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Abstract

The ability to accurately comprehend natural lan-
guage instructions and navigate to the target lo-
cation is essential for an embodied agent. Such
agents are typically required to execute user in-
structions in an online manner, leading us to ex-
plore the use of unlabeled test samples for effec-
tive online model adaptation. However, for online
Vision-and-Language Navigation (VLN), due to
the intrinsic nature of inter-sample online instruc-
tion execution and intra-sample multi-step action
decision, frequent updates can result in drastic
changes in model parameters, while occasional
updates can make the model ill-equipped to han-
dle dynamically changing environments. There-
fore, we propose a Fast-Slow Test-Time Adapta-
tion (FSTTA) approach for online VLN by per-
forming joint decomposition-accumulation anal-
ysis for both gradients and parameters in a uni-
fied framework. Extensive experiments show that
our method obtains impressive performance gains
on four popular benchmarks. Code is available
at https://github.com/Feliciaxyao/
ICML2024-FSTTA.

1. Introduction
Developing intelligent agents capable of adhering to human
directives remains a significant challenge in embodied AI.
Recently, Vision-and-Language Navigation (VLN) (Ander-
son et al., 2018; Qi et al., 2020; Chen et al., 2022d; Yang
et al., 2023), which requires an agent to comprehend natu-
ral language instructions and subsequently perform proper
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Figure 1. (a) Illustration of online VLN. (b) Comparison between
TTA strategies on REVERIE (Qi et al., 2020) validation unseen
set using SPL and SR metrics. ‘DUET’ (Chen et al., 2022d) is the
base model, ‘Frequent Update’ means updating at certain intervals
within each sample, ‘Stable Update’ refers to initializing with the
original base model for each sample and using its best intra-sample
update interval INT=1. All these strategies adopt TENT (Wang
et al., 2021) for model updates. The results show that overly fast
or overly slow TTA fail to achieve significant improvements.

actions to navigate to the target location, serves as a useful
platform for examining the instruction-following ability.

In practical applications, a trained VLN agent is required to
execute user instructions in various environments at different
times in an online manner, as depicted in Figure 1(a). How-
ever, owing to disparities in environmental factors, such as
distinct room types and objects, the trained agent inevitably
confront data discrepancies during online testing (Gu et al.,
2022; Guhur et al., 2021). This raises an important ques-
tion: can an agent accumulate experience and enhance its
capabilities while executing instructions? However, due to
the lack of annotation, updating the model via supervised
online learning is impractical. In addition, other learning
paradigms like unsupervised domain adaptation or semi-
supervised learning are also infeasible, given considerations
for the issues of execution efficiency and privacy protection.

Recently, online Test-Time Adaptation (TTA) (Liang et al.,
2023; Niu et al., 2023; Wang et al., 2022a) has been recog-
nized as an effective technique of online model updating
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by leveraging unlabeled test samples. Although prevailing
TTA methods can be integrated into VLN models with cer-
tain alterations, this direct application cannot well handle
the adaptability-stability dilemma of models due to the in-
trinsic nature of inter-sample online instruction execution
and intra-sample multi-step action decision. Specifically,
unlike traditional classification tasks where a single TTA
operation is sufficient for each test sample, as illustrated
in Figure 1(a), online VLN requires an agent to perform
a sequence of actions within a single test sample and to
execute various samples (instructions) in an online manner.
On one hand, while conducting TTA at every (or a few)
action steps enables rapid agent adaptation to dynamic envi-
ronments, frequent model updates may introduce significant
model alterations, potentially causing cumulative errors and
catastrophic forgetting (Wang et al., 2022a; Niu et al., 2022;
Song et al., 2023), thus compromising model stability dur-
ing testing. On the other hand, initializing the same model
for stable TTA in each test sample may hinder the model’s
ability to adaptively learn experience from historical test
samples, thereby impeding its potential for achieving supe-
rior performance. Figure 1(b) shows that both overly fast
or overly slow model updates fail to achieve significant
performance improvements.

To tackle the above issues, we propose a Fast-Slow Test-
Time Adaptation (FSTTA) method for online VLN tasks.
Built upon a unified gradient-parameter decomposition-
accumulation framework, our approach consists of a fast
update phase and a slow update phase, pursuing a balance
between adaptability and stability in online model updat-
ing. Specifically, with a test-time training objective, such
as entropy minimization (Wang et al., 2021), we can derive
gradients at each action step in the fast update phase. How-
ever, due to the unsupervised nature of TTA, these gradients
inevitably contain noise information. Using these gradients
for model update can interfere with the adaptability, espe-
cially when the update is frequently invoked. Therefore, we
establish a local coordinate system to find a reliable opti-
mization direction by periodically analyzing the gradients
generated during the recent multi-step navigation process.
After a certain number of fast updates, the model parameters
(also called model state) are recorded. To further mitigate
the issues of cumulative errors and catastrophic forgetting
that may result from excessively frequent model updates,
during the slow update phase, we revert the model to its
historical state and conduct a decomposition-accumulation
analysis on the parameter variation trajectory for a direct
model update. Both phases are performed alternately during
testing to balance the adaptability and stability of the model.
As shown in Figure 1(b), the proposed method achieves sig-
nificant improvement against other model update strategies.

