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ABSTRACT

Mobility trajectories are essential for understanding urban dynamics and enhancing
urban planning, yet access to such data is frequently hindered by privacy concerns.
This research introduces a transformative framework for generating large-scale
urban mobility trajectories, employing a novel application of a transformer-based
model pre-trained and fine-tuned through a two-phase process. Initially, trajectory
generation is conceptualized as an offline reinforcement learning (RL) problem,
with a significant reduction in vocabulary space achieved during tokenization.
The integration of Inverse Reinforcement Learning (IRL) allows for the capture of
trajectory-wise reward signals, leveraging historical data to infer individual mobility
preferences. Subsequently, the pre-trained model is fine-tuned using the constructed
reward model, effectively addressing the challenges inherent in traditional RL-
based autoregressive methods, such as long-term credit assignment and handling
of sparse reward environments. Comprehensive evaluations on multiple datasets
illustrate that our framework markedly surpasses existing models in terms of
reliability and diversity. Our findings not only advance the field of urban mobility
modeling but also provide a robust methodology for simulating urban data, with
significant implications for traffic management and urban development planning.

1 INTRODUCTION

Urban mobility trajectories, including vehicle routes and human movements, are critical in describing
crowd dynamics in urban environments. These trajectories not only provide insights into daily travel
patterns (Gonzalez et al., 2008; Alessandretti et al., 2020) but also reflect the underlying socio-
economic interactions (Barbosa et al., 2021) and urban planning effectiveness Gaglione et al. (2022).
Nonetheless, public access to such data is frequently constrained by privacy concerns, underscored by
stringent data protection regulations such as the General Data Protection Regulation (GDPR) of the
EU. This limitation makes leveraging mobility data in research and practical applications challenging.
Therefore, developing methods to generate reliable and diverse urban mobility trajectory data while
preserving privacy is crucial for advancing academic research and enabling diverse trajectory-based
applications. Generating trajectories that accurately replicate urban dynamics is a complex task. On
one hand, a sufficiently large number of generated trajectories is necessary to reveal clear mobility
patterns, necessitating high model efficiency. On the other hand, the intricate urban dynamics require
capturing the diverse behaviors of travelers, which demands substantial model capacity.

Recent advances in deep generative modeling have shed light on data-driven approaches for simu-
lating urban mobility. Deep generative models, such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2020), Variational Autoencoders (VAEs) (Kingma, 2013), and diffusion models
(Ho et al., 2020), have been employed to handle the complicated and diverse mobility by learning
mobility patterns directly from data. Adversarial approaches (Choi et al., 2021; Feng et al., 2020)
improve expressiveness but are prone to unstable training dynamics. VAE-based techniques (Chen
et al., 2021b) approximate trajectory distributions in a latent space but exhibit mode-covering effects
due to regularization. Diffusion-based strategies (Zhu et al., 2023; Wei et al., 2024; Zhu et al.,
2024) achieve improved sample quality and training stability by iteratively denoising noise into
trajectories, yet often incur high computational cost and lack mechanisms for modeling fine-grained
decision-making behaviors observed in urban settings.
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Notably, Transformer-based autogressive generation offers a scheme to balance between generation
quality with training efficiency (Hsu et al., 2024; Qiu et al., 2024; Lin et al., 2025; Haydari et al., 2024).
Nevertheless, previous models often fail to account for the distinctive trajectory preferences within
urban areas, which extend beyond typical spatial-temporal crowd patterns. For example, some elderly
individuals may prefer a smoother, albeit longer, route. To this end, we develop a more efficient and
interpretable framework for generating diverse urban mobility trajectories. Specifically, we highlight
four key contributions of our proposed framework for urban mobility trajectory generation: Efficient
generation scheme: We model urban mobility trajectory generation as a partially observable Markov
decision process (POMDP) and leverage the Transformer architecture to enable a resource-efficient
pre-trained model. Trajectory-wise reward modeling: An inverse reinforcement learning-based
approach is introduced to calibrate a reward model, effectively capturing and explaining preferred
trajectories. Reward model-based fine-tuning: For the first time in urban mobility trajectory
generation, we enhance the pre-trained model through fine-tuning guided by an explicit reward
model. This approach addresses critical challenges in Transformers, including sparse information
representation and long-term credit assignment. Validation through large-scale experiments:
Our framework is rigorously validated on multiple large-scale urban mobility trajectory datasets,
showcasing significant improvements in performance and interpretability.

