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Abstract

Although large-scale language models (LLMs)
exhibit various exciting capabilities, under-
standing the mechanisms behind these abilities
remains a challenging problem. In this paper,
we aim to understand these mechanisms from
the perspective of neurons. Specifically, we
first propose a Detecting Capability-Specific
Neurons (DCSN) method. Extensive enhance-
ment and erasure experiments demonstrate that
the detected neurons are highly correlated with
these capabilities, exhibiting strong cohesion
and separability, which we define as capability-
specific neurons. Moreover, leveraging these
neurons, we conducted compositional experi-
ments and, for the first time, discovered that
capability neurons exhibit compositional gen-
eralization. Inspired by these findings, we pro-
pose a Capability Neuron-Level Fine-tuning
method (CNLF) that fine-tunes specific capa-
bility neurons to achieve performance improve-
ments across datasets and tasks. Extensive
experiments validate the effectiveness of this
method and provide a low-cost, highly gener-
alizable fine-tuning paradigm. Our research
offers interpretable insights into the capability
mechanisms of LLMs.

1 Introduction

Large-scale language models (LLMs) have
demonstrated remarkable performance improve-
ments across various natural language processing
tasks (Zhao et al., 2023). Despite their powerful
capabilities, the underlying principles of the mech-
anisms driving these capabilities(Yan et al., 2024;
Haltaufderheide and Ranisch, 2024), as well as the
relationship between model parameters and per-
formance, remain unclear to humans(Peng et al.,
2024). Recently, many studies have attempted to
further understand and enhance the capabilities of
these models, but their efforts have been hindered
by the black-box nature of LLMs(Bonaldi et al.,
2024; Sun et al., 2024). Therefore, understand-

ing the internal mechanisms and characteristics of
these models is key to improving their capabilities
and interpretability(Ding et al., 2023).

Previous studies have attempted to establish a
correspondence between knowledge or tasks and
model parameters, defining these parameters as
knowledge neurons or task neurons(Yao et al.,
2024). However, the assumption of associating
knowledge or tasks with specific neurons has been
questioned in existing research(Dai et al., 2021).
Studies have found a high degree of overlap among
different knowledge neurons, which does not align
with the expected localization of parameters(Huang
et al., 2025b) . Furthermore, the functions of these
overlapping neurons remain unexplained(Huang
et al., 2025a). Similar issues of inexplicability also
exist with task neurons(Leng and Xiong, 2025).

Previous research has found that a model’s ca-
pabilities can transcend knowledge and tasks, pro-
viding a potential explanation for overlapping neu-
rons(Huang et al., 2025b). Achieving parameter
localization of capabilities is key to interpretability
research for LLMs(Trimmer, 2015). Inspired by
these studies, we attempt to pose three questions:
(1) Do neurons related to specific capabilities ex-
ist in LLMs? (2) Do capability neurons exhibit
compositional generalization? (3) Can we improve
LLMs through these neurons?

To address the three questions above, we con-
ducted an analysis of capability neurons in LL.Ms.
First, we constructed a compositional generaliza-
tion dataset encompassing four computational ca-
pabilities: addition, subtraction, multiplication, and
division. We then proposed a Detecting Capability-
Specific Neurons (DCSN) method. Next, we
performed enhancement and erasure experiments,
demonstrating that these neurons are highly corre-
lated with the respective capabilities. Our exper-
iments show that different capability neurons ex-
hibit a low overlap rate (Separation), while neurons
identified utilizing different datasets that demon-



strate the same capability exhibit a high overlap
rate (Cohesion) (MacQueen, 1967). Therefore, we
refer to these as capability-specific neurons.

Utilizing the identified capability-specific neu-
rons, we delved the mechanism of capability invo-
cation within the model. When performing tasks,
the model often invokes multiple capabilities. To
reflect this phenomenon, we constructed composi-
tional problems within the compositional general-
ization dataset. For example, the problem "1 + 3 *
5 = ?" requires both addition and multiplication ca-
pabilities from the model. We collected neuron ac-
tivation data during the model’s execution of such
tasks. Interestingly, the addition-specific neurons
and multiplication-specific neurons were signifi-
cantly activated. We then conducted extensive ex-
periments across various problem types (involving
different operations). The results demonstrated that
capability-specific neurons exhibit compositional
generalization, marking the first time the mech-
anism of capability invocation within the model
has been revealed. Counterintuitively, we observed
that when addition neurons were activated, subtrac-
tion neurons were activated 22% more than other
neurons (e.g., for multiplication or division). This
suggests a certain degree of association between
addition and subtraction. Through ablation exper-
iments, we inferred that this is likely due to the
inverse relationship between addition and subtrac-
tion.

