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Abstract

In modern causal inference, the way we split and utilize data shapes both the effi-
ciency and uncertainty quantification of treatment effect estimates. This manuscript
explores emerging data manipulation strategies that go beyond conventional sam-
ple splitting. Building on a recent line of work, we introduce data decomposition
methods tailored for causal estimation and examine how they can improve the per-
formance of doubly robust estimators. Empirically, we show that these approaches
lead to more precise and robust treatment effect estimates.

1 Introduction

We study the problem of partitioning data into subsets when estimating the average treatment effect
(ATE) in randomized trials and observational studies. This is a common procedure used to prevent
double-dipping and avoid selective inference bias [Robins et al., 1994, [Scharfstein et al., 1999,
Chernozhukov et al.,|2018| [Lei and Candes|, 2021}, |Guo and Shahl 2024]. Its standard form dates back
to|Cox|[1975] and involves randomly partitioning the dataset by assigning data points into a training
set and an inference set. We will refer to this procedure as data splitting hereafter.

For causal inference, a key limitation of canonical data splitting is that inference is performed on only
a subset of the data points, making it sensitive to outliers or unrepresentative samples [Andrews et al.,
2023/ [Fithian et al.| 2014al. Using smaller subsets inherently reduces the sample size available for
each task, which can diminish statistical power. In low signal-to-noise regimes, which are common in
many applications such as analysis of experiments in technology companies [Guo et al.,[2021} Tay and
Wang| 2022, |Gu and Wul, 2022} |Chou et al.,2025]] and economic policy-making [Knaus, [2022]], lower
statistical power can lead to sub-optional decision making. In other regimes such as auto-correlated
spatial and time series data, it may not even be possible to split the data into independent parts.

Recent work on alternatives of splitting has address similar shortcomings in other settings. They have
primarily been developed for general-purpose predictive tasks, where the training subset is typically
used for model fitting, selection, or hypothesis generation, while the inference subset is reserved
for evaluation, post-selection adjustment, or hypothesis testing, respectively. For example, creating
fractional decomposition of individual data points by leveraging distributional properties may help
mitigate the impact of outliers in data selection [Tian and Taylor, 2018} |Rasines and Young} 2022,
Ignatiadis et al., [2023| Neufeld et al., 2024, [Leiner et al., 2025]]. More efficient use of information
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has been achieved by exploiting the data left out from data subsets [Fithian et al.,|2014b, Hung and
Fithian, 2020} [Panigrahi, [2023]].

These techniques, however, do not directly translate to causal inference, where data splitting is
common, but the nature of the tasks across data subsets can be different. Specifically, one subset is
often used to estimate nuisance components, such as the propensity score or outcome model, while
another is used to estimate the treatment effect itself [Newey and Robins| 2018]]. In a similar flavor
of data splitting for causal estimation, Athey and Imbens|[2016| divide data between samples used
to partition a dataset, and those used to estimate heterogeneous treatment effects. Unlike standard
prediction problems, the goal of data splitting here is more complex than just minimizing outcome
prediction error, as it typically involves obtaining unbiased and efficient estimates of causal quantities,
providing accurate uncertainty quantification, and ensuring robustness to model misspecification and
confounding biases.

Our manuscript fills this gap by contributing new methodology and analysis tailored to causal
inference. We focus on improving data partitioning on doubly robust estimators, which remain
consistent provided that either one of the propensity score or the outcome model is correctly specified
[Robins et al.,|1994, |[Rotnitzky et al.,|1998| [Scharfstein et al.,[1999,|Laan and Robins} [2003, |Bang
and Robins| 2005} [Van Der Laan and Rubin, 2006} Kennedy, [2023]]. Among them, we focus on the
Augmented Inverse Probability Weighting (AIPW) estimator of |[Robins et al.|[1994]], which combines
regression-based outcome modeling with inverse probability weighting (IPW) to achieve double
robustness. Specifically,

1. We adapt recently proposed data decomposition methods to enhance doubly robust estimators
in causal inference. This approach offers practitioners a novel method for conducting causal
estimation and opens up new settings for advancing data decomposition techniques.

2. We empirically evaluate decomposition across a range of regimes, demonstrating improved
precision in causal effect estimation. This situates decomposition within a broader effort to
optimize data usage for causal inference.

2 Estimation Framework

2.1 Setup: AIPW Estimation for a Partially Linear Regression

We work with the canonical potential outcome framework and identification assumptions [[Imbens
and Rubin, [2015]] ﬂ We have a dataset with n data points {(X;, W;, Y;(0),Y;(1))}scp,). For each

data point ¢, X; € R4 is the d-dimensional vector of covariates, W; € {0, 1} is the binary treatment
assignment, {Y;(0), Y;(1)} are the potential outcomes under control and treated, and Y; = Y;(W;) is
the observed outcome. We are interested in estimating the average treatment effect (ATE):

" = E[Y;(1) - Yi(0)].