2 RELATED WORK

Urban mobility generation. While previous rule-based methods (Isaacman et al., 2012; Simini
et al., 2021; Zandbergen, 2014) can handle large-scale trajectory generation at a relatively low cost,
they struggle to capture the spatial-temporal characteristics of trajectory data. Recent advancements
in computational power and deep learning techniques have significantly enhanced the capacity of
generative models to learn from large datasets(Long et al., 2023; Song et al., 2024; Wang et al., 2025).
Specifically, Choi et al. (2021) and Feng et al. (2020) utilized adversarial learning to learn urban
mobility trajectories generation. Additionally, Chen et al. (2021b) introduced a method where each
spatial-temporal point in a trajectory is encoded into a unique identifier, employing a VAE-based
approach to train the mapping between latent factors and raw trajectory data. Moreover, in the track
of diffusion-based models (Zhu et al., 2023; Wei et al., 2024; Zhu et al., 2024), GPS trajectories as a
whole are generated from numerous denoising steps.

Transformer-based trajectory modeling. To balance generation quality with training efficiency,
Transformer-based architectures (Vaswani, 2017) have become the de facto backbone for trajectory
modeling. Early work such as Kim et al. (2023) leverages temporal dependencies driven by human
decision-making processes to better capture salient events along a trajectory. To alleviate the
computational burden, Liang et al. (2022) introduced an auxiliary loss that provides supervision
over all output tokens, significantly accelerating Transformer training. More recently, Haydari et al.
(2024) employed a gravity-inspired sampling strategy coupled with RL-based fine-tuning to steer
large language models toward semantically coherent and realistic trajectories. In parallel, advances in
modeling spatial–temporal correlations have further boosted generation fidelity, as exemplified by
recent work in (Hsu et al., 2024; Qiu et al., 2024; Lin et al., 2025).

3 PROBLEM

Figure 1: Trajectory generation as a sequential
decision-making problem.

In this paper, we focus on large-scale urban tra-
jectory generation tasks. We define a trajec-
tory τ as a temporally ordered sequence of road
segments li in a road network, expressed as
τ = {lt0 , lt1 , . . . , ltk}. The generative model
G generates a trajectory τ̂ , based on predefined
contextual inputs c (e.g., origin and destination),
formulated as τ̂ = G(c). In our proposed frame-
work, we model the trajectory generation as a
sequential decision-making problem following
Chen et al. (2021a). In this formulation, at each
timestep t, the agent observes the current state
st (e.g., the current position and contextual factors like traffic conditions), selects an action at (e.g.,
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determining the next downstream link segment to traverse) and receives a reward rt representing the
quality or efficiency of the chosen action (e.g., whether it arrived at the destination). The trajectory is
then generated autoregressively as the agent makes decisions in each segment.

4 METHODOLOGY

① Trajectory Generation Pretraining Phase

(1) Offline-RL based Trajectory Generation Pretraining
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② Trajectory Generation Fine-tuning Phase

Figure 2: Two-phase framework to enhance pretrained generative model for urban mobility trajectory
generation with reinforcement learning (TrajGPT-R). Phase 1: A Generative pre-trained Transformer
(GPT) is developed to acquire the general knowledge for generating urban mobility trajectory,
meanwhile a reward model is constructed using inverse reinforcement learning to capture trajectory-
wise preferences. Phase 2: Reward model-based fine-tuning (RMFT) scheme is introduced to enhance
the pre-trained model for better generation reliability and diversity.

4.1 OFFLINE-RL BASED TRAJECTORY GENERATION PRETRAINING

In this study, we utilize the Transformer architecture (Vaswani, 2017) as the backbone for trajectory
modeling and follow an autoregressive generation scheme. This approach is motivated by two princi-
pal factors: Firstly, mobility trajectories share similarities with natural language, such as topological
constraints in trajectories that mirror grammatical constraints in text, making the Transformer partic-
ularly effective (Zhao et al., 2023). Secondly, the autoregressive generation scheme is suitable for
sequential decision-making process modeling, where each decision is predicated on the information
available at the current moment.

