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Abstract

In simultaneous translation, the retranslation001
approach has the advantage of requiring no002
modifications to the inference engine. How-003
ever, in order to reduce the undesirable flicker004
in the output, previous work has resorted to005
increasing the latency through masking, and006
introducing specialised inference, thus los-007
ing the simplicity of the approach. In this008
work, we will show that self-training improves009
the flicker-latency tradeoff, whilst maintain-010
ing similar translation quality to the origi-011
nal. Our analysis indicates that self-training012
reduces flicker by controlling monotonicity.013
Self-training can be combined with biased014
beam search to further improve the flicker-015
latency tradeoff.016

1 Introduction017

Simultaneous machine translation systems, which018

process their input word by word instead of sen-019

tence by sentence, must strike a balance between020

producing output immediately (and so reducing021

quality because of incomplete input) and waiting022

for further input (and so increasing latency). A023

good simultaneous translation system will provide024

a pareto-optimal tradeoff between quality and la-025

tency. A straightforward way of doing simulta-026

neous translation is retranslation (Niehues et al.,027

2016), which has the advantage that it can be used028

with an unmodified machine translation (MT) in-029

ference engine, and can perform better than the al-030

ternative, streaming-based approaches (Arivazha-031

gan et al., 2020b). The disadvantage is that retrans-032

lation may change previous output causing flicker,033

leading to a poor user experience, and so flicker034

needs to be balanced with latency and quality.035

We argue that flickering is caused by two dif-036

ferent (but related) issues: (i) lexical instability037

of the translation – the system “changes its mind”038

as more source is revealed, swapping one word039

for another1; (ii) non-monotonicity of the transla- 040

tion – the system favours a non-monotonic trans- 041

lation, which means it needs high latency in or- 042

der to avoid flicker. Some of this instability and 043

non-monotonicity is necessary – forced by syntac- 044

tic differences between source and target, and lack 045

of information in the prefixes – but some is due to 046

arbitrary choices of the model so we aim to reduce 047

these as far as possible. 048

In non-autoregressive translation (NAT), a re- 049

lated problem, known as the “multimodality” prob- 050

lem (Gu et al., 2018), has been addressed using 051

knowledge distillation (Kim and Rush, 2016, KD). 052

We therefore investigate whether this can also re- 053

duce flicker in simultaneous translation. Since the 054

initial model and the distilled model have the same 055

architecture in our work, approximating KD is es- 056

sentially self-training. We show that a self-trained 057

model is able to achieve the same quality as the ini- 058

tial model, but with improved flicker-latency trade- 059

off. Furthermore, we show experiments that link 060

the improved flicker to student monotonicity. 061

2 Background 062

2.1 Retranslation 063

We assume a retranslation approach, where the 064

source is retranslated each time it is updated, and 065

the new output replaces the old. Only the cur- 066

rent sentence is retranslated – previous sentences 067

are considered to be fixed. Retranslation can use 068

an unmodified inference engine, in contrast to 069

streaming approaches (e.g. (Ma et al., 2019a; Ari- 070

vazhagan et al., 2019b) ), making it simpler to 071

deploy. The basic retranslation approach can be 072

improved by using prefix training (Niehues et al., 073

2016, 2018), biased beam search and output mask- 074

ing2 (Arivazhagan et al., 2020a). 075

1An example of this is shown in Appendix C
2This means that the last k words are omitted from the

output before being passed to the user. It reduces flicker, but
increases latency.
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2.2 Evaluation of Simultaneous Translation076

