
Combination Generalization of Capability-Specific Neurons in LLMs

Anonymous ACL submission

Abstract

Although large-scale language models (LLMs)001
exhibit various exciting capabilities, under-002
standing the mechanisms behind these abilities003
remains a challenging problem. In this paper,004
we aim to understand these mechanisms from005
the perspective of neurons. Specifically, we006
first propose a Detecting Capability-Specific007
Neurons (DCSN) method. Extensive enhance-008
ment and erasure experiments demonstrate that009
the detected neurons are highly correlated with010
these capabilities, exhibiting strong cohesion011
and separability, which we define as capability-012
specific neurons. Moreover, leveraging these013
neurons, we conducted compositional experi-014
ments and, for the first time, discovered that015
capability neurons exhibit compositional gen-016
eralization. Inspired by these findings, we pro-017
pose a Capability Neuron-Level Fine-tuning018
method (CNLF) that fine-tunes specific capa-019
bility neurons to achieve performance improve-020
ments across datasets and tasks. Extensive021
experiments validate the effectiveness of this022
method and provide a low-cost, highly gener-023
alizable fine-tuning paradigm. Our research024
offers interpretable insights into the capability025
mechanisms of LLMs.026

1 Introduction027

Large-scale language models (LLMs) have028

demonstrated remarkable performance improve-029

ments across various natural language processing030

tasks (Zhao et al., 2023). Despite their powerful031

capabilities, the underlying principles of the mech-032

anisms driving these capabilities(Yan et al., 2024;033

Haltaufderheide and Ranisch, 2024), as well as the034

relationship between model parameters and per-035

formance, remain unclear to humans(Peng et al.,036

2024). Recently, many studies have attempted to037

further understand and enhance the capabilities of038

these models, but their efforts have been hindered039

by the black-box nature of LLMs(Bonaldi et al.,040

2024; Sun et al., 2024). Therefore, understand-041

ing the internal mechanisms and characteristics of 042

these models is key to improving their capabilities 043

and interpretability(Ding et al., 2023). 044

Previous studies have attempted to establish a 045

correspondence between knowledge or tasks and 046

model parameters, defining these parameters as 047

knowledge neurons or task neurons(Yao et al., 048

2024). However, the assumption of associating 049

knowledge or tasks with specific neurons has been 050

questioned in existing research(Dai et al., 2021). 051

Studies have found a high degree of overlap among 052

different knowledge neurons, which does not align 053

with the expected localization of parameters(Huang 054

et al., 2025b) . Furthermore, the functions of these 055

overlapping neurons remain unexplained(Huang 056

et al., 2025a). Similar issues of inexplicability also 057

exist with task neurons(Leng and Xiong, 2025). 058

Previous research has found that a model’s ca- 059

pabilities can transcend knowledge and tasks, pro- 060

viding a potential explanation for overlapping neu- 061

rons(Huang et al., 2025b). Achieving parameter 062

localization of capabilities is key to interpretability 063

research for LLMs(Trimmer, 2015). Inspired by 064

these studies, we attempt to pose three questions: 065

(1) Do neurons related to specific capabilities ex- 066

ist in LLMs? (2) Do capability neurons exhibit 067

compositional generalization? (3) Can we improve 068

LLMs through these neurons? 069

To address the three questions above, we con- 070

ducted an analysis of capability neurons in LLMs. 071

First, we constructed a compositional generaliza- 072

tion dataset encompassing four computational ca- 073

pabilities: addition, subtraction, multiplication, and 074

division. We then proposed a Detecting Capability- 075

Specific Neurons (DCSN) method. Next, we 076

performed enhancement and erasure experiments, 077

demonstrating that these neurons are highly corre- 078

lated with the respective capabilities. Our exper- 079

iments show that different capability neurons ex- 080

hibit a low overlap rate (Separation), while neurons 081

identified utilizing different datasets that demon- 082
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strate the same capability exhibit a high overlap083