Our contributions can be summarized as follows: (1) Consid-
ering the characteristics of inter-sample online instruction-

execution and intra-sample multi-step action-execution, we
explore the online VLN task and propose a fast-slow test-
time adaptation (FSTTA) method for effective navigation
and model updating. (2) Based on a unified decomposition-
accumulation framework for both gradients and parameters,
our method ensures swift model adaptability to environ-
mental changes in the short-term fast update phase, while
preserves stability throughout the long-term slow update
phase. (3) Our FSTTA elevates the performance of several
leading VLN models on four popular benchmarks. When
applied to the notable DUET model (Chen et al., 2022d), it
yields a performance boost of over 5% on the representative
discrete/continuous benchmarks REVERIE/R2R-CE. Fur-
thermore, our method shows superior results compared to
other premier TTA techniques.

2. Related Work
Vision-and-Language Navigation (VLN). Most existing
methods facilitate VLN research by developing powerful
techniques for model training, including: (i) Designing ad-
vanced network architectures. Early VLN models utilize
LSTMs with various attention mechanisms (Anderson et al.,
2018; Fried et al., 2018; Hong et al., 2020) while recent
ones (Hao et al., 2020; Hong et al., 2021; Chen et al., 2021;
Lin et al., 2022; Chen et al., 2022d; Huo et al., 2023) re-
sort to the more popular transformer-based methods for
multi-modal pre-training. Other architectures are also ex-
plored such as graph neural networks (Zhu et al., 2021) and
parameter-efficient adapter (Qiao et al., 2023b). (ii) Adopt-
ing various training paradigms such as reinforcement and
imitation learning (Nguyen et al., 2019; Tan et al., 2019;
Wang et al., 2019; Gao et al., 2023a). Moreover, to estimate
the completeness of instruction following and decide when
to conduct backtracking, progress monitoring (Ma et al.,
2019a; Zhu et al., 2020) and back-tracking (Ke et al., 2019;
Ma et al., 2019b) are also employed to promote training
process. (iii) Performing data augmentation for training a
stronger model. In recent years, more and more large-scale
benchmarks are established via collecting human annota-
tions (Ku et al., 2020; Zhu et al., 2021; Ramrakhya et al.,
2022) or creating new environments (Qi et al., 2020; Chen
et al., 2022c). Other approaches explore techniques such
as mixup and synthesis (Liu et al., 2021; Kamath et al.,
2023), style transfer (Li et al., 2022), or future-view im-
age semantics (Li & Bansal, 2023) for data augmentation.
(iv) Leveraging additional information for boosting model
capacity. Since the goal of VLN is to navigate in photo-
realistic environments, there are many kinds of information
in the world that can be used such as knowledge (Li et al.,
2023), 3D scene geometry (Liu et al., 2023; Wang et al.,
2023f), and landmarks (Wang et al., 2022b; Cui et al., 2023).

Although the above methods have made significant progress
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in training effective models, they overlook the utilization
of test data during the online VLN process. In real-world
applications, an agent is required to continuously execute
user instructions at different times. The ability of an agent
to accumulate experience during this process would greatly
enhance its practical value. Note that (Lu et al., 2022) first
explored test-time adaptation for VLN. However, this ap-
proach does not perform model update in an online manner
and overlook the balance between adaptability-stability.

Online Test-time Adaptation (TTA). TTA allows models
to adapt the test data in an online and unsupervised man-
ner (Liang et al., 2023; Lim et al., 2023; Lee et al., 2023).
Existing TTA methods generally rely on batch normaliza-
tion calibration (Mirza et al., 2022; Zhao et al., 2023; Gong
et al., 2022), entropy minimization (Wang et al., 2021; Niu
et al., 2023; Tang et al., 2023), auxiliary self-supervised
task or data regularization (Sun et al., 2020; Boudiaf et al.,
2022; Zhang et al., 2022) to acquire useful information
for reducing the domain gap between training and testing
data. To stabilize adaptation in continuously changing data
distribution, recently, continual test-time adaptation (Wang
et al., 2022a; Niu et al., 2022; Song et al., 2023; Döbler
et al., 2023; Yuan et al., 2023; Liu et al., 2024), as a more
practical setting, has been tentatively explored for address-
ing the cumulative errors and catastrophic forgetting issues.
Until now, test-time adaptation has been preliminarily ex-
plored in some sequential data analysis fields such as action
recognition (Lin et al., 2023) and video classification (Yi
et al., 2023). However, they overlook the joint inter- and
intra-sample structure in TTA of sequential data.

