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ABSTRACT

One of the most important challenges in a visual dialog is to effectively extract
the information from a given image and its historical conversation which are re-
lated to the current question. Many studies adopt the soft attention mechanism
in different information sources due to its simplicity and ease of optimization.
However, some of visual dialogs are observed in a single round. This implies
that there is no substantial correlation between individual rounds of questions and
answers. This paper presents a unified approach to disentangled attention to deal
with context-free visual dialogs. The question is disentangled in latent represen-
tation. In particular, an informative regularization is imposed to strengthen the
dependence between vision and language by pretraining on the visual question
answering before transferring to visual dialog. Importantly, a novel variational
attention mechanism is developed and implemented by a local reparameterization
trick which carries out a discrete attention to identify the relevant conversations in
a visual dialog. A set of experiments are evaluated to illustrate the merits of the
proposed attention and regularization schemes for context-free visual dialogs.

1 INTRODUCTION

With the advances in deep learning and the abundant human conversations on social media, the con-
versational agent systems have drawn increasing attention from the research community of natural
language processing for artificial intelligence (AI). Visual dialog (Das et al., 2017) is a conversa-
tional question answering task that has recently received lots of research efforts. Given an image,
a conversation history consisting of a series of question-and-answer pairs, and a follow-up question
about the image, the system has to predict the natural language answer to the question. But, in
context-free dialogs, parts of the visual dialog are not consistent and continuous as shown in Figure
1). The challenges of this task are basically due to the situation that the learner needs to involve
the modeling, understanding, and participating in information seeking conversations. In order to
learn the relevance of conversations in visual dialog, many studies (Kang et al., 2019; Murahari
et al., 2020; Agarwal et al., 2020; Park et al., 2021) have focused on designing the delicate atten-
tion modules and learning representations through the stacking of attention modules. Most of these
studies adopt a deterministic soft attention mechanism that calculates the outputs from all source
components no matter they are relevant or irrelevant to questions. Context-free questions make a
deterministic soft attention network to receive too much irrelevant information. The resulting atten-
tion network likely hurts the robustness and performance of the model.

This paper explores a unified approach to handle the aforementioned challenges with two stages.
First, in order to respond effectively to the context-free questions, certain parts of the model are pre-
trained from the related task on visual question answering (VQA) (Antol et al., 2015). The model
turns the visual dialog task into a VQA task based on a single round question answering (QA) so as
to cope with the context-free questions. However, recent researches (Agrawal et al., 2018; Cadene
et al., 2019) show that most of VQA models suffer from the language prior problem. This problem
results in the circumstances that the model will fail to ground questions in image content and per-
form poorly in real-world settings. To alleviate the issue of language priors, this study introduces the
information-theoretic latent disentanglement which learns the decomposed linguistic representation
from questions. In addition, an informative regularization scheme is developed for latent disentan-
glement by imposing the constraint in learning representation. This paper further proposes a novel
discrete variational attention mechanism that can be combined with pre-trained model to handle the
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Figure 1: An example of visual dialog task. Red and blue highlights show two context-relevant
questions, and green highlights denote the context-free questions. This example demonstrates that
the questioner likely dives into a different topic in a conversation.

context-free issues in visual dialog. Inspired by the discrete stochastic neural networks (Shayer et al.,
2018; Peters & Welling, 2018), this work presents a new variational attentive distribution based on
Bernoulli distribution which is implemented by using a local reparameterization trick to carry out
a differentiable training process. The architecture is constructed by Bayesian framework which is
optimized by using a learned prior for regularization.