rate (Cohesion) (MacQueen, 1967). Therefore, we084

refer to these as capability-specific neurons.085

Utilizing the identified capability-specific neu-086

rons, we delved the mechanism of capability invo-087

cation within the model. When performing tasks,088

the model often invokes multiple capabilities. To089

reflect this phenomenon, we constructed composi-090

tional problems within the compositional general-091

ization dataset. For example, the problem "1 + 3 *092

5 = ?" requires both addition and multiplication ca-093

pabilities from the model. We collected neuron ac-094

tivation data during the model’s execution of such095

tasks. Interestingly, the addition-specific neurons096

and multiplication-specific neurons were signifi-097

cantly activated. We then conducted extensive ex-098

periments across various problem types (involving099

different operations). The results demonstrated that100

capability-specific neurons exhibit compositional101

generalization, marking the first time the mech-102

anism of capability invocation within the model103

has been revealed. Counterintuitively, we observed104

that when addition neurons were activated, subtrac-105

tion neurons were activated 22% more than other106

neurons (e.g., for multiplication or division). This107

suggests a certain degree of association between108

addition and subtraction. Through ablation exper-109

iments, we inferred that this is likely due to the110

inverse relationship between addition and subtrac-111

tion.112

To enhance the model’s various capabilities,113

we proposed a Capability Neuron-Level Fine-114

tuning method (CNLF). By fine-tuning these des-115

ignated capability-specific neurons, we improved116

the model’s abilities and achieved superior perfor-117

mance across 12 downstream tasks. Compared to118

fine-tuning all parameters, this method improved119

performance by 18.9% on unseen datasets. Addi-120

tionally, we were able to control the model’s indi-121

vidual capabilities, thereby enhancing the model’s122

safety and controllability.123

To the best of our knowledge, we are the first to124

discover that the model’s capability-specific neu-125

rons possess compositional generalization. We126

also proposed a low-cost, highly generalizable fine-127

tuning method that enables control over the model’s128

capabilities. This work sheds light on the inter-129

nal mechanism of capability invocation within the130

model and enhances its interpretability. Our contri-131

butions can be summarized as follows:132

• We proposed a Detecting Capability-Specific133

Neurons (DCSN) method. and successfully 134

identified capability-specific neurons. Com- 135

pared to previously studied knowledge neu- 136

rons and task neurons, capability-specific neu- 137

rons demonstrate superior separability and co- 138

hesion. 139

• To clarify the mechanism of capability invoca- 140

tion within the model, we conducted composi- 141

tional generalization experiments and discov- 142

ered that capability-specific neurons exhibit 143

compositional generalization. This provides 144

important insights for understanding and en- 145

hancing the model’s multiple capabilities. 146

• We introduced a Capability Neuron-Level 147

Fine-tuning method (CNLF), which simulta- 148

neously improves multiple capabilities of the 149

model and achieves significant performance 150

gains. Extensive experiments have demon- 151

strated the effectiveness of the method. 152

2 Related Work 153

Parameter Localization. Knowledge Neurons 154

indicate that knowledge (such as triplets) can be 155

localized in parameters, with storage forms includ- 156

ing distributed parameters(Liu et al., 2024b), pa- 157

rameter layers(Meng et al., 2022b), and parame- 158

ter chains (Yao et al., 2024). Task Neurons indi- 159

cate that different tasks can be localized and utilize 160

Capability Neurons for task generalization(Leng 161

and Xiong, 2025). Capability Neurons Localiza- 162

tion points out that knowledge cannot be localized, 163

with unexplainability, but capabilities can be local- 164

ized(Huang et al., 2025b). 165

Localization Method Distributed Parameters: 166

Knowledge-sensitive neurons are detected using 167

a gradient attribution method, and after sorting, 168

the Top-K neurons are selected and considered as 169

knowledge neurons(Huang et al., 2024). Param- 170

eter Layers: Similar to the causal tracing (Meng 171

et al., 2022b), a clean run that predicts the fact, 172

a corrupted run where the prediction is damaged, 173

and a corrupted-with-restoration run that tests the 174

capability of a single state to restore the predic- 175

tion(Huang et al., 2025a). Parameter Chains: KC 176

(Yao et al., 2024) believes that individual knowl- 177

edge is stored on a parameter chain and utilizes the 178

entire parameter chain to recall knowledge. 179
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Fig. 1: Illustration of our research methodology. The entire framework consists of three steps: Recognition
Capability-Specific Neurons, Compositional Generalization and Capability Neuron-Level Fine-tuning. Step 1
provides identification methods for subsequent research, Step 2 provides interpretability of capability mechanisms
for subsequent research, and provides justification for multi-capability enhancement in Step 3.

3 Methodology180

Figure 1 illustrates our research approach. First,181

we proposed a capability neuron detection algo-182

rithm and successfully identified capability-specific183

neurons, which exhibit strong separability and co-184

hesion. Next, we conducted capability composi-185

tional generalization experiments and uncovered186

the mechanism of capability invocation within the187

model. Finally, based on capability-specific neu-188

rons, we proposed a fine-tuning method at the ca-189

pability neuron level aimed at enhancing multiple190

capabilities of the model.191

3.1 Construction of Compositional192

Generalization Dataset193

To identify neurons that are highly correlated194

with specific capabilities utilizing data, it is first195

necessary to clarify the relationship between capa-196

bilities and data(Hinterstoisser et al., 2011). Ca-197

pabilities reflect the model’s proficiency in solv-198

ing certain problems, they are transferable across199

datasets, tasks, and even languages. Our composi-200

tional generalization dataset consists of two parts:201

the neuron identification part and the compositional202

generalization part.203

Neuron Identification Part. This part helps204

identify the capability-specific neurons within the205

model. First, we selected four basic arithmetic206

operators—"+", "-", "*", and "/", which reflect dif-207

ferent computational capabilities. To achieve a208

cross-task setup, our data includes three types of 209

tasks: Multiple-choice (MQ) tasks, True/False (TF) 210

tasks, and Direct Generation (DG) tasks. Addition- 211

ally, to meet the cross-language requirement, we 212

utilized Deepseek V3’s (Liu et al., 2024a) trans- 213

lation capabilities to provide data in both English 214

and Chinese. The specific data formats are shown 215

in Table 1. 216

Combination Generalization Part. This dataset 217

helps clarify the capability invocation mechanism 218

within the model. The dataset includes five differ- 219

ent types of expressions. For example, 2-operator 220

expressions (e.g., 1+3*5), which involve two differ- 221

ent operators. Interestingly, to explore the impact 222

of repeatedly occurring operators on neuron acti- 223

vation levels, we designed a 5-operator expression, 224

such as (1+3*5-6/3+5), where the "+" operator ap- 225

pears twice. The specific data formats are shown 226

in Table 1. 227

3.2 Recognition capability-specific neurons in 228

LLM 229

To identify capability-specific neurons, it is nec- 230

essary to determine the correlation between each 231

neuron and a specific capability. Previous stud- 232

ies have focused on locating neurons responsible 233

for individual pieces of knowledge (Meng et al., 234

2022a) or tasks (Leng and Xiong, 2025). Inspired 235

by these works, we propose a Detecting Capability- 236

Specific Neurons (DCSN) method, which utilizes 237
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Multi-operation
expression

