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ABSTRACT

Cutting planes (cuts) are important for solving mixed-integer linear programs
(MILPs), which formulate a wide range of important real-world applications.
Cut selection—which aims to select a proper subset of the candidate cuts to
improve the efficiency of solving MILPs—heavily depends on (P1) which cuts
should be preferred, and (P2) how many cuts should be selected. Although
many modern MILP solvers tackle (P1)-(P2) by manually designed heuristics,
machine learning offers a promising approach to learn more effective heuris-
tics from MILPs collected from specific applications. However, many exist-
ing learning-based methods focus on learning which cuts should be preferred,
neglecting the importance of learning the number of cuts that should be se-
lected. Moreover, we observe from extensive empirical results that (P3) what
order of selected cuts should be preferred has a significant impact on the ef-
ficiency of solving MILPs as well. To address this challenge, we propose a
novel hierarchical sequence model (HEM) to learn cut selection policies via re-
inforcement learning. Specifically, HEM consists of a two-level model: (1) a
higher-level model to learn the number of cuts that should be selected, (2) and
a lower-level model—that formulates the cut selection task as a sequence to se-
quence learning problem—to learn policies selecting an ordered subset with the
size determined by the higher-level model. To the best of our knowledge, HEM
is the first method that can tackle (P1)-(P3) in cut selection simultaneously from
a data-driven perspective. Experiments show that HEM significantly improves
the efficiency of solving MILPs compared to human-designed and learning-based
baselines on both synthetic and large-scale real-world MILPs, including MI-
PLIB 2017. Moreover, experiments demonstrate that HEM well generalizes to
MILPs that are significantly larger than those seen during training. Code is avail-
able at https://github.com/MIRALab-USTC/L2O-HEM-Torch (Py-
Torch version), and https://gitee.com/mindspore/models/tree/
master/research/l2o/hem-learning-to-cut (MindSpore version).

1 INTRODUCTION

Mixed-integer linear programming (MILP) is a general optimization formulation for a wide range
of important real-world applications, such as supply chain management (Paschos, 2014), production
planning (Jünger et al., 2009), scheduling (Chen, 2010), facility location (Farahani & Hekmatfar,
2009), bin packing (Nair et al., 2020), etc. A standard MILP takes the form of

z∗ ≜ min
x

{c⊤x|Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I}, (1)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, xj denotes the j-th entry of vector x, I ⊆ {1, . . . , n} denotes
the set of indices of integer variables, and z∗ denotes the optimal objective value of the problem
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in (1). However, MILPs can be extremely hard to solve as they are NP-hard problems (Bixby
et al., 2004). To solve MILPs, many modern MILP solvers (Gurobi, 2021; Bestuzheva et al., 2021;
FICO Xpress, 2020) employ a branch-and-bound tree search algorithm (Land & Doig, 2010), in
which a linear programming (LP) relaxation of a MILP (the problem in (1) or its subproblems) is
solved at each node. To further enhance the performance of the tree search algorithm, cutting planes
(cuts) (Gomory, 1960) are introduced to tighten the LP relaxations (Achterberg, 2007; Bengio et al.,
2021). Existing work on cuts falls into two categories: cut generation and cut selection (Turner
et al., 2022). Cut generation aims to generate cuts, i.e., valid linear inequalities that tighten the LP
relaxations (Achterberg, 2007). However, adding all the generated cuts to the LP relaxations can
pose a computational problem (Wesselmann & Stuhl, 2012). To further improve the efficiency of
solving MILPs, cut selection is proposed to select a proper subset of the generated cuts (Wesselmann
& Stuhl, 2012). In this paper, we focus on the cut selection problem, which has a significant impact
on the overall solver performance (Achterberg, 2007; Tang et al., 2020; Paulus et al., 2022).

Cut selection heavily depends on (P1) which cuts should be preferred, and (P2) how many cuts
should be selected (Achterberg, 2007; Dey & Molinaro, 2018b). Many modern MILP solvers
(Gurobi, 2021; Bestuzheva et al., 2021; FICO Xpress, 2020) tackle (P1)-(P2) by hard-coded heuris-
tics designed by experts. However, hard-coded heuristics do not take into account underlying pat-
terns among MILPs collected from certain types of real-world applications, e.g., day-to-day produc-
tion planning, bin packing, and vehicle routing problems (Pochet & Wolsey, 2006; Laporte, 2009;
Nair et al., 2020). To further improve the efficiency of MILP solvers, recent methods (Tang et al.,
2020; Paulus et al., 2022; Huang et al., 2022) propose to learn cut selection policies via machine
learning, especially reinforcement learning. They offer promising approaches to learn more effec-
tive heuristics by capturing underlying patterns among MILPs from specific applications (Bengio
et al., 2021). However, many existing learning-based methods (Tang et al., 2020; Paulus et al.,
2022; Huang et al., 2022)—which learn a scoring function to measure cut quality and select a fixed
ratio/number of cuts with high scores—suffer from two limitations. First, they learn which cuts
should be preferred by learning a scoring function, neglecting the importance of learning the num-
ber of cuts that should be selected (Dey & Molinaro, 2018b). Moreover, we observe from extensive
empirical results that (P3) what order of selected cuts should be preferred significantly impacts the
efficiency of solving MILPs as well (see Section 3). Second, they do not take into account the
interaction among cuts when learning which cuts should be preferred, as they score each cut inde-
pendently. As a result, they struggle to select cuts that complement each other nicely, which could
severely hinder the efficiency of solving MILPs (Dey & Molinaro, 2018b). Indeed, we empirically
show that they tend to select many similar cuts with high scores (see Experiment 4 in Section 5).

To address the aforementioned challenges, we propose a novel hierarchical sequence model (HEM)
to learn cut selection policies via reinforcement learning. To the best of our knowledge, HEM is
the first learning-based method that can tackle (P1)-(P3) simultaneously by proposing a two-level
model. Specifically, HEM is comprised of (1) a higher-level model to learn the number of cuts that
should be selected, (2) and a lower-level model to learn policies selecting an ordered subset with the
size determined by the higher-level model. The lower-level model formulates the cut selection task
as a sequence to sequence learning problem, leading to two major advantages. First, the sequence
model is popular in capturing the underlying order information (Vinyals et al., 2016), which is
critical for tackling (P3). Second, the sequence model can well capture the interaction among cuts,
as it models the joint conditional probability of the selected cuts given an input sequence of the
candidate cuts. As a result, experiments show that HEM significantly outperforms human-designed
and learning-based baselines in terms of solving efficiency on three synthetic MILP problems and
seven challenging MILP problems. The challenging MILP problems include some benchmarks from
MIPLIB 2017 (Gleixner et al., 2021) and large-scale real-world production planning problems. Our
results demonstrate the strong ability to enhance modern MILP solvers with our proposed HEM
in real-world applications. Moreover, experiments demonstrate that HEM can well generalize to
MILPs that are significantly larger than those seen during training.

2 BACKGROUND

Cutting planes. Given the MILP problem in (1), we drop all its integer constraints to obtain its
linear programming (LP) relaxation, which takes the form of

z∗LP ≜ min
x

{c⊤x|Ax ≤ b, x ∈ Rn}. (2)
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Since the problem in (2) expands the feasible set of the problem in (1), we have z∗LP ≤ z∗. We
denote any lower bound found via an LP relaxation by a dual bound. Given the LP relaxation in
(2), cutting planes (cuts) are linear inequalities that are added to the LP relaxation in the attempt
to tighten it without removing any integer feasible solutions of the problem in (1). Cuts generated
by MILP solvers are added in successive rounds. Specifically, each round k involves (i) solving the
current LP relaxation, (ii) generating a pool of candidate cuts Ck, (iii) selecting a subset Sk ⊆ Ck,
(iv) adding Sk to the current LP relaxation to obtain the next LP relaxation, (v) and proceeding to the
next round. Adding all the generated cuts to the LP relaxation would maximally strengthen the LP
relaxation and improve the lower bound at each round. However, adding too many cuts could lead
to large models, which can increase the computational burden and present numerical instabilities
(Wesselmann & Stuhl, 2012). Therefore, cut selection is proposed to select a proper subset of the
candidate cuts, which is significant for improving the efficiency of solving MILPs (Tang et al., 2020).

Branch-and-cut. In modern MILP solvers, cutting planes are often combined with the branch-and-
bound algorithm (Land & Doig, 2010), which is known as the branch-and-cut algorithm (Mitchell,
2002). Branch-and-bound techniques perform implicit enumeration by building a search tree, in
which every node represents a subproblem of the original problem in (1). The solving process
begins by selecting a leaf node of the tree and solving its LP relaxation. Let x∗ be the optimal
solution of the LP relaxation. If x∗ violates the original integrality constraints, two subproblems
(child nodes) of the leaf node are created by branching. Specifically, the leaf node is added with
constraints xi ≤ ⌊x∗

i ⌋ and xi ≥ ⌈x∗
i ⌉, respectively, where xi denotes the i-th variable, x∗

i denotes
the i-th entry of vector x∗, and ⌊⌋ and ⌈⌉ denote the floor and ceil functions. In contrast, if x∗ is
a (mixed-)integer solution of (1), then we obtain an upper bound on the optimal objective value of
(1), which we denote by primal bound. In modern MILP solvers, the addition of cutting planes is
alternated with the branching phase. That is, cuts are added at search tree nodes before branching to
tighten their LP relaxations. Since strengthening the relaxation before starting to branch is decisive
to ensure an efficient tree search (Wesselmann & Stuhl, 2012; Bengio et al., 2021), we focus on only
adding cuts at the root node, which follows Gasse et al. (2019); Paulus et al. (2022).

Primal-dual gap integral. We keep track of two important bounds when running branch-and-cut,
i.e., the global primal and dual bounds, which are the best upper and lower bounds on the optimal
objective value of (1), respectively. We define the primal-dual gap integral (PD integral) by the
area between the curve of the solver’s global primal bound and the curve of the solver’s global dual
bound. We provide more details in Appendix C.1.

3 MOTIVATING RESULTS
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Figure 1: We design two cut selection heuristics,
namely RandomAll and RandomNV (see Section 3 for
details), which both add the same subset of cuts in ran-
dom order for a given MILP. The results in (a) and (b)
show that adding the same selected cuts in different or-
der leads to variable overall solver performance.

We empirically show that the order of se-
lected cuts, i.e., the selected cuts are added
to the LP relaxations in this order, signif-
icantly impacts the efficiency of solving
MILPs. Moreover, we empirically show
that the ratio of selected cuts matters sig-
nificantly when solving MILPs (see Ap-
pendix G.1). Please see Appendix D.2 for
details of the datasets used in this section.

Order matters. Previous work (Bixby,
1992; Maros, 2002; Li et al., 2022) has
shown that the order of constraints for
a given linear program (LP) significantly
impacts its constructed initial basis, which is important for solving the LP. As a cut is a linear con-
straint, adding cuts to the LP relaxations is equivalent to adding constraints to the LP relaxations.
Therefore, the order of added cuts could have a significant impact on solving the LP relaxations as
well, thus being important for solving MILPs. Indeed, our empirical results show that this is the
case. (1) We design a RandomAll cut selection rule, which randomly permutes all the candidate
cuts, and adds all the cuts to the LP relaxations in the random order. We evaluate RandomAll on five
challenging datasets, namely D1, D2, D3, D4, and D5. We use the SCIP 8.0.0 (Bestuzheva et al.,
2021) as the backend solver, and evaluate the solver performance by the average PD integral within
a time limit. We evaluate RandomAll on each dataset over ten random seeds, and each bar in Figure
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1a shows the mean and standard deviation (stdev) of its performance on each dataset. As shown in
Figure 1a, the performance of RandomAll on each dataset varies widely with the order of selected
cuts. (2) We further design a RandomNV cut selection rule. RandomNV is different from Rando-
mAll in that it selects a given ratio of the candidate cuts rather than all the cuts. RandomNV first
scores each cut using the Normalized Violation (Huang et al., 2022) and selects a given ratio of cuts
with high scores. It then randomly permutes the selected cuts. Each bar in Figure 1b shows the mean
and stdev of the performance of RandomNV with a given ratio on the same dataset. Figures 1a and
1b show that adding the same selected cuts in different order leads to variable solver performance,
which demonstrates that the order of selected cuts is important for solving MILPs.

4 LEARNING CUT SELECTION VIA HIERARCHICAL SEQUENCE MODEL

In the cut selection task, the optimal subsets that should be selected are inaccessible, but one can
assess the quality of selected subsets using a solver and provide the feedbacks to learning algorithms.
Therefore, we leverage reinforcement learning (RL) to learn cut selection policies. In this section,
we provide a detailed description of our proposed RL framework for learning cut selection. First, we
present our formulation of the cut selection as a Markov decision process (MDP) (Sutton & Barto,
2018). Then, we present a detailed description of our proposed hierarchical sequence model (HEM).
Finally, we derive a hierarchical policy gradient for training HEM efficiently.
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Figure 2: Illustration of our proposed RL frame-
work for learning cut selection policies. We for-
mulate a MILP solver as the environment and the
HEM as the agent. Moreover, we train HEM via
a hierarchical policy gradient algorithm.