Gradient-based Methods. Gradients are central to mod-
ern SGD-based deep learning algorithms. To date, gradient
analysis research has predominantly focused on domain gen-
eralization (DG) (Mansilla et al., 2021; Lew et al., 2023;
Wang et al., 2023b; Rame et al., 2022; Wang et al., 2023e;
Tian et al., 2023), due to the negative impact of conflicting
gradients from multiple domains on model optimization.
Pioneering works (Du et al., 2018; Yu et al., 2020; Mansilla
et al., 2021) perform gradient surgery at the backpropagation
phase via various strategies such as normal plane projec-
tion (Yu et al., 2020) and consensus learning (Mansilla et al.,
2021). Other approaches resort to gradient agreement regu-
larization for refining the optimization direction by leverag-
ing sharpness (Wang et al., 2023b) or similarity (Shi et al.,
2021; Rame et al., 2022) measurements. Different from the
above strategies that only consider a single-phase gradient
surgery in DG, we jointly analyze the gradient-parameter
states for a two-phase (fast-slow) TTA in the VLN task.

3. Our Approach
Problem Setup and VLN Base Model. Given a natural
language instruction I , the VLN task requires an agent to

find the target viewpoint through the environment by exe-
cuting a series of actions. During the navigation process,
an undirected exploration graph Gt = (Vt, Et) is progres-
sively constructed, where Vt denotes navigable nodes, Et
indicates the connectivity edges, t is the current timestep.
Note that a ‘STOP’ node is added to this graph to indicate a
stop action, and we connect it with all other nodes. At this
moment, the agent receives a panoramic view that contains
36 single images. The panorama is represented by the im-
age features Rt and their object features Ot, where these
features can be extracted by pre-trained vision transformers
(ViT) (Dosovitskiy et al., 2020; Chen et al., 2022d; Li et al.,
2023). To accomplish the instruction, the agent needs to
predict probabilities for the currently navigable nodes and
select the most possible one as the next movement action.
The probabilities can be predicted as:

st = ϕ (I,Rt,Ot,Ht;Θ) , st ∈ R|Vt| (1)

whereHt indicates the history information that encodes the
observed visual features and performed actions (Chen et al.,
2022d; Qiao et al., 2023b). ϕ(·) is the VLN base model such
as the dual-scale graph transformer (Chen et al., 2022d;c),
Θ is the learnable model parameters.

Framework Overview. In this paper, we devote to adjust-
ing the VLN base model during testing process within an
online and unsupervised manner. Our FSTTA framework
is illustrated in Figure 2. For each sample, at timestep t,
we employ the commonly adopted entropy minimization
objective (Wang et al., 2021; Niu et al., 2023) for test-time
adaption, which aims to reduce the entropy of the probabili-
ties over the current navigable nodes:

L(st;Θ) = −
∑

i
st,i log(st,i). (2)

During the optimization of the above objective, gradients
are back-propagated for updating the model’s parameters.
However, updating the whole base model is computationally
infeasible. As a result, we only consider a small portion
of the model parameters for gradient calculation. Since
affine parameters in normalization layers capturing data
distribution information, numerous TTA methods opt to
update these parameters for adaption (Wang et al., 2021;
Niu et al., 2023; Liang et al., 2023). In this paper, we employ
the model’s a few final layer-norm operations for TTA and
maintain other parameters frozen. For brevity, we still use
the symbol Θ to represent these parameters to be updated
in the following sections, Θ ∈ RD. Targeting at fully
leveraging the gradient and parameter information, under
a unified decomposition-accumulation analysis framework,
we propose an effective two-phase adaptation for fast and
slow model updates.
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Figure 2. Overall framework of the proposed Fast-Slow Test-Time Adaptation (FSTTA) for online VLN. In the fast update phase, taking
‘Sample i’ as an example, the model periodically analyzes the gradients ({g}) generated during the recent multi-step navigation and
performs a gradient decomposition-accumulation analysis to pinpoint a concordant direction for model update. After a certain number of
fast updates, historical model parameters ({Θ}) are recorded. In the slow update phase, we revert the model to its historical state and
conduct a parameter decomposition-accumulation analysis to learn an optimization path for direct parameter modulation. Note that ‘F’,
‘S’ in the robots means the model parameters after fast and slow updates. ‘F1’ indicates the first fast update within a test sample.