< + > < + ∩ * > ... < + ∩ - ∩ * ∩ \ >
< 1-OP: 1 + 6 = ?>; < 2-OP:1 + 3*5 = ?>; ... , < 5-OP: 1+3*5 - 6/3+5=? >

Category Component Prompt Target Answer

DG Based on the given expression "1+3*5=?", please provide
the answer directly:

16

MQ
Based on the given expression "1+3*5=?", the following
options are provided: (a) 10, (b) 0, (c) 16, and (d) 26.
Please select the correct option:

c

TF Based on the given expression "1+3*5=16",
please determine whether it is correct:

Yes

Table 1: Example of combining generalized datasets. The categories are: Directly Generated(DG), Multiple-choice
Questions(MQ), and True/False questions(TF). The target answer are "16", "c" and "Yes", respectively. 𝑖-OP
indicates that the operation expression contains 𝑖 types of operations.

the contribution of each neuron to a capability238

as a relevance score. Notably, current LLMs are239

based on the autoregressive transformer architec-240

ture, which consists of Multi-Head Self-Attention241

(MHSA) and feed-forward networks (FFNs) (Tou-242

vron et al., 2023). Previous research has demon-243

strated that FFNs can store a large amount of para-244

metric knowledge(Dai et al., 2021). Our experi-245

ments focus solely on this component.246

For identifying neuronal samples247

𝑆 = [𝑠1, 𝑠2, ..., 𝑠 𝑗], we compute correlation248

score for each neuron 𝑛𝑖 at layer 𝑙 as:249

𝐶 (𝑖, 𝑙, 𝑡, 𝑆) = 1
𝑛

𝑛∑︁
𝑗=0

𝐴
𝑙, 𝑗

𝑖,−1 · (𝑊𝑢𝑛𝑊
𝑙
𝑢𝑑)𝑡 ,𝑖 (1)250

where (·)𝑡 ,𝑖 represents the 𝑡−th row and 𝑖−th col-251

umn of the input matrix, and 𝐴
𝑙, 𝑗

𝑖,−1 is the activation252

output at the last token for neuron 𝑛𝑖 at layer 𝑙 of253

sample 𝑠 𝑗 . The 𝑊𝑢𝑛 is the unembedding matrix,254

and 𝑊 𝑙
𝑢𝑑

is the up or down weight of the forward255

feedback network at layer 𝑙.256

Here we regard 𝑊𝑢𝑛𝑊
𝑙
𝑢𝑑

∈ R𝑣×𝑑𝑚 as a projec-257

tion function projecting from activations of the neu-258

rons to distribution of the vocabulary, where 𝑣 is the259

vocabulary and 𝑑𝑚 is the intermediate, and regard260

𝐴𝑙
𝑖,−1 as a coefficient of the projection, respectively.261

This projection clearly displays the average contri-262

bution level of each neuron to all samples.263

To identify the capability-specific neurons, we264

take the 𝑀𝑎𝑠𝑘 matrix:265

𝑀𝑎𝑠𝑘𝑖,𝑙 =

{
1 |𝐶 − 𝑚𝑒𝑎𝑛(𝐶) | > 𝜎 · 𝑣𝑎𝑟 (𝐶)
0 𝑒𝑙𝑠𝑒

(2)
266

where 𝑚𝑒𝑎𝑛(·) denotes the mean value of all scores 267

and 𝑣𝑎𝑟 (·) indicates the variance of the neurons. 𝜎 268

is the threshold guiding us to find the task neurons. 269

According to statistical principles (Kumar et al., 270

2007), in the absence of any special instructions 271

to follow, we view the neurons with scores outside 272

𝜎 = 6 as capability-specific neurons. We also 273

provide experimental results for other 𝜎 values in 274

the Appendix B. 275

3.3 Compositional Generalization Experiment 276

Once it is confirmed that capability-specific neu- 277

rons truly exist, we analyze how the model invokes 278

various capabilities when solving problems. First, 279

we design a forward reasoning experiment to ob- 280

serve whether the corresponding neurons are suc- 281

cessfully activated when the model solves multi- 282

operation expression problems. Additionally, in 283

the reverse validation experiment, we erase certain 284

capability-specific neurons in advance to evaluate 285

the model’s performance on multi-operation ex- 286

pression problems. Through this process, we aim 287

to clarify the model’s internal mechanism for utiliz- 288

ing capabilities, thereby revealing the relationship 289

between capability-specific neurons and model per- 290

formance. 291

Forward Reasoning Experiment. We utilize the 292

compositional generalization dataset introduced in 293

Section 3.1 to have the model solve multi-operation 294

expression problems. By analyzing the activa- 295

tion states of neurons in the model, we determine 296

whether capability-specific neurons exhibit compo- 297

sitional generalization. Specifically, we examine 298

whether the activated neurons include the identi- 299

fied capability-specific neurons and whether these 300
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Enhancement LLaMa-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

