.91 90.99 55.261.02 55.130.39 61.070.81 57.15 +1.44
DP2O with both 93.200.81 90.380.47 88.372.12 90.65 56.470.41 55.420.79 61.290.63 57.73 +0.37

Table 2: In-domain comparison. The last column shows the average gap between test performance on
in-domain and out-of-domain data.

dataset, but also the average gap between performance on in-domain and out-of-domain data. As
shown in Table 2, our method shows comparable accuracy with prompt optimization methods aiming
only at maximizing log probability on correct label, demonstrating that taking concentration into
consideration does not compromise on model performance on in-domain data. Moreover, prompts
optimized by concentration-driven objective shows better consistency when tested on both in-domain
and out-of-domain data. Especially, for hard prompt optimization which searches for suitable prompts
in a limited discrete space, the average performance gap is less than 1%, indicating our method
always matches input sequence with proper prompts even if the prompts are not initially designed on
target domain.

5.3 Applicability to Larger Models and Other Tasks:

We also attempt to extend our method to larger models and more complex tasks. We validate the
effectiveness of our method on Llama-2-7b-chat Touvron et al. [2023], Vicuna-7b-v1.5 Zheng et al.
[2023], and Alpaca-7b-wdiff Taori et al. [2023] models for improving domain generalization ability of
Prefix Tuning and In-Context Demo on question-answering tasks. We evaluate our method on ROC,
SCT, and COPA datasets from the TRAM Benchmark Wang and Zhao [2023] (referred as R, S, and
C for simplicity), covering multiple choice question answering (MCQA) in reading comprehension
and commonsense reasoning. The result is shown in Table 3.

MCQA

Models Methods S + C→ R C + R→ S R + S→ C Avg. Acc Gap

Llama-2-7b-chat

Vanilla Prefix 62.322.15 66.302.30 73.152.53 67.26 —
Prefix with both 63.701.96 68.470.97 75.321.09 69.16 +1.90

Vanilla IC 63.131.25 65.501.98 77.591.14 68.74 —
IC with both 65.131.03 68.332.13 79.830.88 70.10 +1.36

Vicuna-7b-v1.5

Vanilla Prefix 67.721.79 81.092.17 88.972.64 79.26 —
Prefix with both 68.751.04 83.931.79 89.762.60 80.81 +1.55

Vanilla IC 68.372.24 83.234.12 90.981.99 80.86 —
IC with both 69.671.58 85.505.06 93.391.23 82.85 +1.99

Alpaca-7b-wdiff

Vanilla Prefix 61.523.79 70.032.88 87.912.73 73.15 —
Prefix with both 63.892.93 72.152.07 89.582.81 75.21 +2.06

Vanilla IC 60.811.14 69.112.46 89.662.37 73.19 —
IC with both 63.161.56 70.571.95 91.192.00 74.97 +1.78

Table 3: Performance comparison of large models on MCQA task accuracy. The last column shows
the average gap between test performance on vanilla method and our method.

9

Experimental results show that our method significantly improves the performance of large models
on question-answering tasks across multiple domain generalization settings. For instance, for the
Llama-7b model, our method improved the average accuracy of soft prompt generalization and hard
prompt generalization comparisons by 1.90% and 1.36%, respectively; similar improvements were
observed for Vicuna-7b and Alpaca-7b models, ranging from 1.55% to 1.99% and 2.06% to 1.78%
respectively.

Additionally, we would also like to discuss "why our method works well for large generative language
models?". In Appendix F, we present the Concentration Strength Distribution of prompts using
In-Context Demo across three 7B-sized language models (Llama, Vicuna, Alpaca) on three different
tasks (SA, NLI, MCQA). We observe that all three LLMs exhibit stronger concentration strength
in deeper layers compared to shallower layers when confront with prompts for different tasks. We
find that this phenomenon occurs earlier in larger models (7B) compared to smaller models like
Roberta-large. We speculate that this behavior is related to the alignment stage in pre-training of
large models during Supervised Fine Tuning with a large number of prompts.