Evaluation of simultaneous translation requires077

that, as well as quality, we consider latency, and078

flicker (if we are using retranslation). The qual-079

ity of the translation can be evaluated by compar-080

ing the final output of each sentence with a refer-081

ence – we will use BLEU (Papineni et al., 2002;082

Post, 2018), CHRF (Popović, 2015) and COMET083

(Rei et al., 2020) scores. To measure flicker, we084

use normalised erasure (Arivazhagan et al., 2020a,085

2019a), which measures the flicker between con-086

secutive translation outputs by counting the mini-087

mum number of tokens that must be deleted from088

the end of the previous translation in order to pro-089

duce the next, normalised by output length.090

The measurement of latency has been the sub-091

ject of some debate in the literature, with sev-092

eral different measures proposed (Ma et al., 2019a;093

Cherry and Foster, 2019; Ansari et al., 2021). In094

our experiments, we plot the flicker-latency trade-095

off by controlling the output mask, and observing096

the effect on flicker. Since mask correlates with097

latency, our aim is to improve this mask-flicker098

tradeoff curve, and so be able to use a shorter mask099

with the same flicker budget.100

2.3 Knowledge Distillation and Self-Training101

The idea of sequence-level KD (Kim and Rush,102

2016), is to create a smaller student model using103

the predictions of the larger teacher model. This104

has found application in MT efficiency (Junczys-105

Dowmunt et al., 2018) and in non-autoregressive106

translation (Zhou et al., 2020). For our purposes,107

the student model has the same size as the teacher.108

The output distributions of the self-trained model109

have lower entropy (Zhou et al., 2020), so the110

model is less likely to swap between translation111

hypotheses unnecessarily as the source prefix is112

extended. Also, since the self-trained model is113

trained on MT output, where the target order tends114

to be more similar to the source order (Zhou et al.,115

2020), it is more likely to avoid unnecessary re-116

orderings, generating a more monotonic transla-117

tion, which can be built up incrementally. We give118

experimental evidence for these in the next sec-119

tion.120

Chen et al. (2021) also proposed to use pseudo-121

reference sentences obtained through forward122

translation of the source sentences to improve si-123

multaneous translation. Unlike our work, they con-124

sidered a streaming approach (specifically wait-k125

(Ma et al., 2019b)) where the system can only ap- 126

pend to the output; it does not flicker like retrans- 127

lation. They showed that their approach could im- 128

prove the quality-latency tradeoff of wait-k using 129

their distillation approach, but to create the train- 130

ing data for the student system they used wait-k 131

and filtering – we avoid these complications by 132

just using the baseline system as the teacher. 133

3 Experiments 134

3.1 Data 135

We test our self-training approach on 136

English↔{German,Czech}. For En↔De we 137

use IWSLT21 (Anastasopoulos et al., 2021) for 138

training, and the concatenation of the 2014 and 139

2015 test sets for development (early stopping), 140

removing any sentences overlapping with training. 141

For En↔Cs, we use the training and validation set 142

from WMT21 (Akhbardeh et al., 2021). Training 143

data sizes are shown in Appendix A. We use 144

prefix training to reduce the mismatch between 145

sentence-level training data and prefix-based 146

inference at test time (Niehues et al., 2018). For 147

each parallel sentence pair in the training set, we 148

generate a corresponding prefix pair by truncating 149

using a randomly chosen proportion. We treat the 150

validation sets similarly. 151

We test our systems both on IWSLT test data 152

(derived from TED talks) and on the ESIC test 153

set3 (Macháek et al., 2021). From IWSLT, we 154

use tst2018 for De↔En, and tst2015/tst2016 com- 155

bined for Cs↔En. ESIC is derived from the Euro- 156

pean parliament proceedings, and consists of tran- 157

scribed speechs in English, together with their si- 158

multaneous intepretation into Czech and German 159

(also transcribed). ESIC is aligned at the docu- 160

ment level, but not at the sentence level. We use 161

the test portion for evaluation, only for En→X. It 162

has been argued that such systems are better eval- 163

uated (and trained, if possible) on intepreted data 164

(Zhao et al., 2021). However such data is hard to 165

come by, and ESIC is the only such resource for 166

European languages. We remove any segments 167

from the IWSLT test sets that overlap with train- 168

ing, and also remove from the training data any 169

europarl documents with overlap with ESIC. 170

All data is pre-processed with SentencePiece 171

unigram model (Kudo and Richardson, 2018) with 172

3https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3719
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a shared subword (Sennrich et al., 2016b) vocabu-173