Original 52.4 50.3 45.2 43.6 47.8 50.7 50.1 45.2 40.3 46.5
FT-Random 52.7 51.0 45.7 43.9 48.3 50.9 50.7 45.3 40.5 46.8
FT-w/o Cap 56.7 55.6 50.6 48.3 52.8 56.3 56.2 49.3 47.6 52.3

FT-Cap (Ours) 67.8 68.3 66.1 65.7 66.9 (↑ 14.1) 66.4 67.4 65.4 65.3 66.1 (↑ 13.8)

Erasure LLaMa-3-8B LLaMa-3-13B
+ - * / Avg. (↓) + - * / Avg. (↓)

Original 56.4 55.3 48.4 48.6 52.1 58.6 57.4 50.1 51.7 54.4
Deactivate-Random 56.3 55.0 48.4 48.5 52.0 58.5 57.3 49.8 53.1 54.6

Deactivate-Cap (Ours) 32.5 31.5 30.4 30.8 31.3 (↓ 20.7) 34.6 32.7 31.6 32.7 32.9 (↓ 21.7)

Table 2: Results of enhancement and erasure experiments. FT-Random refers to fine-tuning an equal amount of
random parameters (0.05% of parameters), FT-w/o Cap refers to fine-tuning all parameters except for the specified
capability-specific neurons (99.95% of parameters), and FT-Cap refers to fine-tuning the specified capability-specific
neurons (0.05% of parameters). The experiment only disabled 10% of ability specific neurons.

neurons correspond to the operators in the multi-301

operation expressions. This experiment aims to302

verify whether specific neurons demonstrate com-303

positional generalization properties.304

Reverse Validation Experiment. We erase cer-305

tain capability-specific neurons in advance to ob-306

serve their impact on the corresponding model ca-307

pabilities. For example, we set addition-specific308

neurons to zero and then have the model answer309

multiple questions containing addition operators,310

measuring the change in accuracy before and af-311

ter the erasure. Furthermore, we erase multiple312

capability-specific neurons simultaneously to ex-313

amine the resulting accuracy changes in related314

problems. This step aims to validate the authentic-315

ity of the compositional generalization properties316

of capability-specific neurons.317

3.4 Enhancing Multiple Capabilities of LLMs318

Utilizing Capability-Specific Neurons319

Through the analysis of capability-specific neu-320

rons, we found that these neurons exhibit com-321

positional generalization. This discovery reveals322

the mechanism by which the model invokes its323

capabilities and establishes a correspondence be-324

tween capability-specific neurons and model per-325

formance. However, enhancing the model’s perfor-326

mance remains a challenge. We propose a Capa-327

bility Neuron-Level Fine-tuning method (CNLF),328

aiming to leverage the detected neurons to further329

improve the model’s performance.330

First, given a set of training samples 𝐷, we fine-331

tune only the corresponding capability-specific neu-332

rons during the fine-tuning phase while freezing all333

other parameters. During the testing phase, infer-334

ence proceeds as usual. We refer to this approach 335

as Capability Neuron-Level Fine-tuning method. 336

Specifically, existing open-source datasets do not 337

solely focus on a single capability. For instance, 338

the dataset 𝑚𝑒𝑡𝑎_𝑚𝑎𝑡ℎ (Yu et al., 2023) reflects 339

both the model’s mathematical and language capa- 340

bilities, which poses challenges in selecting which 341

neurons to fine-tune. Fortunately, we have already 342

confirmed the existence of compositional general- 343

ization in capabilities. The model’s performance 344

on 𝑚𝑒𝑡𝑎_𝑚𝑎𝑡ℎ is primarily related to its mathe- 345

matical and language capabilities. Therefore, we 346

choose to fine-tune both the mathematics and lan- 347

guage capability-specific neurons simultaneously. 348

Experimental results validate the effectiveness of 349

this method. 350

4 Experiments: Recognition 351

Capability-Specific Neurons 352

In this section, we first utillized neuron DCSN 353

in Section 3.2 to detect capability-specific neu- 354

rons, and designed enhancement and erasure exper- 355

iments to verify the high correlation between these 356

neurons and capabilities. Finally, we constructed 357

dissociation and cohesion indicators to determine 358

the true existence of capability-specific neurons. 359

4.1 Experimental Setup 360

The first experiment is an enhancement exper- 361

iment, in which we fine tune the ability specific 362

neurons. Specifically, only ability specific neurons 363

are updated, while other parameters in the model 364

are frozen. The second experiment is an inhibi- 365

tion test. During the inference phase, we set the 366

ability specific neurons to zero while keeping other 367

parameters unchanged. 368
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Cohesiveness LLaMa-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