2 BACKGROUND SURVEY

2.1 VISUAL QUESTION ANSWERING AND VISUAL DIALOG

Visual question answering (VQA) is receiving the popularity as an AI-complete challenge where
the task is to autonomously answer natural language questions based on the visuals. VQA is dif-
ferent from visual dialog for the reasons that VQA does not need to consider additional historical
conversations, and VQA only needs to answer a series of independent questions based on image
contents. However, many VQA models suffer from the language priors problem, which is caused
by superficial correlations between a question and some answer words learned during training. It is
because that the mapping or relation between question and answer is too strong so that the model
overemphasizes this mapping and ignores the high-level relations between different interactions.
Correspondingly, the true information in an image is not really captured. The so-called language
prior problem happens. To deal with this issue, a number of works have been proposed. Agrawal
et al. (2018) provided a methodology that explicitly separated the visual recognition from an answer
prediction for various question types. Ramakrishnan et al. (2018) proposed an adversarial learning
strategy to enhance the dependence between question and image by degrading the performance of
question-only branch. Cadene et al. (2019) dynamically modified the weights of training instance
based on the prior masks learned by the question-only branch so that the influence of the large biased
cases is decreased while increasing the influence of the small biased instances. In visual dialog, there
have been many recent studies focused on using the basis of visual grounding tasks to impair the
performance of the model. Murahari et al. (2020) strengthen the dependency of visual and language
through pretraining image caption and VQA. Cogswell et al. (2020) propose a new framework to
transfer to the dialog task through the trained VQA model.

2.2 LEARNING FOR DISENTANGLEMENT AND ATTENTION

Disentangled learning can be divided into two aspects according to different situations, one is the
feature disentanglement, the other is the cross-domain disentanglement. This paper focuses on the
feature disentanglement, which extracts the shared information in the database and then decomposes
the attribute representations of different style meanings. This disentanglement learns the decompo-
sition through the differences between local features, which is often used in attribute extraction and
attribute transfer (Mathieu et al., 2019; Chen et al., 2019; Huang & Chien, 2021). To effectively
learn the disentangled representations, mutual information (MI) has been introduced to carry out
different approaches to achieve desirable performance (Alemi et al., 2016; Chen et al., 2016; Cheng
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et al., 2020b; Hwang et al., 2020). However, calculating the exact MI value is difficult because
the integral in the calculation I(x; z) ≡ Ep(x,z)

[
log p(x,z)

p(x)p(z)

]
is intractable in most cases of deep

learning using neural network models. Various MI estimation approaches have been proposed to
address this issue. Agakov (2004) proposed the classic MI upper and lower bounds, which opened
an avenue to estimate MI through different approximate distributions. Cheng et al. (2020a) intro-
duced the approximated network and estimated the relation between the joint probability distribution
and the respective marginal probability distribution. Some approaches introduced the critic function
or the similarity calculations to estimate the MI instead of inferring the probability density func-
tion. Donsker & Varadhan (1975) derived the MI lower bound based on introducing energy-based
function. To overcome the intractable formulation, Belghazi et al. (2018) adopted the Monte-Carlo
approximation of the expectations, so that this method could estimate the gradient and find the MI
estimator. On the other hands, Hjelm et al. (2018) introduced the adversarial learning, which applied
the discriminative network to maximize the objective directly instead of calculating its exact value.

In addition to the disentangled learning, the attention-based methods play an important role to spot-
light the regions in images or words in sentences for a target task such as visual dialog. Attentive
representation learning was first introduced in machine translation task (Bahdanau et al., 2015), and
has been developed for many other tasks. Attention method was introduced to improve the recur-
rent sequence-to-sequence (seq2seq) model. To identify the specialized local features from source
sequences, attention mechanism is based on finding the similarity between source and target se-
quences to know which part of source sequence the decoder would like to emphasize at each time
step. Furthermore, in order to reflect the complicated dependencies and improve the robustness
of attention mechanism, many studies combined the attention weights with Bayesian framework.
Bahuleyan et al. (2018) proposed the variational attention to improve the diversity of attention in
seq2seq models by sampling the attention weights from Gaussian distribution. But, in some works,
the property of probability in the estimated distribution of attention weights was not really satisfied.
Deng et al. (2018) proposed the stochastic version of hard attention mechanism, where the atten-
tion weights were seen as the discrete variables which were sampled from categorical distributions.
Backpropagation was no longer suitable for optimization because the parameters of network were
non-differentiable. Fan et al. (2020) proposed a differentiable way to form the attention distribution
by normalizing the reparameterizable distributions.