Reinforcement Learning Formulation

As shown in Figure 2, we formulate a MILP
solver as the environment and our proposed
HEM as the agent. We consider an MDP de-
fined by the tuple (S,A, r, f). Specifically, we
specify the state space S, the action space A,
the reward function r : S × A → R, the tran-
sition function f , and the terminal state in the
following. (1) The state space S. Since the cur-
rent LP relaxation and the generated cuts contain
the core information for cut selection, we define
a state s by (MLP, C, x∗LP). Here MLP denotes
the mathematical model of the current LP relax-
ation, C denotes the set of the candidate cuts,
and x∗LP denotes the optimal solution of the LP
relaxation. To encode the state information, we
follow Achterberg (2007); Huang et al. (2022)
to design thirteen features for each candidate cut
based on the information of (MLP, C, x∗LP). That is, we actually represent a state s by a sequence
of thirteen-dimensional feature vectors. We present details of the designed features in Appendix
F.1. (2) The action space A. To take into account the ratio and order of selected cuts, we define
the action space by all the ordered subsets of the candidate cuts C. It can be challenging to explore
the action space efficiently, as the cardinality of the action space can be extremely large due to its
combinatorial structure. (3) The reward function r. To evaluate the impact of the added cuts on
solving MILPs, we design the reward function by (i) measures collected at the end of solving LP re-
laxations such as the dual bound improvement, (ii) or end-of-run statistics, such as the solving time
and the primal-dual gap integral. For the first, the reward r(s, a) can be defined as the negative dual
bound improvement at each step. For the second, the reward r(s, a) can be defined as zero except
for the last step (sT , aT ) in a trajectory, i.e., r(sT , aT ) is defined by the negative solving time or
the negative primal-dual gap integral. (4) The transition function f . The transition function maps
the current state s and the action a to the next state s′, where s′ represents the next LP relaxation
generated by adding the selected cuts at the current LP relaxation. (5) The terminal state. There
is no standard and unified criterion to determine when to terminate the cut separation procedure
(Paulus et al., 2022). Suppose we set the cut separation rounds as T , then the solver environment
terminates the cut separation after T rounds. Under the multiple rounds setting (i.e., T > 1), we
formulate the cut selection as a Markov decision process. Under the one round setting (i.e., T = 1),
the formulation can be simplified as a contextual bandit.

Hierarchical Sequence Model
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Motivation. Let π denote the cut selection policy π : S → P(A), where P(A) denotes the prob-
ability distribution over the action space, and π(·|s) denotes the probability distribution over the
action space given the state s. We emphasize that learning such policies can tackle (P1)-(P3) in cut
selection simultaneously. However, directly learning such policies is challenging for the following
reasons. First, it is challenging to explore the action space efficiently, as the cardinality of the action
space can be extremely large due to its combinatorial structure. Second, the length and max length of
actions (i.e., ordered subsets) are variable across different MILPs. However, traditional RL usually
deals with problems whose actions have a fixed length. Instead of directly learning the aforemen-
tioned policy, many existing learning-based methods (Tang et al., 2020; Huang et al., 2022; Paulus
et al., 2022) learn a scoring function that outputs a score given a cut, and select a fixed ratio/number
of cuts with high scores. However, they suffer from two limitations as mentioned in Section 1.

Policy network architecture. To tackle the aforementioned problems, we propose a novel hier-
archical sequence model (HEM) to learn cut selection policies. To promote efficient exploration,
HEM leverages the hierarchical structure of the cut selection task to decompose the policy into two
sub-policies, i.e., a higher-level policy πh and a lower-level policy πl. The policy network architec-
ture of HEM is also illustrated in Figure 2. First, the higher-level policy learns the number of cuts
that should be selected by predicting a proper ratio. Suppose the length of the state is N and the
predicted ratio is k, then the predicted number of cuts that should be selected is ⌊N ∗ k⌋, where ⌊·⌋
denotes the floor function. We define the higher-level policy by πh : S → P([0, 1]), where πh(·|s)
denotes the probability distribution over [0, 1] given the state s. Second, the lower-level policy
learns to select an ordered subset with the size determined by the higher-level policy. We define the
lower-level policy by πl : S × [0, 1] → P(A), where πl(·|s, k) denotes the probability distribution
over the action space given the state s and the ratio k. Specifically, we formulate the lower-level
policy as a sequence model, which can capture the interaction among cuts. Finally, we derive the
cut selection policy via the law of total probability, i.e., π(ak|s) = Ek∼πh(·|s)[π

l(ak|s, k)], where k
denotes the given ratio and ak denotes the action. The policy is computed by an expectation, as ak
cannot determine the ratio k. For example, suppose that N = 100 and the length of ak is 10, then
the ratio k can be any number in the interval [0.1, 0.11). Actually, we sample an action from the
policy π by first sampling a ratio k from πh and then sampling an action from πl given the ratio.

For the higher-level policy, we first model the higher-level policy as a tanh-Gaussian, i.e., a Gaussian
distribution with an invertible squashing function (tanh), which is commonly used in deep reinforce-
ment learning (Schulman et al., 2017; Haarnoja et al., 2018). The mean and variance of the Gaussian
are given by neural networks. The support of the tanh-Gaussian is [−1, 1], but a ratio of selected
cuts should belong to [0, 1]. Thus, we further perform a linear transformation on the tanh-Gaussian.
Specifically, we define the parameterized higher-level policy by πh

θ1
(·|s) = 0.5 ∗ tanh (K) + 0.5,

where K ∼ N (µθ1(s), σθ1(s)). Since the sequence lengths of states are variable across different
instances (MILPs), we use a long-short term memory (LSTM) (Hochreiter & Schmidhuber, 1997)
network to embed the sequence of candidate cuts. We then use a multi-layer perceptron (MLP)
(Goodfellow et al., 2016) to predict the mean and variance from the last hidden state of the LSTM.

For the lower-level policy, we formulate it as a sequence model. That is, its input is a se-
quence of candidate cuts, and its output is the probability distribution over ordered subsets of
candidate cuts with the size determined by the higher-level policy. Specifically, given a state
action pair (s, k, ak), the sequence model computes the conditional probability πl

θ2
(ak|s, k) us-

ing a parametric model to estimate the terms of the probability chain rule, i.e., πl
θ2
(ak|s, k) =∏m

i=1 pθ2(a
i
k|a1k, . . . , a

i−1
k , s, k). Here s = {s1, . . . , sN} is the input sequence, m = ⌊N ∗ k⌋

is the length of the output sequence, and ak = {a1k, . . . , amk } is a sequence of m indices, each
corresponding a position in the input sequence s. Such policy can be parametrized by the vanilla se-
quence model commonly used in machine translation (Sutskever et al., 2014; Vaswani et al., 2017).
However, the vanilla sequence model can only be applied to learning on a single instance, as the
number of candidate cuts varies on different instances. To generalize across different instances, we
use a pointer network (Vinyals et al., 2015; Bello* et al., 2017)—which uses attention as a pointer
to select a member of the input sequence as the output at each decoder step—to parametrize πl

θ2
(see Appendix F.4.1 for details). To the best of our knowledge, we are the first to formulate the
cut selection task as a sequence to sequence learning problem and apply the pointer network to cut
selection. This leads to two major advantages: (1) capturing the underlying order information, (2)
and the interaction among cuts. This is also illustrated through an example in Appendix E.
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Training: hierarchical policy gradient

For the cut selection task, we aim to find θ that maximizes the expected reward over all trajectories

J(θ) = Es∼µ,ak∼πθ(·|s)[r(s, ak)], (3)

where θ = [θ1, θ2] with [θ1, θ2] denoting the concatenation of the two vectors, πθ(ak|s) =
Ek∼πh

θ1
(·|s)[π

l
θ2
(ak|s, k)], and µ denotes the initial state distribution.

To train the policy with a hierarchical structure, we derive a hierarchical policy gradient following
the well-known policy gradient theorem (Sutton et al., 1999a; Sutton & Barto, 2018).
Proposition 1. Given the cut selection policy πθ(ak|s) = Ek∼πh

θ1
(·|s)[π

l
θ2
(ak|s, k)] and the training

objective (3), the hierarchical policy gradient takes the form of

∇θ1J([θ1, θ2]) = Es∼µ,k∼πh
θ1

(·|s)[∇θ1 log(π
h
θ1(k|s))Eak∼πl

θ2(·|s,k)
[r(s, ak)]],

∇θ2J([θ1, θ2]) = Es∼µ,k∼πh
θ1

(·|s),ak∼πl
θ2

(·|s,k)[∇θ2 log π
l
θ2(ak|s, k)r(s, ak)].

We provide detailed proof in Appendix A. We use the derived hierarchical policy gradient to update
the parameters of the higher-level and lower-level policies. We implement the training algorithm in a
parallel manner that is closely related to the asynchronous advantage actor-critic (A3C) (Mnih et al.,
2016). Due to limited space, we summarize the procedure of the training algorithm in Appendix
F.3.6. Moreover, we discuss some more advantages of HEM (see Appendix F.4.3 for details). (1)
HEM leverages the hierarchical structure of the cut selection task, which is important for efficient
exploration in complex decision-making tasks (Sutton et al., 1999b). (2) We train HEM via gradient-
based algorithms, which is sample efficient (Sutton & Barto, 2018).

5 EXPERIMENTS

Our experiments have five main parts: Experiment 1. Evaluate our approach on three classical
MILP problems and six challenging MILP problem benchmarks from diverse application areas.
Experiment 2. Perform carefully designed ablation studies to provide further insight into HEM.
Experiment 3. Test whether HEM can generalize to instances significantly larger than those seen
during training. Experiment 4. Visualize the cuts selected by our method compared to the baselines.
Experiment 5. Deploy our approach to real-world production planning problems.

Benchmarks. We evaluate our approach on nine NP-hard MILP problem benchmarks, which con-
sist of three classical synthetic MILP problems and six challenging MILP problems from diverse
application areas. We divide the nine problem benchmarks into three categories according to the
difficulty of solving them using the SCIP 8.0.0 solver (Bestuzheva et al., 2021). We call the three
categories easy, medium, and hard datasets, respectively. (1) Easy datasets comprise three widely
used synthetic MILP problem benchmarks: Set Covering (Balas & Ho, 1980), Maximum Indepen-
dent Set (Bergman et al., 2016), and Multiple Knapsack (Scavuzzo et al., 2022). We artificially gen-
erate instances following Gasse et al. (2019); Sun et al. (2020). (2) Medium datasets comprise MIK
(Atamtürk, 2003) and CORLAT (Gomes et al., 2008), which are widely used benchmarks for evalu-
ating MILP solvers (He et al., 2014; Nair et al., 2020). (3) Hard datasets include the Load Balancing
problem, inspired by real-life applications of large-scale systems, and the Anonymous problem, in-
spired by a large-scale industrial application (Bowly et al., 2021). Moreover, hard datasets contain
benchmarks from MIPLIB 2017 (MIPLIB) (Gleixner et al., 2021). Although Turner et al. (2022)
has shown that directly learning over the full MIPLIB can be extremely challenging, we propose to
learn over subsets of MIPLIB. We construct two subsets, called MIPLIB mixed neos and MIPLIB
mixed supportcase. Due to limited space, please see Appendix D.1 for details of these datasets.

Experimental setup. Throughout all experiments, we use SCIP 8.0.0 (Bestuzheva et al., 2021) as
the backend solver, which is the state-of-the-art open source solver, and is widely used in research of
machine learning for combinatorial optimization (Gasse et al., 2019; Huang et al., 2022; Turner et al.,
2022; Nair et al., 2020). Following Gasse et al. (2019); Huang et al. (2022); Paulus et al. (2022),
we only allow cutting plane generation and selection at the root node, and set the cut separation
rounds as one. We keep all the other SCIP parameters to default so as to make comparisons as
fair and reproducible as possible. We emphasize that all of the SCIP solver’s advanced features,
such as presolve and heuristics, are open, which ensures that our setup is consistent with the practice
setting. Throughout all experiments, we set the solving time limit as 300 seconds. For completeness,
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Table 1: Policy evaluation on the easy, medium, and hard datasets. The best performance is marked
in bold. Let m denote the average number of constraints and n denote the average number of
variables. We report the arithmetic mean (standard deviation) of the Time and PD integral.

Easy: Set Covering (n = 1000, m = 500) Easy: Maximum Independent Set (n = 500, m = 1953) Easy: Multiple Knapsack (n = 720, m = 72)

Method Time(s) ↓ Improvement (Time, %) ↑ PD integral ↓ Time(s) ↓ Improvement (Time, %) ↑ PD integral ↓ Time(s) ↓ Improvement (Time, %) ↑ PD integral ↓
NoCuts 6.31 (4.61) NA 56.99 (38.89) 8.78 (6.66) NA 71.31 (51.74) 9.88 (22.24) NA 16.41 (14.16)
Default 4.41 (5.12) 29.90 55.63 (42.21) 3.88 (5.04) 55.80 29.44 (35.27) 9.90 (22.24) -0.20 16.46 (14.25)
Random 5.74 (5.19) 8.90 67.08 (46.58) 6.50 (7.09) 26.00 52.46 (53.10) 13.10 (35.51) -32.60 20.00 (25.14)

NV 9.86 (5.43) -56.50 99.77 (53.12) 7.84 (5.54) 10.70 61.60 (43.95) 13.04 (36.91) -32.00 21.75 (24.71)
Eff 9.65 (5.45) -53.20 95.66 (51.71) 7.80 (5.11) 11.10 61.04 (41.88) 9.99 (19.02) -1.10 20.49 (22.11)

SBP 1.91 (0.36) 69.60 38.96 (8.66) 2.43 (5.55) 72.30 21.99 (40.86) 7.74 (12.36) 21.60 16.45 (16.62)
HEM (Ours) 1.85 (0.31) 70.60 37.92 (8.46) 1.76 (3.69) 80.00 16.01 (26.21) 6.13 (9.61) 38.00 13.63 (9.63)

Medium: MIK (n = 413, m = 346) Medium: Corlat (n = 466, m = 486) Hard: Load Balancing (n = 61000, m = 64304)

Method Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑

(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %)

NoCuts 300.01 (0.009) 2355.87 (996.08) NA 103.30 (128.14) 2818.40 (5908.31) NA 300.00 (0.12) 14853.77 (951.42) NA
Default 179.62 (122.36) 844.40 (924.30) 64.10 75.20 (120.30) 2412.09 (5892.88) 14.40 300.00 (0.06) 9589.19 (1012.95) 35.40
Random 289.86 (28.90) 2036.80 (933.17) 13.50 84.18 (124.34) 2501.98 (6031.43) 11.20 300.00 (0.09) 13621.20 (1162.02) 8.30

NV 299.76 (1.32) 2542.67 ( 529.49) -7.90 90.26 (128.33) 3075.70 (7029.55) -9.10 300.00 (0.05) 13933.88 (971.10) 6.20
Eff 298.48 (5.84) 2416.57 (642.41) -2.60 104.38 (131.61) 3155.03 (7039.99) -11.90 300.00 (0.07) 13913.07 (969.95) 6.30

