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Abstract

Masked language models (MLMs) such as001
BERT have revolutionized the field of Natu-002
ral Language Understanding in the past few003
years. However, existing pre-trained MLMs of-004
ten output an anisotropic distribution of token005
representations that occupies a narrow subset of006
the entire representation space. Such token rep-007
resentations are not ideal, especially for tasks008
that demand discriminative semantic meanings009
of distinct tokens. In this work, we propose010
TaCL (Token-aware Contrastive Learning),011
a novel continual pre-training approach that012
encourages BERT to learn an isotropic and013
discriminative distribution of token representa-014
tions. TaCL is fully unsupervised and requires015
no additional data. We extensively test our ap-016
proach on a wide range of English and Chinese017
benchmarks. The results show that TaCL brings018
consistent and notable improvements over the019
original BERT model. Furthermore, we con-020
duct detailed analysis to reveal the merits and021
inner-workings of our approach.1022

1 Introduction023

Since the rising of BERT (Devlin et al., 2019),024

masked language models (MLMs) have become the025

de facto backbone for almost all natural language026

understanding (NLU) tasks. Despite their clear suc-027

cess, many existing language models pre-trained028

with MLM objective suffer from the anisotropic029

problem (Ethayarajh, 2019). That is, their token030

representations reside in a narrow subset of the031

representation space, therefore being less discrimi-032

native and less powerful in capturing the semantic033

differences of distinct tokens.034

Recently, great advancement has been made035

in continually training MLMs with unsupervised036

sentence-level contrastive learning, aiming at cre-037

ating more discriminative sentence-level represen-038

tations (Giorgi et al., 2021; Carlsson et al., 2021;039

1The code and models will be released upon publication.

Figure 1: An overview of TaCL. The student learns to
make the representation of a masked token closer to its
“reference” representation produced by the teacher (solid
arrow) and away from the representations of other to-
kens in the same sequence (dashed arrows).

Yan et al., 2021; Kim et al., 2021; Liu et al., 2021b; 040

Gao et al., 2021). However, such representations 041

are only evaluated as sentence embeddings and 042

there is no evidence that they will benefit other 043

well-established NLU tasks. We show that these 044

approaches hardly bring any benefit to challenging 045

tasks like SQuAD (Rajpurkar et al., 2016, 2018). 046

In this paper, we argue that the key of obtain- 047

ing more discriminative and transferrable represen- 048

tations lies in learning contrastive and isotropic 049

token-level representations. To this end, we pro- 050

pose TaCL (Token-aware Contrastive Learning), 051

a new continual pre-training approach that encour- 052

ages BERT to learn discriminative token represen- 053

tations. Specifically, our approach involves two 054

models (a student and a teacher) that are both ini- 055

tialized from the same pre-trained BERT. During 056

the learning stage, we freeze the parameters of the 057

teacher and continually optimize the student model 058

with (1) the original BERT pre-training objectives 059

(masked language modelling and next sentence pre- 060

diction) and (2) a newly proposed TaCL objective. 061

The TaCL loss is obtained by contrasting the stu- 062

dent representations of masked tokens against the 063

“reference” representations produced by the teacher 064
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without masking the input tokens. In Figure 1, we065