3 VARIATIONAL DISENTANGLED ATTENTION

This work presents a unified way to visual dialog which is decomposed into two stages. The first
one is to build a pre-trained model. In order to strengthen the dependence between the image and
the question, in the pre-training stage, the issue of language priors is handled through the disen-
tanglement with regularization. Secondly, in order to effectively provide the context-relevant in-
formation to the pre-trained model, a discrete variant of variational attention mechanism with local
reparameterization trick is developed. The differentiable training process is exploited for ease of
implementation.

3.1 INFORMATIVE LATENT DISENTANGLEMENT

This paper addresses an VQA model which is seen as a pre-trained task before transferring it to
visual dialog. This model makes use of a large-scale VQA dataset for training the powerful visually-
grounded representations by disentangling and regularizing the linguistic representation to alleviate
the issue of language priors. Specifically, a disentangled representation should separate the distinct
and informative factors of variations behind the data (Desjardins et al., 2012). This study incorporate
the disentangled learning in VQA task. The attribute of questions is observed and decomposed into
two different meanings or representations through information-theoretic learning. An informative
regularization is developed for latent disentanglement with some constraint in learning procedure.

In general, the strategies of disentangled learning is to identify the data attributes and specify the
learning goals. The language prior problem, caused by superficial correlations between questions
and answers learned during training, can be tackled by strengthening the mapping between question
and answer. In order to reflect the attributes in the question, two distinct types including the content
representation zc and the style representation zs are considered. Specifically, the question x is
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(a) Latent decomposition using mutual information (b) Clustering phenomenon

Figure 2: (a) Illustration for decomposition of a question x based on maximization and minimiza-
tion of mutual information and (b) Illustration for clustering phenomenon in latent space of style
representation where red, blue, and green clusters denote different types of questions, and dashed
arrows indicate the direction of regularization. In an ideal learning process, if the same type of
questions is clustered in the latent space, it may contain unknown disturbing factors. An informative
regularization is helpful to alleviate such a disturbance.

transformed and factorized into two different representations (i.e. {zc, zs} = fθ(x)) through a
disentanglement network fθ which is trained in accordance with information theory. This paper
basically constructs the following goals to carry out learning strategy for disentanglement.

• Decompose the content and the style information from the given question. Specifically,
content representation should extract the basic significance from questions and style repre-
sentation show different attributes of questions. Ideally, we expect that style representation
can learn the main factor that cause language priors in questions.

• In order to make the relationship between content and style more independent and mean-
ingful, we aim to minimize the mutual information between them.

• Ensure the content representation sufficiently contains information from the given question.

• Learn style representation to extract different attributes that cause the language priors in
questions. This process demonstrates the extraction of attributes hidden in questions in the
mapping between question and answer.

According to these goals for latent disentanglement, the learning criteria can be formulated in the
form of using mutual information terms as follows

JDis = I(zc; zs)− I(zc;x)− I(zs;y) (1)

where y denotes the ground-truth answer corresponding to question x. Figure 2a illustrates the
interaction between different components, the parameters of disentanglement network are learned by
minimizing the objective JDis. However, original mutual information is intractable. An alternative
calculation based on neural networks is required. To handle the issue, this paper introduces the MI
estimation (Agakov, 2004; Cheng et al., 2020a;b) to implement the tractable criteria instead of using
intractable MI. To maximize I(zc;x) and I(zs;y), this paper introduces their MI lower bounds as
the alternative objectives. Specifically, MI estimators are calculated by using feedforward neural
network with parameters φc and φs to find lower bounds by

I(zc;x) ≥ H(x) + Ep(x,zc)[log pφc(x|zc)] (2)

I(zs;y) ≥ H(y) + Ep(y,zs)[log pφs(y|zs)]. (3)

Note that both H(x) and H(y) are entropy terms which are constants with respect to φc and φs,
which are ignored during optimization. On the other hand, in order to minimize the intractable MI
I(zc; zs), this paper introduces an approximate network qσ to approximate conditional distribution,
so that the upper bound of I(zc; zs) can be obtained. Note that the parameter σ is fixed when
estimating the MI upper bound by