lary size of 32k.174

En→De De→En En→Cs Cs→En
Metric Model ESIC IWSLT IWSLT ESIC IWSLT IWSLT

BLEU T 17.5 27.7 33.4 14.4 24.6 31.3
S 17.6 27.5 31.7 14.5 25.0 31.3

ChrF T 58.9 56.9 59.2 51.5 51.5 56.1
S 58.8 57.2 58.3 51.7 51.7 56.2

COMET T .553 .330 .488 .651 .639 .519
S .532 .326 .468 .672 .642 .521

Table 1: Comparison between teacher (T) and student
(S) models on ESIC and IWSLT test sets. For ESIC,
BLEU and CHRF are caclulated at document level, i.e.
considering each document as a segment. For COMET
we use reference-less wmt20-comet-da for ESIC
and reference-based wmt20-comet-da for IWSLT.

3.2 Teacher-Student Training175

Our teacher model, which serves as a baseline, is176

a transformer base (Vaswani et al., 2017) trained4177

with fairseq5 (Ott et al., 2019).178

We use the teacher to translate the training data,179

using a beam6 of 8, then train a student model with180

the same architecture on this synthetic data.181

In Table 1 we show the performance of our base-182

line system (equivalent to the teacher) and the stu-183

dent system on 6 test sets. Overall, student perfor-184

mance is robust compared to teacher, with same or185

better scores in Cs↔En and some small losses in186

De↔En.187

To assess whether the student models reduce188

flicker in retranslation, we use each model in a sim-189

ulated SLT pipeline and plot flicker-latency trade-190

off curves. That is, we use the systems to translate191

ever-growing prefixes of the source sentences in192

the testsets, using SLTev (Ansari et al., 2021) to193

measure the flicker, and varying the output mask194

to show the tradeoff. A curve for one test set is195

shown in Figure 1, with full results in Appendix196

D. We can see that in all configurations the student197

models improve the flicker-latency tradeoff. In Ap-198

pendix E, we show how the student training data199

is more monotonic, and the models have lower en-200

tropy, echoing Zhou et al. (2020).201

4For training hyperparameters, see Appendix B.
5To generate training data for the students, we actually

used a marian (Junczys-Dowmunt et al., 2018) model, with
60×106 parameters, trained on the same data, with the same
architecture, which achieves nearly identical BLEU. This
was to take advantage of marian’s fast inference. All results
shown in the paper are with the fairseq models.

6We also tested sequence-level interpolation, selecting the
highest-scoring translation in an 8-best list according to BLEU
and CHRF, but results were very similar.
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Figure 1: Flicker-latency tradeoff for the teacher (T)
and student (S) models, En→De IWSLT. We control
latency by varying the output mask.

3.3 Controlling Monotonicity 202

To show that self-training affects flicker through 203

increased monotonicity, we experiement with con- 204

trolling the monotonicity of the student training 205

data. We stratify the teacher data into 5 dif- 206

ferent monotonicity levels using Kendall’s Tau 207

on a fast_align (Dyer et al., 2013) target–source 208

alignment to measure monotonicity. We add the 209

monotoncity level as pseudo-word, as in Sennrich 210

et al. (2016a), to each source sentence, and train a 211

teacher model on this monotonicity-aware corpus. 212

We then use this teacher to create 5 different stu- 213

dent training corpora, using the monotonicity con- 214

trol, and train 5 different students on these corpora. 215
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Figure 2: Latency–flicker tradeoff for the En→De
IWSLT monotonicity-controlled models. Monoticity
control ranges from 1 (training data created with max-
imim monotonicity) to 5 (minimum monotonicity)