provide an overview of our approach.066

We extensively test our approach on a wide067

range of English and Chinese benchmarks and il-068

lustrate that TaCL brings notable performance im-069

provements on most evaluated datasets (§3.1.1).070

These results validate that more discriminative and071

isotropic token representations lead to better model072

performances. Additionally, we highlight the bene-073

fits of using our token-level method compared to074

current state-of-the-art sentence-level contrastive075

learning techniques on NLU tasks (§3.2.1). We076

further analyze the inner workings of TaCL and its077

impact on the token representation space (§3.2.2).078

Our work, to the best of our knowledge, is the079

first effort on applying contrastive learning to im-080

prove token representations of Transformer models.081

We hope the findings of this work could facilitate082

further development of methods on the intersection083

of contrastive learning and representation learning084

at a more fine-grained granularities.085

2 Token-aware Contrastive Learning086

Our approach contains two models, i.e., a student087

S and a teacher T , both of which are initialized088

from the same pre-trained BERT. During learning,089

we freeze T and only optimize the parameters of S.090

Given an input sequence x = [x1, ..., xn], we ran-091

domly mask x with the same procedure as in Devlin092

et al. (2019) and feed the masked sequence x̃ into093

the student model to produce the contextual repre-094

sentation h̃ = [h̃1, ..., h̃n]. Meanwhile, the teacher095

model takes the original sequence x as input and096

produces the representation h = [h1, ..., hn] (see097

Figure 1). The proposed token-aware contrastive098

learning objective LTaCL is then defined as099

−
n∑

i=1

1(x̃i) log
exp(sim(h̃i, hi)/τ)∑n
j=1 exp(sim(h̃i, hj)/τ)

, (1)100

where 1(x̃i) = 1 if x̃i is a masked token, otherwise101

1(x̃i) = 0. τ is a temperature hyper-parameter102

and sim(·, ·) computes the cosine similarity. In-103

tuitively, the student learns to make the represen-104

tation of a masked token closer to its “reference”105

representation produced by the teacher and away106

from other tokens in the same sequence. As a re-107

sult, the token representations learnt by the student108

are more discriminative with respect to distinct109

tokens, therefore better following an isotropic dis-110

tribution. Similar to Devlin et al. (2019), we also111

adopt the masked language modelling LMLM and112

next sentence prediction LNSP objectives. The over- 113

all learning objective L of the student model during 114

the continual pre-training stage is defined as 115

L = LTaCL + LMLM + LNSP. (2) 116

Note that the learning of the student is fully unsu- 117

pervised and can be realized using the original pre- 118

training corpus. After the learning is completed, we 119

fine-tune the student model on downstream tasks. 120

3 Experiment 121

We test our approach on a wide range of bench- 122

marks in two languages. For English benchmarks, 123

we evaluate the BERTbase and BERTlarge models. 124

For Chinese benchmarks, we test the BERTbase 125

model.2 After initializing the student and teacher, 126

we continually pre-train the student on the same 127

Wikipedia corpus as in Devlin et al. (2019) for 150k 128

steps. The training samples are truncated with a 129

maximum length of 256 and the batch size is set 130

as 256. The temperature τ in Eq. (1) is set as 131

0.01. Same as Devlin et al. (2019), we optimize 132

the model with Adam optimizer (Kingma and Ba, 133

2015) with weighted decay, and an initial learning 134

of 1e-4 (with warm-up ratio of 10%). 135

3.1 Evaluation Benchmarks 136

For English benchmarks, we use the GLUE dataset 137

(Wang et al., 2019) which contains a variety of 138

sentence-level classification tasks covering tex- 139

tual entailment (RTE and MNLI), question-answer 140

entailment (QNLI), paraphrase (MRPC), ques- 141

tion paraphrase (QQP), textual similarity (STS- 142

B), sentiment (SST-2), and linguistic acceptability 143

(CoLA). Our evaluation metrics are Spearman cor- 144

relation for STS-B, Matthews correlation for CoLA, 145

and accuracy for the other tasks; the macro aver- 146

age score is also reported. Additionally, we con- 147

duct experiments on SQuAD 1.1 (Rajpurkar et al., 148

2016) and 2.0 (Rajpurkar et al., 2018) datasets that 149

evaluate the model’s performance on the token- 150

level answer-extraction task. The dev set results of 151

Exact-Match (EM) and F1 scores are reported. 152

For Chinese benchmarks, we evaluate our model 153

on two token-level labelling tasks, including name 154

entity recognition (NER) and Chinese word seg- 155

mentation (CWS). For NER, we use the Ontonotes 156

(Weischedel et al., 2011), MSRA (Levow, 2006), 157

Resume (Zhang and Yang, 2018), and Weibo (He 158

and Sun, 2017) datasets. For CWS, we use the 159

2All models are officially released by Devlin et al. (2019).
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Model GLUE SQuAD 1.1 SQuAD 2.0

CoLA SST-2 MPRC STS-B QQP MNLI QNLI RTE Ave. EM F1 EM F1

Base size models
BERTbase ∥ 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 79.6 80.8 88.5 - -
BERTbase ‡ 52.2 92.4 89.0 86.4 73.2 84.6/84.5 90.3 63.2 79.8 80.9 88.4 73.4 76.8