To enhance the model’s various capabilities,
we proposed a Capability Neuron-Level Fine-
tuning method (CNLF). By fine-tuning these des-
ignated capability-specific neurons, we improved
the model’s abilities and achieved superior perfor-
mance across 12 downstream tasks. Compared to
fine-tuning all parameters, this method improved
performance by 18.9% on unseen datasets. Addi-
tionally, we were able to control the model’s indi-
vidual capabilities, thereby enhancing the model’s
safety and controllability.

To the best of our knowledge, we are the first to
discover that the model’s capability-specific neu-
rons possess compositional generalization. We
also proposed a low-cost, highly generalizable fine-
tuning method that enables control over the model’s
capabilities. This work sheds light on the inter-
nal mechanism of capability invocation within the
model and enhances its interpretability. Our contri-
butions can be summarized as follows:

* We proposed a Detecting Capability-Specific

Neurons (DCSN) method. and successfully
identified capability-specific neurons. Com-
pared to previously studied knowledge neu-
rons and task neurons, capability-specific neu-
rons demonstrate superior separability and co-
hesion.

* To clarify the mechanism of capability invoca-
tion within the model, we conducted composi-
tional generalization experiments and discov-
ered that capability-specific neurons exhibit
compositional generalization. This provides
important insights for understanding and en-
hancing the model’s multiple capabilities.

* We introduced a Capability Neuron-Level
Fine-tuning method (CNLF), which simulta-
neously improves multiple capabilities of the
model and achieves significant performance
gains. Extensive experiments have demon-
strated the effectiveness of the method.

2 Related Work

Parameter Localization. Knowledge Neurons
indicate that knowledge (such as triplets) can be
localized in parameters, with storage forms includ-
ing distributed parameters(Liu et al., 2024b), pa-
rameter layers(Meng et al., 2022b), and parame-
ter chains (Yao et al., 2024). Task Neurons indi-
cate that different tasks can be localized and utilize
Capability Neurons for task generalization(Leng
and Xiong, 2025). Capability Neurons Localiza-
tion points out that knowledge cannot be localized,
with unexplainability, but capabilities can be local-
ized(Huang et al., 2025b).

Localization Method Distributed Parameters:
Knowledge-sensitive neurons are detected using
a gradient attribution method, and after sorting,
the Top-K neurons are selected and considered as
knowledge neurons(Huang et al., 2024). Param-
eter Layers: Similar to the causal tracing (Meng
et al., 2022b), a clean run that predicts the fact,
a corrupted run where the prediction is damaged,
and a corrupted-with-restoration run that tests the
capability of a single state to restore the predic-
tion(Huang et al., 2025a). Parameter Chains: KC
(Yao et al., 2024) believes that individual knowl-
edge is stored on a parameter chain and utilizes the
entire parameter chain to recall knowledge.
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Fig. 1: Ilustration of our research methodology. The entire framework consists of three steps: Recognition
Capability-Specific Neurons, Compositional Generalization and Capability Neuron-Level Fine-tuning. Step 1
provides identification methods for subsequent research, Step 2 provides interpretability of capability mechanisms
for subsequent research, and provides justification for multi-capability enhancement in Step 3.

3 Methodology

Figure 1 illustrates our research approach. First,
we proposed a capability neuron detection algo-
rithm and successfully identified capability-specific
neurons, which exhibit strong separability and co-
hesion. Next, we conducted capability composi-
tional generalization experiments and uncovered
the mechanism of capability invocation within the
model. Finally, based on capability-specific neu-
rons, we proposed a fine-tuning method at the ca-
pability neuron level aimed at enhancing multiple
capabilities of the model.

3.1 Construction of Compositional
Generalization Dataset

To identify neurons that are highly correlated
with specific capabilities utilizing data, it is first
necessary to clarify the relationship between capa-
bilities and data(Hinterstoisser et al., 2011). Ca-
pabilities reflect the model’s proficiency in solv-
ing certain problems, they are transferable across
datasets, tasks, and even languages. Our composi-
tional generalization dataset consists of two parts:
the neuron identification part and the compositional
generalization part.