216

Table 2 shows the BLEU7 scores for the 217

monotonicity-controlled models, as well as the 218

7Scores for CHRF and COMET are in Appendix E, but the
pattern is similar
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teacher and student from the previous section. Us-219

ing highly monotonic (Mono-1) or non-monotonic220

(Mono-5) data gives poor quality, but the in-221

between strata are similar, with Mono-3 slightly222

better overall. Figure 2 shows a distinctly worse223

flicker-latency tradeoff for Mono-5, whereas224

Mono-4 is a bit better than the teacher, and all225

other students are better. This supports the hypoth-226

esized connection between the higher degree of227

monotonicity in the student training data, and the228

better flicker-latency tradeoff in the student mod-229

els.230

En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU Teacher 17.5 27.7 14.4 24.6
Student 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

Table 2: Student models with monotonicity control.
Monotonicity ranges from 1 (highest) to 5 (lowest)

3.4 Self-training and Biased Beam Search231

We investigate the combination of our self-training232

approach with biased beam search (Arivazhagan233

et al., 2020a). The idea of biased beam search (or234

“prefix biasing”) is to reduce flicker in retransla-235

tion by modifying inference so that the translation236

of the current prefix is “biased” towards the trans-237

lation of the last prefix. At inference, the model238

has an extra term which penalises it for depart-239

ing from the previous translation. As the current240

translation is being generated, once the hypothe-241

sis departs from the previous translation, we stop242

applying the bias, reverting to the unmodified MT243

model.244

Before the previous translation is used for bias-245

ing, it is normally masked, i.e. the right-most k246

tokens are removed. Without applying this mask,247

biased beam search seriously reduces quality by248

forcing inference to follow poor quality early deci-249

sions. This bias mask is different from the output250

mask used in earlier experiments (which controls251

latency) although in previous work the bias and252

output mask are typically set to the same value.253

We implemented biased beam search in fairseq254

and, based on previous work, we set the bias255

strength β = 0.25. After comparing different bias256

masks (Appendix F) we set the mask to 6 for ESIC257

and 10 for IWSLT.258

We sweep across output masks to generate 259

latency–flicker tradeoff curves in Figure 3 (with 260

full results in Appendix F). We compare teacher 261

and student models, with and without biased beam 262

search. We can see from the graphs that biased 263

beam search is effective in improving the latency– 264

flicker tradeoff, but that the student models still 265

improve over the teacher with biased beam search. 266

The disadvantages of biased beam search are that 267

it requires careful tuning of the prefix mask in or- 268

der to avoid damaging quality, and that it requires 269

a modified inference engine. The inference engine 270

requires access to the previous translation, creat- 271

ing challenges for scalability. In contrast, our self- 272

training approach requires no modifications to in- 273

ference. Furthermore, since biased beam search 274

relies on aligning the current translation with the 275

previous one, it is hard to apply when the transla- 276

tion cannot be aligned – for example in a cascaded 277

system where the ASR can rewrite its output.
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Figure 3: Latency-flicker tradeoff for teacher-student
models with and without biased beam search, En→De,
IWSLT

278

4 Conclusion 279

We show self-training reduces the flicker in 280

retranslation-based simultaneous translation, 281

whilst retaining quality. Our experiments link this 282

flicker reduction to increased monotonicity and re- 283

duced entropy of the self-trained model. Although 284

biased beam search can obtain larger reductions in 285

flicker, it requires more careful parameter tuning, 286

and a modified inference engine. However, one 287

limitation of this work is that we evaluated it 288

using only a couple of European language pairs 289

(for which interpreted test sets are available). It 290

will be interesting to see the results on language 291

pairs with more syntactic divergence, in future. 292
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Maja Popović. 2015. chrF: character n-gram F-score443
for automatic MT evaluation. In Proceedings of the444
Tenth Workshop on Statistical Machine Translation,445
pages 392–395, Lisbon, Portugal. Association for446
Computational Linguistics.447

Matt Post. 2018. A call for clarity in reporting BLEU448
scores. In Proceedings of the Third Conference on449
Machine Translation: Research Papers, pages 186–450
191, Brussels, Belgium. Association for Computa-451
tional Linguistics.452