+MT‡ 51.9 92.5 89.3 87.1 75.8 84.2/84.0 90.6 64.1 80.0 81.0 88.5 73.2 76.3

TaCLbase 52.4 92.3 90.8 89.0 80.7 84.4/84.3 91.1 62.8 81.2 81.6 89.0 74.4 77.5

Large size models
BERTlarge ∥ 60.5 94.9 89.3 86.5 72.1 86.7/85.9 92.7 70.1 82.1 84.1 90.9 78.7 81.9
BERTlarge ‡ 61.6 93.6 90.2 89.0 81.8 86.4/86.1 92.6 67.2 83.6 84.0 90.8 77.9 81.0

+MT‡ 62.0 93.8 90.5 89.1 82.5 86.3/86.3 92.2 66.5 83.7 83.9 90.9 77.8 80.7

TaCLlarge 61.1 94.1 92.0 89.7 82.5 86.5/85.9 92.4 70.5 84.7 84.2 91.1 78.7 81.9

C
hi

ne
se

B
en

ch
m

ar
k

Model Ontonotes MSRA Resume Weibo PKU CityU AS

Dev Test Dev Test Dev Test Dev Test Test Test Test

♠ and ♢ published in Li et al. (2020) and Meng et al. (2019)
BERTbase - 80.14♠ - 94.95♠ - 95.53♠ - 68.20♠ 96.50♢ 97.60♢ 96.50♢

BERTbase‡ 78.29 80.23 94.13 94.97 95.37 95.70 70.63 67.98 96.51 97.83 96.58
+MT‡ 78.42 80.36 94.20 95.01 95.29 95.62 70.81 68.02 96.53 97.79 96.54

TaCLbase 79.73 82.42 94.58 95.44 96.23 96.45 72.32 69.54 96.75 98.18 96.75

Table 1: Benchmark Results. ∥: published in Devlin et al. (2019); and ‡: models from our implementations.

PKU, CityU, and AS datasets from SIGHAN 2005160

(Emerson, 2005) for evaluation. The standard F1161

score is used for evaluation.162

Baselines: We compare against two baselines: (1)163

the original BERT used to initialize the student and164

teacher; (2) BERT+MT (BERT with more training)165

which is acquired by continually pre-training the166

original BERT on Wikipedia for 150k steps3 using167

the original BERT pre-training objectives.168

3.1.1 Benchmark Results169

Table 1 reports the results on English and Chinese170

benchmarks.4 We observe that, on most sequence-171

level classification tasks in GLUE, TaCL outper-172

forms BERT and BERT+MT. Additionally, on all173

token-level benchmarks (SQuAD, NER, and CWS),174

TaCL consistently and notably surpasses other base-175

lines. These results indicate that the learning of176

an isotropic token representation space is benefi-177

cial for the model’s performance, especially on the178

token-centric tasks.179

3.2 Analysis180

In this section, we present further comparisons and181

in-depth analysis of the proposed approach.182

3.2.1 Sentence-Level vs. Token-Level CL183

We compare TaCL against existing sentence-184

level contrastive learning methods, including De-185

CLUTR (Giorgi et al., 2021), SimCSE (Gao et al.,186

3The number of steps is set the same as our TaCL training.
4For all tasks, the average results over five runs are reported.

Model LMLM + LNSP CL SQuAD 1.1 SQuAD 2.0
BERT ✓ × 80.8/88.5 73.4/76.8

Sentence-Level Contrastive Methods
DeCLUTR × Sen. 79.9/87.6 72.1/75.4
SimCSE × Sen. 80.2/88.0 72.5/75.7

MirrorBERT × Sen. 80.3/88.1 72.7/75.9
Ablated Models

model-1 ✓ Sen. 80.5/88.3 73.1/76.5
model-2 × Tok. 81.3/88.7 73.8/77.1

TaCL ✓ Tok. 81.6/89.0 74.4/77.5

Table 2: Comparison of various sentence- and token-
level contrastive learning methods. “Sen.” or “Tok.” de-
notes training with sentence- or token-level contrastive
objectives. Scores of (EM/F1) are reported.