Neuron Identification Part. This part helps
identify the capability-specific neurons within the
model. First, we selected four basic arithmetic
operators—"+", "-", "*" "and "/", which reflect dif-
ferent computational capabilities. To achieve a

cross-task setup, our data includes three types of
tasks: Multiple-choice (MQ) tasks, True/False (TF)
tasks, and Direct Generation (DG) tasks. Addition-
ally, to meet the cross-language requirement, we
utilized Deepseek V3’s (Liu et al., 2024a) trans-
lation capabilities to provide data in both English
and Chinese. The specific data formats are shown
in Table 1.

Combination Generalization Part. This dataset
helps clarify the capability invocation mechanism
within the model. The dataset includes five differ-
ent types of expressions. For example, 2-operator
expressions (e.g., 1+3*5), which involve two differ-
ent operators. Interestingly, to explore the impact
of repeatedly occurring operators on neuron acti-
vation levels, we designed a 5-operator expression,
such as (1+3*5-6/3+5), where the "+" operator ap-
pears twice. The specific data formats are shown
in Table 1.

3.2 Recognition capability-specific neurons in
LLM

To identify capability-specific neurons, it is nec-
essary to determine the correlation between each
neuron and a specific capability. Previous stud-
ies have focused on locating neurons responsible
for individual pieces of knowledge (Meng et al.,
2022a) or tasks (Leng and Xiong, 2025). Inspired
by these works, we propose a Detecting Capability-
Specific Neurons (DCSN) method, which utilizes



Multi-operation

<+N-N*¥N\>

expression <1-0P: 1+ 6 =7>;<2-0OP:1 + 3*5 =7>; ..., < 5-OP: 1+3*5 - 6/3+5=? >
Category Component Prompt Target Answer
Based on the given expression "143*5=?", please provide
DG : 16
,,,,,,,,,,,, the answer directly: ___ _ ___ _______________________.
Based on the given expression "1+3*5=?", the following
MQ options are provided: (a) 10, (b) 0, (¢) 16, and (d) 26. C
,,,,,,,,,,,, Please select the correct option: _ _ _ _____________________.
. . n * - n
TF Based on the given expression "1+3*5=16", Yes

please determine whether it is correct:

Table 1: Example of combining generalized datasets. The categories are: Directly Generated(DG), Multiple-choice
Questions(MQ), and True/False questions(TF). The target answer are "16", "c" and "Yes", respectively. i-OP
indicates that the operation expression contains 7 types of operations.

the contribution of each neuron to a capability
as a relevance score. Notably, current LLMs are
based on the autoregressive transformer architec-
ture, which consists of Multi-Head Self-Attention
(MHSA) and feed-forward networks (FFNs) (Tou-
vron et al., 2023). Previous research has demon-
strated that FFNs can store a large amount of para-
metric knowledge(Dai et al., 2021). Our experi-
ments focus solely on this component.

For identifying neuronal samples
S = [s1,82,...,5;], we compute correlation
score for each neuron #n; at layer [ as:

. BN j
C(z,l,t,S)=;§ AL WanWe )i (1)
770

where (-); ; represents the 7—th row and i—th col-
umn of the input matrix, and Afj_ | is the activation
output at the last token for neuron n; at layer [ of
sample s;. The W, is the unembedding matrix,
and Wi 4 18 the up or down weight of the forward
feedback network at layer /.

Here we regard W,mWth 4 € RY*4m as a projec-
tion function projecting from activations of the neu-
rons to distribution of the vocabulary, where v is the
vocabulary and d,, is the intermediate, and regard
Af’_l as a coefficient of the projection, respectively.
This projection clearly displays the average contri-
bution level of each neuron to all samples.

To identify the capability-specific neurons, we
take the Mask matrix:

1 |C —mean(C)| > o - var(C)

Maski = { 0 else

2

where mean(-) denotes the mean value of all scores
and var(+) indicates the variance of the neurons. o
is the threshold guiding us to find the task neurons.
According to statistical principles (Kumar et al.,
2007), in the absence of any special instructions
to follow, we view the neurons with scores outside
o = 6 as capability-specific neurons. We also
provide experimental results for other o values in
the Appendix B.

3.3 Compositional Generalization Experiment

Once it is confirmed that capability-specific neu-
rons truly exist, we analyze how the model invokes
various capabilities when solving problems. First,
we design a forward reasoning experiment to ob-
serve whether the corresponding neurons are suc-
cessfully activated when the model solves multi-
operation expression problems. Additionally, in
the reverse validation experiment, we erase certain
capability-specific neurons in advance to evaluate
the model’s performance on multi-operation ex-
pression problems. Through this process, we aim
to clarify the model’s internal mechanism for utiliz-
ing capabilities, thereby revealing the relationship
between capability-specific neurons and model per-
formance.