We employ a token-based approach to represent trajectories in our generation task based on recent
advancements in sequential decision modeling with Transformer architectures (Chen et al., 2021a;
Wang et al., 2023). Specifically, we utilize three types of tokens—state tokens st, action tokens at,
and return-to-go tokens Rt—to encapsulate the decision-making context at each timestep, as shown in
Fig. 2(1). The autoregressive generation mechanism will ensure that each action token is generated in
a manner that respects the inherent sequential dependencies of trajectories. In our study, we organize
the tokens as: State token: Each state token is designed to incorporate spatial and traffic condition
information, along with individual ID for personalized context. The spatial context is represented by
the current link, origin link, and destination link. Furthermore, we integrate traffic-related features,
such as speed and departure intervals into the state token to inform the traffic dynamics. Besides,
the individual ID is used to facilitate the learning of nuanced individual preferences. Action token:
Each action token corresponds to the choice of a downstream link. For example, action token 1 at
link l indicates the selection of the first downstream link among all available connections from link

3
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l. Return-to-go token: This token represents the goal of the current trajectory generation. Unlike
previous studies (Chen et al., 2021a), the return-to-go in our tasks is less informative due to the
uncertainty in the vehicle’s route evaluation, we set the return-to-go as 1 if the vehicle is still en
route to its destination and 0 once it arrives. As the trajectory generation in this study follows the
autoregressive decision-making process, we incorporate a traditional offline RL scheme (Levine et al.,
2020) in the training phase. Specifically, we are training a policy to predict action tokens based on
previous tokens. Mathematically, the objective of pretraining is formulated as a cross-entropy loss
between the ground truth and the generated decision, defined as:

L =

T∑
t=1

l (at, ât) , (1)

where ât = πθ(s1:t, a1:t−1, R1:t), with πθ denoting the overall model parameterized by θ. Here, ât
represents the action generated at step t, given all the previously available tokens, and T denotes the
total number of timesteps. The cross-entropy loss l is minimized between the generated action token
ât and the ground truth action at at each timestep. For the first step, the action token is left blank
since there are no prior decisions to consider.

4.2 INVERSE RL BASED REWARD MODEL CONSTRUCTION

In previous studies on modeling sequential decision-making using Transformers (Chen et al., 2021a;
Wang et al., 2023), the return-to-go token has been introduced as a critical element for highlighting
trajectory preferences. However, in the context of trajectory generation, the reward signal is often
sparse and poorly defined, which results in a less informative return-to-go token. Furthermore, con-
cerns have been raised regarding the limited capacity for long-term credit assignment in transformer
architectures in RL tasks (Ni et al., 2023). Inspired by the benefits of the reward modeling phase in
Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022), this study proposes
adapting this scheme to overcome the aforementioned limitations. The rationale is twofold: Firstly,
the evaluation from the reward modeling effectively supplements the sparse return-to-go signal in our
task. Secondly, by learning to assess the long-term effects of each action, we can leverage offline
data to provide a more informative credit-assignment signal.

To this end, we propose constructing a reward model using Inverse Reinforcement Learning (IRL)
from the offline data, as depicted in Figure 2(2). The proposed IRL framework is specifically designed
to capture both general and individual preferences for routing evaluation through the Basic Value
Estimator (BVE) and the Preference Value Estimator (PVE), respectively. Specifically, at each
decision step, we partition the available information into two categories: general information (e.g.,
location, origin-destination, time, and action) and individual-specific messages (e.g., the individual
ID). The BVE processes the general information, while the PVE handles the individual-specific
messages. The outputs of these two modules are then integrated to produce the state-action value
estimates for a specific individual. These estimates are used to evaluate the benefits an individual
gains from selecting a particular downstream link in the current state context. In our study, the
state-of-the-art IRL approach (Garg et al., 2021) is adapted to learn the state-action value (e.g.,
Q-function Q(s, a)) in our task:

J (Q) = E(s,a)∼DE

[
ϕ
(
Q(s, a)− γEs′∼P(·|s,a)V

∗(s′)
)]

− (1− γ)Eρ0 [V
∗(s0)] , (2)

where V ∗(s) = log
∑

a exp (Q(s, a)), DE represents the expert demonstration (i.e., historical
vehicle trajectories), and ϕ is a concave function that serves as a regularizer.

4.3 REWARD MODEL-BASED FINE-TUNING

Given the parametric reward model rϕ(st, at), we obtain a trajectory-wise reward signal to eval-
uate the outputs from the pre-trained model. In alignment with the principles of RLHF (Ouyang
et al., 2022), we propose enhancing the pre-trained model by fine-tuning it based on the previously
constructed reward model rϕ(st, at).