I(zc; zs) ≤ Ep(zc,zs)[log qσ(zs|zc)]− Ep(zc)p(zs)[log qσ(zs|zc)]. (4)
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In training process, the approximate network is trained by minimizing the negative log-likelihood
Ep(zc,zs)[− log qσ(zs|zc)]. With the MI estimators, the objective function of disentanglement is
integrated into IDis, which is the upper bound of JDis so that it can be optimized by the the following
objective by using MI estimators

IDis = Ep(zc,zs)[log qσ(zs|zc)]− Ep(zc)p(zs)[log qσ(zs|zc)]︸ ︷︷ ︸
upper bound of I(zc;zz)

− Ep(x,zc)[log pφc(x|zc)]︸ ︷︷ ︸
lower bound of I(zc;x)

−Ep(y,zs)[log pφs(y|zs)]︸ ︷︷ ︸
lower bound of I(zs;y)

≥ JDis
(5)

3.2 INFORMATIVE MODEL REGULARIZATION

After decomposing the attributes from question, the style representations zs have an unpredictable
phenomenon in the visualized latent space. The unknown disturbing factors make the style repre-
sentations clustered in the latent space and also make them sensitive in representing the attributes of
question. Based on the concept of learning criteria, the clustering phenomenon in the style represen-
tations1is seen as the main factor which causes the language priors. Such a representation cannot
effectively express the general meaning of the question, but can only reflect the mapping or relation
between each question and the corresponding answer. To alleviate this phenomenon, this paper in-
troduces another regularization term corresponding to the entropy of model predicted answer and
style predicted answer. The entropy represents the perturbation of a probability distribution, and
the learning of representation can be constrained by controlling the entropy (Figure 2b). Therefore,
there are two goals in the regularization term.

• Ensure the model distribution p(y|fθ(x),xv) which considers that image xv and question x
are sharper than the style distribution pφs(y|fθ(x)) which doesn’t consider image contents.

• Make the style predicted distribution smoother so that it can generally represents the style
attributes of question.

The regularization is derived with two terms where the first term is the model predicted entropy, and
the second term is the style predicted entropy which constrains the learning of style representation

RH = H(y|fθ(x),xv)− γH(y|fθ(x))

= Ep(x,xv,y)[− log p(y|fθ(x),xv)]− γEp(x,y)[− log pφs(y|fθ(x))]
(6)

where the hyperparameter γ ≥ 0 controls the balance of how the features of language priors ex-
pressed in style representations. For lower γ, slight constraint occurs and the style representation
continues to learn the mapping sensitively. On the contrary, larger γ forces the style representation to
generally learn the attributes of question. It is then possible to restrict the representation capability.

To optimize the pre-trained task, minimizing the negative log-likelihood loss is introduced. For
minimizing the conditional negative log-likelihood− log p(y|fθ(x),xv) of VQA task, we introduce
the disentanglement network fθ. The learning objective is formulated as a context-irrelevant loss

LI(x,x
v,y) = − log p(y|fθ(x),xv) + βIDis (7)

where first term is the conditional negative log-likelihood, second one is the MI upper bound and
β in loss function is a formal expression of reweighting the two objectives of disentanglement and
answer prediction. Furthermore, in order to alleviate the impact of language priors on the task,
this paper adopts the regularization RH to constrain the disentanglement network. The overall pre-
trained VQA task is optimized by minimizing the regularized objective LI +RH.

3.3 VARIATIONAL ATTENTION WITH LOCAL REPARAMETERIZATION

In this section, we expand VQA task to visual dialog task. Specifically, we treat regularized model
is a pre-trained model and present a novel variational attention mechanism to produce the context-
relevant (condition-relevant) information by considering question and historical conversations. With

1The finding from the experiments shows that the style representations are the main factor affecting the
language priors.
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both pre-trained model and variational attention mechanism, the visual dialog system can effectively
respond to various questions in this task.