2021), and MirrorBERT (Liu et al., 2021b). We 187

also include two ablated models to study the effect 188

of different combinations of pre-training objectives. 189

Specifically, the ablated model-1 is initialized with 190

BERT and trained with the original BERT objec- 191

tives (LMLM and LNSP) plus the sentence-level con- 192

trastive objective as proposed in Liu et al. (2021b). 193

The ablated model-2 is initialized with BERT and 194

trained only with the proposed token-aware con- 195

trastive objective of Eq. (1). Note that all compared 196

models have the same size as the BERTbase model. 197

Table 2 shows the performance of different mod- 198

els on SQuAD. We observe decreased performance 199

of existing sentence-level contrastive methods com- 200

pared with the original BERT. This could be at- 201

tributed to the fact that such methods only focus 202

on learning sentence-level representations while 203

ignoring the learning of individual tokens. This be- 204
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Figure 2: Layer-wise representation self-similarity.

haviour is undesired for tasks like SQuAD that de-205

mands informative token representations. Nonethe-206

less, the ablated model-1 shows that the origi-207

nal BERT pre-training objective (LMLM and LNSP)208

remedies, to some extent, the performance degen-209

eration caused by the sentence-level contrastive210

methods. On the other hand, the ablated model-2211

demonstrates that our token-aware contrastive ob-212

jective helps the model to achieve improved results213

by learning better token representations.214

3.2.2 Token Representation Self-similarity215

To analyze the token representations learnt by TaCL216

and BERT, we follow Ethayarajh (2019) and define217

the averaged self-similarity of the token represen-218

tations within one sequence x = [x1, ..., xn] as,219

220

s(x) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

cosine(hi, hj), (3)221

where hi and hj are the token representations of xi222

and xj produced by the model. Intuitively, a lower223

s(x) indicates that the representations of tokens224

within the sequence x are less similar to each other,225

therefore being more discriminative.226

We sample 50k sentences from both Chinese and227

English Wikipedia and compute the self-similarity228

of representations over different layers. Figure 2229

plots the results of TaCLbase and BERTbase aver-230

aged over all sentences. We see that, in the interme-231

diate layers, the self-similarity of TaCL is higher232

than BERT’s. In contrast, at the top layer (layer 12),233

TaCL’s self-similarity becomes notably lower than234

BERT’s, demonstrating that the final output token235

representations of TaCL are more discriminative.236

Qualitative Analysis. We sample one sentence237

from Wikipedia and visualize the self-similarity238

matrix M (where Mi,j = cosine(hi, hj)) produced239

by BERTbase and TaCLbase. The results are shown240

Figure 3: Self-similarity Matrix Visualization: (a)
BERT and (b) TaCL. (best viewed in color)

in Figure 3, where a darker color denotes a higher 241

self-similarity score.5 We see that, as compared 242

with BERT (Fig. 3(a)), the self-similarities of TaCL 243

(Fig. 3(b)) are much lower in the off-diagonal en- 244

tries. This further highlights that the individual 245

token representations of TaCL are more discrim- 246

inative, which in return leads to improved model 247

performances as demonstrated (§3.1.1, §3.2.1). 248

4 Conclusion 249

In this work, we proposed TaCL, a novel approach 250

that applies token-aware contrastive learning for the 251

continual pre-training of BERT. Extensive experi- 252

ments are conducted on a wide range of English and 253

Chinese benchmarks. The results show that our ap- 254

proach leads to notable performance improvement 255

across all evaluated benchmarks. We then delve 256

into the inner-working of TaCL and demonstrate 257

that our performance gain comes from a more dis- 258

criminative distribution of token representations. 259

5The entries Mi,i in the diagonal have a 1.0 self-similarity by
definition, as cosine(hi, hi) = 1.0.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, 328
and Noah A Smith. 2020. Don’t stop pretraining: 329
Adapt language models to domains and tasks. In 330
Proceedings of the 58th Annual Meeting of the 331
Association for Computational Linguistics, pages 332
8342–8360. 333