While the true data generating process for this dataset can be arbitrary, we estimate a Partially Linear
Regression (PLR) model [Robinson, [1988]], which is specified as

Wi ~ Bern(n(X;)), and Y; = fo(X;) + Wi* +&;. (D

Here, 7 : RY — [0, 1] is the propensity score function, fp : R? — R is a function parameterized by
unknown 6 € RY, and ¢; is an error term that is independent of (X;, W;). We assume &; ~ N(0, 07)
and further assume o7 to be a knownﬂ

When constructing estimators for 7 and fj, if the imposed functional form or distributional assump-
tions fail to capture the true data-generating process, it is possible that our model is misspecified and
results in a biased ATE estimate. To mitigate its impact, we employ the canonical AIPW estimator.

AIPW is a two-stage estimator, with the first stage performed on the training set
{(x® W, Yv(t))}ie[n@)] and second stage performed the inference set {(X", W, Y-('))}ie[n(;)].

? K2 2 7

*We make the standard identification assumptions: SUTVA, unconfoundedness, and strong overlap. Detailed
in Section[C]

3For settings with unknown o2, we can extend our setting by using consistent/robust estimators of the
population variance.



The training set is used to fit unknown nuisance functions—namely, the outcome regression functions
i(w, X) for w € {0,1} and the propensity score 7(X). Here, [i(w, -) indicates outcome model
given treatment w € {0, 1}. If either of these functions is known (e.g., in randomized experiments,
the propensity score is known from the treatment assignment mechanism), we simply plug in the
known quantity (i.e., let 7 = 7 or i = p, respectively). The inference set is then used to compute
the AIPW estimate of the ATE using the estimated (or known) nuisance functions, along with the
confidence interval around the estimate:

n®

s 1 i ) i
ATEarpw = 0] Z (ZSAIPW(Xi( ), Wi( ), Yi( )) 2)
n =1
where,
(@)
i i) (i Wi H o~ i ~ i
oarw (X, W ¥ 0) = Z (VO - 5, x)) + 0, x ) ©
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We can further estimate the standard error around the AIPW esimate (and the respective confidence
interval) using either a bootstrap or derivations from M-estimation [Lunceford and Davidian, [2004].

2.2 Data Decomposition for AIPW

While traditionally AIPW estimation has relied on data splitting to generate the training and inference
set, we propose to build upon two recent data partitioning strategies: data thinning [Neufeld et al.,
2024] and data fission [Leiner et al., [2025]]. In a nutshell, data fission establishes a framework
for splitting a single data point into constituent data points, while data thinning specifically splits
a single data point from any convolution-closed distribution into multiple independent additive
constituents. The latter framework nests fission mainly for the case of Gaussian/Poisson distributions,
while offering additional constructive regimes for more general class of distributions, along with
conditional independence of constituents. We refer to both these techniques (along with the family of
other strategies which split individual data points) as data decomposition.

For our setting of causal inference using AIPW estimation, we adopt the Gaussian and Bernoulli
data decomposition constructions. Recall that {(X i(t), Wi(t), Y;(t))}ie[nm] is the training set and

{(Xi(i), Wi(i), Yi(i))}ie[nm] is the inference set. In data decomposition, n(Y) = n() = n,

Decomposing the Outcomes For each ¢, the covariates are shared between the training and
inference sets X i(t) = Xi(') = X;. If the outcome model is known, Yi(t) = Yi(') =Y. Otherwise, we
sample decomposition noise Z; ~ N (0,0?) and construct the decomposed outcomes as

}/’Z(t) — sz + BZ“ s and }/L(I) = }/; — ﬂlei. (4)

Here,  is the outcome tuning parameter, which controls how much of the decomposition noise
contaminates the training set: larger 3 corresponds to a noisier training outcome. Note that this also
means we sample with the decomposition noise variance o without loss of generality. When 3 = 1,
the training and inference outcomes contain equal information, as both have outcome variance 202.
As noted by |Leiner et al.|[2025]], this corresponds to a 50/50 split in data splitting when outcome

variances are the same across different samples. Lastly, we have Yi(t) 1 E(i)—the training and
inference outcomes are conditionally independent.

We discuss implementation details in Appendix [A] and decomposing the treatment in Appendix [E]

3 Empirical Study

We compare data decomposition with data splitting with some commonly studied data generation
processes listed in Table [T} In all the cases, we use an Ordinary Least Squares model for AIPW
outcome model estimation, and a Logistic Regression model for AIPW propensity model estimation.