Forward Reasoning Experiment. We utilize the
compositional generalization dataset introduced in
Section 3.1 to have the model solve multi-operation
expression problems. By analyzing the activa-
tion states of neurons in the model, we determine
whether capability-specific neurons exhibit compo-
sitional generalization. Specifically, we examine
whether the activated neurons include the identi-
fied capability-specific neurons and whether these



Enhancement LLaMa-2-7B GPT-J-6B
+ - * / Avg. (1) + - * / Avg. (1)
o Original 524 503 452 436 478 507 50.1 452 403 465
FT-Random 5277 51.0 457 439 48.3 509 50.7 453 405 46.8
FT-w/o Cap 56.7 55.6 50.6 48.3 52.8 56.3 562 493 47.6 52.3
FT-Cap (Ours) 67.8 68.3 66.1 65.7 66.9 ( ) 664 674 654 653 66.1( )
Erasure LLaMa-3-8B LLaMa-3-13B
+ - * / Avg. (1) + - * / Avg. ()
o Original 564 553 484 486 521 586 574 501 517 544
Deactivate-Random  56.3 55.0 484 48.5 52.0 585 573 49.8 53.1 54.6
Deactivate-Cap (Ours) 32.5 31.5 304 30.8 31.3(]20.7) 34.6 327 31.6 32.7 329(]21.7)

Table 2: Results of enhancement and erasure experiments. FT-Random refers to fine-tuning an equal amount of
random parameters (0.05% of parameters), FT-w/o Cap refers to fine-tuning all parameters except for the specified
capability-specific neurons (99.95% of parameters), and FT-Cap refers to fine-tuning the specified capability-specific
neurons (0.05% of parameters). The experiment only disabled 10% of ability specific neurons.

neurons correspond to the operators in the multi-
operation expressions. This experiment aims to
verify whether specific neurons demonstrate com-
positional generalization properties.

Reverse Validation Experiment. We erase cer-
tain capability-specific neurons in advance to ob-
serve their impact on the corresponding model ca-
pabilities. For example, we set addition-specific
neurons to zero and then have the model answer
multiple questions containing addition operators,
measuring the change in accuracy before and af-
ter the erasure. Furthermore, we erase multiple
capability-specific neurons simultaneously to ex-
amine the resulting accuracy changes in related
problems. This step aims to validate the authentic-
ity of the compositional generalization properties
of capability-specific neurons.

3.4 Enhancing Multiple Capabilities of LLMs
Utilizing Capability-Specific Neurons

Through the analysis of capability-specific neu-
rons, we found that these neurons exhibit com-
positional generalization. This discovery reveals
the mechanism by which the model invokes its
capabilities and establishes a correspondence be-
tween capability-specific neurons and model per-
formance. However, enhancing the model’s perfor-
mance remains a challenge. We propose a Capa-
bility Neuron-Level Fine-tuning method (CNLF),
aiming to leverage the detected neurons to further
improve the model’s performance.

First, given a set of training samples D, we fine-
tune only the corresponding capability-specific neu-
rons during the fine-tuning phase while freezing all
other parameters. During the testing phase, infer-

ence proceeds as usual. We refer to this approach
as Capability Neuron-Level Fine-tuning method.
Specifically, existing open-source datasets do not
solely focus on a single capability. For instance,
the dataset meta_math (Yu et al., 2023) reflects
both the model’s mathematical and language capa-
bilities, which poses challenges in selecting which
neurons to fine-tune. Fortunately, we have already
confirmed the existence of compositional general-
ization in capabilities. The model’s performance
on meta_math is primarily related to its mathe-
matical and language capabilities. Therefore, we
choose to fine-tune both the mathematics and lan-
guage capability-specific neurons simultaneously.
Experimental results validate the effectiveness of
this method.

4 Experiments: Recognition
Capability-Specific Neurons

In this section, we first utillized neuron DCSN
in Section 3.2 to detect capability-specific neu-
rons, and designed enhancement and erasure exper-
iments to verify the high correlation between these
neurons and capabilities. Finally, we constructed
dissociation and cohesion indicators to determine
the true existence of capability-specific neurons.