6 Conclusion

In this paper, we explore the nature of prompts with good domain generalization ability. By conducting
experiments on model concentration on prompts and concentration pattern stability, we find that
well-generalized prompt attract more attention weights at deeper layers of pre-trained language
models (PLMs) and this pattern stably exists to different inputs. Inspired by these new findings, we
propose optimization methods for soft prompt and hard prompt, respectively. For soft prompts, we
design a concentration-reweighting loss to search for prompts with strong domain generalization
ability in continuous space. For hard prompts, we develop an attention-weighted filter-then-match
framework. This framework first apply a novel metric which takes model concentration and pattern
stability into consideration to filter out low-quality prompts in candidate set. Then a multi-agent
reinforcement learning method is used to match each input with optimized hard prompts from each
source domain. Our extensive experiment on multiple datasets in different tasks demonstrates the
superiority of our methods over existing comparison prompt optimization methods in terms of MFDG
setting.

7 Limitations

In this study, we primarily focused on the performance of domain-generalizable prompt optimization.
Despite this, our research still faces limitations in some practical application scenarios. Firstly, our
pilot experiments only covered a limited variety of prompts. In future studies, we plan to extend
to more diverse types of prompts. Secondly, the current research mainly focuses on the prompt
domain generalization capabilities in a small-sample environment; next, we will conduct more
comprehensive performance evaluations on complete datasets. Additionally, our current discrete
prompt optimization method is primarily applicable at the input-level; in the future, we plan to
explore its potential applications at the distribution-level. Finally, although our method is designed to
enhance the performance of PLMs in classification tasks, these methods cannot be directly applied to
open-ended generation tasks.

Acknowledgements

We thank all the reviewers and the area chair for their helpful feedback, which aided us in
greatly improving the paper. This work is supported by National Natural Science Foundation
of China (62272371, 62103323, U21B2018), Initiative Postdocs Supporting Program (BX20190275,
BX20200270), China Postdoctoral Science Foundation (2019M663723, 2021M692565), Fundamen-
tal Research Funds for the Central Universities under grant (xzy012024144), and Shaanxi Province
Key Industry Innovation Program (2021ZDLGY01-02).

10

References
S. An, Y. Li, Z. Lin, Q. Liu, B. Chen, Q. Fu, W. Chen, N. Zheng, and J.-G. Lou. Input-tuning:

Adapting unfamiliar inputs to frozen pretrained models. arXiv preprint arXiv:2203.03131, 2022.

S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S. Bari,
T. Fevry, Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. Ben-David, C. Xu, G. Chhablani, H. Wang,
J. A. Fries, M. S. Al-shaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang, X. Tang, M. T.-J.
Jiang, and A. M. Rush. Promptsource: An integrated development environment and repository for
natural language prompts, 2022.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

H. Chen, X. Han, Z. Wu, and Y.-G. Jiang. Multi-prompt alignment for multi-source unsupervised
domain adaptation. Advances in Neural Information Processing Systems, 36, 2024.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does bert look at? an analysis of bert’s
attention. arXiv preprint arXiv:1906.04341, 2019.

J. Davison, J. Feldman, and A. M. Rush. Commonsense knowledge mining from pretrained models.
In Proceedings of the 2019 conference on empirical methods in natural language processing and
the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pages
1173–1178, 2019.

M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu, M. Song, E. P. Xing, and Z. Hu. Rlprompt:
Optimizing discrete text prompts with reinforcement learning. arXiv preprint arXiv:2205.12548,
2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z. Sui. A survey on in-context
learning. arXiv preprint arXiv:2301.00234, 2022.

G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901, 2019.

T. Gao, A. Fisch, and D. Chen. Making pre-trained language models better few-shot learners. arXiv
preprint arXiv:2012.15723, 2020.

C. Ge, R. Huang, M. Xie, Z. Lai, S. Song, S. Li, and G. Huang. Domain adaptation via prompt
learning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Y. Gu, X. Han, Z. Liu, and M. Huang. Ppt: Pre-trained prompt tuning for few-shot learning. arXiv
preprint arXiv:2109.04332, 2021.

X. Guo, B. Li, and H. Yu. Improving the sample efficiency of prompt tuning with domain adaptation.
arXiv preprint arXiv:2210.02952, 2022.