As depicted in Figure 2(3), the pre-trained model functions as the parameterized policy πθ, predicting
actions based on prior tokens, where an action at is sampled according to at ∼ πθ(·|st,Rt,at−1).
Here, st, Rt, and at−1 represent the state, return-to-go, and previous action tokens, respectively,

4
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occurring before timestep t. By learning a value model Vϕ(st, at) based on the reward model, we can
evaluate and update the policy πθ using policy gradient objectives such as Generalized Advantage
Estimation (GAE) (Schulman et al., 2015), defined as follows:

A
GAE(γ,λ)
t =

∞∑
k=0

(γλ)kδt+k, (3)

where V (st) is the value function estimate at state st, γ is the discount factor, and λ is the GAE
parameter that balances bias and variance in the advantage estimates. During fine-tuning, the value
model is updated with Temporal Difference (TD) errors δt+k, given by:

δt = rϕ(st, at) + γV (st+1)− V (st).

Specifically, as AGAE(γ,λ)
t represents a more stable advantage based on both the long-term value and

the reward signal rϕ(st, at) over the trajectory, we use it to formulate the final fine-tuning objective:

max
πθ

Es,R∼Dpref,a∼πθ(·|s,R)

[
A

GAE(γ,λ)
t

]
− βDKL [πθ(·|s,R) ∥ πref(·|s,R)] . (4)

Note that we use the penalized term βDKL [πθ(·|s,R) ∥ πref(·|s,R)] to prevent the updated policy
from evolving too abruptly, where β is the hyper-parameter weight.

This fine-tuning scheme is expected to improve performance in two primary ways: First, the reward
model, trained using IRL, adaptively extracts preference-based information to provide immediate
reward signals rϕ(st, at) for each generation. Second, by incorporating reward signals with online
updating of the value model, the derived fine-tuning objective accounts for the long-term effects at
each generation step, addressing the long-term credit assignment gap typically faced by transformer-
based pre-trained models in decision-making tasks (Ni et al., 2023).

5 EXPERIMENT ANALYSIS

5.1 EXPERIMENT SETTING

Datasets We consider multiple large-scale urban mobility trajectory datasets to validate the generation
performance and applicability, including: Toyota Dataset: This dataset consists of 295,488 GPS
trajectories collected from Toyota vehicles operating in the Tokyo metropolitan area, covering the
period from October 1 to December 31, 2021. T-Drive Dataset: (Yuan et al., 2010) This dataset
contains GPS trajectories from 10,357 taxis in Beijing, recorded between February 2 and February 8,
2008. Porto Taxi Dataset:(Moreira-Matias et al., 2013) This dataset includes GPS trajectories of 441
taxis operating in Porto, Portugal, recorded over one year (from July 1, 2013, to June 30, 2014). For
each dataset, we adopt an 80/20 split for training and evaluation.

Metrics To comprehensively evaluate the generated results, eight generation metrics have been
used to evaluate the performance of the model. These include Jaccard similarity (Jac), Cosine
similarity (Cos), BLEU, Jensen-divergence of link distribution (L-JSD), and Jensen-divergence of
connection distribution (C-JSD). These metrics are designed to gauge the reliability of the results
from a microscopic perspective (i.e. Jac, Cos, and BLEU) and an aggregated perspective (i.e., L-
JSD and C-JSD). In addition, the diversity of generations within the urban context is also assessed,
particularly through the unigram entropy (UE) and bigram entropy (BE), which measure the diversity
of individual links and transitions between links, respectively.

Model Configurations All experiments were performed using Python 3.11.8. The deep learning
methods are implemented using PyTorch 2.5.0. We run all experiments on a server running Ubuntu
22.04.4, equipped with four NVIDIA RTX A6000 GPUs.

Baselines To evaluate the efficacy of our proposed generation framework, we compared it against a
diverse set of baseline models that utilize different generation schemes or architectures. The selected
baselines include: a statistical method, Markov (Korolyuk et al., 1975); a GAN-based method,
TrajGAIL (Choi et al., 2021); a VAE-based generation method, TrajVAE (Chen et al., 2021b); an
IRL-based training method, IQL (Garg et al., 2021); a diffusion model-based generation approach,
D3PM (Austin et al., 2021); and two ablation baselines, TrajGPT and TrajGPT-DPO (Rafailov
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et al., 2024). Here, TrajGPT refers to the pre-trained phase (i.e., phase 1), while TrajGPT-DPO
refers to the fine-tuning of the pre-trained model using the fine-tuning scheme without an explicit
reward model. The latter two are regarded as ablation baselines for the proposed TrajGPT-R, in
which RMFT is adopted as the fine-tuning scheme. The details are introduced in the Appendix.