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon453
Lavie. 2020. COMET: A neural framework for MT454
evaluation. In Proceedings of the 2020 Conference455
on Empirical Methods in Natural Language Process-456
ing (EMNLP), pages 2685–2702, Online. Associa-457
tion for Computational Linguistics.458

Rico Sennrich, Barry Haddow, and Alexandra Birch.459
2016a. Controlling politeness in neural machine460
translation via side constraints. In Proceedings of461
the 2016 Conference of the North American Chap-462
ter of the Association for Computational Linguistics:463

Human Language Technologies, pages 35–40, San 464
Diego, California. Association for Computational 465
Linguistics. 466

Rico Sennrich, Barry Haddow, and Alexandra Birch. 467
2016b. Neural machine translation of rare words 468
with subword units. In Proceedings of the 54th An- 469
nual Meeting of the Association for Computational 470
Linguistics (Volume 1: Long Papers), pages 1715– 471
1725, Berlin, Germany. Association for Computa- 472
tional Linguistics. 473

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 474
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 475
Kaiser, and Illia Polosukhin. 2017. Attention Is All 476
You Need. CoRR, abs/1706.03762. 477

Jinming Zhao, Philip Arthur, Gholamreza Haffari, 478
Trevor Cohn, and Ehsan Shareghi. 2021. It is not as 479
good as you think! evaluating simultaneous machine 480
translation on interpretation data. In Proceedings of 481
the 2021 Conference on Empirical Methods in Natu- 482
ral Language Processing, pages 6707–6715, Online 483
and Punta Cana, Dominican Republic. Association 484
for Computational Linguistics. 485

Chunting Zhou, Jiatao Gu, and Graham Neubig. 486
2020. Understanding knowledge distillation in non- 487
autoregressive machine translation. In 8th Inter- 488
national Conference on Learning Representations, 489
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 490
2020. OpenReview.net. 491

A Training Data 492

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M8

Wikititles 410 K
Rapid 452 K

493

B Training Parameters 494

The non-default hyperparameters for Fairseq are 495

shown in Table 3. 496

C Example of Flicker 497

An example of a translation which flickers be- 498

tween two similar possibilities is shown in Table 499
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Param Value
label-smoothing 0.1
criterion label_smoothed_cross_entropy
patience 10
arch transformer
optimizer adam
adam-betas 0.9, 0.98
lr 5e-4
lr-scheduler inverse_sqrt
warmup-updates 4000
clip-norm 0.0
weight-decay 0.0001
dropout 0.3
update-freq 2
max-tokens 3000
best-checkpoint-metric bleu
maximize-best-checkpoint-metric True

Table 3: Fairseq training hyperparameters (non-default) for 4 GPU training.

4.500

D Flicker-Latency Tradeoff501

In Figure 4, we show the flicker-latency tradeoff502

for all language-pair and testset combinations.503

E Monotonicity and Entropy of Student504

Models505

We claimed that student models have lower flicker506

because they produce more monotonic transla-507

tions, with less unnecessary variation. Here we508

provide evidence to support those claims.509

Training data for student models is more mono-510

tonic In order to calculate the monotonicity of511

the training data, we use Kendall’s tau distance.512

We first extract word alignments from the train-513

ing data using fast_align (Dyer et al., 2013) to514

forward-align source and target. For each sen-515

tence pair we express the alignment as a function516

a : i → j, and construct the two lists 1, . . . , T517

and a(1), . . . , a(T ) where T is the target length.518

We then calculate the Kendall’s tau between the519

two lists, repeat for each sentence pair in the cor-520

pus, and average. We repeat the calculation for the521

original training data and for the student training522

set. The results are shown in Table 5. We can see523

that in all cases, the student training data is more524

monotonic than the original teacher training data.525

Student models have lower entropy distribu-526

tions For each of our models, we calculate the527

mean per-token entropy, by considering the proba- 528

bility distribution over the vocabulary at each time 529

step. The entropies are shown in Table 6. 530

We can see from Table 6 that the token entropies 531

are consistently lower for student models, show- 532

ing that the distributions are more “peaky”, and so 533

less likely to flicker between multiple output to- 534

kens with similar probabilities. 535

F Biased beam search 536

We consider the effect of the bias mask on full 537

sentence translation quality, as measured by BLEU. 538

The bias mask is measured in sentencepiece to- 539

kens. Based on Figure 6 we set the bias mask to 540

6 for ESIC and 10 for IWSLT, in order to avoid a 541

loss of BLEU. 542

In Figure 7, we show flicker-latency tradeoffs 543

for all language pair and testset combinations. 544
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Source I hope you will have a little time and energy to focus on another report which is, despite its
technicality, quite important for all of us.