A. Haviv, J. Berant, and A. Globerson. Bertese: Learning to speak to bert. arXiv preprint
arXiv:2103.05327, 2021.

P. M. Htut, J. Phang, S. Bordia, and S. R. Bowman. Do attention heads in bert track syntactic
dependencies? arXiv preprint arXiv:1911.12246, 2019.

M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 168–177,
2004.

Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How can we know what language models know?
Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

11

B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

C. Li, X. Liu, Y. Wang, D. Li, Y. Lan, and C. Shen. Dialogue for prompting: A policy-gradient-based
discrete prompt generation for few-shot learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 18481–18489, 2024.

X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

Y. Lin, Y. C. Tan, and R. Frank. Open sesame: Getting inside bert’s linguistic knowledge. arXiv
preprint arXiv:1906.01698, 2019.

J. Liu, J. Xiao, H. Ma, X. Li, Z. Qi, X. Meng, and L. Meng. Prompt learning with cross-modal
feature alignment for visual domain adaptation. In CAAI International Conference on Artificial
Intelligence, pages 416–428. Springer, 2022.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural language processing. ACM Computing Surveys,
55(9):1–35, 2023a.

X. Liu, K. Ji, Y. Fu, W. L. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning v2: Prompt tuning can be
comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602,
2021.

X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands, too. AI Open,
2023b.

X. Liu, C. Liu, Z. Zhang, C. Li, L. Wang, Y. Lan, and C. Shen. Stablept: Towards stable prompting
for few-shot learning via input separation. arXiv preprint arXiv:2404.19335, 2024.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

P. Lu, L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpurohit, P. Clark, and A. Kalyan. Dynamic
prompt learning via policy gradient for semi-structured mathematical reasoning. arXiv preprint
arXiv:2209.14610, 2022.

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically ordered prompts and where to
find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786, 2021.

A. Mao, M. Mohri, and Y. Zhong. Cross-entropy loss functions: Theoretical analysis and applications.
In International Conference on Machine Learning, pages 23803–23828. PMLR, 2023.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075, 2005.

E. Perez, D. Kiela, and K. Cho. True few-shot learning with language models. Advances in neural
information processing systems, 34:11054–11070, 2021.

A. Prasad, P. Hase, X. Zhou, and M. Bansal. Grips: Gradient-free, edit-based instruction search for
prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

J. Qian, L. Dong, Y. Shen, F. Wei, and W. Chen. Controllable natural language generation with
contrastive prefixes. arXiv preprint arXiv:2202.13257, 2022.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

12

T. Schick and H. Schütze. Exploiting cloze questions for few shot text classification and natural
language inference. arXiv preprint arXiv:2001.07676, 2020a.

T. Schick and H. Schütze. It’s not just size that matters: Small language models are also few-shot
learners. arXiv preprint arXiv:2009.07118, 2020b.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013
conference on empirical methods in natural language processing, pages 1631–1642, 2013.

H. Sun, A. Hüyük, and M. van der Schaar. Query-dependent prompt evaluation and optimization with
offline inverse rl. In The Twelfth International Conference on Learning Representations, 2023.

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.
Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

J. Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages
37–42, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-3007. URL https://www.aclweb.org/anthology/P19-3007.

T. Vu, B. Lester, N. Constant, R. Al-Rfou, and D. Cer. Spot: Better frozen model adaptation through
soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

L. Wang, L. Li, D. Dai, D. Chen, H. Zhou, F. Meng, J. Zhou, and X. Sun. Label words are anchors:
An information flow perspective for understanding in-context learning. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

S. Wang, Z. Chen, Z. Ren, H. Liang, Q. Yan, and P. Ren. Paying more attention to self-attention:
Improving pre-trained language models via attention guiding. arXiv preprint arXiv:2204.02922,
2022.

Y. Wang and Y. Zhao. Tram: Benchmarking temporal reasoning for large language models. arXiv
preprint arXiv:2310.00835, 2023.

H. Wu and X. Shi. Adversarial soft prompt tuning for cross-domain sentiment analysis. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2438–2447, 2022.

Z. Xu, C. Wang, M. Qiu, F. Luo, R. Xu, S. Huang, and J. Huang. Making pre-trained language models
end-to-end few-shot learners with contrastive prompt tuning. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pages 438–446, 2023.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness of
ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems, 35:
24611–24624, 2022.