Consider a supervised learning problem with training data D := {x,y}, where x is input data, y
is corresponding target. Conditional likelihood p(y|x) constructed with variational Bayesian atten-
tion framework, where the key concept of variational attention is to convert attention weights that
obtained from query and keys to stochastic weights w ∈ Rk, where k is determined by the number
of keys. Consider a Bayesian framework, similar to (Kingma & Welling, 2014), two data-dependent
distributions were considered: posterior distribution p(w|x,y) and prior distribution p(w|x). In
practical, variational attention modules the attentive distribution that share a common structure with
deterministic soft attention instead of adopting the deterministic attention weights directly. With
variational inference (Hoffman et al., 2013; Kingma & Welling, 2014), it is equivalent to maximiz-
ing an evidence lower bound (ELBO) of the intractable log marginal likelihood log p(y|x), where
qφ is approximate posterior distribution.

Ew∼qφ [log p(y|x,w)]−DKL(qφ(w|x,y)‖p(w|x)) (8)

In learning procedure, the model is trained by maximizing the objective function Eq. 8. Learning
the distribution qφ by minimizing DKL(qφ(w|x,y)‖p(w|x)). With the learning criterion, stochastic
weights can be modeled by variational distributions.

In order to identify context-relevant conversations in visual dialog (Figure 1), we think about how to
effectively and robustly identify the relevant components. Inspired by (Shayer et al., 2018; Peters &
Welling, 2018), this paper proposes a variational attention mechanism that adopting Bernoulli dis-
tribution to sample weights discretely. Specifically, the variational attention mechanism constructed
with Bernoulli distribution can ignore conditional-irrelevant information and provide conditional-
relevant information to the pre-trained model. In probability theory and statistics, Bernoulli distri-
bution is a discrete probability distribution of a random variable w ∼ PW (w; p) which takes the
value 1 with probability p and the value 0 with probability 1 − p. Connecting with attention mech-
anism, there are a query q and keys K. This paper define p = g(α), where p is a vector that
decide the parameters of the Bernoulli distribution, α is deterministic attention weights obtained by
standard attention mechanism (i.e. α = fattn(q,K)) and g(α) = pmin +α(pmax− pmin) is a scaling
function which limits the output range between pmin and pmax. Note that 0 ≤ αi ≤ 1 computed from
deterministic attention calculation. The optimal solution would be PW (wi = 1) = 1 or 0 if equality
is achieved. It is not desirable, as the Bernoulli distribution in such case would be too determin-
istic and always assign one or zero probability to the attentive weights. Therefore, the purpose of
introducing the scaling function is to avoid the loss of randomness in the Bernoulli distribution.

Consider a variational attention mechanism. Since w is a random vector, za =
∑
i wivi is

also a random vector, where vi is a value component of an attention mechanism. However, in
practical, we cannot directly reparameterize the Bernoulli distribution, and discrete weights will
cause training process to be non-differentiable. Therefore, this paper quotes Central Limit The-
orem (CLT, details was provided in App. A.1) and reparameterize the probability distribution of
sample average that sampled from Bernoulli. Specifically, we sample M independent and identi-
cally distributed (i.i.d.) samples from the Bernoulli distribution, so that we can compute the mean
µ̄ = Ewi∼PW

[
1
M

∑M
i=1 wi

]
and variance σ̄2 = Varwi∼PW

(
1
M

∑M
i=1 wi

)
of sample average re-

spectively. Following the linear computation of Gaussian distribution, it follows that za is a Gaussian
distribution with mean µ and variance σ2, specifically:

za ∼ N (za;µ,σ2) = N

(
za;
∑
i

µ̄ivi,
∑
i

σ̄2
i v

2
i

)
(9)

Hence, we can obtain a variational distribution over the Bernoulli distribution. From the attentive
distribution approximated by Gaussian we can easily sample za by reparameterization trick (Kingma
& Welling, 2014). In practical, za = µ+σ�εwhere ε is sampled from normal distribution (i.e. ε ∼
N (ε; 0, I)), where � denotes element-wise multiplication. The combination of CLT approximation
and reparameterization trick is also known as the local reparameterization trick. Given the sampled
za we can proceed as usual and apply nonlinear or backprobagation. At test phase, instead of using
the local reparameterization trick, a stochastic weights w ∼ PW (w; g(α)) is sampled and used.