4.1 Experimental Setup

The first experiment is an enhancement exper-
iment, in which we fine tune the ability specific
neurons. Specifically, only ability specific neurons
are updated, while other parameters in the model
are frozen. The second experiment is an inhibi-
tion test. During the inference phase, we set the
ability specific neurons to zero while keeping other
parameters unchanged.



Cohesiveness LLaMa-2-7B GPT-J-6B
- * / Avg. (1) + - * / Avg. (1)
DG 9547 9373 9296 9435 9419  95.63 93.78 93.86 9425 9435
TF 94.63 93.47 94.54 9432 93.59 9370 9423 9241 93.42
MQ 95.38 93.24 93.57 94.66 94.13 93.45 93.68 9439 9334  93.62
CH 84.11 81.63 82.77 83.32 82.97 83.54 80.55 80.76 81.62  81.59
Separability LLaMA-3-8B LLaMA-3-13B
Nn- +n* +n/ *n/ Avg (]) +N- +Nn* +n/ *n/ Avg (])
DG 646 326 263 231 365 576 461 433 422 473
MQ 622 477 416 3.89 4.73 5.84 552 436 4.03 4.9
TF 573 505 453 4.06 4.82 5.65 508 451 376 4.7
CH 588 448 4.08 3.65 4.57 489 443 407 3.69 4.22
EN 638 547 433 345 4.84 579 566 435 357 4.76

Table 3: The results of cohesiveness and separability experiments. EN refers to all English datasets, while CH refers

to translating all English into Chinese datasets.

We tested three publicly available models of
different sizes, including Llama-2-7B (Touvron
et al., 2023), Llama-3-8B,Llama-3-13B and GPT-J-
6B(Wang and Komatsuzaki, 2021). The proportion
of ability specific neurons in the total parameters is
0.05%. The datasets is neuron identification part in
Section 3.1.

4.2 Results

Table 2 presents the results of the enhancement
experiments. Compared to fine-tuning an equiv-
alent number of random parameters, fine-tuning
capability-specific neurons achieves significant per-
formance improvements. Specifically, despite fine-
tuning only 0.05% of the parameters, fine-tuning
capability-specific neurons results in a 19.9% per-
formance improvement. In comparison to "FT-
w/o Capability," the performance improvement is
14.1%. Notably, "FT-w/o Capability" refers to fine-
tuning all parameters except the capability-specific
neurons, which accounts for 99.95% of the total
parameters, yet only achieves a mere 4.5% perfor-
mance improvement. This demonstrates that the
identified neurons are highly correlated with the
model’s capabilities.

Table 2 also provides the results of the erasure
experiments. By zeroing out certain neurons and
observing the performance drop, the more signif-
icant the drop, the more sensitive the erased neu-
rons are to the capability. Despite disabling only
10% of the capability-specific neurons, the model
experiences a 21.7% performance drop. When dis-
abling an equivalent number of random parameters
(0.05%), the model’s performance drops by only
0.1%. This further highlights that the identified

neurons are highly sensitive to the model’s capabil-
ities.

Meanwhile, previous studies lacked metrics to
evaluate the accuracy of neuron identification. In-
spired by clustering analysis(MacQueen, 1967),
capability-specific neurons for different capabil-
ities should exhibit high distinctiveness (e.g. 7.
and n_). The greater the distinctiveness, the higher
the identification accuracy. We define this metric as
separability Sep. Additionally, neurons identified
for the same capability (utilizing different datasets,
e.g., English ngy and Chinese ncy) should ex-
hibit high similarity. The greater the similarity, the
stronger the identification reliability. We define
this metric as cohesiveness Coh. Formally, these
metrics can be expressed as:

Sep(+N-=)=n,Nn_ 3
CO/’I(+) =ncyg NNEN 3)

Table 3 presents the results of cohesiveness and
separability. In previous studies, the cohesiveness
of KN was only 37.3%, while the separability of
ROME reached as high as 86.6%, making the iden-
tified neurons unconvincing (Huang et al., 2025b).
Even under interference from multiple question
types and multilingual data, the capability-specific
neurons identified in our study achieve a cohesive-
ness of 94.3% and a separability of only 3.6%.
This demonstrates that the identified capability-
specific neurons are both reliable and accurate.