Target: Ich
Ich hoffe,
Ich hoffe, Sie
Ich hoffe, Sie
Ich hoffe, Sie haben
Ich hoffe, Sie haben ein
Ich hoffe, Sie werden ein wenig Zeit
Ich hoffe, Sie haben etwas Zeit
Ich hoffe, Sie haben etwas Zeit und
Ich hoffe, Sie werden etwas Zeit und Energie haben,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf ein anderes Thema
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen weiteren Bericht zu konzentrieren,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen anderen Bericht zu konzentrieren,
...
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf einen anderen Bericht zu konzentrieren,
der trotz seiner Formalität für uns alle sehr wichtig ist.

Table 4: Examples of flicker caused by the teacher model. Source is the original full sentence which is input as a
growing input prefix. Target is the output prefix in successive retranslations.
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(f) Cs→En IWSLT

Figure 4: Flicker-latency tradeoff for the teacher-student models. We control latency by varying the output mask

Model En→De De→En En→Cs Cs→En
Teacher 0.793 0.788 0.849 0.8356
Student 0.857 0.801 0.906 0.880

Table 5: Kendall’s tau distances. Higher scores indicate
more monotonicity.

Entropy
Pair Test set Teacher Student

En→De ESIC 0.371 0.220
IWSLT 0.295 0.228

De→En IWSLT 0.273 0.160

En→Cs ESIC 0.443 0.251
IWSLT 0.417 0.238

Cs→En IWSLT 0.335 0.213

Table 6: Mean per-token entropies for each language
pair test set combination
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Figure 5: Latency–flicker tradeoff for the monotonicity-controlled models. Monoticity control ranges from 1
(training data created with maximim monotonicity) to 5 (minimum monotonicity)
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Figure 6: Dependence of BLEU on bias mask when applying biased beam search.
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(b) English → German IWSLT
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(c) German → English IWSLT

0 2 4 6 8 10
Output mask

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

F
lic

ke
r

teacher, no bias

student, no bias

teacher, bias=0.25

student, bias=0.25

(d) English → Czech ESIC

0 2 4 6 8 10
Output mask

0.0

0.5

1.0

1.5

2.0

F
lic

ke
r

teacher, no bias

student, no bias

teacher, bias=0.25

student, bias=0.25

(e) Czech → English IWSLT

0 2 4 6 8 10
Output mask

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
lic

ke
r

teacher, no bias

student, no bias

teacher, bias=0.25

student, bias=0.25

(f) Czech → English IWSLT

Figure 7: Flicker vs mask on biased beam search
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En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU Teacher 17.5 27.7 14.4 24.6
Studentmodel 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

ChrF Teacher 58.9 56.9 51.5 51.5
Studentmodel 58.8 57.2 51.7 51.7
Mono-1 42.4 39.6 51.3 50.7
Mono-2 58.7 57.3 51.8 52.0
Mono-3 59.0 57.8 51.7 52.2
Mono-4 59.0 56.8 51.4 51.4
Mono-5 58.5 55.0 50.7 50.2

COMET Teacher .553 .330 .651 .639
Studentmodel .532 .326 .672 .642
Mono-1 .510 -0.028 .639 .597
Mono-2 .526 .295 .650 .636
Mono-3 .530 .326 .678 .641
Mono-4 .535 .313 .677 .639
Mono-5 .518 .247 .633 .577

Table 7: Full results of student models with monotonic-
ity control.
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