In this task, we treat regularized VQA model as a pre-trained model and apply a variational attention
mechanism to produce the context-relevant information. In practical, we let the current question as
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VQA v2 VQA-CP v2
Model γ Overall Yes/No Number Other Overall Yes/No Number Other
UpDn − 62.85 80.89 42.78 54.44 39.49 45.21 11.96 42.98
AdvReg − 62.75 79.84 42.35 55.16 41.17 65.49 15.48 35.48
Ours† − 63.07 80.74 42.08 55.73 39.94 63.87 14.63 35.79
Ours 0.2 60.31 78.39 40.25 51.02 43.83 68.42 14.79 41.08

0.4 58.81 76.27 39.38 49.82 47.99 70.51 15.69 44.93
0.5 58.33 76.84 38.81 49.73 48.33 71.03 18.25 44.43

Table 1: Evaluations of our model on VQA v2 and VQA-CP v2. In the table, UpDn (Anderson
et al., 2018) does not deal with the language priors problem, so does our model without introduce
regularization (mark † in the table). AdvReg (Ramakrishnan et al., 2018) introduce adversarial
learning to alleviate the language priors.

a query, and historical conversations as keys. Consider a variational Bayesian framework, we can
integrate a context-relevant loss to visual dialog system.

LR(x,xc,xv,y) = Eza∼qφ [− log p(y|fθ(x),xc,xv, za)]

+DKL(qφ(za|x,xc,y)‖p(za|x,xc)) + βIDis
(10)

where xc denotes the conversations in visual dialog. The details of overall model architecture was
provide in App. A.2.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

For pre-trained VQA task, our approach is evaluated on the most commonly used benchmark dataset:
Visual Question Answering under Changing Priors (VQA-CP v2) (Agrawal et al., 2018). If a well-
designed model has language priors problem during training, there will be no way to escape during
testing. The dataset are created by reorganizing the training and validation splits of the VQA v2
dataset (Goyal et al., 2017). For comparison, we also evaluate our approach on the VQA v2 dataset
which consists of a large number of real images collected from COCO dataset (Lin et al., 2014), free-
form natural language questions and concise answers. For visual dialog task, we use the VisDial v1.0
dataset (Das et al., 2017) to evaluate the proposed method. Images for the training split are also from
COCO dataset. Each dialog is crowd-sourced on a distinct image and consists of 10 rounds of dialog
turns. Each question is also accompanied by a list of 100 randomly generated potential responses,
which the model requested to rank them. In addition, in order to evaluate the consistency of the
ranking, “dense annotations” was provided with a relevant scores between zero and one containing
100 candidate response.

For evaluation metrics, this paper follows standard evaluation method (Antol et al., 2015; Agrawal
et al., 2018) to evaluate the pre-trained VQA model. According to the catalog provided on dataset,
we calculated the accuracy under different catalogs, namely ”Yes/No”, ”Number” and ”Other” cata-
logs. On the other hand, retrieval metrics (Das et al., 2017) were used to evaluate the effectiveness of
variational attention in visual dialog. Specifically, Mean, R@k, MRR and NDCG were introduced
to evaluation. Among them, the first three evaluation metrics evaluate the ranking position of human
responses, and the last one focuses on evaluating the relevance of the overall sorted responses.