DG 95.47 93.73 92.96 94.35 94.19 95.63 93.78 93.86 94.25 94.35
TF 94.63 93.47 94.54 94.32 94.26 93.59 93.70 94.23 92.41 93.42
MQ 95.38 93.24 93.57 94.66 94.13 93.45 93.68 94.39 93.34 93.62
CH 84.11 81.63 82.77 83.32 82.97 83.54 80.55 80.76 81.62 81.59

Separability LLaMA-3-8B LLaMA-3-13B
+ ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓) + ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓)

DG 6.46 3.26 2.63 2.31 3.65 5.76 4.61 4.33 4.22 4.73
MQ 6.22 4.77 4.16 3.89 4.73 5.84 5.52 4.36 4.03 4.9
TF 5.73 5.05 4.53 4.06 4.82 5.65 5.08 4.51 3.76 4.7
CH 5.88 4.48 4.08 3.65 4.57 4.89 4.43 4.07 3.69 4.22
EN 6.38 5.47 4.33 3.45 4.84 5.79 5.66 4.35 3.57 4.76

Table 3: The results of cohesiveness and separability experiments. EN refers to all English datasets, while CH refers
to translating all English into Chinese datasets.

We tested three publicly available models of369

different sizes, including Llama-2-7B (Touvron370

et al., 2023), Llama-3-8B,Llama-3-13B and GPT-J-371

6B(Wang and Komatsuzaki, 2021). The proportion372

of ability specific neurons in the total parameters is373

0.05%. The datasets is neuron identification part in374

Section 3.1.375

4.2 Results376

Table 2 presents the results of the enhancement377

experiments. Compared to fine-tuning an equiv-378

alent number of random parameters, fine-tuning379

capability-specific neurons achieves significant per-380

formance improvements. Specifically, despite fine-381

tuning only 0.05% of the parameters, fine-tuning382

capability-specific neurons results in a 19.9% per-383

formance improvement. In comparison to "FT-384

w/o Capability," the performance improvement is385

14.1%. Notably, "FT-w/o Capability" refers to fine-386

tuning all parameters except the capability-specific387

neurons, which accounts for 99.95% of the total388

parameters, yet only achieves a mere 4.5% perfor-389

mance improvement. This demonstrates that the390

identified neurons are highly correlated with the391

model’s capabilities.392

Table 2 also provides the results of the erasure393

experiments. By zeroing out certain neurons and394

observing the performance drop, the more signif-395

icant the drop, the more sensitive the erased neu-396

rons are to the capability. Despite disabling only397

10% of the capability-specific neurons, the model398

experiences a 21.7% performance drop. When dis-399

abling an equivalent number of random parameters400

(0.05%), the model’s performance drops by only401

0.1%. This further highlights that the identified402

neurons are highly sensitive to the model’s capabil- 403

ities. 404

Meanwhile, previous studies lacked metrics to 405

evaluate the accuracy of neuron identification. In- 406

spired by clustering analysis(MacQueen, 1967), 407

capability-specific neurons for different capabil- 408

ities should exhibit high distinctiveness (e.g. 𝑛+ 409

and 𝑛−). The greater the distinctiveness, the higher 410

the identification accuracy. We define this metric as 411

separability 𝑆𝑒𝑝. Additionally, neurons identified 412

for the same capability (utilizing different datasets, 413

e.g., English 𝑛𝐸𝑁 and Chinese 𝑛𝐶𝐻) should ex- 414

hibit high similarity. The greater the similarity, the 415

stronger the identification reliability. We define 416

this metric as cohesiveness 𝐶𝑜ℎ. Formally, these 417

metrics can be expressed as: 418

𝑆𝑒𝑝(+ ∩ −) = 𝑛+ ∩ 𝑛−

𝐶𝑜ℎ(+) = 𝑛𝐶𝐻 ∩ 𝑛𝐸𝑁

(3) 419

Table 3 presents the results of cohesiveness and 420

separability. In previous studies, the cohesiveness 421

of KN was only 37.3%, while the separability of 422

ROME reached as high as 86.6%, making the iden- 423

tified neurons unconvincing (Huang et al., 2025b). 424

Even under interference from multiple question 425

types and multilingual data, the capability-specific 426

neurons identified in our study achieve a cohesive- 427

ness of 94.3% and a separability of only 3.6%. 428

This demonstrates that the identified capability- 429

specific neurons are both reliable and accurate. 430

In summary, compared to random parameters 431

and "w/o Capability," enhancing and suppressing 432

capability-specific neurons significantly impacts 433

model performance. The results of cohesiveness 434
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Activate LLaMA-2-7B GPT-J-6B
2-op 3-op 4-op 5-op Avg.(↑) 2-op 3-op 4-op 5-op Avg. (↑)

DG 94.37 89.67 87.43 86.66 89.53 90.63 87.64 84.13 83.22 86.41
MQ 91.22 86.42 82.67 82.64 85.73 89.76 86.42 82.37 82.66 85.30
TF 90.37 87.45 83.64 83.37 86.21 89.73 87.64 82.66 82.47 85.63
CH 89.67 85.43 81.09 80.43 84.16 90.13 86.57 82.93 82.86 85.62
EN 90.17 86.59 82.19 81.93 85.22 89.30 85.71 81.05 80.54 84.15

Deactivate LLaMA-3-8B LLaMA-3-13B
2-op 3-op 4-op 5-op Avg.(↓) 2-op 3-op 4-op 5-op Avg. (↓)

Original 60.25 56.47 54.29 54.17 56.29 66.54 63.41 60.37 59.29 62.40
Deactivate-Random 60.27 56.21 54.20 53.07 55.93 66.34 63.20 60.35 59.28 62.29

Ours 32.07 30.49 27.31 27.78 29.41 (↓ 26.88) 34.22 31.72 28.57 27.43 30.48 (↓ 29.92)

Table 4: The experimental results of forward reasoning and reverse verification.