SBP 286.07 (41.81) 2053.30 (740.11) 12.80 70.41 (122.17) 2023.87 (5085.96) 28.20 300.00 (0.10) 12535.30 (741.43) 15.60
HEM (Ours) 176.12 (125.18) 785.04 (790.38) 66.70 58.31 (110.51) 1079.99 (2653.14) 61.68 300.00 (0.04) 9496.42 (1018.35) 36.10

Hard: Anonymous (n = 37881, m = 49603) Hard: MIPLIB mixed neos (n = 6958, m = 5660) Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)

Method Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑

(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %)

NoCuts 246.22 (94.90) 18297.30 (9769.42) NA 253.65 (80.29) 14652.29 (12523.37) NA 170.00 (131.60) 9927.96 (11334.07) NA
Default 244.02 (97.72) 17407.01 (9736.19) 4.90 256.58 (76.05) 14444.05 (12347.09) 1.42 164.61 (135.82) 9672.34 (10668.24) 2.57
Random 243.49 (98.21) 16850.89 (10227.87) 7.80 255.88 (76.65) 14006.48 (12698.76) 4.41 165.88 (134.40) 10034.70 (11052.73) -1.07

NV 242.01 (98.68) 16873.66 (9711.16) 7.80 263.81 (64.10) 14379.05 (12306.35) 1.86 161.67 (131.43) 8967.00 (9690.30) 9.68
Eff 244.94 (93.47) 17137.87 (9456.34) 6.30 260.53 (68.54) 14021.74 (12859.41) 4.30 167.35 (134.99) 9941.55 (10943.48) -0.14

SBP 245.71 (92.46) 18188.63 (9651.85) 0.59 256.48 (78.59) 13531.00 (12898.22) 7.65 165.61 (135.25) 7408.65 (7903.47) 25.37
HEM (Ours) 241.68 (97.23) 16077.15 (9108.21) 12.10 248.66 (89.46) 8678.76 (12337.00) 40.77 162.96 (138.21) 6874.80 (6729.97) 30.75

we also evaluate HEM with a much longer time limit of three hours. The results are given in
Appendix G.6. We train HEM with ADAM (Kingma & Ba, 2014) using the PyTorch (Paszke et al.,
2019). Additionally, we also provide another implementation using the MindSpore (Chen, 2021).
For simplicity, we split each dataset into the train and test sets with 80% and 20% instances. To
further improve HEM, one can construct a valid set for hyperparameters tuning. We train our model
on the train set, and select the best model on the train set to evaluate on the test set. Please refer to
Appendix F.3 for implementation details, hyperparameters, and hardware specification.

Baselines. Our baselines include five widely used human-designed cut selection rules and a state-of-
the-art (SOTA) learning-based method. Cut selection rules include NoCuts, Random, Normalized
Violation (NV), Efficacy (Eff), and Default. NoCuts does not add any cuts. Default denotes the
default cut selection rule used in SCIP 8.0.0. For learning-based methods, we implement a slight
variant of the SOTA learning-based methods (Tang et al., 2020; Huang et al., 2022), namely score-
based policy (SBP). Please see Appendix F.2 for implementation details of these baselines.

Evaluation metrics. We use two widely used evaluation metrics, i.e., the average solving time
(Time, lower is better), and the average primal-dual gap integral (PD integral, lower is better). Ad-
ditionally, we provide more results in terms of another two metrics, i.e., the average number of
nodes and the average primal-dual gap, in Appendix G.2. Furthermore, to evaluate different cut se-
lection methods compared to pure branch-and-bound without cutting plane separation, we propose
an Improvement metric. Specifically, we define the metric by ImM (·) = M(NoCuts)−M(·)

M(NoCuts) , where
M(NoCuts) represents the performance of NoCuts, and M(·) represents a mapping from a method
to its performance. The improvement metric represents the improvement of a given method com-
pared to NoCuts. We mainly focus on the Time metric on the easy datasets, as the solver can solve
all instances to optimality within the given time limit. However, HEM and the baselines cannot
solve all instances to optimality within the time limit on the medium and hard datasets. As a result,
the average solving time of those unsolved instances is the same, which makes it difficult to dis-
tinguish the performance of different cut selection methods using the Time metric. Therefore, we
mainly focus on the PD integral metric on the medium and hard datasets. The PD integral is also a
well-recognized metric for evaluating the solver performance (Bowly et al., 2021; Cao et al., 2022).

Experiment 1. Comparative evaluation The results in Table 1 suggest the following. (1) Easy
datasets. HEM significantly outperforms all the baselines on the easy datasets, especially on Max-
imum Independent Set and Multiple Knapsack. SBP achieves much better performance than all the
rule-based baselines, demonstrating that our implemented SBP is a strong baseline. Compared to
SBP, HEM improves the Time by up to 16.4% on the three datasets, demonstrating the superiority of
our method over the SOTA learning-based method. (2) Medium datasets. On MIK and CORLAT,
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Table 2: Comparison between HEM and HEM without the higher-level model.
Easy: Maximum Independent Set (n = 500, m = 1953) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)

Method Time(s) ↓ Improvement ↑
(Time, %) PD integral ↓ Time(s) ↓ PD integral ↓ Improvement ↑

(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %)

NoCuts 8.78 (6.66) NA 71.31 (51.74) 103.30 (128.14) 2818.40 (5908.31) NA 253.65 (80.29) 14652.29 (12523.37) NA
Default 3.88 (5.04) 55.81 29.44 (35.27) 75.20 (120.30) 2412.09 (5892.88) 14.42 256.58 (76.05) 14444.05 (12347.09) 1.42

SBP 2.43 (5.55) 72.32 21.99 (40.86) 70.41 (122.17) 2023.87 (5085.96) 28.19 256.48 (78.59) 13531.00 (12898.22) 7.65

HEM w/o H 1.88 (4.20) 78.59 16.70 (28.15) 63.14 (115.26) 1939.08 (5484.83) 31.20 249.21 (88.09) 13614.29 (12914.76) 7.08
HEM (Ours) 1.76 (3.69) 79.95 16.01 (26.21) 58.31 (110.51) 1079.99 (2653.14) 61.68 248.66 (89.46) 8678.76 (12337.00) 40.77

Table 3: Comparison between HEM, HEM-ratio, and HEM-ratio-order.
Easy: Maximum Independent Set (n = 500, m = 1953) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)

Method Time(s) ↓ Improvement ↑
(Time, %) PD integral ↓ Time(s) ↓ PD integral ↓ Improvement ↑

(PD integral, %) Time(s) ↓ PD integral ↓ Improvement ↑
(PD integral, %)

NoCuts 8.78 (6.66) NA 71.31 (51.74) 103.30 (128.14) 2818.40 (5908.31) NA 253.65 (80.29) 14652.29 (12523.37) NA
Default 3.88 (5.04) 55.81 29.44 (35.27) 75.20 (120.30) 2412.09 (5892.88) 14.42 256.58 (76.05) 14444.05 (12347.09) 1.42

SBP 2.43 (5.55) 72.32 21.99 (40.86) 70.41 (122.17) 2023.87 (5085.96) 28.19 256.48 (78.59) 13531.00 (12898.22) 7.65

HEM-ratio-order 2.30 (5.18) 73.80 21.19 (38.52) 70.94 (122.93) 1416.66 (3380.10) 49.74 245.99 (93.67) 14026.75 (12683.60) 4.27
HEM-ratio 2.26 (5.06) 74.26 20.82 (37.81) 67.27 (117.01) 1251.60 (2869.87) 55.59 244.87 (95.56) 13659.93 (12900.59) 6.77

HEM (Ours) 1.76 (3.69) 79.95 16.01 (26.21) 58.31 (110.51) 1079.99 (2653.14) 61.68 248.66 (89.46) 8678.76 (12337.00) 40.77

HEM still outperforms all the baselines. Especially on CORLAT, HEM achieves at least 33.48%
improvement in terms of the PD integral compared to the baselines. (3) Hard datasets. HEM
significantly outperforms the baselines in terms of the PD integral on several problems in the hard
datasets. HEM achieves outstanding performance on two challenging datasets from MIPLIB 2017
and real-world problems (Load Balancing and Anonymous), demonstrating the powerful ability to
enhance MILP solvers with HEM in large-scale real-world applications. Moreover, SBP performs
extremely poorly on several medium and hard datasets, which implies that it can be difficult to learn
good cut selection policies on challenging MILP problems.

Experiment 2. Ablation study We present ablation studies on Maximum Independent Set (MIS),
CORLAT, and MIPLIB mixed neos, which are representative datasets from the easy, medium, and
hard datasets. We provide more results on the other datasets in Appendix G.3.

Contribution of each component. We perform ablation studies to understand the contribution of
each component in HEM. We report the performance of HEM and HEM without the higher-level
model (HEM w/o H) in Table 2. HEM w/o H is essentially a pointer network. Note that it can still
implicitly predicts the number of cuts that should be selected by predicting an end token as used in
language tasks (Sutskever et al., 2014). Please see Appendix F.4.2 for details. First, the results in
Table 2 show that HEM w/o H outperforms all the baselines on MIS and CORLAT, demonstrating
the advantages of the lower-level model. Although HEM w/o H outperforms Default on MIPLIB
mixed neos, HEM w/o H performs on par with SBP. A possible reason is that it is difficult for HEM
w/o H to explore the action space efficiently, and thus HEM w/o H tends to be trapped to the local
optimum. Second, the results in Table 2 show that HEM significantly outperforms HEM w/o H and
the baselines on the three datasets. The results demonstrate that the higher-level model is important
for efficient exploration in complex tasks, thus significantly improving the solving efficiency.

The importance of tackling (P1)-(P3). We perform ablation studies to understand the importance
of tackling (P1)-(P3) in cut selection. (1) HEM. HEM tackles (P1)-(P3) in cut selection simulta-
neously. (2) HEM-ratio. In order not to learn how many cuts should be selected, we remove the
higher-level model of HEM and force the lower-level model to select a fixed ratio of cuts. We denote
it by HEM-ratio. Note that HEM-ratio is different from HEM w/o H (see Appendix F.4.2). HEM-
ratio tackles (P1) and (P3) in cut selection. (3) HEM-ratio-order. To further mute the effect of the
order of selected cuts, we reorder the selected cuts given by HEM-ratio with the original index of the
generated cuts, which we denote by HEM-ratio-order. HEM-ratio-order mainly tackles (P1) in cut
selection. The results in Table 3 suggest the following. HEM-ratio-order significantly outperforms
Default and NoCuts, demonstrating that tackling (P1) by data-driven methods is crucial. HEM sig-
nificantly outperforms HEM-ratio in terms of the PD integral, demonstrating the significance of
tackling (P2). HEM-ratio outperforms HEM-ratio-order in terms of the Time and the PD integral,
which demonstrates the importance of tackling (P3). Moreover, HEM-ratio and HEM-ratio-order
perform better than SBP on MIS and CORLAT, demonstrating the advantages of using the sequence
model to learn cut selection over SBP. HEM-ratio and HEM-ratio-order perform on par with SBP
on MIPLIB mixed neos. We provide possible reasons in Appendix G.3.1.

Experiment 3. Generalization We evaluate the ability of HEM to generalize across different sizes
of MILPs. Let n ×m denote the size of MILP instances. Following Gasse et al. (2019); Sun et al.
(2020), we test the generalization ability of HEM on Set Covering and Maximum Independent Set
(MIS), as we can artificially generate instances with arbitrary sizes for synthetic MILP problems.
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Table 4: Left: The generalization ability of HEM. Right: Test on Production Planning problems.
Maximum Independent Set (n = 1000, m = 3946, 4×) Maximum Independent Set (n = 5940, m = 1500, 9×)

Method Time(s) ↓ Improvement ↑
(Time, %) PD integral ↓ Time(s) ↓ Improvement ↑

(Time, %) PD integral ↓

NoCuts 170.06 (100.61) NA 874.45 (522.29) 300.00 (0) NA 2019.93 (353.27)
Default 42.40 (76.00) 48.72 198.61 (331.20) 111.18 (144.13) 60.91 616.46 (798.94)
Random 118.25 (109.05) -43.00 574.33 (516.11) 245.13 (115.80) 13.82 1562.20 (793.09)

NV 160.30 (101.41) -93.86 784.98 (493.24) 299.97 (0.49) -5.46 1922.52 (349.67)
Eff 158.75 (100.40) -91.98 779.63 (493.05) 299.45 (3.77) -5.28 1921.61 (361.26)

SBP 50.55 (89.14) 38.87 253.81 (426.94) 108.42 (143.68) 61.88 680.41 (903.88)
HEM (Ours) 35.34 (67.91) 57.26 160.56 (282.03) 108.02 (143.02) 62.02 570.48 (760.65)

Production Planning (n = 3582.25, m = 5040.42)

Method Time (s) ↓ Improvement ↑
(Time, %) PD integral ↓ Improvement ↑

(PD integral, %)

NoCuts 278.79 (231.02) NA 17866.01 (21309.85) NA
Default 296.12 (246.25) -6.22 17703.39 (21330.40) 0.91
Random 280.18 (237.09) -0.50 18120.21 (21660.01) -1.42

NV 259.48 (227.81) 6.93 17295.18 (21860.07) 3.20
Eff 263.60 (229.24) 5.45 16636.52 (21322.89) 6.88

SBP 276.61 (235.84) 0.78 16952.85 (21386.07) 5.11
HEM (Ours) 241.77 (229.97) 13.28 15751.08 (20683.53) 11.84

On MIS, we test HEM on four times and nine times larger instances than those seen during training.
The results in Table 4 (Left) show that HEM significantly outperforms the baselines in terms of the
Time and the PD integral on 4× and 9× MIS, demonstrating the superiority of HEM in terms of the
generalization ability. Interestingly, SBP also generalizes well to large instances, demonstrating that
SBP is a strong baseline. We provide more results on Set Covering in Appendix G.4.
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Figure 3: We perform principal component analysis on the cuts
selected by HEM-ratio and SBP. Colored points illustrate the
reduced cut features. The area covered by the dashed lines rep-
resents the diversity of selected cuts. The results show that
HEM-ratio selects much more diverse cuts than SBP.