4.2 QUANTITATIVE RESULTS

Visual question answering. For the quantitative evaluation, we evaluated the accuracy on VQA
v2 and VQA-CP v2 datasets. For fair comparison, we compared the methods constructed based
on object detection (App. A.2) framework and reported the results in Table 1, which shows that
UpDn and the model we propose that without introducing regularization get the better performance
in VQA v2, it shows that when the model suffers the language priors problem, it can perform well on
VQA v2. On the contrary, both of them have a dramatic decline on VQA-CP v2 evaluation. In ad-
dition, through the adjustment of the hyperparameter γ, we could adjust the degree of the language
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Figure 3: Latent space visualization for different constraints of style representation, where the
red, blue and green points respectively represent the “Yes/No” questions, “Number” questions and
“Other” questions.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
RvA 55.86 64.42 50.71 81.50 90.15 4.06
MCA-I-H 60.27 64.33 51.12 80.91 89.65 4.24
MVAN 60.17 65.33 51.86 82.40 90.90 3.88
Ours (soft) 60.23 65.18 51.74 82.38 90.88 3.72
Ours 60.21 65.74 53.46 82.63 90.79 3.69

Table 2: Evaluate on VisDial v1.0. This paper compare the models which constructed based on soft
attention mechanism in different manners. RvA (Niu et al., 2019) recursively calculate vision atten-
tion based on dialog context. MCA-I-H (Agarwal et al., 2020) stacked the self attention and cross
attention in image representations and text representations. MVAN (Park et al., 2021) considers the
multi view such as word level attention and sentence level attention.

priors alleviation. Experiments show that when the value of γ is set at 0.5, there would be better
performance. Furthermore, in order to investigate the effect of the proposed method on language
priors under different constraints, we visualized the pattern of the regularization term for the repre-
sentation learning of the style representations by t-SNE plots (Van der Maaten & Hinton, 2008). In
Figure 3 we could see that style representations are divided the same type of questions into many
clusters. Through the corroboration of numerical report and the visualized latent distribution, it can
be verified that the regularization adjustment can effectively alleviate the clustering phenomenon
and language priors.

Visual dialog. For visual dialog task, we compared models (Niu et al., 2019; Agarwal et al., 2020;
Park et al., 2021) that introduce soft attention to vision information and text information in different
manner. On the other hand, in order to compare the quality of the proposed method, we implement
a soft attention version of the proposed method and evaluate it under same setting. The results are
reported in Table 2. The proposed method get the better performence than other methods in MRR,
R@1 and Mean, which shows that it is more specialized in predicting human responses than sorting
candidate responses. Furthermore, in order to investigate the robustness of the proposed method to
historical conversations, we randomly selected a small number of context sentences (not including
captions) in the validation split of VisDial v1.0 and randomly select less of three rounds of dialog
in each conversation and modify less of three words, which is to demonstrate when the historical
dialog is wrong or irrelevant to current question. We report the results in Table 3. It could be seen
from the results that most models would be affected, but the proposed method alleviate the decline.
Similarly, we could also find that the soft attention version has a lot of decline compared to the
variational attention version.

4.3 QUALITATIVE RESULTS

Visual question answering. For the qualitative results, we quantitatively examine the effective-
ness of the proposed strategy. We reported the results in App. A.3, this paper show the results of
ablation study include the effect of not introducing regularization and regularization under different
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Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
RvA 53.24 60.58 49.31 80.67 86.92 4.23
MVAN 57.83 61.43 50.03 80.89 87.69 4.09
Ours (soft) 58.75 61.31 49.89 80.74 87.53 4.17
Ours 60.03 62.82 51.12 81.48 88.23 3.92

Table 3: Robustness test with the noise context

Figure 4: Qualitative results on the visual dialog task. Visualization of the attention map with the
different algorithm. The red (soft attention) considers all components, the blue (discrete variational
attention) identifies whether it is related to the question. The darker the color indicates that the
model determines that it is more important to the current question.

weights on the results. The experiment results show that adjusting γ properly can effectively reduce
the occurrence of language priors in VQA.

Visual dialog. For visual dialog, we visualize the attention map with different approaches based on
the same architecture as shown in Figure 4. The red one is the results of soft attention mechanism, the
blue one is the results of proposed variational attention mechanism, we can see that the variational
attention is discretely consider relevant contextual information instead of considering all history no
matter they are relevant or not. Furthermore, we analyzed error examples on visual dialog for the
proposed method, the results show that when it is the first round of dialog, there are not many bases
that can calculate context weights, which leads to limiting on the randomness of the model and some
unreasonable situations, the detail was provided in App. A.4.