5.2 PERFORMANCE EVALUATION

To comprehensively evaluate the performance of our trajectory generation methods, we conducted
experiments across three benchmark datasets: Toyota, T-Drive, and Porto. Since these datasets
originate from different geographical areas and represent distinct demographics (i.e., the general
public for the Toyota dataset and taxi drivers for T-Drive and Porto), this diversity allows us to
thoroughly assess the generalization capabilities of our proposed framework.

The experimental results are reported in Table 1. For each dataset, we generate 5,000 trajectories
for evaluation. Upon evaluation across all metrics, our proposed framework (e.g., TrajGPT-R)
demonstrates superior performance in generating diverse and accurate trajectories. Specifically, it
achieves the highest reliability scores, including a Jaccard and cosine similarity, and a BLEU score.
It also records the lowest values in L-JSD and C-JSD, indicating minimal distribution divergence.
Additionally, the framework attains high entropy scores. Similar trends can be observed in the
T-Drive dataset, with TrajGPT-R slightly outperforming other models. It achieved the highest Jac
score and competitive results in Cos and BLEU. Both TrajGPT-R and TrajGPT-DPO demonstrate
excellent efficiency, tying for the lowest L-JSD and C-JSD scores, which validates the necessity of
fine-tuning. The performance across the Porto dataset is consistent with the other datasets, with
TrajGPT-R consistently outperforming other models in most metrics. This is particularly notable
given the complex urban dynamics represented in the Porto data. The experimental results validate
the effectiveness of the proposed TrajGPT-R framework. The enhancements achieved during the fine-
tuning phase, supported by the reward model, significantly contribute to its performance, surpassing
both traditional and advanced trajectory modeling techniques. Notably, as the three datasets exhibit
different trip dynamics (e.g., general public preferences in the Toyota dataset versus taxi driver
behaviors in the T-Drive and Porto datasets), the TrajGPT-R framework demonstrates that through
fine-tuning with an explicit reward model, we can effectively handle urban mobility trajectory
generation across various scenarios.

For a more intuitive examination of the generation results, we visualize the trajectories generated by
our framework and compare them with those from ablation baselines. Fig 3 displays 5,000 generated
and ground-truth trajectories based on the Toyota Dataset within the core area of Tokyo, Japan.
We observe that the fine-tuning phase through DPO or RMFT significantly enhances the TrajGPT
capability to accurately generate trajectories in sparsely populated areas (e.g., the north area of the
map). This improvement underscores the positive impact of the RL fine-tuning scheme on model
generalization, aligning with the findings reported in Tajwar et al. (2024).

(a) Ground truth (b) TrajGPT (c) TrajGPT-DPO (d) TrajGPT-R

Figure 3: Generated and real trajectories based on the Toyota Dataset in the core area of Tokyo.

The robustness of the generation can be further examined along the temporal dimension, as shown
in Fig. 4. This analysis reveals how effectively the model captures variations over time and adapts
to varying traffic conditions. Specifically, TrajGPT-R demonstrates a consistent ability to generate
trajectories that align closely with real-world temporal patterns. These results underscore the model’s
capacity for handling real-time variabilities and maintaining reliability across extended periods, which
is promising for practical data generation for urban planning or traffic management.
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Table 1: Method Comparison Across Metrics for Toyota, T-Drive, and Porto Datasets

Method Reliability Diversity

Jac(↑) Cos(↑) BLEU(↑) L-JSD(↓) C-JSD(↓) UE(↑) BE(↑)

Toyota Dataset

Markov 0.198 0.291 0.008 0.340 0.692 13.40 13.75
TrajVAE 0.181 0.271 0.018 0.056 0.174 12.31 12.49
TrajGAIL 0.124 0.206 0.001 0.072 0.234 12.22 12.61
D3PM 0.173 0.225 0.021 0.692 0.691 12.02 12.24
IQL 0.236 0.271 0.072 0.026 0.075 14.17 14.28
TrajGPT 0.390 0.455 0.225 0.028 0.070 14.07 14.41
TrajGPT-DPO 0.499 0.556 0.341 0.021 0.052 14.44 14.75
TrajGPT-R 0.524 0.575 0.383 0.016 0.042 14.85 14.82

T-Drive Dataset

Markov 0.225 0.428 0.000 0.007 0.137 3.66 3.63
TrajVAE 0.200 0.405 0.054 0.054 0.144 8.27 9.00
TrajGAIL 0.172 0.274 0.000 0.166 0.328 8.06 9.06
D3PM 0.231 0.246 0.127 0.691 0.691 7.89 8.65
IQL 0.314 0.374 0.195 0.005 0.010 8.40 9.81
TrajGPT 0.617 0.567 0.317 0.005 0.014 8.06 9.87
TrajGPT-DPO 0.612 0.573 0.333 0.005 0.011 8.49 10.12
TrajGPT-R 0.635 0.570 0.345 0.005 0.013 8.57 10.22