T. Zhang, X. Wang, D. Zhou, D. Schuurmans, and J. E. Gonzalez. Tempera: Test-time prompting via
reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

L. Zhao, F. Zheng, W. Zeng, K. He, R. Geng, H. Jiang, W. Wu, and W. Xu. Adpl: Adversarial
prompt-based domain adaptation for dialogue summarization with knowledge disentanglement. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 245–255, 2022.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems, 36:46595–46623, 2023.

13

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://www.aclweb.org/anthology/P19-3007

Appendix

A Related Work

Prompting for Few-shot Learning. Recent studies indicate that with pre-trained language models
(PLMs) developing, prompt-based methods demonstrate significant competitiveness in downstream
tasks with few-shot settings. For example, Schick and Schütze [2020a,b] propose a semi-supervised
training method that converts the text classification task into a cloze task through word masking.
Meanwhile, Brown et al. [2020], Gao et al. [2020], Liu et al. [2023b] find that manual prompts can
guide large machines to perform NLP tasks without any training. Vu et al. [2021], Li and Liang
[2021], An et al. [2022], Qian et al. [2022] tune soft prompts using gradient descent with continuous
embeddings instead of discrete prompts and achieve performance comparable to fine-tuning in few-
shot setting. Although these methods have demonstrated impressive performance, they often rely on
a critical assumption, i.e., the training and testing sets come from the same underlying distribution.
Unfortunately, this assumption frequently does not hold in real-world scenarios.

Domain Adaptation Prompting. To address the out-of-domain challenges, many studies employ
domain adaptation (DA) methods to acquire prompts that are effective in the target domain Ge
et al. [2023], Guo et al. [2022], Liu et al. [2022], Chen et al. [2024]. For example, Wu and Shi
[2022] propose a novel domain adversarial training strategy to learn domain-invariant representations
between each source domain and the target domain. Zhao et al. [2022] introduce three kinds of
prompts learning task, source domain, and target domain features separately. However, these methods
still need the involvement of unlabeled target domain samples during training. In contrast to current
research, our method expands the exploration of prompt optimization to the domain generalization
problem where the target domain is entirely unknown during training.

B Experiment Setting Details

B.1 Datasets

In Table 4, we provide details of the original datasets used in the main experiments, including type,
domain, and label words, for tasks of sentiment analysis and natural language inference (NLI).

Type Datasets Domain Class Label words

Sentiment
Analysis

SST-2 Movie Reviews 2 positive/negative
MR Movie Reviews 2 positive/negative
CR Product 2 positive/negative

NLI
RTE News 2 Clearly/Yet

QNLI Wikipedia 2 Okay/Nonetheless
WNLI Fiction Books 2 Rather/Alas

Table 4: Datasets in the main experiments.

Table 5 shows our specific division of the source and target domain under various settings of MFDG,
as well as the sizes of the training and test set.

Type Setting Source Target |Train|/|Validation| |Test|

Sentiment
Analysis

S + M→ C SST-2 & MR CR 64 2K
C + M→ S CR & MR SST-2 64 1.8k
S + C→M SST-2 & CR MR 64 2k

NLI
Q + R→W QNLI & RTE WNLI 64 0.7k
W + R→ Q WNLI & RTE QNLI 64 5.4k
Q + W→ R QNLI & WNLI RTE 64 3K
Table 5: MFDG setting for the main experiments.

14

B.2 Baselines

We conduct extensive experiments, comparing 10 main competitors, including representative soft and
hard prompting methods.

For the soft prompt optimization methods: Soft Prompt Tuning Lester et al. [2021] replaces discrete
prompt tokens with learnable embedding, and optimizes prompt through gradient information of
PLMs. Prefix Tuning Li and Liang [2021] reparametrizes networks for soft prompts and integrates
and adjusts soft prompts at every layer of the PLM. P-Tuning v2 Liu et al. [2021] is an improved
version of Prefix Tuning, which has the option to reparameterize the network and use classification
headers to adjust the soft prompts of each layer of PLM.