Experiment 4. Visualization of
selected cuts We visualize the di-
versity of selected cuts, an impor-
tant metric for evaluating whether
the selected cuts complement each
other nicely (Dey & Molinaro,
2018b). We visualize the cuts
selected by HEM-ratio and SBP
on a randomly sampled instance
from Maximum Independent Set
and CORLAT, respectively. We
evaluate HEM-ratio rather than
HEM, as HEM-ratio selects the
same number of cuts as SBP. Furthermore, we perform principal component analysis on the selected
cuts to reduce the cut features to two-dimensional space. Colored points illustrate the reduced cut
features. To visualize the diversity of selected cuts, we use dashed lines to connect the points with
the smallest and largest x,y coordinates. That is, the area covered by the dashed lines represents the
diversity. Figure 3 shows that SBP tends to select many similar cuts that are possibly redundant,
especially on Maximum Independent Set. In contrast, HEM-ratio selects much more diverse cuts
that can well complement each other. Please refer to Appendix G.5 for results on more datasets.

Experiment 5. Deployment in real-world production planning problems To further evaluate the
effectiveness of our proposed HEM, we deploy HEM to large-scale real-world production planning
problems at an anonymous enterprise, which is one of the largest global commercial technology
enterprises. Please refer to Appendix D.3 for more details of the problems. The results in Table
4 (Right) show that HEM significantly outperforms all the baselines in terms of the Time and PD
integral. The results demonstrate the strong ability to enhance modern MILP solvers with our pro-
posed HEM in real-world applications. Interestingly, Default performs poorer than NoCuts, which
implies that an improper cut selection policy could significantly degrade the performance of MILP
solvers. In addition, we will integrate our proposed HEM into OptVerse1, i.e., the commercial solver
developed by Huawei.

6 CONCLUSION

In this paper, we observe from extensive empirical results that the order of selected cuts has a signif-
icant impact on the efficiency of solving MILPs. We propose a novel hierarchical sequence model
(HEM) to learn cut selection policies via reinforcement learning. Specifically, HEM consists of a
two-level model: (1) a higher-level model to learn the number of cuts that should be selected, (2)
and a lower-level model—that formulates the cut selection task as a sequence to sequence learning
problem—to learn policies selecting an ordered subset with the size determined by the higher-level
model. Experiments show that HEM significantly improves the efficiency of solving MILPs com-
pared to human-designed and learning-based baselines on both synthetic and large-scale real-world
MILPs. We believe that our proposed approach brings new insights into learning cut selection.

1Please refer to https://www.huaweicloud.com/product/modelarts/optverse.html
for details of OptVerse.
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Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. Solving mixed-integer quadratic programming
problems with ibm-cplex: a progress report. In Proceedings of the twenty-sixth RAMP symposium,
pp. 16–17, 2014.

10



Published as a conference paper at ICLR 2023

Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia
Chmiela, Justin Dumouchelle, Maxime Gasse, Ambros Gleixner, Aleksandr M, Kazachkov, Elias
B, Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J, Maddison, Christopher Morris,
Dimitri J, Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scav-
uzzo, and Giulia Zarpellon. Machine learning for combinatorial optimization, 2021. URL
https://www.ecole.ai/2021/ml4co-competition/.

Zixuan Cao, Yang Xu, Zhewei Huang, and Shuchang Zhou. Ml4co-kida: Knowledge inheritance in
dataset aggregation. arXiv preprint arXiv:2201.10328, 2022.

Lei Chen. Deep Learning and Practice with MindSpore. Springer Nature, 2021.

Zhi-Long Chen. Integrated production and outbound distribution scheduling: review and extensions.
Operations research, 58(1):130–148, 2010.

Santanu S Dey and Marco Molinaro. Theoretical challenges towards cutting-plane selection. Math-
ematical Programming, 170(1):237–266, 2018a.

Santanu S Dey and Marco Molinaro. Theoretical challenges towards cutting-plane selection. Math-
ematical Programming, 170(1):237–266, 2018b.

Jiajun Fan. A review for deep reinforcement learning in atari: Benchmarks, challenges, and solu-
tions. arXiv preprint arXiv:2112.04145, 2021.

Jiajun Fan and Changnan Xiao. Generalized data distribution iteration. arXiv preprint
arXiv:2206.03192, 2022.

Jiajun Fan, Changnan Xiao, and Yue Huang. Gdi: Rethinking what makes reinforcement learning
different from supervised learning. arXiv preprint arXiv:2106.06232, 2021.

Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models, algorithms
and case studies. Springer Science & Business Media, 2009.

FICO Xpress. Xpress optimization suite, https://www.fico.com/en/products/
fico-xpress-optimization, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587–1596. PMLR, 10–15 Jul 2018.

Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. In H. Wallach, H. Larochelle,
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A PROOF

A.1 PROOF OF PROPOSITION 1

Proof. The optimization objective takes the form of

J(θ) = Es∼µ,ak∼πθ(·|s)[r(s, ak)]

= Es∼µ[
∑
ak

∫ 1

k=0

πh
θ1(k|s)π

l
θ2(ak|s, k)r(s, ak)dk]

= Es∼µ[

∫ 1

k=0

∑
ak

πh
θ1(k|s)π

l
θ2(ak|s, k)r(s, ak)dk],

where θ = [θ1, θ2] with [θ1, θ2] denoting the concatenation of the two vectors, πθ(ak|s) =
Ek∼πh

θ1
(·|s)[π

h
θ2
(ak|s, k)], and µ denotes the initial state distribution.

We first compute the policy gradient for θ1:

∇θ1J([θ1, θ2])

=∇θ1(Es∼µ[

∫ 1

k=0

∑
ak

πh
θ1(k|s)π

l
θ2(ak|s, k)r(s, ak)dk])

=Es∼µ[∇θ1 [

∫ 1

k=0

πh
θ1(k|s)

∑
ak

πl
θ2(ak|s, k)r(s, ak)dk]].

Let

rh(s, k, θ2) =
∑
ak

πl
θ2(ak|s, k)r(s, ak)

= Eak∼πl
θ2

(·|s,k)[r(s, ak)],

then we have that

∇θ1J([θ1, θ2]) = Es∼µ[∇θ1 [

∫ 1

k=0

πh
θ1(k|s)r(s, k, θ2)dk]]

= Es∼µ,k∼πh
θ1

(·|s)[∇θ1 log π
h
θ1(k|s)r(s, k, θ2)].

Therefore, we have that

∇θ1J([θ1, θ2])

= Es∼µ,k∼πh
θ1

(·|s)[∇θ1 log(π
h
θ1(k|s))Eak∼πl

θ2
(·|s,k)[r(s, ak)]].

We then compute the policy gradient for θ2:

∇θ2J([θ1, θ2])

=∇θ2(Es∼µ[

∫ 1

k=0

∑
ak

πh
θ1(k|s)π

l
θ2(ak|s, k)r(s, ak)dk])

=Es∼µ,k∼πh
θ1

(·|s)[∇θ2 [
∑
ak

πl
θ2(ak|s, k)r(s, ak)]]

=Es∼µ,k∼πh
θ1

(·|s),ak∼πl
θ2

(·|s,k)[∇θ2 log π
l
θ2(ak|s, k)r(s, ak)],

which completes the proof.

B RELATED WORK

Machine learning for MILP. The use of machine learning methods to help improve the MILP
solver performance has been an active topic of significant interest in recent years (Bengio et al.,
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2021; Lodi & Zarpellon, 2017; Bowly et al., 2021; Gasse et al., 2019; Qu et al., 2022b; Li et al.,
2023). During the solving process of the solvers, many crucial decisions that significantly impact
the solver performance are based on heuristics (Achterberg, 2007). Recent methods propose to
replace these hand-crafted heuristics with machine learning models (Bengio et al., 2021). This line
of research has shown significant improvement on the solver performance, including cut selection
(Tang et al., 2020; Paulus et al., 2022; Turner et al., 2022; Baltean-Lugojan et al., 2019), variable
selection (Khalil et al., 2016; Gasse et al., 2019; Balcan et al., 2018; Zarpellon et al., 2021; Qu et al.,
2022a), node selection (He et al., 2014; Sabharwal et al., 2012), column generation (Morabit et al.,
2021), and primal heuristics selection (Khalil et al., 2017; Hendel et al., 2019). In this paper, we
focus on cut selection, which plays a significant role in modern MILP solvers (Dey & Molinaro,
2018a; Tang et al., 2020).

For cut selection, many existing learning-based methods (Tang et al., 2020; Paulus et al., 2022;
Huang et al., 2022) focus on learning which cuts should be preferred by learning a scoring function
to measure cut quality. Specifically, (Tang et al., 2020) proposes a reinforcement learning approach
to learn to score Gomory cuts (Gomory, 1960) and select a Gomory cut with the best scores. Fur-
thermore, (Paulus et al., 2022) designs a lookahead selection rule which selects a cut that yields the
best dual bound improvement, and proposes to learn the expert rule via imitation learning. Instead
of selecting the best cut, (Huang et al., 2022) frames cut selection as multiple instance learning to
learn a scoring function and selects a fixed ratio of cuts with high scores. However, they neglect the
importance of learning how many cuts should be selected. Moreover, we empirically show that the
order of selected cuts has a large impact on the efficiency of solving MILPs (see Section 3).

Moreover, (Turner et al., 2022) proposes to learn the weightings of four existing scoring rules de-
signed by experts. For the theoretical analysis, (Balcan et al., 2021) provides some provable guar-
antees for learning cut selection policies.

Sequence model. Sequence model such as long-short term memory and Transformer has achieved
outstanding performance in language tasks such as machine translation (Hochreiter & Schmidhuber,
1997; Sutskever et al., 2014; Vaswani et al., 2017). For combinatorial optimization, recent works
(Vinyals et al., 2015; Bello* et al., 2017) propose a variant of the traditional sequence model, namely
pointer network, which is applied to directly finding solutions for specific combinatorial optimiza-
tion problems, such as the Travelling Salesman Problem (Lenstra & Shmoys, 2009). Instead of
finding solutions directly, we propose to use the pointer network for cut selection in modern MILP
solvers. To the best of our knowledge, we are the first to apply the pointer network to cut selection,
which not only captures the order of selected cuts, but also can well capture the interaction among
cuts to select cuts that complement each other nicely.

Reinforcement learning. Reinforcement learning (RL) has achieved great success in decision-
making tasks, ranging from playing video games (Mnih et al., 2015; Fan, 2021; Fan & Xiao, 2022)
to controlling robots in simulators (Haarnoja et al., 2018; Yang et al., 2022). Roughly speaking, RL
approaches fall into two categories: (1) model-based RL methods (Janner et al., 2019; Wang et al.,
2022b; Zhou et al., 2020), and (2) model-free methods (Haarnoja et al., 2018; Wang et al., 2022a;
Kuang et al., 2022; Fan et al., 2021). In this paper, we propose a novel RL framework for learning
cut selection policies.

C MORE DETAILS OF BACKGROUND

C.1 MORE DETAILS OF THE PRIMAL-DUAL GAP INTEGRAL

We keep track of two important bounds when running branch-and-cut, including the global primal
and dual bound. The global primal bound corresponds to the value of the best feasible solution found
so far, which is the best upper bound of the problem in (1). The global dual bound corresponds to
the minimum dual bound across all leaves of the search tree, which is the best lower bound of the
problem in (1). We define the primal-dual gap integral by the area between the curve of the solver’s
global primal bound and the curve of the solver’s global dual bound. With a time limit T , we define
the primal-dual gap integral by ∫ T

t=0

(cT x∗t − z∗t )dt,
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Algorithm 1 Pseudo code for constructing MIPLIB datasets

1: Input the initial instance I0, the set of full MIPLIB M, an empty set M′, an empty queue Q.
2: Initialize Q with the instance I0, I0 → Q
3: while Q is not empty do
4: n=Q.size()
5: for i = 1, . . . , n do
6: Pull an element from Q, namely I ′

7: Compute the similarity scores between each instance in M except I ′ and I ′

8: Select five instances with the best similarity scores Mi

9: for I in Mi do
10: if I not in M′ then
11: Push I to M′; Push I to Q
12: end if
13: end for
14: end for
15: end while
16: Return M′

where c is the objective coefficient vector as in (1), x∗t is the best feasible solution found at time t, z∗t
is the best dual bound at time t. We define the primal-dual gap by the difference between the global
primal bound and the global dual bound. In SCIP 8.0.0 (Bestuzheva et al., 2021), the initial value of
the primal-dual gap is set to a constant 100. The primal-dual gap integral is a well-recognized metric
for evaluating solver performance. For example, the primal-dual gal integral is a primary evaluation
metric in the NeurIPS 2021 ML4CO competition (Bowly et al., 2021).

D DETAILS OF THE DATASETS USED IN THIS PAPER

D.1 THE DATASETS USED IN THE MAIN EVALUATION

Easy datasets. The SCIP 8.0.0 solver needs one minute to solve the MILP instances in the easy
datasets to optimality. Easy datasets are comprised of three synthetic MILP problems: Set Cover-
ing (Balas & Ho, 1980), Maximum Independent Set (Bergman et al., 2016), and Multiple Knap-
sack (Scavuzzo et al., 2022). We choose these three classes of problems for the following rea-
sons. First, they are widely used benchmarks for evaluating MILP solvers (Gasse et al., 2019;
Huang et al., 2022; Sun et al., 2020; Gupta et al., 2022). Second, they represent a wide collection
of MILP problems encountered in practice. Third, for each class of these problems, the average
number of generated cuts is at least twenty, which ensures that proper cut selection strategies are
significant for improving the solver performance. Similarly to (Gasse et al., 2019; Scavuzzo et al.,
2022; Sun et al., 2020; Gupta et al., 2022), we generate set covering instances with 500 rows and
1000 columns, Maximum Independent Set instances with graphs of 500 nodes and affinity set to
4, multiple knapsack instances with 60 items and 12 knapsacks. For each benchmark, we gener-
ate a training set of 10,000 instances, and a test set of 100 instances that are never seen during
training. Specifically, readers can refer to https://github.com/ds4dm/learn2branch
or https://github.com/lascavana/rl2branch for code to generate the easy datasets.
We will also release our code once the paper is accepted to be published.