Fig. 2: The activation values corresponding to different
operation symbols, and different colors refer to different
operators in 1-OP.

and separability further demonstrate the high accu-435

racy of neuron identification. Therefore, we con-436

clude that capability-specific neurons do indeed437

exist in LLMs.438

5 Experiments: Combination439

Generalization440

We analyzed ability specific neurons to under-441

stand the ability calling mechanism of the model.442

According to the analysis method in Section 3.3,443

we have listed the relevant results of combination444

generalization experiments.445

5.1 Forward reasoning experiment446

Experimental setup. The experimental data 𝐷 =447

[𝑑1, 𝑑2, ..., 𝑑𝑟 ] is the combined generalization part448

in Section 3.1. Utilizing Equation 2, we identi-449

fied activated neurons and compared them with the450

four ability specific neurons obtained in Section451

4, utilizing the coincidence ratio as the evaluation452

metric. Specifically, when the experimental data is453

a 2-operation expression (e.g. "1+3 * 5"), we calcu-454

late the ratio 𝑅 of activated neurons 𝑛𝑎𝑐𝑡 containing455

+- specific neurons 𝑛+ and *-specific neurons 𝑛∗ as456

the evaluation metric. Formalized as follows: 457

𝑅(+&∗) = 1
𝑟

𝑟∑︁
𝑖=0

(
𝑛𝑖(+|𝑎𝑐𝑡 )

𝑛𝑖+
+
𝑛𝑖(∗|𝑎𝑐𝑡 )

𝑛𝑖∗
) (4) 458

where 𝑛𝑖(+|𝑎𝑐𝑡 ) refers to activated {+}-specific 459

neurons, 𝑛𝑖+ refers to all {+}-specific neurons. 460

Results. Table 4 presents the activation rates of 461

various arithmetic expressions. The results show 462

that, on average, 89.53% of the capability-specific 463

neurons are activated when the model processes 464

multi-operation expressions. The activation rates 465

for 4-OP and 5-OP are similar, indicating that the 466

presence of two identical operators in an expression 467

does not significantly increase the activation rate 468

of the corresponding capability-specific neurons. 469

Figure 2 further illustrates the activation values of 470

neurons when processing different arithmetic ex- 471

pressions. Counterintuitively, when an expression 472

contains only the "+" operator, the activation value 473

for "-" is also significantly higher than the aver- 474

age. A similar issue is observed with "*" and "/". 475

This contradicts our intuition, as under normal cir- 476

cumstances, when an arithmetic expression does 477

not contain "-", the activation value for "-" should 478

be close to the average. We analyzed the under- 479

lying reason for this phenomenon, which might 480

be related to the fact that addition and subtraction 481

are inverse operations. To investigate further, we 482

conducted ablation experiments. 483

Ablation Experiment. In Table 6, such as in 484

arithmetic expressions where only addition is 485

present, the performance drops significantly by 486

6.3% when subtraction is removed compared to 487

multiplication and division. This indicates a cer- 488

tain correlation between addition and subtraction, 489
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Math LLaMA-3-8B/GSM8K(↑) LLaMA-3-13B/GSM8K(↑)
GSM8K Meta_Math SVAMP AMC GSM8K Meta_Math SVAMP AMC

Original 24.32 26.73 43.67 32.17 26.15 27.39 45.73 33.67
FT-Random 25.31 25.43 43.39 31.74 27.33 27.41 45.73 33.59

O-LoRA 38.94 27.33 44.63 35.97 41.32 29.45 47.12 34.63
FT-All 43.07 28.53 45.32 35.67 43.89 29.63 47.82 35.87
Ours 37.42 36.73(↑ 8.20 ) 57.92(↑ 12.20) 47.63(↑ 11.96) 41.23 36.47(↑ 6.84 ) 58.63(↑ 10.81) 51.76(↑ 15.89)

Table 5: Experimental results on ability enhancement and generalization. Fine-tuning the GSM8K training set and
evaluate the fitting and generalization ability on GSM8K and three other datasets.