Porto Dataset

Markov 0.080 0.332 0.099 0.077 0.209 6.71 6.71
TrajVAE 0.080 0.320 0.158 0.093 0.226 6.63 6.71
TrajGAIL 0.102 0.247 0.050 0.021 0.035 8.46 10.47
D3PM 0.083 0.333 0.259 0.111 0.225 6.81 6.82
IQL 0.214 0.259 0.215 0.023 0.042 7.77 8.52
TrajGPT 0.319 0.350 0.322 0.023 0.042 8.13 9.17
TrajGPT-DPO 0.337 0.353 0.332 0.024 0.040 8.06 9.06
TrajGPT-R 0.522 0.470 0.432 0.013 0.032 10.13 10.75

5.3 INTERPRETABILITY ANALYSIS

In this section, we discuss the mechanism of the proposed framework for mastering trajectory genera-
tion through an intuitive and interpretative approach. Specifically, by integrating explicit individual
modeling via individual ID embeddings—which potentially encode personal preferences—and em-
ploying an autoregressive decision-making scheme, we address the two key questions: Q1: How
do individual embeddings evolve in different training stages? Q2: How does the autoregressive
decision-making scheme utilize each token?

Without loss of generality, our analysis and demonstrations is based on the Toyota dataset. 5000
trajectories are generated through a sequential four-phase process using our foundation model.
These phases include Initialization, the pre-trained model (TrajGPT), and two fine-tuned models,
TrajGPT-DPO and TrajGPT-R, employing different tuning schemes: DPO and RMFT, respectively.

To address Q1, we visualize the individual embeddings in a two-dimensional space by applying t-SNE
(Van der Maaten & Hinton, 2008) for dimensionality reduction. Prior studies have investigated travel
behavior by examining trip entropy (Goulet-Langlois et al., 2017; Huang et al., 2019). To evaluate
whether individual embeddings capture routing preferences, we assign a label to each individual
based on their route-choice entropy (RCE). Specifically, we model route choice as a tuple consisting
of the upstream link, downstream link, and departure time (e.g., a time period within a day). The
RCE is computed as H = −

∑n
i=1 pi log(pi), where n is the number of different tuples and pi is the

probability that tuple i is chosen. The logarithm base used can vary depending on context (e.g., base
2 for binary entropy, or natural logarithm for information measured in nats). Intuitively, a higher
RCE indicates a more diverse routing preference, whereas a lower RCE suggests that the individual
follows a more consistent routing pattern.

As illustrated in Fig. 5, the individual embeddings in a two-dimensional space exhibit interesting
patterns at various training stages. Initially, the embeddings from the initialized model appear
disorganized. After Phase 1, the embeddings from the pre-trained model distinctly form two clusters
corresponding to lower and higher entropy. This separation underscores the ability of individual

7
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(a) 0:00-1:00 AM (b) 8:00-9:00 AM (c) 16:00-17:00 PM (d) 20:00-21:00 PM

Ground-truth

(a) 0:00-1:00 AM (b) 8:00-9:00 AM (c) 16:00-17:00 PM (d) 20:00-21:00 PM

TrajGPT

(a) 0:00-1:00 AM (b) 8:00-9:00 AM (c) 16:00-17:00 PM (d) 20:00-21:00 PM

TrajGPT-DPO

(a) 0:00-1:00 AM (b) 8:00-9:00 AM (c) 16:00-17:00 PM (d) 20:00-21:00 PM

TrajGPT-R

Figure 4: Temporal variation in trajectory generation. We compare generated trajectories across
four representative time periods—morning non-peak, morning peak, afternoon peak, and afternoon
non-peak—to illustrate temporal dynamics in urban mobility. Fine-tuning strategies can enhance the
pretrained model’s ability to capture subtle trajectory patterns (i.e., in green circles).

embeddings to capture essential information about travel regularity. More interestingly, while the
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(d) TrajGPT-R

Figure 5: Visualization of embeddings projected into 2D space using t-SNE, colored by RCE.