Medium datasets. The SCIP 8.0.0 solver needs at least five minutes to solve the instances in
the medium datasets to optimality. Following He et al. (2014); Hutter et al. (2010); Nair et al.
(2020), medium datasets comprise MIK (Atamtürk, 2003), a set of MILP problems with knapsack
constraints, and CORLAT (Gomes et al., 2008), a real dataset used for the construction of a wildlife
corridor for grizzly bears in the Northern Rockies region. Each problem set is split into training
and test sets with 80% and 20% of the instances. Readers can refer to https://atamturk.
ieor.berkeley.edu/data/mixed.integer.knapsack/ for MIK. Readers can refer to
https://bitbucket.org/mlindauer/aclib2/src/master/ for CORLAT.

Table 5: Criteria for removing instances from MIPLIB 2017.

Criteria % of instances removed

Tags: feasibility, numerics, infeasible, no solution 4.5%, 17.4%, 2.8%, 0.9%

Presolve longer than 300 seconds under default conditions 4.8%

Solved to optimality at root 9.9%

Hard datasets. The SCIP 8.0.0
solver needs at least one hour to
solve the instances in the hard
datasets to optimality.
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Table 6: The statistical description of used datasets. In all datasets, m denotes the average number
of constraints and n denotes the average number of variables. Inference Time denotes the inference
time of our proposed HEM given the average number of candidate cuts.

Datasets Set Covering Maximum Independent Set Multiple Knapsack MIK CORLAT Load Balancing Anonymous MIPLIB mixed neos MIPLIB mixed supportcase

m 500 1953 72 346 486 64304 49603 5660 19910
n 1000 500 720 413 466 61000 37881 6958 19766

Avg. Candidate Cuts 780.51 ± 289.92 57.04 ± 15.53 45.00 ± 12.71 62.00 ± 13.1 60.00 ± 33.29 392.53 ± 32.92 79.40 ± 72.64 239.00 ± 154 173.25 ± 267.27

Inference Time (s) 1.58 0.11 0.09 0.12 0.12 0.77 0.15 0.47 0.34

(1) Benchmarks from MIPLIB
2017. Note that MIPLIB
2017 (MIPLIB) (Gleixner et al.,
2021) contains instances of MILPs across many different application areas and has been used as a
long-standing standard benchmark for MILP solvers (Nair et al., 2020; Turner et al., 2022; Gleixner
et al., 2021). Previous work (Turner et al., 2022) has shown that directly learning over the full
MIPLIB can be extremely challenging, as these instances are heterogeneous but machine learning
has difficulty in learning from heterogeneous datasets. Despite this challenge, we take the first step
towards learning over subsets of MIPLIB. Specifically, we construct two subsets by selecting sim-
ilar instances from MIPLIB. We measure the similarity between instances by 100 human-designed
instance features (Gleixner et al., 2021). Following Turner et al. (2022), we first discard instances
from MILLIB that satisfy any of the criteria in Table 5. This ensures that a good cut selection policy
can significantly improve the dual bound on the remaining instances. Note that we only use three of
seven criteria that are used in (Turner et al., 2022) to preserve as many instances as possible.

To select similar instances from MIPLIB 2017, we first choose a representative instance with knap-
sack constraints (neos-1456979), and a representative instance with set covering constraints (sup-
portcase40). Then we construct the dataset MIPLIB mixed neos following the procedure in Algo-
rithm 1 with the initial instance neos-1456979. We construct the dataset MIPLIB mixed supportcase
following the procedure in Algorithm 1 with the initial instance supportcase40. Note that We mea-
sure the similarity between instances by 100 human-designed instance features (Gleixner et al.,
2021). Each dataset is split into training and test sets with 80% and 20% of the instances.

Specifically, MIPLIB mixed neos contains 20 instances: neos-1456979, ic97 tension, icir97 tension,
l2p12, lectsched-4-obj, lectsched-5-obj, loopha13, neos-686190, neos-2294525-abba, neos-
3009394-lami, neos-3046601-motu, neos-3046615-murg, neos-3610173-itata, neos-4338804-
snowy, neos-5221106-oparau, neos-5260764-orauea, neos-5261882-treska, neos-5266653-tugela,
neos16, and timtab1CUTS.

Moreover, MIPLIB mixed supportcase contains 40 instances: supportcase40, 30 70 45 05 100,
30 70 45 095 100, acc-tight2, acc-tight4, acc-tight5, comp07-2idx, comp08-2idx, comp12-
2idx, comp21-2idx, decomp1, decomp2, gus-sch, istanbul-no-cutoff, mkc, mkc1, neos-555343,
neos-555424, neos-738098, neos-872648, neos-933562, neos-933638, neos-933966, neos-
935234, neos-935769, neos-983171, neos-1330346, neos-1337307, neos-1396125, neos-3209462-
rhin, neos-3755335-nizao, neos-3759587-noosa, neos-4300652-rahue, neos18, physiciansched6-1,
physiciansched6-2, piperout-d27, qiu, reblock354, and supportcase37.

(2) Benchmarks used in NeurIPS 2021 ML4CO competition The Load Balancing and Anony-
mous problems used in the main text are from the NeurIPS 2021 ML4CO competition (Bowly et al.,
2021). Readers can refer to https://www.ecole.ai/2021/ml4co-competition/ for
details of the competition. The competition releases three challenging datasets, but we only use
two of the three datasets. The major reason is that the average number of the candidate cuts on the
instances from the third dataset (Item Placement) is less than five, which makes cut selection has
little impact on the overall solver performance.

D.1.1 DETAILED DESCRIPTION OF THE AFOREMENTIONED DATASETS

In this part, we provide detailed description of the aforementioned datasets. Note that all datasets
we use except MIPLIB 2017 are application-specific, i.e., they contain instances from only a single
application. We summarize the statistical description of the used datasets in this paper in Table 6.
Let n,m denote the average number of variables and constraints in the MILPs. Let m × n denote
the size of the MILPs. We emphasize that the largest size of our used datasets is up to two orders of
magnitude larger than that used in previous learning-based cut selection methods (Tang et al., 2020;
Paulus et al., 2022), which demonstrates the superiority of our proposed HEM. Moreover, we test
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Figure 4: Illustration of selecting cuts using a sequence to sequence model compared to using a
scoring function. The sequence model has two main advantages. First, it captures the interaction
among cuts by selecting cuts one by one. Consequently, it selects cut3 and cut1 that complement
each other nicely, leading to more tightened LP relaxation. Second, it naturally captures the order
of selected cuts. Better order of selected cuts may lead to a better initial basis, thus solving the LP
relaxation faster (Li et al., 2022) (see Section 3).

the inference time of our proposed HEM given the average number of candidate cuts. The results in
Table 6 show that the computational overhead of the HEM is very low.

D.2 DATASETS USED IN SECTION 3 IN THE MAIN TEXT

In Figure 1a in the main text, we use five challenging datasets, namely D1, D2, D3, D4, and D5, re-
spectively. Specifically, D1 represents MIPLIB mixed supportcase, D2 represents the single instance
neos-1456979 from MIPLIB 2017, D3 represents MIPLIB mixed neos, D4 represents Anonymous,
and D5 represents the single instance lectsched-5-obj from MIPLIB 2017. In Figure 1b in the main
text, we use the dataset MIPLIB mixed neos.

D.3 LARGE-SCALE REAL-WORLD PRODUCTION PLANNING PROBLEMS

The production planning problem aims to find the optimal production planning for thousands of
factories according to the daily order demand. The constraints include the production capacity
for each production line in each factory, transportation limit, the order rate, etc. The optimization
objective is to minimize the production cost and lead time simultaneously. We split the dataset
into training and test sets with 80% and 20% of the instances. The average size of the production
planning problems is approximately equal to 3500 × 5000 = 1.75 × 108, which are large-scale
real-world problems. To promote the machine learning community for MILP, we will release the
dataset once the paper is accepted to be published.

E ILLUSTRATION OF ADVANTAGES OF USING A SEQUENCE MODEL

Figure 4 illustrate two major advantages of using the sequence model to learn cut selection. First,
the sequence model takes into account the order of selected cuts by modeling the selected cuts as an
output sequence. As shown in Figure 4, the order of cuts determined by the sequence model is better
than the score-based method, thus leading to a better initial basis for solving the LP relaxation faster.
Second, the sequence model captures the interaction among cuts, as it models the joint conditional
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probability of the selected cuts given an input sequence of the candidate cuts. As shown in Figure 4,
the sequence model selects cuts that complement each other nicely, thus leading to a more tightened
LP relaxation and speeding up solving the MILP.

F ALGORITHM IMPLEMENTATION AND EXPERIMENTAL SETTINGS

F.1 DESIGNED CUT FEATURES

Table 7: The designed cut features of a generated cut αT x ≤ β.
(Suppose c denotes the objective coefficient.)

Feature Description Number

cut coefficients the mean, max, min, std of cut coefficients 4

objective coefficients the mean, max, min, std of the objective coefficients 4

parallelism the parallelism between the objective and the cut cTα
|c||α| 1

efficacy the Euclidean distance of the cut hyperplane to the current LP solution 1

support the proportion of non-zero coefficients of the cut 1

integral support the proportion of non-zero coefficients with respect to integer variables of the cut 1

normalized violation the violation of the cut to the current LP solution max{0, αT x∗LP−β
|β| } 1

Following Huang et al.
(2022); Wesselmann & Stuhl
(2012); Dey & Molinaro
(2018b); Achterberg (2007),
we design thirteen cut fea-
tures for the cut selection
task, such as the extent to
which a cut is violated by
the current LP solution and
the proportion of non-zero
coefficients of a cut. We
present a detailed description of the designed cut features in Table 7. We emphasize that we do not
tune the cut features. Therefore, it is promising to further improve our method by designing better
cut features or using graph neural networks to learn better features in future work.

F.2 IMPLEMENTATION DETAILS OF THE BASELINES

In this part, we present a detailed description of all the baselines used in this paper. We denote
a cut by αT x ≤ β and the optimal solution of the current LP relaxation by x∗. Throughout all
experiments, we set the ratio of selected cuts as 0.2 for all score-based rules and learning baselines.

Random. Random selects a fixed ratio of the candidate cuts stochastically. The ratio is set as 0.2 in
this paper.

Normalized Violation (NV). NV is a score-based rule. It scores each cut based on the normalized
violation of the cut to the current LP solution, and selects a fixed ratio of cuts with high scores. The
normalized violation is defined by max{0, αT x∗LP−β

|β| }. The ratio is set as 0.2 in this paper.

Efficacy (Eff). Eff is a score-based rule. It scores each cut based on the Euclidean distance of the
cut hyperplane to the current LP solution, and selects a fixed ratio of cuts with high scores. The ratio
is set as 0.2 in this paper.

Default. Default is the default cut selection rule used in SCIP 8.0.0 (Bestuzheva et al., 2021). Please
refer to (Achterberg, 2007) for a detailed description of the SCIP’s default cut selection rule. Note
that Default tackles the two problems: (1) which cuts should be preferred, and (2) how many cuts
should be selected, in cut selection by human-designed heuristics. That is, Default selects variable
ratios of cuts rather than a fixed ratio.

Score-based policy (SBP). Since the state-of-the-art (SOTA) reinforcement learning based method
for cut selection (Tang et al., 2020) is designed for the setting that selects the best cut in each
round, we implement a slight variant of the SOTA to adapt to our setting that selects a subset of
cuts in each round, namely SBP. Specifically, the core idea of SBP is learning a scoring function to
measure cut quality as Tang et al. (2020); Huang et al. (2022); Paulus et al. (2022) do. For a fair
comparison, SBP uses the same cut features as HEM and we train SBP via reinforcement learning
as well. Our implemented SBP is also a slight variant of the method proposed in Huang et al.
(2022). We emphasize that experiments in the main text show that our implemented SBP is a strong
baseline. Specifically, we implement the scoring function with a multi-layer perceptron that predicts
the score of a given cut. That is, the scoring function predicts a cut’s score based on the features
of the cut. The MLP network contains two hidden layers with 128 units. Moreover, we train the
scoring function via evolutionary strategies as (Tang et al., 2020) does. We will also release the code
for implementing SBP once the paper is accepted to be published.
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Algorithm 2 Pseudo code for training the HEM
.

1: Initialize Hierarchical sequence model π[θ1,θ2], MILP instances D, training dataset Dtrain, batch
size Nb, training epochs Ne, policy learning rate α

2: for Ne epochs do
3: Empty the training dataset Dtrain
4: for Nb steps do
5: Randomly sample a MILP s0 from D
6: Take action k and ak at state s0 with the policy π
7: Receive reward r and add (s0, k, ak, r) to Dtrain
8: end for
9: Compute hierarchical policy gradient using Dtrain as in proposition 1

10: Update the parameters, θ1 = θ1 + α∇θ1J([θ1, θ2]), θ2 = θ2 + α∇θ2J([θ1, θ2])
11: end for

F.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

F.3.1 HARDWARE SPECIFICATION

Throughout all experiments, we use a single machine that contains eight GPU devices (NVidia
GeForce GTX 3090 Ti) and two Intel Gold 6246R CPUs.

F.3.2 SOLVER SETUP

For reproducibility, we emphasize that all results in the main text are obtained by averaging results
over the SCIP random seeds {1, 2, 3}.

F.3.3 REWARD FUNCTION

Table 8: Evaluation on real-world production planning
problems with rewards being the negative PD integral. The
results show that HEM still significantly outperforms all the
baselines.

Production planning

Method Time (s) Improvement (Time, %) PD integral Improvement
(PD integral, %)

NoCuts 278.79 NA 17866.01 NA
Default 296.12 -6.22 17703.39 0.91
Random 280.18 -0.50 18120.21 -1.42

NV 259.48 6.93 17295.18 3.20
Eff 263.60 5.45 16636.52 6.88

SBP 276.61 0.78 16952.85 5.11
HEM (Ours) 251.64 9.74 16533.05 7.46

On the easy datasets, we set the re-
ward as the negative solving time. On
the medium and hard datasets, we
set the reward as the negative primal-
dual gap integral within a time limit
of 300 seconds.