In summary, compared to random parameters
and "w/o Capability," enhancing and suppressing
capability-specific neurons significantly impacts
model performance. The results of cohesiveness



Activate LLaMA-2-7B GPT-J-6B
2-op 3-op 4-0op S5-op Avg.(1) 2-op 3-op 4-0op S5-op Avg. (1)
777777 DG~ 9437 89.67 8743 86.66 8953  90.63 87.64 84.13 8322 8641
MQ 91.22 86.42 82.67 82.64 85.73 89.76 86.42 8237 82.66 85.30
TF 90.37 87.45 83.64 83.37 86.21 89.73 87.64 82.66 8247 85.63
CH 89.67 8543 81.09 80.43 84.16 90.13 86.57 82.93 82.86 85.62
EN 90.17 86.59 82.19 81.93 85.22 89.30 8571 81.05 80.54 84.15
Deactivate LLaMA-3-8B LLaMA-3-13B
2-op 3-op 4-op 5-op Avg.(]) 2-op 3-op 4-op S5-op Avg. (1)
~ Original ¢ 60.25 5647 5429 5417 5629 66.54 6341 6037 5929 6240
Deactivate-Random  60.27 56.21 54.20 53.07 55.93 66.34 63.20 60.35 59.28 62.29
Ours 32.07 3049 27.31 27.78 29.41 (| 26.88) 34.22 31.72 28.57 27.43 3048 (] 29.92)

Table 4: The experimental results of forward reasoning and reverse verification.
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and separability further demonstrate the high accu-
racy of neuron identification. Therefore, we con-
clude that capability-specific neurons do indeed
exist in LLMs.

5 Experiments: Combination
Generalization

We analyzed ability specific neurons to under-
stand the ability calling mechanism of the model.
According to the analysis method in Section 3.3,
we have listed the relevant results of combination
generalization experiments.

5.1 Forward reasoning experiment

Experimental setup. The experimental data D =
[di,d>, ...,d,] is the combined generalization part
in Section 3.1. Utilizing Equation 2, we identi-
fied activated neurons and compared them with the
four ability specific neurons obtained in Section
4, utilizing the coincidence ratio as the evaluation
metric. Specifically, when the experimental data is
a 2-operation expression (e.g. "143 * 5"), we calcu-
late the ratio R of activated neurons n,.; containing
+- specific neurons n,. and *-specific neurons n, as

the evaluation metric. Formalized as follows:

i
n(*|act)

ni,

1 N
R(+&x) =~ Y (et ) @)
i

where n' refers to activated {+}-specific

(+|act)
l' .
neurons, n!, refers to all {+}-specific neurons.

Results. Table 4 presents the activation rates of
various arithmetic expressions. The results show
that, on average, 89.53% of the capability-specific
neurons are activated when the model processes
multi-operation expressions. The activation rates
for 4-OP and 5-OP are similar, indicating that the
presence of two identical operators in an expression
does not significantly increase the activation rate
of the corresponding capability-specific neurons.
Figure 2 further illustrates the activation values of
neurons when processing different arithmetic ex-
pressions. Counterintuitively, when an expression
contains only the "+" operator, the activation value
for "-" is also significantly higher than the aver-
age. A similar issue is observed with "*" and "/".
This contradicts our intuition, as under normal cir-
cumstances, when an arithmetic expression does
not contain "-", the activation value for "-" should
be close to the average. We analyzed the under-
lying reason for this phenomenon, which might
be related to the fact that addition and subtraction
are inverse operations. To investigate further, we
conducted ablation experiments.

Ablation Experiment. In Table 6, such as in
arithmetic expressions where only addition is
present, the performance drops significantly by
6.3% when subtraction is removed compared to
multiplication and division. This indicates a cer-
tain correlation between addition and subtraction,



LLaMA-3-8B/GSMS8K()

LLaMA-3-13B/GSMS8K(1)

Math  ~GSMSK Meta Math SVAMP AMC GSMBK _ Meta_Math SVAMP AMC
© Original 2432 ] 2673 361 217 2615 2139 4573 3367
FT-Random 2531 25.43 43.39 31.74 2733 2741 4573 33.59
O-LoRA 3894 27.33 44.63 35.97 41.32 29.45 47.12 34.63
FT-All 43.07 28.53 45.32 35.67 43.89 29.63 47.82 35.87
Ours 3742 36.73( ) 57.9( ) 47.63( ) 4123 3647( ) 58.63( ) 51.76( )

Table 5: Experimental results on ability enhancement and generalization. Fine-tuning the GSMS8K training set and
evaluate the fitting and generalization ability on GSM8K and three other datasets.