clustering pattern remains largely unchanged after fine-tuning with the DPO scheme, the proposed
scheme shows a significant evolution in its clustering (see Fig. 5d). Compared to other stages, the
low-entropy cluster from the proposed RMFT becomes more dispersed, suggesting an enhanced
capability of the model to differentiate individuals with regular travel patterns. Conversely, the
high-entropy cluster is more condensed, indicating that the model effectively isolates irregular travel
behavior, treating it akin to noise. These observations suggest that the RMFT can refine the model’s
ability to discern and categorize individual behaviors based on their travel regularity.
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In the next step, we analyze how the model leverages input information for the generation
tasks (i.e., Q2). To explore these aspects, we first collect and rank attention scores for vari-
ous tokens at different relative time steps in the generation process. Here, the notations S@t,
R@t, and A@t refer to the state, return-to-go, and action tokens, respectively. Each token oc-
curs at the tth relative time step in generating the future action, where a smaller t value in-
dicates a closer location to the current generation output. Take the generation of the T th ac-
tion as an example, S@0 refers to the state token immediately before the generation of the T th
action, and S@1 represents the state token one step prior, used in generating the T th action.
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Figure 6: Normalized attention scores for different to-
kens at various relative positions.

Note that we limit the analysis to the top
6 ranked attention scores for clarity in the
presentation. As shown in Fig. 6, it is ob-
served that, compared to the initialization,
the models after different training phases
exhibit a more distinct pattern in assign-
ing attention scores. Specifically, the state
token immediately preceding each genera-
tion step (i.e., S@0) consistently receives
the highest attention score most of the time.
This makes sense as the most immediate ob-
servation often provides the most relevant
information for decision-making. Besides,
this observation aligns with the formulation
of trajectory generation as a partially ob-
servable Markov decision process, where
future actions are primarily determined by
the immediate state observation. Further-
more, the proposed scheme leads to a more
diverse distribution of attention scores com-
pared to the other two schemes. This ob-
servation aligns with previous findings, in-
dicating that the model fine-tuned with an
explicit reward model tends to exploit nu-
anced information.

6 CONCLUSION

In this study, we introduce TrajGPT-R for urban mobility trajectory generation. In the first phase, we
model trajectory generation as an offline RL problem using a transformer-based generative model,
which benefits from reduced vocabulary complexity. Meanwhile, we construct a trajectory-wise
reward model using inverse reinforcement learning (IRL) to capture individual preferences. In the
second phase, TrajGPT is fine-tuned with the learned reward model. Extensive experiments on
multiple large-scale trajectory datasets show that our approach consistently outperforms baselines in
both reliability and diversity. Additionally, interpretability analysis reveals interesting mechanisms of
the model, highlighting its robustness and bridging theoretical insights with practical applications.

There are several promising directions for future research. First, compounding errors remain a major
challenge in autoregressive generation. Future work could explore advanced sampling methods, train-
ing procedures that better align with inference conditions, or architectural improvements to enhance
robustness to early errors. Our fully data-driven reward model, unlike traditional RLHF approaches
that incorporate human feedback, may introduce bias due to the lack of explicit human guidance. A
promising extension is to iteratively adapt the reward model to individual user preferences.

LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on LLM usage, we disclose that LLMs (specifically
OpenAI’s ChatGPT) were employed as a general-purpose writing assistant. The usage was limited to
improving grammar, clarity, and LaTeX formatting of the manuscript. All research ideas, experiments,
analyses, and conclusions are solely the work of the authors.
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A APPENDIX

A.1 METRIC

1. Jaccard Similarity (Jac):

Jac(A,B) =
|A ∩B|
|A ∪B|

,

where A and B are sets of elements (e.g., links of each trajectory).

2. Cosine Similarity (Cos):

Cos(a,b) =
a · b

∥a∥∥b∥
,

where a and b are vector representations of trajectories.

3. BLEU (Bilingual Evaluation Understudy): (Papineni et al., 2002). BLEU (Bilingual Evaluation
Understudy) is traditionally used to evaluate the quality of text generated by machine translation
systems. We adapt it to measure trajectory diversity due to the similarity of the trajectory and text.
BLEU score calculations involve modified n-gram precisions and a brevity penalty, formulated as:

BLEU = BP · exp

(
K∑

k=1

wk log pk

)
,

where pk is the precision for k-grams, computed as the ratio of the number of matching k-grams in ti
to the total number of k-grams in ti. wk is the weight for each k-gram precision, typically uniform
across different k values. The brevity penalty (BP) is calculated as:

BP =

{
1 if c > r

exp(1− r/c) if c ≤ r

where c is the length of the candidate sequence and r is the effective reference corpus length.