For the real-world production plan-
ning problems, we set the reward as
the negative primal-dual gap integral
within a time limit of 600 seconds
or the negative dual bound improve-
ment. The results reported in the
main text are achieved by HEM with
the negative dual bound improvement
reward. We provide the performance of HEM that uses the negative primal-dual gap integral in Table
8. The results still show that HEM significantly outperforms all the baselines in terms of the Time
and PD integral.

We emphasize that we can set the reward according to our objective in real-world problems. For
example, suppose we aim to minimize the primal-dual gap within a time limit, then we can set the
reward as the primal-dual gap within the time limit.

F.3.4 POLICY NETWORK ARCHITECTURE

The higher-level model contains an LSTM encoder and an MLP. The LSTM network encodes
variable-sized inputs into hidden vectors with dimension 128. The MLP network contains two hid-
den layers with 128 units. The lower-level model is essentially a pointer network. We keep the
hyperparameters of the pointer network as that used in (Bello* et al., 2017).
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Figure 5: Illustration of the pointer network architecture introduced by Vinyals et al. (2015).

F.3.5 OPTIMIZATION

Throughout all experiments, we apply Adam optimizer with learning rate α1 = 1×10−4 to optimize
the lower-level model, and learning rate α2 = 5×10−4 to optimize the higher-level model. For each
epoch, we collect 32 samples for training, and we set the total epochs as 100. It is surprising that
learning a good cut selection policy does not need too much data as shown in Tang et al. (2020). For
training stability, we delay the higher-level policy update. This creates a two-timescale algorithm, as
often required for convergence in the linear setting (Fujimoto et al., 2018; Konda & Tsitsiklis, 2003).
We set the delay update freq as two. That is, we first train the lower-level policy twice, then train
the higher-level policy once. Additionally, the results in Appendix G.3.4 show that the convergence
performance of HEM is insensitive to the hyperparameter delay update freq.

F.3.6 THE TRAINING ALGORITHM

We provide the procedure of the training algorithm of HEM in Algorithm 2.

F.4 MORE DETAILS OF HEM

F.4.1 DETAILS OF THE POINTER NETWORK

The pointer network is first introduced by (Vinyals et al., 2015) for directly finding solutions of spe-
cific combinatorial optimization problems, such as the Travelling Salesman Problems. The pointer
network architecture is illustrated in Figure 5. The pointer network consists of a Long Short-Term
Memory encoder, a Long Short-Term Memory decoder, and an attention that is used as a pointer
to select a member of the input sequence as the output (Vinyals et al., 2015). Specifically, we im-
plement the pointer network following Bello* et al. (2017). Please refer to (Bello* et al., 2017) for
implementation details of the pointer network.

The major difference between our used pointer network and the pointer network used in (Bello*
et al., 2017) is that we use the pointer network to select ordered subsets of input sequences, but
(Bello* et al., 2017) use the pointer network to output permutations of input sequences.

F.4.2 DIFFERENCE BETWEEN HEM-RATIO AND HEM W/O H

Details of HEM w/o H To implement HEM w/o H, we augment each input sequence with an end
token, i.e., a thirteen-dimensional tensor with values all being one. The end token is at the end
position of the input sequence. Once the decoder of HEM w/o H outputs the end token, then the
decoding ends. That is, HEM w/o H can implicitly predict the number of cuts that should be selected
by predicting whether to decode the end token at the current decoding step.

The policy network of HEM-ratio and HEM w/o H are both essentially a pointer network (Vinyals
et al., 2015), a variant of the sequence model. We present the major difference between HEM-ratio
and HEM w/o H in the following. HEM w/o H predicts an end token as used in language tasks
(Sutskever et al., 2014; Vaswani et al., 2017) to determine the number of cuts that should be selected
implicitly. In contrast, HEM-ratio always selects a fixed ratio of cuts, i.e, it always ends decoding
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Table 9: Policy evaluation on easy, medium, and hard datasets in terms of the total number of nodes
and the primal-dual gap. The best performance are marked in bold.

Set Covering Maximum Independent Set Multiple Knapsack

Method Nodes PD gap Nodes PD gap Nodes PD gap

NoCuts 189.44 (423.68) 0.00 (0) 2170.66 (4054.09) 0.00 (0) 16945.58 (41242.04) 0.00 (0.000128)
Default 116.77 (420.09) 0.00 (0) 588.23 (1916.99) 0.00 (0) 16949.88 (41297.50) 0.00 (0.000128)
Random 95.70 (285.05) 0.00 (0) 1416.96 (3820.01) 0.00 (0) 21463.16 (59411.07) 0.00 (0.000361)

NV 199.70 (436.25) 0.00 (0) 1618.42 (3089.12) 0.00 (0) 20673.32 (62526.13) 0.00 (0.00022)
Eff 194.17 (439.35) 0.00 (0) 1575.88 (2742.66) 0.00 (0) 14909.93 (28575.12) 0.00 (0)

SBP 1.16 (2.04) 0.00 (0) 698.41 (2869.65) 0.00 (0) 13537.59 (22527.45) 0.00 (0)
HEM (Ours) 1.11 (1.46) 0.00 (0) 311.64 (1309.94) 0.00 (0) 10463.85 (18491.25) 0.00 (0)

MIK CORLAT Load Balancing

Method Nodes PD gap Nodes PD gap Nodes PD gap

NoCuts 395290.17 (120526.21) 0.09 (0.018) 97098.72 (119287.56) 2.000000e+18 (1.4E+19) 108.20 (56.28) 0.94 (0.12)
Default 224746.60 (179450.80) 0.02 (0.033) 70215.01 (113515.62) 2.666667e+18 (1.61E+19) 65.22 (55.34) 0.43 (0.073)
Random 403618.10 (115802.29) 0.07 (0.035) 74149.90 (109043.28) 2.000000e+18 (1.4E+19) 107.05 (68.05) 0.79 (0.133)

NV 397025.47 (106676.73) 0.08 (0.028) 77943.73 (111355.03) 4.666667e+18 (2.11E+19) 81.91 (38.55) 0.82 (0.11)
Eff 406832.83 (113363.27) 0.07 (0.033) 95956.53 (120858.92) 5.333333e+18 (2.25E+19) 86.22 (45.35) 0.82 (0.11)

SBP 417070.37 (133702.50) 0.07 (0.030) 62297.99 (109664.21) 6.666667e+17 (8.14E+18) 138.37 (53.79) 0.65 (0.06)
HEM(Ours) 220547.93 (172537.94) 0.02 (0.028) 51929.71 (100973.74) 0.02 (0.051) 74.47 (60.98) 0.42 (0.072)

Anonymous MIPLIB mixed neos MIPLIB mixed supportcase

Method Nodes PD gap Nodes PD gap Nodes PD gap

NoCuts 20110.58 (14167.51) 8.333333e+18 (2.76E+19) 169348.83 (117745.23) 2.500000e+19 (4.33E+19) 5971.00 (8679.98) 9.19 (19.29)
Default 20025.78 (13056.50) 8.333333e+18 (2.76E+19) 161366.25 (107049.96) 2.500000e+19 (4.33E+19) 4055.04 (7404.61) 11.73 (31.52)
Random 19824.48 (12366.55) 1.000000e+19 (3E+19) 143930.17 (95296.41) 2.500000e+19 (4.33E+19) 4656.13 (7745.46) 6.05 (14.69)

NV 19313.33 (12391.94) 8.333333e+18 (2.76E+19) 150046.50 (94801.62) 2.500000e+19 (4.33E+19) 4986.21 (9024.19) 2.78 (10.08)
Eff 19526.23 (12116.80) 6.666667e+18 (2.49E+19) 144128.83 (93404.76) 2.500000e+19 (4.33E+19) 4450.88 (7845.48) 5.58 (15.40)

SBP 19351.67 (12337.81) 6.666667e+18 (2.49E+19) 177736.25 (122005.81) 2.500000e+19 (4.33E+19) 5618.08 (9765.43) 0.14 (0.26)
HEM(Ours) 20191.28 (13219.21) 1.666667e+18 (1.28E+19) 177735.83 (129020.42) 2.500000e+19 (4.33E+19) 4844.88 (9996.16) 0.14 (0.25)

at a pre-determined position. Therefore, HEM w/o H can learn the number of cuts that should be
selected, but HEM-ratio cannot.

F.4.3 MORE DISCUSSION OF HEM

In this part, we provide details of some more advantages of HEM. (1) Inspired by hierarchical
reinforcement learning (Sutton et al., 1999b; Nachum et al., 2018), HEM leverages the hierarchical
structure of the cut selection task, which is important for efficient exploration in complex decision-
making tasks. (2) Previous methods (Tang et al., 2020; Huang et al., 2022) usually train cut selection
policies via black-box optimization methods such as evolution strategies (Salimans et al., 2017). In
contrast, HEM is differentiable and we train the HEM via gradient-based algorithms, which is more
sample efficient than black-box optimization methods (Sutton & Barto, 2018; Schulman et al., 2015).
Although we can offline generate training samples as much as possible using a MILP solver, high
sample efficiency is significant as generating samples can be extremely time-consuming in practice.

G MORE RESULTS

G.1 MORE MOTIVATING RESULTS

Ratio matters. To evaluate the effect of the ratio of selected cuts on solving MILPs, we focus on the
Normalized Violation (NV) cut selection method with different ratios of selected cuts. (1) We first
evaluate the NV methods that select 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of candi-
date cuts, respectively, on four datasets. The results in Figure 6a show that the NV achieves better
solver performance with larger ratios on CORLAT and MIPLIB mixed neos. The results demon-
strate that the ratio that leads to better solver performance is variable over different datasets, which
implies that learning dataset-dependent ratios is important. (2) We then evaluate the NV methods
that select 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of candidate cuts, respectively, on
four instances from the Anonymous dataset. The results in Figure 6b show that NV achieves better
solver performance with larger ratios on Anonymous 121 and Anonymous 131. The results demon-
strate that the ratio that leads to better solver performance is variable over different instances from
the same dataset, which implies that learning instance-dependent ratios is important as well.
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Figure 6: We use the Normalized Violation (NV) rule (Huang et al., 2022). The results in (c) show
that NV with different given ratios achieve variable normalized PD integral on four datasets. The
results in (d) show that NV with different ratios achieve variable normalized PD integral on different
instances from the same dataset.

G.2 MORE RESULTS OF MAIN EVALUATION

In this section, we provide more results of the main evaluation. The results in Table 9 show the
performance of HEM and the baselines in terms of the total number of nodes (Nodes) and the
primal-dual gap (PD gap). (1) Easy datasets. On the easy datasets, HEM and most baselines
find the optimal solution within the time limit, as the PD gap converges to zero. Additionally,
HEM significantly outperforms all the baselines in terms of the Nodes on the easy datasets. (2)
Medium and hard datasets. In terms of the PD gap, HEM outperforms all the baselines on medium
and hard datasets, especially on CORLAT. However, the Nodes metric cannot well distinguish the
performance of different cut selection methods on the medium and hard datasets for the following
two reasons. First, the solving time of the LP relaxation on each node is different, and thus the
Nodes cannot directly determine the solving time (Huang et al., 2022). Second, on those unsolved
instances within the time limit, the Nodes metric is not a proper metric, as the Nodes cannot evaluate
the quality of the solving process.

G.3 MORE RESULTS OF ABLATION STUDY

In this section, we provide more results of ablation studies in the main text.

G.3.1 IN-DEPTH ANALYSIS OF HEM-RATIO AND SBP

We provide possible reasons for HEM-ratio performing poorer than SBP on several challenging
MILP problem benchmarks. Fundamentally, HEM-ratio formulates the cut selection task as a se-
quence modeling problem, which has two main advantages over SBP. That is, the sequence model
can not only capture the underlying order information, but also capture the interaction among cuts.
However, training a sequence model is more difficult than training a scoring function, as the se-
quence model aims to learn a much more complex task. Specifically, the scoring function aims to
learn to score each cut, while the sequence model aims to model the joint probability of the selected
cuts. The latter is a more challenging learning task. Moreover, we follow the reinforcement learn-
ing paradigm instead of supervised learning to train the model, making the training process more
unstable. Therefore, the sequence model may suffer from inefficient exploration and be trapped to
a local optimum. As a result, HEM-ratio can perform poorer than SBP, especially on challenging
MILP problem benchmarks.

G.3.2 CONTRIBUTION OF EACH COMPONENT

To understand the contribution of each component of HEM, we provide more results of HEM and
HEM without the higher-level model on Set Covering, Multiple Knapsack, MIK, Load Balancing,
Anonymous, and MIPLIB mixed supportcase. The results in Table 10 show that HEM outperforms
HEM w/o H in terms of the solving time, the primal-dual gap, and the primal-dual gap integral
on several challenging datasets, demonstrating the importance of our proposed higher-level model.
Moreover, HEM w/o H significantly outperforms SBP in terms of the solving time, the primal-dual
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Table 10: Comparsion between HEM, HEM without the higher-level model on more datasets.