Hangfeng He and Xu Sun. 2017. F-score driven max 334
margin neural network for named entity recognition 335
in chinese social media. In Proceedings of the 15th 336
Conference of the European Chapter of the Asso- 337
ciation for Computational Linguistics, EACL 2017, 338
Valencia, Spain, April 3-7, 2017, Volume 2: Short Pa- 339
pers, pages 713–718. Association for Computational 340
Linguistics. 341

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana 342
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen 343
Li, and Tom Duerig. 2021. Scaling up visual and 344
vision-language representation learning with noisy 345
text supervision. In Proceedings of the 38th Inter- 346
national Conference on Machine Learning, volume 347
139 of Proceedings of Machine Learning Research, 348
pages 4904–4916. PMLR. 349

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. 350
Self-guided contrastive learning for BERT sentence 351
representations. In Proceedings of the 59th Annual 352
Meeting of the Association for Computational Lin- 353
guistics and the 11th International Joint Conference 354
on Natural Language Processing (Volume 1: Long 355
Papers), pages 2528–2540, Online. Association for 356
Computational Linguistics. 357

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 358
method for stochastic optimization. In 3rd Inter- 359
national Conference on Learning Representations, 360
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 361
Conference Track Proceedings. 362

Tian Lan, Deng Cai, Yan Wang, Yixuan Su, Xian-Ling 363
Mao, and Heyan Huang. 2021. Exploring dense 364
retrieval for dialogue response selection. CoRR, 365
abs/2110.06612. 366

Gina-Anne Levow. 2006. The third international chi- 367
nese language processing bakeoff: Word segmenta- 368
tion and named entity recognition. In Proceedings of 369
the Fifth Workshop on Chinese Language Processing, 370
SIGHAN@COLING/ACL 2006, Sydney, Australia, 371

5

https://openreview.net/pdf?id=Ov_sMNau-PF
https://openreview.net/pdf?id=Ov_sMNau-PF
https://openreview.net/pdf?id=Ov_sMNau-PF
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://arxiv.org/abs/2109.07589
https://arxiv.org/abs/2109.07589
https://arxiv.org/abs/2109.07589
https://arxiv.org/abs/2109.07589
https://arxiv.org/abs/2109.07589
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/I05-3017/
https://aclanthology.org/I05-3017/
https://aclanthology.org/I05-3017/
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://doi.org/10.18653/v1/e17-2113
https://doi.org/10.18653/v1/e17-2113
https://doi.org/10.18653/v1/e17-2113
https://doi.org/10.18653/v1/e17-2113
https://doi.org/10.18653/v1/e17-2113
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2110.06612
http://arxiv.org/abs/2110.06612
http://arxiv.org/abs/2110.06612
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/


July 22-23, 2006, pages 108–117. Association for372
Computational Linguistics.373

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan374
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,375
Veselin Stoyanov, and Luke Zettlemoyer. 2020.376
BART: denoising sequence-to-sequence pre-training377
for natural language generation, translation, and com-378
prehension. In Proceedings of the 58th Annual Meet-379
ing of the Association for Computational Linguistics,380
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.381
Association for Computational Linguistics.382

Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuanjing383
Huang. 2020. FLAT: chinese NER using flat-lattice384
transformer. In Proceedings of the 58th Annual Meet-385
ing of the Association for Computational Linguistics,386
ACL 2020, Online, July 5-10, 2020, pages 6836–6842.387
Association for Computational Linguistics.388

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco389
Basaldella, and Nigel Collier. 2021a. Self-alignment390
pretraining for biomedical entity representations. In391
Proceedings of the 2021 Conference of the North392
American Chapter of the Association for Computa-393
tional Linguistics: Human Language Technologies,394
pages 4228–4238, Online. Association for Computa-395
tional Linguistics.396
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A Statistics of Evaluated Benchmarks591

A.1 English Benchmarks592

Dataset Train Test Evaluation Metric
CoLA 8.5k 1k Matthews correlation
SST-2 67k 1.8k accuracy
MRPC 3.7k 1.7K accuracy
STS-B 7k 1.4k Spearman correlation
QQP 364k 391k accuracy

MNLI 393k 20k matched/mismatched accuracy
QNLI 105k 5.4k accuracy
RTE 2.5k 3k accuracy

Table 3: GLUE Statistics

Dataset Train Dev Evaluation Metric
1.1 87.6k 10.6k Exact-Match/F1
2.0 130.3k 11.9k Exact-Match/F1