Erase LLaMa-3-8B(↓)
+ - * \

1-OP (+) ↓ 23.9 ↓ 6.3 ↓ 0.1 ↓ 0.2
1-OP (-) ↓ 5.7 ↓ 23.8 ↓ 0.0 ↓ 0.1
1-OP (*) ↓ 0.0 ↓ 0.3 ↓ 18.0 ↓ 6.0
1-OP (/) ↓ 0.4 ↓ 0.1 ↓ 5.3 ↓ 17.8

Table 6: The results of the ablation experiment. 1-OP
(+) refers to the presence of + in 1-OP. The value refers
to the magnitude of the performance decline with zero
capability-specific neurons. ↓ represents the influence
between neurons that perform inverse operations on
each other.

which is related to their nature as inverse opera-490

tions, thus verifying our analysis.491

5.2 Reverse Verification Experiment492

Experimental Setup. We sequentially ablate the493

capability-specific neurons corresponding to opera-494

tors in expressions to observe their impact on final495

performance. For 2-OP, we only remove a single496

capability neuron, whereas for 3-OP and 4-OP, we497

remove multiple capability neurons. This further498

verifies the authenticity of capability compositional499

generalization.500

Results. In Table 4, for 2-OP, removing the cor-501

responding capability-specific neuron significantly502

reduces the model’s performance by 28.18%. No-503

tably, for 3-OP and 4-OP, we intuitively observe504

that as more corresponding capability-specific neu-505

rons are removed, the performance degradation506

becomes more pronounced. However, when re-507

moving an equivalent number of parameters, the508

performance drop is minimal.509

In conclusion, we have gained an understanding510

of the model’s capability invocation mechanism511

during forward inference and believe that the model512

exhibits compositional generalization of capabili-513

ties.514

6 Experiment: Enhancing Multiple 515

Capabilities of LLMs 516

To fully leverage capability-specific neurons, we 517

propose a fine-tuning method at the capability- 518

specific neuron level. 519

6.1 Evaluation indicators 520

To evaluate the fitting and generalization capa- 521

bilities of neurons, we designed two evaluation 522

metrics: the fitting score on the test set, and the 523

generalization score obtained by training on the 524

current dataset and testing on other datasets. 525

6.2 Experimental Setup 526

We have provided more details in Appendix A. 527

6.3 Results 528

Table 5 shows that by fine-tuning only 0.05% 529

of the parameters, we can achieve fitting scores 530

comparable to FT-All and O-LoRA, with a score 531

2.63% lower than FT-All. Meanwhile, our gen- 532

eralization scores are 15.89% higher than FT-All. 533

Compared to fine-tuning the same number of ran- 534

dom parameters, our performance has improved by 535

18.17%. The experimental results demonstrate that 536

we provide a cost-effective fine-tuning approach 537

and exhibit significant generalization capabilities 538

on other datasets. 539

7 Conclusion 540

In this study, we propose a methodological re- 541

search framework to understand the capability 542

mechanisms of models from a neuronal perspec- 543

tive. First, we identified that capability-specific 544

neurons are indeed present. Second, we gained 545

an initial understanding of the internal capability 546

invocation mechanisms within models. Finally, 547

we introduced a low-cost, high-generalization fine- 548

tuning paradigm that leverages capability-specific 549

neurons to enhance various model capabilities. Im- 550

portantly, this research framework promotes ad- 551

vancements in model interpretability studies. 552
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8 Limitations553

Due to limitations in computing resources, we554

did not conduct relevant experiments on larger lan-555

guage models.556
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Practical and ethical challenges of large language 715
models in education: A systematic scoping review. 716
British Journal of Educational Technology, 55(1):90– 717
112. 718

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, 719
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024. 720
Knowledge circuits in pretrained transformers. arXiv 721
preprint arXiv:2405.17969. 722

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 723
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 724
guo Li, Adrian Weller, and Weiyang Liu. 2023. 725
Metamath: Bootstrap your own mathematical ques- 726
tions for large language models. arXiv preprint 727
arXiv:2309.12284. 728

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 729
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 730
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 731
survey of large language models. arXiv preprint 732
arXiv:2303.18223. 733

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 734
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 735
Yang Li, et al. 2023. Codegeex: A pre-trained model 736
for code generation with multilingual evaluations on 737
humaneval-x. arXiv preprint arXiv:2303.17568. 738

A Experimental Setup 739

A.1 Dataset and Neuron Detection 740

We collected datasets related to mathemat- 741

ics, programming, and language, and used the 742

method described in Section 3.1 to identify math- 743

specific neurons, programming-specific neurons, 744

and language-specific neurons. The relevant 745

datasets include: 746

• Math: GSM8K (Cobbe et al., 2021) contains 747

approximately 8,000 elementary math prob- 748

lems with detailed solutions. Meta_Math 749

(Yu et al., 2023) focused on meta-learning 750

for math problems. MathQA(Luo and Pan, 751

2024), SVAMP(Naeem et al., 2014) and AMC 752

(AMCs, 2013) datasets. 753

• Program: Code25K (Beguš, 2021) 754

contains around 25,000 code snip- 755

pets. HumanEval(Zheng et al., 2023), 756

MBPP(Athiwaratkun et al., 2022), 757

CodeXGLUE(Lu et al., 2021) and 758

APPS(Zheng et al., 2023). 759

• Language: Emotion (Kosti et al., 2019) with 760

text data labeled with various emotions. Imdb 761

(Tripathi et al., 2020) contains movie reviews 762
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and ratings. GoEmotions(Demszky et al.,763

2020), SemEval-2019 Task 3(Chatterjee et al.,764

2019) and TweetEval (Barbieri et al., 2020) .765

A.2 Baselines766

The baseline methods mainly include:767

• FT-Random: Fine-tuning an equal amount of768

random parameters.769

• O-LoRA (Wang et al., 2023) : learning tasks770

in different (low-rank) vector subspaces.771

• FT-All(Hawthorne and Isaacs, 2018): Fine-772

tuning the entire model using training data.773

B Experimental Results774
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Enhancement LLaMa-2-7B GPT-J-6B
+ - * / Avg. (↑) + - * / Avg. (↑)