LLaMa-3-8B())

Erase

B * \
1-OP(+) 1239 163 (01 102
1-OP(-) 157 1238 100 |oO.1
1-OP(*) 100 103 1180 160
1-OP() 104 101 |53 1178

Table 6: The results of the ablation experiment. 1-OP
(+) refers to the presence of + in 1-OP. The value refers
to the magnitude of the performance decline with zero
capability-specific neurons. | represents the influence
between neurons that perform inverse operations on
each other.

which is related to their nature as inverse opera-
tions, thus verifying our analysis.

5.2 Reverse Verification Experiment

Experimental Setup. We sequentially ablate the
capability-specific neurons corresponding to opera-
tors in expressions to observe their impact on final
performance. For 2-OP, we only remove a single
capability neuron, whereas for 3-OP and 4-OP, we
remove multiple capability neurons. This further
verifies the authenticity of capability compositional
generalization.

Results. In Table 4, for 2-OP, removing the cor-
responding capability-specific neuron significantly
reduces the model’s performance by 28.18%. No-
tably, for 3-OP and 4-OP, we intuitively observe
that as more corresponding capability-specific neu-
rons are removed, the performance degradation
becomes more pronounced. However, when re-
moving an equivalent number of parameters, the
performance drop is minimal.

In conclusion, we have gained an understanding
of the model’s capability invocation mechanism
during forward inference and believe that the model
exhibits compositional generalization of capabili-
ties.

6 Experiment: Enhancing Multiple
Capabilities of LLLMs

To fully leverage capability-specific neurons, we
propose a fine-tuning method at the capability-
specific neuron level.

6.1 Evaluation indicators

To evaluate the fitting and generalization capa-
bilities of neurons, we designed two evaluation
metrics: the fitting score on the test set, and the
generalization score obtained by training on the
current dataset and testing on other datasets.

6.2 Experimental Setup
We have provided more details in Appendix A.

6.3 Results

Table 5 shows that by fine-tuning only 0.05%
of the parameters, we can achieve fitting scores
comparable to FT-All and O-LoRA, with a score
2.63% lower than FT-All. Meanwhile, our gen-
eralization scores are 15.89% higher than FT-AlL.
Compared to fine-tuning the same number of ran-
dom parameters, our performance has improved by
18.17%. The experimental results demonstrate that
we provide a cost-effective fine-tuning approach
and exhibit significant generalization capabilities
on other datasets.

7 Conclusion

In this study, we propose a methodological re-
search framework to understand the capability
mechanisms of models from a neuronal perspec-
tive. First, we identified that capability-specific
neurons are indeed present. Second, we gained
an initial understanding of the internal capability
invocation mechanisms within models. Finally,
we introduced a low-cost, high-generalization fine-
tuning paradigm that leverages capability-specific
neurons to enhance various model capabilities. Im-
portantly, this research framework promotes ad-
vancements in model interpretability studies.



8 Limitations

Due to limitations in computing resources, we
did not conduct relevant experiments on larger lan-
guage models.
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A Experimental Setup

A.1 Dataset and Neuron Detection

We collected datasets related to mathemat-
ics, programming, and language, and used the
method described in Section 3.1 to identify math-
specific neurons, programming-specific neurons,
and language-specific neurons. The relevant
datasets include:

* Math: GSMS8K (Cobbe et al., 2021) contains
approximately 8,000 elementary math prob-
lems with detailed solutions. Meta_Math
(Yu et al., 2023) focused on meta-learning
for math problems. MathQA(Luo and Pan,
2024), SVAMP(Naeem et al., 2014) and AMC
(AMCs, 2013) datasets.

* Program:
contains
pets.

Code25K  (Begus, 2021)
around 25,000 code snip-
HumanEval(Zheng et al., 2023),
MBPP(Athiwaratkun et al., 2022),
CodeXGLUE(LLu et al., 2021) and
APPS(Zheng et al., 2023).

* Language: Emotion (Kosti et al., 2019) with
text data labeled with various emotions. Imdb
(Tripathi et al., 2020) contains movie reviews



and ratings. GoEmotions(Demszky et al.,
2020), SemEval-2019 Task 3(Chatterjee et al.,
2019) and TweetEval (Barbieri et al., 2020) .

A.2 Baselines

The baseline methods mainly include:

¢ FT-Random: Fine-tuning an equal amount of
random parameters.

* O-LoRA (Wang et al., 2023) : learning tasks
in different (low-rank) vector subspaces.

e FT-All(Hawthorne and Isaacs, 2018): Fine-
tuning the entire model using training data.