Setting Outcome Model DGP Notes

Linear: X; ~ N(0,0?%) . o
Homoskedastic Y, ~ N(XTB 4+ 7, 02) Solmplest setting W}th sizable
v signal-to-noise ratio.
Linear: X; ~ N(0,0%)
. oy T * . 2 .. _
Heteroskedastic Y; 2J\f (XiB +7 Wi, 07) Heteroskedasticity and out
o7 ~ BetaPrime(a, b) liers.

Y; ~ N(n(Xi) + 25~ k(X5), 07)

n(z) = %Il 4 %l‘g 4 22:3 Tp Non-linear DGP in which co-
Non-linear: k(z) = (1 + 1)1{z; > 0}7* variates only affect the treat-
Athey and Imbens|[2016] +x91{zy > 0} ment effect when taking pos-

itive values.
Non-linear: X; ~ N(0,0?)

. Simplest possible non-linear
o T )2 *TA/. ~2
Quadratic Yi v N((XTB) + Wi, 0%) DGP to study misspecified

linear outcome AIPW model.

Table 1: Data Generating Processes (DGPs). Details provided in Section@

In Figure [Ta for the Linear: Homoskedastic benchmark, while data decomposition and splitting
are approximately centered around the true ATE, data decomposition yields a noticeably tighter
distribution, indicating reduced variance. This demonstrates that data decomposition not only
preserves consistency but also improves statistical efficiency. Notably, this improvement is more
pronounced as the dimensionality of the covariates increases—interquartile range for data splitting
crosses over the statistical insignificant mark as the dimensionality goes beyond v/N.

In Figure [Tb] we plot the ratio of the confidence intervals (CI of data decomposition over CI of
data splitting). While the performance of both methods are similar in low-dimension regimes, the
difference becomes more pronounced as we increase the dimensions; data decomposition ATE CIs
are <10% of data splitting ATE ClIs for all the settings we study in high-dimensional regimes.

Linear: Homoskedastic Standard Error Comparison Across Experiments
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Figure 1: Comparing data decomposition with data splitting. In the first panel, we use a linear
homoskedastic DGP, and show the distribution of estimated ATEs using AIPW over 100 runs. Results
for other DGPs are provided in Figure 2] In the second panel, we use four different DGPs from
Table [T} and plot the mean ratio of CIs (Data Decomposition CI/ Data Splitting CI) over all runs on
increasing number of dimensions.

4 Discussion

In this manuscript, we have introduced data decomposition to the AIPW estimator. We demon-
strated when this approach is beneficial and under what conditions it may not apply. For future



directions, a deeper investigation into how the treatment assignment mechanism interacts with the
data-decomposition strategy would be valuable. Specifically, one may be able to develop adaptive de-
composition schemes where the decomposition is informed by observed data characteristics. Second,
while we focus on the binary treatment, data decomposition could be adapted to handle multi-valued
or continuous treatments, where the structure of splitting may require new theoretical guarantees.
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A Implementation details

Data splitting We use half of the data points as the training set and the other half as the inference
set (i.e., n(® = [n/2| ,n) = n —n(). This could be easily extended to cases of unequal set sizes
(equivalently, of 3 # 3~ in data decomposition).

Data decomposition When decomposing the outcome, we split the information in half by letting
B = B! =1, corresponding equal splits in data splitting. When decomposing the treatment, we
specify € in the figure captions and conduct an analysis on the effect of € in Fig. [35Jand[d] We discussed
the intuition of choosing these parameters in Section [2.2]

Data Generation In Table[T] we use true ATE 7* = 5 and generate n = 1000 samples. If applicable,
we set outcome model noise o2 = 1, whereas in the second case we use @ = 5 and b = 3.

B Figures for different DGPs
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Figure 2: Different DGPs from Table

C

Identification assumptions

We assume unconfoundedness (i.e., {Y;(0),Y;(1)} L W; | Y), bounded second moment for potential
outcome E[Y;?(w)] < oo, and strong overlap (i.e., n < m(z) < 1 —7(z) where 7(z) = P(W; =1 |

X; = x) is the propensity score).




D Additional analysis

We now provide further interpretations of the data decomposition method, including the choice of /3,
construction of confidence intervals for the outcome model via Fisher information, and connections
to prior work.

Decomposing the outcome with 5 = 1 When fitting the outcome model, the outcome Yi(t) is
obtained from adding the noise Z;, which can be viewed as doubling the variance of the noise when
B = 1. When n > d, the error of outcome model treatment coefficient (i.e., ;1(1, X) — (0, X))

scales approximately with /20 /+/n, which is at the same order as o'/+/n/2 for data splitting.