For the hard prompt optimization methods: Manual Prompt applies the prompt set designs of Bach
et al. [2022], randomly combines the prompt with the input for downstream tasks. In-Context Demo
Brown et al. [2020] randomly selects training data as examples to prompt PLMs to process subsequent
inputs. DP2O Li et al. [2024] utilizes GPT-4 OpenAI [2023] to generation a in-context prompt set
and uses the reinforcement learning agent for prompt matching. GrIPS Prasad et al. [2022] optimizes
distribution-level hard prompts by editing on basic prompts, i.e., substitution, deletion, and swapping,
etc. RLPrompt Deng et al. [2022] uses reinforcement learning techniques to individually train partial
parameters of PLMs to generate distribution-level discrete prompts for PLMs on downstream tasks.

B.3 Implementation Details

We provide experimental details for all baseline methods in the main experiment here. We choose
RoBERTa-Large Liu et al. [2019] as our backbone model. We propose a variant setting of the vanilla
few-shot learning Perez et al. [2021]. For all tasks, we randomly select 32 samples from each source
domain as the training set to simulate MFDG setting. We use the same approach to build the validation
set and ensure that the number of labels in the training and validation sets is balanced. For Soft
Prompt Tuning, we replace the Manual Prompt tokens with five soft tokens in the same positions, and
optimize them using AdamW Loshchilov and Hutter [2017] optimizer with learning rate 2×10−5 and
batch size 32 for 300 epochs. For Prefix Tuning and P-Tuning v2, we apply the AdamW optimizer
with a learning rate of 2×10−4 and train for 100 epochs. The mini batch size is 8 and prompt length
is set as 10. The setting of hard prompt optimization baselines (In-Context Demo, DP2O, GrIPS and
RLPrompt) follows Li et al. [2024]. All experimental results are the average results of 10 different
random seeds on a single NVIDIA A100 GPU.

B.4 Training Details

In this subsection, we provide additional details for reproducing our method. In prompt matching
framework, each agent’s policy network consists of two fully connected layers, ω1

n ∈ R1024×600

and ω2
n ∈ R600×15. The shared value network included three fully connected layers, sized ϕ1 ∈

R1024×600, ϕ2 ∈ R600×600 and ϕ3 ∈ R600×1. We use AdamW with eps of 0.00001 during training
of 2000 epochs. The learning rate is 0.001, and mini-batch size is 32. Also, in Table 6 and Table 7,
we provide the balance weight settings of the soft prompt and hard prompt methods respectively.

Method λce λcs λcf

PT with both 1 0.3 0.3
Prefix with both 0.3 0.5 0.15
Pv2 with both 0.5 0.5 0.15

Table 6: Weights for soft prompting methods.

Method αce αcs αcf

MP with both 10 7 7.5
IC with both 7.5 7.5 0.15

DP2O with both 10 6.5 6.5
Table 7: Weights for hard prompting methods.

C Pilot Experiments

C.1 Pilot Details

To ensure a fair comparison between prompts of different lengths, we only select the top four tokens
with the highest concentration strength in each prompt for experiment. We randomly select 1000
inputs from the target domain MR dataset for calculation. Results in Figure 3 reflect averages from ten
random seeds. In Table 8, we show the specific methods and forms of the experimental comparison
prompts in §3.

15

ICL†: Review: the script is smart and dark - hallelujah for small favors. Sentiment: negative.
Review: Good times to be found here if you love Rockabilly music. I’ll definitely be be
back here soon! Sentiment: positive. Review: <s> Sentiment: <mask>

Method: In-Context Demo Brown et al. [2020]

ICL∗: Review: it ś just not very smart . Sentiment: negative. Review: extraordinary debut from
josh koury. Sentiment: positive. Review: <s> Sentiment: <mask>

Method: In-Context Demo Brown et al. [2020]

RL†: <s> AgentMediaGradeOfficials Grade <mask>
Method: RLPrompt Deng et al. [2022]

RL∗: <s> absoluteliterally absolute downright downright <mask>
Method: RLPrompt Deng et al. [2022]

Soft†: <s> <soft> <soft> <soft> <soft> <soft> <mask>.
Method: Soft Prompt Tuning Lester et al. [2021]

Soft∗: <s> <soft> <soft> <soft> <soft> <soft> <mask>.
Method: Soft Prompt Tuning Lester et al. [2021]

Table 8: Prompt details of the pilot experiment in §3.