Original 52.4 50.3 45.2 43.6 47.8 50.7 50.1 45.2 40.3 46.5
FT-Random 52.7 51.0 45.7 43.9 48.3 50.9 50.7 45.3 40.5 46.8
FT-w/o Cap 56.7 55.6 50.6 48.3 52.8 56.3 56.2 49.3 47.6 52.3

FT-Cap (Ours) 67.4 68.0 65.1 63.1 62.1 65.1 66.4 64.3 64.2 62.5

Erasure LLaMa-3-8B LLaMa-3-13B
+ - * / Avg. (↓) + - * / Avg. (↓)

Original 56.4 55.3 48.4 48.6 52.1 58.6 57.4 50.1 51.7 54.4
Deactivate-Random 56.3 55.0 48.4 48.5 52.0 58.5 57.3 49.8 53.1 54.6

Deactivate-Cap (Ours) 34.6 33.7 32.2 31.7 32.7 36.1 34.0 32.5 33.7 33.1

Table 7: Results of enhancement and erasure experiments. 𝜎 = 3.

Math
LLaMA-2-7B/GSM8K(↑) GPT-J-6B/GSM8K(↑)

GSM8K Meta_Math SVAMP AMC GSM8K Meta_Math SVAMP AMC
Original 21.42 23.63 42.55 30.01 23.04 23.07 41.09 30.89

FT-Random 21.21 23.67 41.99 30.98 24.09 23.42 42.70 31.47
O-LoRA 35.09 24.37 40.36 31.09 37.42 26.37 45.09 30.82
FT-All 38.67 25.63 41.32 31.72 39.09 26.63 44.92 31.78
Ours 35.02 35.03 50.20 46.01 40.27 33.42 54.32 48.06

Table 8: Experimental results on ability enhancement and generalization. Fine-tuning the GSM8K training set and
evaluate the fitting and generalization ability on GSM8K and three other datasets.

Program
LLaMA-2-7B/Code25K(↑) GPT-J-6B/Code25K(↑)

Code25K HumanEval MBPP APPS Code25K HumanEval MBPP APPS
Original 23.51 27.99 43.51 35.42 43.03 24.07 36.08 32.82

FT-Random 24.32 28.09 41.99 36.98 43.29 24.52 37.74 33.04
O-LoRA 34.00 36.96 47.32 41.08 48.52 29.37 43.08 38.42
FT-All 39.47 37.02 48.53 42.29 49.89 29.98 44.62 38.87
Ours 35.74 45.37 58.23 49.73 55.73 38.92 56.42 49.83

Table 9: Experimental results on ability enhancement and generalization. Fine-tuning the Code25K training set and
evaluate the fitting and generalization ability on Code25K and three other datasets.

Language
LLaMA-2-7B/Emotion(↑) GPT-J-6B/Emotion(↑)

Emotion Imdb GoEmotions TweetEval Emotion Imdb GoEmotions TweetEval
Original 67.42 57.43 66.78 57.43 60.14 53.01 51.92 52.82

FT-Random 68.22 58.72 67.42 58.99 62.43 54.32 53.71 54.42
O-LoRA 76.43 57.62 68.93 58.44 73.32 56.57 51.53 51.55
FT-All 79.85 58.66 68.79 58.79 75.08 53.32 52.42 53.78
Ours 77.47 66.70 77.90 67.09 73.06 69.43 63.17 65.07

Table 10: Experimental results on ability enhancement and generalization. Fine-tuning the Emotion training set and
evaluate the fitting and generalization ability on Emotion and three other datasets.
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Cohesiveness LLaMa-3-8B LLaMa-3-13B
+ - * / Avg. (↑) + - * / Avg. (↑)

DG 94.32 92.97 93.67 93.35 93.29 94.62 93.64 93.56 94.37 93.35
TF 94.33 93.27 93.64 94.02 93.36 93.49 93.67 93.29 92.51 93.78
MQ 95.42 93.27 92.59 92.67 93.23 93.55 93.69 93.32 93.42 93.22
CH 83.61 82.91 83.74 85.42 83.27 84.24 81.54 82.46 81.55 82.79

Separability LLaMA-2-7B GPT-J-6B
+ ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓) + ∩ - + ∩ * + ∩ / * ∩ / Avg. (↓)

DG 5.64 4.27 3.93 2.51 3.45 5.66 4.31 4.00 3.78 4.23
MQ 5.32 4.65 4.23 3.79 4.03 5.88 5.42 4.74 4.12 4.98
TF 5.63 5.15 4.70 4.02 4.61 5.60 5.18 4.52 3.74 4.73
CH 5.76 4.40 4.12 3.75 4.24 5.78 4.52 4.01 3.62 4.03
EN 6.24 5.41 4.09 3.66 4.38 5.40 4.58 4.30 3.46 4.68

Table 11: The results of cohesiveness and separability experiments. EN refers to all English datasets, while CH
refers to translating all English into Chinese datasets.
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