4. Jessen-divergence of Link Distribution (L-JSD):

L-JSD(P ∥ Q) =
1

2
[D(P ∥ M) +D(Q ∥ M)] ,

where P and Q are the probabilities of link segments in the generated data and the ground-truth data.
M = 1

2 (P +Q) and D is the Kullback-Leibler divergence. This metric is used to measure the link
distribution proximity between the generated and the real data.

5. Jessen-divergence of Connection Distribution (C-JSD):

C-JSD(P ∥ Q) =
1

2
[D(P ∥ M) +D(Q ∥ M)] .

This metric is similar to L-JSD but applied to connection distributions.

6. Unigram Entropy (UE):
UE = −

∑
i∈L

pi log2(pi),

where L represents the set of all unique links in the dataset, and pi is the probability of the i-th link
ID occurring in the generated trajectories. This metric quantifies the diversity of individual links,
reflecting their variety at the most granular level.

7. Bigram Entropy (BE):
BE = −

∑
(i,j)∈C

pij log2(pij),

where C denotes the set of all unique consecutive link pairs (connections) in the dataset, and pij is
the probability of the pair (i, j) occurring in the generated trajectories. This metric evaluates the
diversity of transitions between consecutive links, providing insight into the local structural variety.
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A.2 MODEL CONFIGURATIONS

This appendix provides the configuration details of the deep learning models implemented using
PyTorch for the experiments discussed in the main document. The models are designed to cater to
different environments, namely Toyota, T-Drive and Porto datasets. GPT2Model, a variant of the
GPT-2 architecture, is served as backbone with a specific configuration for different data.

ENVIRONMENT-SPECIFIC CONFIGURATIONS

1. Toyota dataset configuration

• Embeddings: Various embeddings are employed to encode different types of inputs:

– Link, Origin, Destination: Embedded using separate embeddings with a vocabulary
size of 262144.

– Action, Departure Time: Action dimensions and departure times are embedded with
their respective sizes.

– Speed: Embedded using an embedding layer designed for a range of 120 different
speeds.

• Layer Normalization: Applied post-embedding to stabilize the learning process.

• Predictive Outputs: Includes prediction of actions and optionally states and returns,
facilitated by linear transformations and activation functions.

2. T-Drive Dataset Configuration Similar to the Toyota configuration with adjustments to embedding
sizes for Link, Origin, and Destination, each reduced to a vocabulary size of 16384.

3. Porto Dataset Configuration Adapted embedding sizes for Link, Origin, and Destination,
reflecting the smaller geographic scope and dataset size with a vocabulary size of 5524.

COMMON FEATURES ACROSS ENVIRONMENTS

• Individual Embeddings: We use word embedding with the actual number of individuals as
the vocabulary size.

• Timestep Embedding: We use word embedding with a maximum trajectory length as the
vocabulary size.

MODEL TRAINING CONFIGURATIONS

Table 2: Summary of Training Configurations

Parameter Toyota T-Drive Porto
Weight Decay 0.05 0.02 0.05
Embedding Dimension 512 256 256
Learning Rate 0.0005 0.0005 0.0005
Sub-sample Length 64 12 64
Batch Size 64 64 128
Attention Layers 2 2 3

REPRODUCIBILITY

All experiments are implemented in PyTorch and executed on four NVIDIA H6000 GPUs (40GB
each). In accordance with the data policy of Toyota Inc., access to the complete ground-truth
trajectory dataset requires a formal application process and cannot be freely released. Nevertheless,
two open-source datasets (i.e., T-Drive and Porto), along with our implementation and generated
results, will be made publicly available upon acceptance of this work.
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The study leverages large-scale, anonymized
mobility trajectory datasets for training and evaluation. All data were handled in accordance with
strict privacy and data-use regulations. No personally identifiable information (PII) or user-level
demographics (e.g., age, gender, home–work identifiers) were used, and no attempt was made to
reconstruct or deanonymize individual behavior.

The proposed models are designed for methodological advancement in trajectory generation and
urban mobility analysis. While the research may inform applications such as transportation planning
or disaster response, it does not involve human subjects or interventions, nor does it seek to predict or
profile individuals. Potential risks of misuse, including surveillance or discriminatory practices, are
acknowledged; to mitigate these, we restrict our work to anonymized data and emphasize aggregate-
level evaluation.

We believe this research contributes positively to society by providing tools that can support urban
planning, traffic management, and resilience studies. All ethical, legal, and research integrity
standards have been respected throughout this work.
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