C.2 Attention Distribution Measurement

Figure 15 shows the distribution of concentration strength of various hints in each layer of the
Robert-Large model in the pilot experiment. We can find that in PLMs, the concentration strength of
almost all prompts is stronger in deep layers than in shallow layers, but there is a clear difference in
their maximum values. These findings prompt us to further investigate the properties of concentration
strength.

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.3

0.4

0.5

0.6

0.7

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of ICL

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of ICL *

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of RL

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of RL *

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.30

0.35

0.40

0.45

0.50

0.55

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of Soft

1 3 5 7 9 11 13 15 17 19 21 23 25

Layer

0.35

0.40

0.45

0.50

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of Soft *

Figure 6: Distribution of concentration strength of various prompts in each layer of RoBERTa-Large.

16

D Details for Concentrative Soft Prompt Optimization

D.1 Optimization Process

Algorithm 1 shows the detailed process of concentrative soft prompt optimization in §4.1. It also
reveals that our method can be widely applied to different soft prompt optimization methods to
improve their domain generalization capabilities.

Algorithm 1 Concentrative Soft Prompt Optimization
1: Input: fixed PLM parameterized by θ, training dataset Dtrain, learning rate η, loss weight λcs, λcf

and λce
2: Initialize soft prompts zsoft with random values
3: while not converged do
4: for each input (xi, yi) in Dtrain do
5: Construct input sequence (z ⊕ xi)
6: Get final prediction P (ŷi|(z ⊕ xi); θ)
7: Compute loss Lcs by Eq. (8)
8: Compute loss Lcf by Eq. (9)
9: Compute loss Lce by cross-entropy classification loss Mao et al. [2023]

10: Compute final loss by Eq. (10)
11: Compute gradients ∇zsoft =

∂L
∂zsoft

12: Update prompts zsoft ← zsoft − η∇zsoft
13: end for
14: end while
15: Output: Trained domain-generalizable soft prompt zsoft

D.2 Stability to Soft Prompt Initialization

We adopt five different soft prompt initialization strategies Gu et al. [2021] to test the stability of
our method. “Random” indicates that we randomly initialize the embedding of soft prompt. “Label”
indicates that we use the embeddings of the label words. “Vocab” indicates that we randomly sample
words from the vocabulary. “Top-1k” indicates that we randomly sample words from the most
frequent 1000 words in the pre-training corpus. “Task” indicates that we randomly sample words
from the downstream data.

As shown in Table 9, the results validate that our method enhances the stability of soft prompts under
various initialization strategies. The standard deviations of our method on target domain SST-2 and
QNLI are 1.11 and 0.37 lower than those of the vanilla soft prompt tuning, and the performance is
better compared with the vanilla soft prompt tuning.

SST-2 QNLI
Methods PT with both Prompt Tuning PT with both Prompt Tuning
Random 69.36 65.51 50.31 49.60
Label 68.67 64.21 50.84 49.33
Vocab 66.88 62.03 51.20 50.45
Top-1k 67.03 62.15 50.05 49.45
Task 68.92 67.29 50.10 48.04
Std. 1.14 2.25 0.50 0.87

Table 9: Comparison of stability to soft prompt initialization. The best result across different templates
is bold and the worst is double underline.

D.3 Extension to Decoder-only PLMs.

We explore the effectiveness of our approach on decoder-only PLMs. Keeping other experimental
conditions unchanged, we replace the RoBERTa-Large with the GPT-2-Samll Radford et al. [2019]
and perform the corresponding experiments.

17

Sentiment NLI

Paradigms Methods S + M→ C C + M→ S S + C→M Q+R→W W+R→ Q Q+W→ R

Prompt
Tuning

Vanilla PT 56.291.03 67.572.74 58.502.31 42.641.87 49.71 1.57 49.480.63
PT with both 57.850.91 68.522.77 59.732.63 42.791.21 50.271.13 51.100.57

Table 10: Decoder-only PLM (GPT-2-Samll) backbone tests in accuracy.

The results in Table 10 show that our method works well on the decoder-only PLMs backbone and
successfully outperforms representative soft prompt tuning.