Set Covering Multiple Knapsack

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 6.31 (4.61) 189.44 (423.68) 0.00 (0) 56.99 (38.89) 9.88 (22.24) 16945.58 (41242.04) 0.00 (0.000128) 16.41 (14.16)
Default 4.41 (5.12) 116.77 (420.08) 0.00 (0) 55.63 (42.21) 9.90 (22.24) 16949.87 (41297.49) 0.00 (0.000128) 16.46 (14.25)

SBP 1.91 (0.36) 1.16 (2.04) 0.00 (0) 38.96 (8.66) 7.74 (12.36) 13537.58 (22527.45) 0.00 (0) 16.45 (16.62)

HEM w/o H 1.84 (0.31) 1.18 (2.03) 0.00 (0) 37.69 (8.33) 7.36 (12.90) 12418.85 (23256.47) 0.00 (0) 14.01 (10.94)
HEM (Ours) 1.85 (0.31) 1.09 (1.46) 0.00 (0) 37.92 (8.46) 6.13 (9.61) 10463.84 (18491.25) 0.00 (0) 13.63 (9.63)

MIK Load Balancing

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 300.01 (0.009) 395290.16 (120526.21) 0.09 (0.018) 2355.87 (996.08) 300.00 (0.12) 108.20 (56.28) 0.94 (0.12) 14853.77 (951.42)
Default 179.62 (122.36) 224746.60 (179450.80) 0.02 (0.033) 844.40 (924.30) 300.00 (0.06) 65.22 (55.34) 0.43 (0.07) 9589.19 (1012.95)

SBP 286.07 (41.81) 417070.36 (133702.49) 0.07 (0.0295) 2053.30 (740.11) 300.00 (0.10) 138.37 (53.79) 0.65 (0.06) 12535.30 (741.43)

HEM w/o H 218.87 (115.97) 297058.97 (189410.43) 0.04 (0.039) 1321.63 (1165.23) 300.03 (0.04) 70.93 (60.36) 0.42 (0.07) 9475.16 (1005.81)
HEM (Ours) 176.12 (125.18) 220547.93 (172537.94) 0.02 (0.028) 785.04 (790.38) 300.00 (0.04) 74.47 (60.98) 0.42 (0.07) 9496.42 (1018.35)

Anonymous MIPLIB mixed supportcase

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 246.22 (94.90) 20110.58 (14167.51) 8.333333e+18 (2.76E+19) 18297.30 (9769.42) 170.00 (131.60) 5971.00 (8679.98) 9.19 (19.29) 9927.96 (11334.07)
Default 244.02 (97.72) 20025.78 (13056.50) 8.333333e+18 (2.76E+19) 17407.01 (9736.19) 164.61 (135.82) 4055.04 (7404.61) 11.73 (31.52) 9672.34 (10668.24)

SBP 245.71 (92.46) 19351.66 (12337.81) 6.666667e+18 (2.49E+19) 18188.63 (9651.85) 165.61 (135.25) 5618.08 (9765.43) 0.14 (0.26) 7408.65 (7903.47)

HEM w/o H 251.00 (88.45) 21192.40 (16436.32) 5.000000e+18 (2.18E+19) 17226.84 (9553.90) 156.96 (133.35) 3779.83 (7465.75) 0.56 (1.43) 7709.19 (8655.48)
HEM (Ours) 241.68 (97.23) 20191.28 (13219.21) 1.666667e+18 (1.28E+19) 16077.15 (9108.21) 162.96 (138.21) 4844.87 (9996.15) 0.14 (0.25) 6874.80 (6729.97)

Table 11: Comparsion between HEM, HEM-ratio, and HEM-ratio-order on more datasets.

Set Covering Multiple Knapsack

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 6.31 (4.61) 189.44 (423.68) 0.00 (0) 56.99 (38.89) 9.88 (22.24) 16945.58 (41242.04) 0.00 (0.000128) 16.41 (14.16)
Default 4.41 (5.12) 116.77 (420.08) 0.00 (0) 55.63 (42.21) 9.90 (22.24) 16949.87 (41297.49) 0.00 (0.000128) 16.46 (14.25)

SBP 1.91 (0.36) 1.16 (2.04) 0.00 (0) 38.96 (8.66) 7.74 (12.36) 13537.58 (22527.45) 0.00 (0) 16.45 (16.62)

HEM-ratio-order 2.11 (0.38) 1.11 (1.29) 0.00 (0) 42.01 (9.88) 10.46 (29.74) 18434.20 (59254.10) 0.00 (0.000128) 16.92 (18.19)
HEM-ratio 2.10 (0.40) 1.11 (1.18) 0.00 (0) 41.95 (9.82) 7.63 (12.64) 13307.73 (24339.3) 0.00 (0) 16.19 (15.16)

HEM (Ours) 1.85 (0.31) 1.09 (1.46) 0.00 (0) 37.92 (8.46) 6.13 (9.61) 10463.84 (18491.25) 0.00 (0) 13.63 (9.63)

MIK Load Balancing

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 300.01 (0.009) 395290.16 (120526.21) 0.09 (0.018) 2355.87 (996.08) 300.00 (0.12) 108.20 (56.28) 0.94 (0.12) 14853.77 (951.42)
Default 179.62 (122.36) 224746.60 (179450.80) 0.02 (0.033) 844.40 (924.30) 300.00 (0.06) 65.22 (55.34) 0.43 (0.07) 9589.19 (1012.95)

SBP 286.07 (41.81) 417070.36 (133702.49) 0.07 (0.0295) 2053.30 (740.11) 300.00 (0.10) 138.37 (53.79) 0.65 (0.06) 12535.30 (741.43)

HEM-ratio-order 282.92 (42.07) 417397.10 (132077.3) 0.06 (0.034) 2072.69 (849.16) 300.11 (0.11) 145.18 (56.52) 0.65 (0.061) 12368.12 (726.77)
HEM-ratio 283.75 (39.87) 401540.97 (131295.8) 0.07 (0.034) 1869.66 (978.85) 300.10 (0.098) 148.92 (59.12) 0.65 (0.058) 12410.84 (715.44)

HEM (Ours) 176.12 (125.18) 220547.93 (172537.94) 0.02 (0.028) 785.04 (790.38) 300.00 (0.04) 74.47 (60.98) 0.42 (0.07) 9496.42 (1018.35)

Anonymous MIPLIB mixed supportcase

Method Time (s) Nodes PD gap PD integral Time (s) Nodes PD gap PD integral

NoCuts 246.22 (94.90) 20110.58 (14167.51) 8.33e+18 (2.76E+19) 18297.30 (9769.42) 170.00 (131.60) 5971.00 (8679.98) 9.19 (19.29) 9927.96 (11334.07)
Default 244.02 (97.72) 20025.78 (13056.50) 8.33e+18 (2.76E+19) 17407.01 (9736.19) 164.61 (135.82) 4055.04 (7404.61) 11.73 (31.52) 9672.34 (10668.24)

SBP 245.71 (92.46) 19351.66 (12337.81) 6.67e+18 (2.49E+19) 18188.63 (9651.85) 165.61 (135.25) 5618.08 (9765.43) 0.14 (0.26) 7408.65 (7903.47)

HEM-ratio-order 245.45 (94.99) 20495.80 (12472.44) 5.00e+18 (2.18E+19) 16496.06 (9282.15) 169.45 (132.55) 6252.63 (9827.98) 4.25 (15.97) 9226.95 (9995.94)
HEM-ratio 245.17 (95.21) 20942.07 (13379.46) 5.00e+18 (2.18E+19) 16148.82 (9247.48) 163.03 (137.16) 5551.29 (10708.46) 7.54 (21.85) 9979.35 (11048.11)

HEM (Ours) 241.68 (97.23) 20191.28 (13219.21) 1.67e+18 (1.28E+19) 16077.15 (9108.21) 162.96 (138.21) 4844.87 (9996.15) 0.14 (0.25) 6874.80 (6729.97)

gap, and the primal-dual gap integral on several challenging datasets, demonstrating the significance
of our proposed lower-level model.

G.3.3 THE IMPORTANCE OF TACKLING P1-P3 IN CUT SELECTION

To understand the importance of tackling P1-P3 in cut selection, we provide more results of HEM,
HEM-ratio, and HEM-ratio-order on Set Covering, Multiple Knapsack, MIK, Load Balancing,
Anonymous, and MIPLIB mixed supportcase. Here we refresh what HEM, HEM-ratio, HEM-ratio-
order mean. (1) HEM. HEM tackles P1-P3 in cut selection simultaneously. (2) HEM-ratio. In
order not to learn how many cuts should be selected, we remove the higher-level model of HEM
and force the lower-level model to select a fixed ratio of cuts. We denote it by HEM-ratio. Note
that HEM-ratio is different from HEM w/o H (see Appendix F). HEM-ratio tackles P1 and P3 in cut
selection. (3) HEM-ratio-order. To further mute the effect of the order of selected cuts, we reorder
the selected cuts given by HEM-ratio with the original index of the generated cuts, which we denote
by HEM-ratio-order. HEM-ratio-order mainly tackles P1.

The results in Table 11 suggest the following. HEM-ratio-order outperforms Default and NoCuts
on several datasets, demonstrating that tackling P1 by data-driven methods is crucial. HEM signif-
icantly outperforms HEM-ratio in terms of the primal-dual gap integral, demonstrating the signifi-
cance of tackling P2. HEM-ratio outperforms HEM-ratio-order on several datasets, which demon-
strates the importance of tackling P3. Moreover, HEM-ratio performs better than SBP in terms of

26



Published as a conference paper at ICLR 2023

Table 12: Sensitivity analysis of HEM to the hyperparameter dealy update freq d.
Maximum Independent Set Corlat MIPLIBS Mixed (neos)

Method Time(s) PD integral Improvement
(PD integral, %) Time(s) PD integral Improvement

(PD integral, %) Time(s) PD integral Improvement
(PD integral, %)

NoCuts 8.78 (6.66) 71.31 (51.74) NA 103.30 (128.14) 2818.40 (5908.31) NA 253.65 (80.29) 14652.29 (12523.37) NA
HEM (delay=1) 1.79 (3.65) 16.56 (26.6) 76.78 57.39 (111.76) 1260.83 (3518.07) 55.26 254.48 (78.84) 9273.01 (12031.44) 36.71
HEM (delay=2) 1.76 (3.69) 16.01 (26.21) 77.55 58.31 (110.51) 1079.99 (2653.14) 61.68 248.66 (89.46) 8678.76 (12337.00) 40.77
HEM (delay=3) 1.80 (3.82) 16.91 (28.49) 76.29 58.50 (108.88) 1003.52 (2264.91) 64.39 247.62 (90.73) 8408.16 (12467.02) 42.62
HEM (delay=4) 1.89 (3.90) 17.34 (28.46) 75.68 69.60 (115.42) 1309.33 (3336.59) 53.54 246.93 (91.93) 8368.46 (12489.68) 42.89

Table 13: Evaluate the generalization ability of HEM on Set Covering.
Set Covering (2×) Set Covering (4×)

Method Time(s) ↓ Improvement ↑
(time, %) PD integral ↓ Time(s) ↓ Improvement ↑

(time, %) PD integral ↓

NoCuts 82.69 (78.27) NA 609.43 (524.92) 284.44 (48.70) NA 3215.34 (1019.47)
Default 61.01 (78.12) 26.22 494.63 (545.76) 149.69 ( 141.92) 47.37 1776.22 (1651.15)
Random 64.44 (73.98) 22.07 520.84 (489.52) 208.12 (131.52) 26.53 2528.36 (1678.66)

NV 92.05 (80.11) -11.32 725.53 (541.68) 286.10 (45.47) -0.58 3422.46 (1024.19)
Eff 92.32 (79.33) -11.64 733.72 (538.60) 286.20 (45.04) -0.62 3437.06 (1043.44)

SBP 3.52 (1.36) 95.74 92.89 (25.83) 7.62 (6.46) 97.32 256.79 (145.92)
HEM (Ours) 3.33 (0.47) 95.97 89.24 (14.26) 7.40 (5.03) 97.40 250.83 (131.43)

the solving time and the primal-dual gap integral on all six datasets except Set Covering and MI-
PLIB mixed supportcase, which shows the superiority of formulating the cut selection as a sequence
to sequence learning problem over formulating it as a scoring task. However, HEM-ratio and HEM-
ratio-order perform a little worse than SBP on Set Covering and MIPLIB mixed supportcase. A
possible reason is that it is more difficult to train a sequence model than to train a multi-layer per-
ceptron and thus the sequence model may suffer from inefficient exploration and be trapped to the
local optimum. Please refer to Appendix G.3.1 for a detailed analysis.

G.3.4 SENSITIVITY ANALYSIS

Additionally, we perform ablation studies to test the sensitivity of HEM to the hyperparameter delay
update freq d. The results in Table 12 show that there is a wide range of d for HEM to achieve com-
parable performance on Maximum Independent Set, CORLAT, and MIPLIB mixed neos. Moreover,
we emphasize that we do not tune the hyperparameter d. As the results shown in Table 12, d = 3 and
d = 4 performs the best on CORLAT and MIPLIB mixed neos, respectively. However, we simply
set d = 2 throughout all experiments in the main text.

G.4 MORE RESULTS OF GENERALIZATION

Here we provide more results of the generalization experiments on Set Covering. On Set Covering,
we test HEM on two times and four times larger instances than those seen during training. The
results in Table 13 show that HEM generalizes well to instances that are significantly larger than
seen during training. In particular, HEM achieves at least 70% improvement in terms of the Time
compared to all the rule-based baselines. Moreover, SBP also generalizes well to large instances,
demonstrating that SBP is a strong baseline.

G.5 MORE VISUALIZATION RESULTS

In this part, we provide more visualization results on Set Covering and MIK. On MIK, we vi-
sualize the cuts selected by HEM-ratio and SBP on a randomly sampled instance. We perform
principal component analysis (Mohri et al., 2018) on selected cuts to reduce the cut features to
two-dimensional space. Colored points illustrate reduced cut features. To visualize the diversity of
selected cuts, we use dashed lines to connect the points with the smallest and largest x,y coordinates.
The results in Figure 7 still show that HEM-ratio selects much more diverse cuts than SBP on MIK.
However, HEM-ratio performs poorer than SBP on Set Covering (see Appendix G.3.1 for a detailed
analysis). Therefore, we visualize the cuts selected by HEM and SBP on a randomly sampled in-
stance from Set Covering. Although HEM learns the number of cuts that should be selected, we find
that HEM selects much fewer cuts than SBP. Specifically, HEM selects 25 cuts, while SBP selects
158 cuts. Interestingly, the results in Figure 7 show that SBP selects 158 similar cuts with high
scores, while HEM selects much more diverse cuts than SBP. The results show that HEM tends to
select cuts that complement each other nicely.
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Figure 7: We perform principal component analysis on cuts selected by HEM-ratio/HEM and SBP.
Each colored point illustrates a reduced cut feature. To visualize the diversity of selected cuts, we
use dashed lines to connect the points with the smallest and largest x,y coordinates.
Table 14: Policy evaluation on MIPLIB mixed neos and MIPLIB mixed supportcase with a time
limit of three hours.