B Experimental Results
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Enhancement LLaMa-2-7B GPT-J-6B
+ - * / Avg. (1) + - * / Avg. (1)
- Original 524 503 452 436 478 507 50.1 452 403 465
FT-Random 52.7 51.0 457 439 48.3 50.9 50.7 453 40.5 46.8
FT-w/o Cap 56.7 55.6 50.6 483 52.8 56.3 562 493 47.6 52.3
FT-Cap (Ours) 674 68.0 65.1 63.1 62.1 65.1 664 643 64.2 62.5
Erasure LLaMa-3-8B LLaMa-3-13B
+ - * / Avg. (1) + - * / Avg. (1)
- Original 564 553 484 486 521 586 574 50.1 517 544
Deactivate-Random  56.3 55.0 484 48.5 52.0 58.5 573 49.8 53.1 54.6
Deactivate-Cap (Ours) 34.6 33.7 322 31.7 32.7 36.1 34.0 325 33.7 33.1

Table 7: Results of enhancement and erasure experiments. o = 3.

LLaMA-2-7B/GSMS8K(1) GPT-J-6B/GSMS8K(T)

Math " “5SMEK  Meta_Math SVAMP AMC  GSMSK Meta_Math SVAMP AMC

~ Original 2142 23,63 4255 3001 2304 2307 4109 3089
FT-Random  21.21 23.67 41.99 3098 24.09 23.42 4270 3147
O-LoRA  35.09 24.37 4036 31.09 37.42 26.37 45.09  30.82
FT-All 38.67 25.63 4132 3172 39.09 26.63 4492 31.78
Ours 35.02 35.03 50.20  46.01 40.27 33.42 5432 48.06

Table 8: Experimental results on ability enhancement and generalization. Fine-tuning the GSMS8K training set and
evaluate the fitting and generalization ability on GSM8K and three other datasets.

LLaMA-2-7B/Code25K( 1) GPT-J-6B/Code25K(1)

Program - = SK HumanEval MBPP APPS  Code25K HumanEval MBPP APPS

" Original 2351 2799 4351 3542 4303 2407 = 3608 3282
FT-Random  24.32 28.09 4199 3698 43.29 24.52 3774 33.04
O-LoRA 34.00 36.96 4732 41.08 48.52 29.37 43.08 3842
FT-All 39.47 37.02 48.53 4229 49.89 29.98 44.62 3887
Ours 35.74 45.37 5823 49.73 5573 38.92 56.42 49.83

Table 9: Experimental results on ability enhancement and generalization. Fine-tuning the Code25K training set and
evaluate the fitting and generalization ability on Code25K and three other datasets.

LLaMA-2-7B/Emotion() GPT-J-6B/Emotion()

Language Emotion Imdb GoEmotions TweetEval Emotion Imdb GoEmotions TweetEval
 Original 6742 5743 6678 5743 60.14 5301 5192 5282
FT-Random 6822  58.72 67.42 58.99 62.43 54.32 53.71 54.42
O-LoRA 76.43 57.62 68.93 58.44 7332 56.57 51.53 51.55
FT-All 79.85  58.66 68.79 58.79 75.08 53.32 52.42 53.78
Ours 7747  66.70 77.90 67.09 73.06  69.43 63.17 65.07

Table 10: Experimental results on ability enhancement and generalization. Fine-tuning the Emotion training set and
evaluate the fitting and generalization ability on Emotion and three other datasets.
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LLaMa-3-8B LLaMa-3-13B

Cohesiveness - - / Ave. () " - * / Ave. (1)
DG 9432 9297 93.67 9335 9329 9462 93.64 9356 9437 9335
TF 9433 9327 93.64 94.02 93.36 93.49 93.67 93.29 9251 93.78
MQ 9542 9327 9259 92.67 93.23 93.55 93.69 9332 9342 93.22
CH 83.61 8291 83.74 8542  83.27 8424 81.54 8246 81.55 82.79
Separability LLaMA-2-7B GPT-J-6B
N- +N* +n/ *n/ Avg () +N- +N* +n/ *N/ Avg (])
DG 564 427 393 251 345 566 431 400 378 423
MQ 532 465 423 379 4.03 588 542 474 412 4.98
TF 5.63 515 470 4.02 4.61 560 518 452 374 4.73
CH 576 440 412 3.5 4.24 578 452 401 3.62 4.03
EN 624 541 409 3.66 4.38 540 458 430 3.46 4.68

Table 11: The results of cohesiveness and separability experiments. EN refers to all English datasets, while CH
refers to translating all English into Chinese datasets.
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