5 CONCLUSIONS

In this paper, this paper present a unified approach to deal with context-free issue in visual dia-
log. First of all, we introduce VQA task for pre-trained so that the model can effectively respond
context-free questions. In addition, this paper present a regularization scheme and apply it to a dis-
entanglement network that constructed with mutual information, which aims to alleviate language
priors and to strengthen the dependence of vision and language. Secondly, in order to effectively
identify context-relevant conversations, this paper present a discrete variational attention mechanism
to produce context-relevant condition, so that we can transfer VQA to visual dialog. The experiment
results show that the proposed method can effectively alleviate language priors and improve the
robustness of the system.
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A APPENDIX

A.1 CENTRAL LIMIT THEOREM

Figure 5: Concept of the Central Limit Theorem.

Central Limit Theorem (CLT) is one of the most important and commonly used methods in prob-
ability theory and statistics. The content of the theorem shows that when {w1,w2, . . .wM} are
independent and identically distributed (i.i.d.) random variables randomly sampled from arbitrary
probability distribution with mean µ and variance σ2, the sample average would follows

lim
M→∞

w̄M − µ
σ/
√
M
∼ N (0, 1) ; w̄M =

w1 + w2 + · · ·+ wM
M

It states that if there are sufficiently large random samples from the population with replacement,
then the distribution of the normalized sample average will be approximately normally distributed.

A.2 MODEL ARCHITECTURE OF VISUAL DIALOG SYSTEM

As described in Section 3.3, this paper expand the VQA task to visual dialog task. Specifically, we
treat VQA model as a pre-trained model and we apply a variation attention mechanism to produce
the context relevant (condition relevant) information. The overall model architecture shown in Fig-
ure 6. In visual dialog task, a system is given an image xv , the ’ground truth’ dialog history xc

(including the image caption), the question x, and a list of N = 100 candidate answers, and asked
to return a sorting of the candidate answers. For pre-trained model, with disentanglement network
fθ, we adopt content embedding zc as a query to compute the attention weights with object repre-
sentations, where object representations are encoded by Faster R-CNN, which can identify objects
in the image and encode them into respective representations. With attention weights between each
proposals and content from question, we can take out the k highest attention weight values of pro-
posals by gating function, it means that these k proposals in image are most relevant to the content
representation of a given question. On the other hand, we treat the output of variational attention
mechanism za is a condition of pre-trained model so that we can manipulate the model according
to different conditions. In other words, the system can handle whether or not there is an associated
contextual conversations. In decoder part, we encode sentence representations of answer candidates.
In practical, we rank them according to the dot products of the candidate representations and out-
put of overall architecture representation, then apply the softmax function to obtain the probability
distribution of the candidates so that we can optimize model parameters.
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Figure 6: The overall model architecture of the visual dialog system.

A.3 QUALITATIVE RESULT OF VQA

For the qualitative results, this paper evaluate the effectiveness of the proposed method on VQA-CP
v2 dataset and show that the effect of regularization under different setting. The results show that
proper adjustment of γ can effectively alleviate the occurrence of the language priors in VQA.

Figure 7: Qualitative results of language priors in VQA. In the figure, it can be seen that the ad-
justment of γ can transform the response originally affected by language priors into a response that
correctly matches the image content.

14



Under review as a conference paper at ICLR 2022

A.4 ERROR ANALYSIS FOR DISCRETE VARIATIONAL ATTENTION MECHANISM

For error analysis, we visualized the attention map of the first round of conversation. Since it is the
first round of dialog, there are not many historical conversations that can calculate attention weights,
which leads to restrictions on the randomness of the model and some unreasonable situations. As
shown in Figure 8, we can see that even if the information of the ground-truth response is hidden
in the context, there is still a low probability that it will not be adopted by the model. Similarly,
even if the question is not related to the context, the model still has a high probability of adopting its
information and treating it as important information.

Figure 8: Error analysis on the proposed method.
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