Table 4: SQuAD Statistics

A.2 Chinese Benchmarks593

Dataset Train Dev Test Evaluation Metric
Ontonotes 15.7k 4.3k 4.3k F1

MSRA 37.0k 9.3k 4.4k F1
Resume 3.8k 0.5k 0.5k F1
Weibo 1.4k 0.3k 0.3k F1

Table 5: NER Dataset Statistics

B Related Work594

Pre-trained Language Models. Since the intro-595

duction of BERT (Devlin et al., 2019), the NLP596

research community has witnessed remarkable597

progress in the field of language model pre-training598

on a large amount of free text. Such advancements599

have led to significant progresses in a wide range of600

natural language understanding (NLU) tasks (Liu601

et al., 2019; Yang et al., 2019; Clark et al., 2020;602

Lan et al., 2021) and text generation tasks (Radford603

et al., 2019; Lewis et al., 2020; Raffel et al., 2020;604

Su et al., 2021a,c; Zhong et al., 2021)605

Contrastive Learning. Generally, contrastive606

learning methods distinguish observed data points607

from fictitious negative samples. They have been608

widely applied to various computer vision areas,609

including image (Chopra et al., 2005; Oord et al.,610

2018) and video (Wang and Gupta, 2015; Sermanet611

et al., 2018). Recently, Chen et al. (2020) pro-612

posed a simple framework for contrastive learning613

of visual representations (SimCLR) based on multi-614

class N-pair loss. Radford et al. (2021); Jia et al.615

Dataset Train Test Evaluation Metric
PKU 19.1k 1.9k F1
CityU 53.0k 1.5k F1

AS 708.9k 14.4k F1

Table 6: CWS Dataset Statistics

(2021) applied the contrastive learning approach for 616

language-image pretraining. Xu et al. (2021); Yang 617

et al. (2021) proposed a contrastive pre-training 618

approach for video-text alignment. 619

In the field of NLP, numerous approaches 620

have been proposed to learn better sentence-level 621

(Reimers and Gurevych, 2019; Wu et al., 2020; 622

Meng et al., 2021; Liu et al., 2021b; Gao et al., 623

2021; Su et al., 2021b) and lexical-level (Liu et al., 624

2021a; Vulić et al., 2021; Liu et al., 2021c; Wang 625

et al., 2021) representations using contrastive learn- 626

ing. Different from our work, none of these studies 627

specifically investigates how to utilize contrastive 628

learning for improving general-purpose token-level 629

representations. Beyond representation learning, 630

contrastive learning has also been applied to NLP 631

applications such as NER (Das et al., 2021) and 632

summarisation (Liu and Liu, 2021). 633

Continual Pre-training. Many researchers (Xu 634

et al., 2019; Gururangan et al., 2020; Pan et al., 635

2021) have investigated how to continually pre- 636

train the model to alleviate the task- and domain- 637

discrepancy between the pre-trained models and 638

the specific target task. In contrast, our pro- 639

posed approach studies how to apply continual pre- 640

training to directly improve the quality of model 641

representations which is transferable and beneficial 642

to a wide range of benchmark tasks. 643

C More Self-similarity Visualizations 644

In Figure 4, 5, and 6, we provide three more com- 645

parisons between the self-similarity matrix pro- 646

duced by TaCL and BERT (the example sentences 647

are randomly sampled from Wikipedia).6 From the 648

figures, we can draw the same conclusion as in sec- 649

tion §3.2.2, that the token representations of BERT 650

follow an anisotropic distribution and are less dis- 651

criminative. On the other hand, the token repre- 652

sentations of TaCL better follow an isotropic dis- 653

tribution, therefore different tokens become more 654

distinguishable with respect to each other. 655

6All results are generated by models with base size.
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Figure 4: Example 2: self-similarity matrix visualiza-
tion of (a) BERT and (b) TaCL. (best viewed in color)

Figure 5: Example 3: self-similarity matrix visualiza-
tion of (a) BERT and (b) TaCL. (best viewed in color)
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Figure 6: Example 4: self-similarity matrix visualiza-
tion of (a) BERT and (b) TaCL. (best viewed in color)
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