MIPLIB mixed neos MIPLIB mixed supportcase

Method Time (s) Nodes PD gap PD integral Improvement
(PD integral, %) Time (s) Nodes PD gap PD integral Improvement

(PD integral, %)

NoCuts 8,126.15 (4631.32) 5,058,282.42 (5067358) 0.97 (1.14) 369,180.71 (368274) NA 3,616.09 (4703.68) 258,543.71 (692821) 0.00 (0.0096) 37,858.65 (59578.6) NA
Default 8,129.27 (4625.92) 4,800,372.67 (4815222) 0.94 (1.07) 392,324.09 (393266) -6.27 3,997.69 (4720.2) 188,844.71 (599665) 0.01 (0.012) 56,375.64 (106694) -48.91
Random 8,125.44 (4632.53) 5,107,627.25 (5114152) 0.95 (1.09) 395,694.74 (393445) -7.18 2,605.78 (3993.84) 8,458.96 (14785.9) 0.01 (0.029) 44,222.39 (70937.6) -16.81

NV 8,133.64 (4618.37) 4,930,498.92 (4930971) 0.91 (1.03) 326,315.04 (391163) 11.61 2,561.10 (3980.44) 34,851.08 (142069) 0.00 (0.0095) 27,908.00 (37742.2) 26.28
Eff 8,130.78 (4623.31) 4,788,568.75 (4804443) 0.94 (1.07) 395,640.44 (393572) -7.17 3,105.98 (4308.57) 182,187.63 (543167) 0.01 (0.028) 39,932.37 (58307.3) -5.48

SBP 8,130.63 (4626.62) 4,763,378.00 (4829037) 0.91 (1.03) 388,564.35 (398176.3) -5.25 3,014.63 (4082.19) 146,180.96 (543662.45) 0.00 (0.0084) 24,447.37 (55984.9) 35.42
HEM(Ours) 8,124.32 (4634.54) 4,748,599.50 (4816327) 0.78 (0.82) 194,557.87 (345035) 47.30 3,465.48 (4485.11) 52,750.08 (140410) 0.00 (0.0087) 17,885.98 (24045.9) 52.76

G.6 EVALUATION WITH A TIME LIMIT OF THREE HOURS

In this section, we aim to evaluate whether HEM can generalize well to solving problems within
a much longer time limit. Specifically, we evaluate HEM on two extremely challenging MIPLIB
datasets within a time limit of three hours. Note that we still train HEM with a time limit of 300
seconds, while we test HEM with a time limit of three hours. The results in Table 14 show that
HEM still significantly outperforms all the baselines, especially in terms of the primal-dual gap
integral on MIPLIB mixed neos and MIPLIB mixed supportcase. In terms of the primal-dual gap,
HEM also outperforms the baselines. Moreover, HEM performs better than baselines in terms of
the solving time on MIPLIB mixed neos, but HEM performs poorly in terms of the solving time on
MIPLIB mixed supportcase. Interestingly, the primal-dual gap integral is not always consistent with
the solving time. We emphasize that we train with the negative primal-dual gap integral reward. To
further improve the performance of HEM in terms of the solving time, we can set the reward as the
negative solving time instead of the negative primal-dual gap integral.

G.7 TRAINING CURVES

In this section, we provide the training curves of HEM on all nine datasets. The results in Figure
8 show that the performance of our learned policies in terms of the solving time or the primal-dual
gap integral drops with the training epochs, demonstrating the effectiveness of our learning process.

G.8 GENERALIZE TO MORE SETTINGS

G.8.1 GENERALIZE TO NON-ROOT NODES

Our learned models outperform the baselines for all nodes (both root and non-root nodes) under
the one round setting, as shown in Table 17. Specifically, under the one round setting with non-
root cuts, our model improves the Time and Primal-dual gap integral by up to 91.29% and 29.61%,
respectively.

G.9 COMPARISON WITH MORE LEARNING-BASED METHODS

We compare HEM with AdaptiveCutsel Turner et al. (2022) and Lookahead Paulus et al. (2022) in
Table 15. The experiments demonstrate that HEM significantly outperforms the two learning-based
methods by a large margin in terms of the Time (up to 11.21% improvement) and Primal-dual gap
integral (up to 24.36% improvement).
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Figure 8: Training curves of HEM on all nine datasets. The x-axis corresponds to the training
epochs. The y-axis corresponds to the average solving time on easy datasets and the primal-dual gap
integral on the other datasets. The solid curves correspond to the mean and the shaded region to the
standard deviation over three random seeds. For visual clarity, we smooth curves.
Table 15: The average performance of HEM and the baselines with AdaptiveCutsel Turner et al.
(2022) and Lookahead Paulus et al. (2022). The best performance is marked in bold.

Maximum Independent Set MIPLIBS mixed setcovering

Method Time(s) Improvement (Time, %) PD integral Time(s) PD integral Improvement
(PD integral, %)

NoCuts 8.78 NA 71.31 170.00 9927.96 NA
Default 3.88 55.80 29.44 164.61 9672.34 2.57
Random 6.50 26.00 52.46 165.88 10034.70 -1.07

NV 7.84 10.70 61.60 161.67 8967.00 9.68
Eff 7.80 11.10 61.04 167.35 9941.55 -0.14

SBP 2.43 72.30 21.99 165.61 7408.65 25.37
AdaptiveCutsel 2.74 68.79 21.40 161.03 8769.63 11.67

Lookahead 2.27 74.15 20.89 159.61 9293.82 6.39
HEM (Ours) 1.76 80.00 16.01 162.96 6874.80 30.75

G.10 COMPARISON WITH THE SCORE-BASED POLICY (SBP) WITH MORE POWERFUL
MODELS

We have conducted the ablation study to show that the performance improvement achieved by HEM
is from our novel problem formulation rather than using more powerful models. The results in
Table 16 HEM still outperforms the score-based policy (SBP) with more powerful LSTM models,
in terms of the Time (up to 80%-67.31%=12.69% improvement) and Primal-dual gap integral (up to
30.75%-22.17%=8.58% improvement).

Setups. We implement another baseline, namely SBP with LSTM (SBP+LSTM), which
parametrizes the scoring function via an LSTM encoder and a multi-layer perceptron. In terms
of model parameters, the model used by SBP with LSTM (172289) is comparable to that of HEM
(212749).
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Table 16: The average performance of HEM and SBP with LSTM on Maximum Independent Set
and MIPLIB mixed supportcase. The best performance is marked in bold.

Maximum Independent Set MIPLIB mixed supportcase

Method Time(s) Improvement (Time, %) PD integral Time(s) PD integral Improvement
(PD integral, %)

NoCuts 8.78 NA 71.31 170.00 9927.96 NA
SBP 2.43 72.30 21.99 165.61 7408.65 25.37

SBP+LSTM 2.87 67.31 26.01 166.25 7726.54 22.17
HEM(Ours) 1.76 80.00 16.01 162.96 6874.80 30.75

Table 17: The average performance of HEM and the baselines for non-root nodes under the one
round setting. We obtain the results by deploying the models—which are learned at root nodes—to
all nodes (root and non-root nodes). The best performance is marked in bold.

One round with non-root nodes Easy: Maximum Independent Set Hard: MIPLIB mixed supportcase

Method Time (s) Improvement
(Time, %) PD integral Time (s) PD integral Improvement

(PD integral, %)

NoCuts 8.78 NA 71.32 170.00 9927.96 NA
Default 1.47 83.25 13.95 128.89 9406.43 5.25
Random 2.07 76.47 20.78 124.65 9116.01 8.18

NV 3.21 63.42 29.81 134.58 8034.05 19.08
Eff 2.08 76.27 21.06 124.20 9035.90 8.99

HEM (Ours) 0.76 91.29 9.75 135.80 6987.87 29.61

Results. HEM significantly outperforms SBP with LSTM as shown in Table 16. The results demon-
strate that HEM significantly outperforms SBP with more powerful models, suggesting that the
better performance of HEM is from our novel problem formulation.

G.11 EXPERIMENTS WITH ADVANCED MODELS

We conduct the following experiments to demonstrate that our method is applicable to advanced
models. By replacing the pointer network with the Advanced Model in Kool et al. (2018)
(HEM+AM), experiments show that HEM+AM outperforms the baselines (up to 79.61% improve-
ment) as shown in Table 18.

G.12 GENERALIZE TO OTHER SOLVERS

Our proposed methodology can well generalize to other solvers as shown in Table 19. The results
demonstrate that HEM significantly outperforms the default cut selection method in the CBC solver
(Saltzman, 2002) in terms of the primal-dual gap (up to 18.67% improvement).

We do not use commercial solvers, such as Gurobi (Bixby, 2007) and (Bliek1ú et al., 2014), as the
backend solver, since they do not provide interfaces for users to customize cut selection methods.

As the CBC cannot generate any cut on the dataset Maximum Independent Set, we conduct the
experiments on the dataset Load balancing.

We use the primal-dual gap metric rather than the primal-dual gap integral due to the reasons as
follows. (1) The primal-dual gap is a well-recognized metric for evaluating the solvers as well.
(2) Unlike the SCIP, the CBC does not provide interfaces for users to acquire the primal-dual gap
integral. Due to limited time, we do not implement the interface.

G.13 A DETAILED COMPUTATIONAL ANALYSIS OF OUR MODEL AND THE BASELINES’
MODEL

We provide a detailed computational analysis of our proposed model and the baselines’ model in
Table 20. We summarize the conclusions in the following. (1) The training time of HEM and
SBP is comparable, as most of their training time is spent on interacting with solvers to collect
training samples. (2) The model parameters of HEM (212749) and SBP with LSTM (172289) are
comparable. (3) The inference time of HEM is longer than that of SBP and SBP with LSTM.
Nevertheless, the inference time of HEM (0.34s on average) is very low compared to the solving
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Table 18: We evaluate HEM with advanced models.

Maximum Independent Set MIPLIB mixed supportcase

Method Time (s) Improvement (%, Time) PD integral Time (s) PD integral Improvement (%, PD integral)

NoCuts 8.78 NA 71.32 170.00 9927.96 NA
Default 3.89 55.69 29.44 164.61 9672.34 2.57

HEM (Ours) 1.76 80.00 16.01 162.97 6874.81 30.75
HEM+AM (Ours) 1.79 79.61 16.09 154.66 8440.19 14.99

Table 19: The performance of HEM and the default strategy used in the CBC solver Saltzman
(2002).

MIPLIB mixed supportcase Load balancing
Method Primal dual gap (PD gap) Improvement (%,PD gap) Primal dual gap (PD gap) Improvement (%,PD gap)

CBC Default 227.93 NA 0.98 NA
HEM (ours) 185.38 18.67 0.91 7.14

time (162s on average), especially on hard datasets. (4) The training of HEM is stable (please see
Figure 8).

G.14 EXPERIMENTS WITH SOME SPECIFIC STRUCTURED MODELS

We have analyzed the selected cuts on Multiple Knapsack (specific structured problems) to show
that our learned policies can capture the underlying structure of the specific structured problems.
The results in Figure 9 show that our model mainly selects three kinds of cover inequalities, i.e.,
lifted knapsack cover inequalities (47%) (Gu et al., 1998), lifted minimal cover inequalities (43%)
(Gu et al., 1998), and flow cover inequalities (2%) (Gu et al., 1999), for solving Multiple Knapsack
problems. Specifically, we analyze the type of cuts selected by our proposed HEM on Multiple
Knapsack, a class of problems with specific structures. It is known that a prominent class of cut for
knapsack problems is cover inequalities (Gu et al., 1998; 1999). The results demonstrate that our
learned policies can select cover inequalities for solving the knapsack problems, suggesting that our
model can well capture the underlying structure of specific problems.

G.15 MEASURING THE PRIMAL AND DUAL INTEGRALS

We have conducted experiments to measure the Primal Integral (PI) and Dual Integral (DI) as shown
in Table 21. The results show that the performance improvement of HEM is from both the primal
and dual sides.

Specifically, we use the optimal objective values as the reference values to measure the PI/DI. How-
ever, it is time-consuming to obtain optimal solutions for all instances. We conduct the experiments
on three easy datasets due to limited time. Interestingly, the results demonstrate that proper cut
selection policies can improve both the PI and DI. Moreover, the results show that HEM achieves
more improvement from the primal side than the dual side on Set Cover and Maximum Independent
Set, while HEM achieves more improvement from the dual side on Multiple Knapsack.
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Table 20: A detailed computational analysis of our model and the baselines’ model.

Maximum Independent Set

Model characteristics Training Testing
Model Model paramters GPU Memory (MB) Training time (h) Training samples Avg Cuts Inference time (s) Performance/Time (s)

SBP 18433 2.07 3.03
3200 57

0.0003 2.43
SBP+LSTM encoder 172289 2.66 2.83 0.031 2.87

HEM (Ours) 212749 2.81 2.54 0.11 1.76

MIPLIB mixed supportcase

Model characteristics Training Testing
Model Model paramters GPU Memory Training time (h) Training samples Avg Cuts Inference time Performance/PD integral

SBP 18433 2.07 13.81
3200 173

0.0004 7408.65
SBP+LSTM encoder 172289 2.66 13.24 0.033 7726.54

HEM (Ours) 212749 2.81 13.89 0.34 6874.8

Table 21: Evaluate the performance of HEM and Default in terms of the primal and dual integrals.

Set Cover

Method PrimalIntegral (PI) Improvement (%, PI) DualIntegral (DI) Improvement (%, DI)

NoCuts 52.34 NA 59.85 NA
Default 45.02 13.99 49.95 16.54

HEM (ours) 28.84 44.90 35.95 39.93

Maximum Independent Set

Method PrimalIntegral (PI) Improvement (%, PI) DualIntegral (DI) Improvement (%, DI)

NoCuts 66.83 NA 16.24 NA
Default 32.19 51.83 11.92 26.60

HEM (ours) 18.33 72.57 7.97 50.92

Multiple Knapsack

Method PrimalIntegral (PI) Improvement (%, PI) DualIntegral (DI) Improvement (%, DI)

NoCuts 39.39 NA 41.62 NA
Default 25.40 35.52 25.70 38.25

HEM (ours) 19.24 51.16 18.90 54.59
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Figure 9: The analysis of selected cuts by our learned model on Multiple Knapsack.
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