D.4 Attention Visualization

We show in Table 11 the concentration strength (CS) and concentration fluctuation (CF) obtained
in the last layer of RoBERTa-Large before and after soft prompt are optimized using our method.
The results indicate that in the SST-2 target domain, our method not only significantly enhances
the concentration strength of soft prompt, but also effectively reduces the concentration fluctuation,
thereby achieving significant performance improvements in the SST-2 target domain. However, in
the QNLI target domain, the concentration fluctuation of soft prompt increases slightly, resulting
in a limited improvement in accuracy. This suggests that concentration strength and concentration
fluctuation jointly affect the generalization ability of prompts, which is consistent with observations
from our pilot experiments in §3.

Target Method CS CF ACC%

SST-2
Prompt Tuning 0.523 0.062 65.51
PT with both 0.578 0.054 69.36

QNLI
Prompt Tuning 0.505 0.061 49.83
PT with both 0.537 0.062 50.31

Table 11: Accuracy affected by concentration strength (the larger the better) and concentration
fluctuation (the smaller the better) before and after using concentrative soft prompt optimization.

In addition, we also use bertviz Vig [2019] to visually display the continuous prompts before and
after using concentrative soft prompt optimization. In Figure 7 to Figure 10, we show the attention
distribution of vanilla soft prompt (left) and soft prompt trained with our method (right) on the same
inputs at the last layer of the RoBERTa-Large model. It can be observed that concentrative soft
prompt optimization improves the attention concentration and stability to soft prompts at predicted
locations.

Figure 7: Case 1 for attention comparison visualization for soft prompt.

18

Figure 8: Case 2 for attention comparison visualization for soft prompt.

Figure 9: Case 3 for attention comparison visualization for soft prompt.

Figure 10: Case 4 for attention comparison visualization for soft prompt.

19

E Details for Concentrative Hard Prompt Optimization

E.1 Optimization Process

We define the prompt matching problem under MFDG setting as a multi-agent reinforcement learning
(MARL) problem, as shown in Algorithm 2.

Algorithm 2 Concentrative Hard Prompt Optimization
1: Input: Training set Dtrain of size T , testing set Dtest, fixed PLM parameterized by θ, the prompt sets
{Zn}Nn=1 filtered by GCS 13, number of agents N .

**** training the multi-agent RL model ****
2: Initialize policy networks πω1 , . . . , πωN for each agent with parameters ω1, . . . , ωN and epoch← 0.
3: while epoch < epochmax do
4: for step t in [1, ..., T] do
5: for each agent n in [1, ..., N] do
6: Get state snt ← PLM(xt) for agent n.
7: Run policy network πωn(a

n
t |snt) to take an action an

t to select a prompt znt from Zn.
8: Calculate reward for agent n, i.e., Eq. 14.
9: Add (snt , a

n
t , r

n
t) transition to agent n’s replay buffer.

10: end for
11: Update of parameters ω1, . . . , ωN using the MAPPO algorithm Yu et al. [2022].
12: end for
13: end while

**** testing phase begins ****
14: for each input (xi, yi) in Dtrain do
15: for each agent n in [1, ..., N] do
16: Get state sn ← PLM(xi).
17: Run policy network πωn(a

n|sn) to take an action an to select a prompt zn from Zn.
18: end for
19: Get final prediction according to Eq. 15.
20: end for
21: Output: A trained policy network πω1 , . . . , πωN , predictions for test inputs.

E.2 Attention Visualization

We utilize bertviz Vig [2019] to visualize the attention distribution in the final layer of the RoBERTa-
Large model when processing different inputs with hard prompts filtered by GCS. As illustrated
in Figure 11 to Figure 12, the filtered hard prompts demonstrate high attention concentration and
stability at the predicted positions.

E.3 Stability to Hard Prompt Verbalizer Selection

Prompt-based methods require mapping the probabilities generated by PLMs to the label space needed
for downstream tasks. Thus, the selection of a verbalizer significantly impacts the performance of
PLMs Liu et al. [2023b]. Previous research Xu et al. [2023] explores the identification of appropriate
verbalizers for these models. The experimental results in Table 12 show that our method achieves the
highest accuracy under different verbalizers settings, which shows that our method can improve the
robustness of existing methods for verbalizers selection.