Confidence interval for the fitted outcome model. For a MLE @ with i.i.d. data W" =
(Wy,...,W,). We denote 6* as the true parameter and Iy (-) as the Fisher information at a single
data point. Then, as n — oo,

V(0 —07) 5 N (0, I} (6%)),
or, equivalently,
~ d
(6 —6") =~ N(0,1/(nIw (67)))-
This would give a 95% CI

(0* — 1.961/n—11,;1 (6%),0 + 1.964/n—111 (%)).

By Rasines and Young|[2022] and |Leiner et al. [2025]], denoting S as a possible way to choose a
training set,

I‘{}l»(r)}i:” (0) <E[I5'(9)]

where Yi(t) is the decomposed Y;. Here, the expectation is taken with respect to possible ways of
splitting.

Treatment decomposition: connection to |Leiner et al. [2025], Neufeld et al. [2025] Neufeld
et al.| [2025]] proposed an improved method for P2 fission (where training set and inference set not
independent) of |[Leiner et al.|[2025] in logistic regression using offset adjustment. In their setting,
logistic regression was fitted on the inference set after covariate selection on the training set. To
account for the data split, they introduced an offset to the logistic regression model: specifically,

log(e/(1 — €)) when Az(-t) = 0, and log((1 — €)/€) when Agt) = 1. However, in the case of the AIPW
estimator, the propensity score model is not re-fitted during the inference stage. Therefore, unlike the
approach in the discussion paper, we do not modify the logistic regression model itself; instead, we
directly adjust the propensity scores on the inference set using the known data thinning mechanism.

Connection to data carving [Fithian et al.,|2014b] Data carving operates by conditioning on the
selected model in the first stage and reuse the information left out, meanwhile maintaining the type I
error control. In comparison, data fission performs an a priori partition of the data, allocating separate
portions for training and inference, therefore, similar to splitting, it preserves independence without
requiring post-selection adjustments (i.e., satisfies Equation 4 in the [Fithian et al.| [2014b]).

E Decomposing the Treatments

If the propensity score model is known, Agt) = Al(»i) = A;. Otherwise, we follow Neufeld et al.
[2025]] and sample treatment noise Q; ~ Bern(e) and construct the decomposed treatments as

AY = (1-Q)A+Qi(1—4;), and AV =4, ©)

Here, € € [0, 1] is the treatment tuning parameter; when @Q; = 1, we flip the original sample as the
training sample. This is akin to adding uncertainty proportional to e into the observed propensity
score. As € — 0, the training treatment concentrates on the observed A;, recovering the original



assignment. As e — 0.5, the training treatment becomes nearly independent of the true assignment,
making the model essentially oblivious to the true treatment.

When the true propensity score is unknown and the distribution of treatments in the training set is
shifted via data decomposition, it is necessary to adjust for this shift during inference. Instead of

using the standard propensity score ]P’(Agi) = 1]X;), we utilize the posterior distribution P(Agi) =
1|Al(.t), X;), which accounts for the observed treatment in the training set and the covariates.

We compute the propensity scores on inference set as follows for Eq. 3}

P(AY =1]x,)

7(X;) =P(AY = 1140 x,) = .
i 3 ARtk S - 2A5t)—l
(A = 1) + P(A® = 01X3) (¢/(1 - )

While this follows a similar approach in Section 3.2 of [Neufeld et al.|[2025]], our setting differs to
Leiner et al.| [2025]] (where no adjustment at the inference stage) and Neufeld et al.| [2025]] (where
the logistic model offset is adjusted at the inference stage). We use the AIPW estimator, where the
propensity score model is not re-estimated on the inference set. As a result, rather than modifying a
fitted logistic regression model a la[Neufeld et al|[2023]], we directly adjust the propensity scores
themselves on the inference set to reflect the treatment assignment mechanism conditioning on the
training set. To our knowledge, this form of adjustment is novel, and is suited to the context of doubly
robust estimation under sample splitting.

E.1 Parameter ¢ for decomposing treatment in unknown propensity score case
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Figure 3: Impact of the flipping probability € for treatments. n = 20000, ~ N(0,1). Fig.
distribution of true propensity scores generated by sigmoid(n " X;). Fig. distribution of data
decomposition’s propensity scores under different €. Since A; ~ Bern(sigmoid(n X;)), when
nT X; has a large magnitude, the resulting propensity scores become extreme. This leads to unstable
estimates for methods based on data splitting, caused by sensitivity to those data points receiving
very large weights in AIPW. Instead, data decomposition smoothens the propensity score distribution,
yielding narrower Cls
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Figure 4: Impact of the flipping probability € for treatments. n = 20000, 7 ~ A (0,0.01 - I). Fig. @
distribution of true propensity scores generated by sigmoid(n " X;). Fig. distribution of data
decomposition’s propensity scores under different e.
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