Verbalizer In -Contex Demo IC with both DP2O DP2O with both

bad/good 81.671.12 84.161.02 89.360.41 91.730.43

negative/positive 84.811.39 88.491.55 90.750.87 92.870.33

terrible/great 83.321.77 87.720.88 90.580.62 92.130.91

Table 12: Analysis on stability to verbalizers.

20

Figure 11: Case 1 for attention visualization of three filtered hard prompts.

Figure 12: Case 2 for attention visualization of three filtered hard prompts.

21

E.4 Sensitivity to Number of Agents

We analyze the impact of the number of agents in a cue-matching framework. As shown in Figure 13,
the experimental results reveal that when the number of agents is small, adding agents can significantly
improve the classification accuracy of the target domain. However, as the number of agents continues
to increase, the accuracy gradually stabilizes. This suggests that as the number of prompts provided
to the input gradually increases, the results of the ensemble decision will become more stable, and
increasing or decreasing a prompt alone will have less impact on the overall performance of the
prompt matching framework.

1 2 3 4
Number of Agents

70

75

80

85

90

95

100

AC
C%

88.43

92.87 93.32 92.77

Performance Comparison
Max Value

Figure 13: Performance for the model with different number of agents.

F Distribution of Concentration Strength on Larger Language Models

As shown in Figure 14 to Figure 16, we present the concentration strength distribution of three
prominent open-source LLMs: Llama-2-7b-chat, Vicuna-7b-v1.5, and Alpaca-7b-wdiff. Our findings
reveal that almost all three LLMs demonstrate higher concentration strength in deeper layers compared
to shallower ones when processing prompts from different tasks. Moreover, larger models exhibit
this concentration phenomenon earlier than smaller models.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Llama on the SA Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Llama on the NLI Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.0

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Llama on the QA Task

Figure 14: Concentration strength distribution of each layer of Llama in various tasks.

22

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th
Concentration Strength Distribution of the Vicuna on the SA Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Vicuna on the NLI Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.0

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Vicuna on the QA Task

Figure 15: Concentration strength distribution of each layer of Vicuna in various tasks.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Alpaca on the SA Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Alpaca on the NLI Task

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Layer

0.0

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n
St

re
ng

th

Concentration Strength Distribution of the Alpaca on the QA Task

Figure 16: Concentration strength distribution of each layer of Alpaca in various tasks.

23

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution and scope of this work are discussed in detail in the abstract
section and introduction (section 1) in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24

Justification: Section 7 in this paper discusses the limitations of our work

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work is application based and doesn’t include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information to replicate the main experiment of the paper in
Appendix B. And all information for the pilot experiment is provided in Appendix C.1.

Guidelines:

25

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all required code and datasets for this work in the supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details necessary to understand the results are provided
in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the random seed settings of the main experiment and pilot experiment
of this article in Appendix B.3 (Line number: 518) and Appendix C.1 (Line number: 531)
respectively. In addition, we publish the standard deviation of all experimental results in
Table 1, Table 2, Table 10 and Table 12.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

27

Justification: We introduce the types of computer workers in Appendix B.3 (Line Number:
519).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked that our work complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is conducted on general tasks in the NLP field and has no social
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

28

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all datasets (section 5 Line Number: 238, 239) and models (section 3
Line Number: 109 and Appendix D.3) used in this article.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

29

paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminary
	Concentration Benefits Generalization
	Concentrative Prompt Optimization
	Concentrative Soft Prompt Optimization
	Concentrative Hard Prompt Optimization

	Experiments
	Out-of-domain Performance Comparison
	In-domain Performance Comparison
	Applicability to Larger Models and Other Tasks:

	Conclusion
	Limitations
	Related Work
	Experiment Setting Details
	Datasets
	Baselines
	Implementation Details
	Training Details

	Pilot Experiments
	Pilot Details
	Attention Distribution Measurement

	Details for Concentrative Soft Prompt Optimization
	Optimization Process
	Stability to Soft Prompt Initialization
	Extension to Decoder-only PLMs.
	Attention Visualization

	Details for Concentrative Hard Prompt Optimization
	Optimization Process
	Attention Visualization
	Stability to Hard Prompt Verbalizer Selection
	Sensitivity to Number of Agents

	Distribution of Concentration Strength on Larger Language Models