3.1. Fast Update via Gradient Analysis

At timestep t in one navigation process, the agent is required
to select an action (navigable node) by using the predicted
score st. With st, we can calculate the TTA loss (Eq. (2))
and then derive the gradient of the model parameters Θ as:
gt = ∇L(st;Θ), gt ∈ RD. Traditional TTA methods con-
duct adaptation independently at each time step, which can
exacerbate the issue of cumulative errors (Niu et al., 2022;
Song et al., 2023), particularly in the VLN process that re-
quires frequent action execution. Therefore, we propose to
conduct a gradient decomposition-accumulation analysis,
wherein we periodically analyze the gradients generated
during the recent multi-step navigation process and identify
a concordant direction for an iteration of model update.

Gradient Decomposition-Accumulation. During naviga-
tion, as shown in Figure 2, we perform model update every
M action steps. For the j-th update, gradients from pre-
vious M steps are collected as Gj = {g̃j,m}Mm=1, where
Gj ∈ RM×D, g̃j,m indicates the t-th gradient gt when
t = M(j − 1) + m. Note that these gradients determine
the learning direction of our VLN model, and a simple
strategy to compute this direction is to take their average
ḡj = 1/M

∑
m g̃j,m; however, this inevitably introduce

step-specific noise. To avoid the issue, we aim to find a
concordant direction among these gradients. We first es-
tablish a local coordinate system with D orthogonal and
unit axes (bases) Uj = {uj,d

T}Dd=1 ∈ RD×D for gradient
decomposition, where each gradient can be approximatively
linearly represented by these bases. Intuitively, the axes
along which the gradients exhibit the higher variance af-
ter projection represent the directions of gradients with the

lower consistency. These directions have the potential to
introduce interference in determining a model update direc-
tion. Therefore, it is advisable to reduce the projection of
gradients in these directions. To solve the bases Uj , we can
utilize singular value decomposition (SVD) as follows:

λj,d,uj,d = SVDd

(
1

M − 1
ĜT

j Ĝj

)
, (3)

where Ĝj is the centered gradient matrix by removing the
mean from Gj . The m-th row in Ĝj reflects the deviation
between g̃j,m and the average gradient ḡj . λj,d, uj,d denote
the d-th largest eigenvalue and the corresponding eigenvec-
tor. Motivated by the principle component analysis (Shlens,
2014), it is obvious that a larger λj,d corresponds to a higher
variance of the gradient projection length Gjuj,d and vice
versa. Hence, we can derive a concordant gradient by adap-
tively aggregating the gradients’ components on all the axes
by considering different eigenvalue (importance):

∇(fast)
j =

∑D

d=1
Φd(λj,d)· < ḡj ,uj,d > uj,d, (4)

where the last term denotes the projected component of the
averaged gradient ḡj on to the d-th axis. Φd(·) is referred as
the adaptive coefficient for accumulating all the components,
which is simply defined as Φd(λj,d) = 1/λj,d, reflecting
the importance of various axes. Notably, when removing the
coefficient, ∇(fast)

j is degenerated into ḡj , which is used in
regular gradient descent approaches.

Based on Eq. (4), a concordant optimization direction is
established by enhancing the components that are conver-
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gent among {g̃j,m}Mm=1 and suppressing those divergent
ones. However, the introduction of Φd(·) makes the length
of∇(fast)

j uncontrollable. Therefore, we calibrate its length
to ∥ḡj∥2, which encodes the gradient length from the last
three time steps, for a more reasonable model update:

∇(fast)
j ← (∇(fast)

j ∥ḡj∥2)/∥∇(fast)
j ∥2 (5)

With∇(fast), we can perform fast model update by setting a
learning rate γ(fast). Although traditional methods employ
a fixed learning rate, such a setting might hinder model con-
vergence, i.e., small learning rates slow down convergence
while aggressive learning rates prohibit convergence (Barzi-
lai & Borwein, 1988). Since fast updates are frequently
invoked during navigation, relying on a fixed learning rate is
sub-optimal. Therefore, we propose to dynamically adjust
learning rate throughout the fast update phase.

Dynamic Learning Rate Scaling. Different from vary-
ing the learning rate through optimizer or scheduler, we
argue for a scaling method that leverages gradient agree-
ment information in historical steps to dynamically adjust
the speed of model update. Current gradient alignment
strategies typically impose direct constraints on the gradi-
ents (Shi et al., 2021; Rame et al., 2022), which are not
suitable for our framework as they undermine the gradi-
ent decomposition-accumulation process. Given that the
second-order information (variance) has been demonstrated
to be more effective than the first-order information (mean)
in gradient agreement learning (Rame et al., 2022), we di-
rectly utilize the trace of the gradient covariance matrix,
Tr

(
1/(M − 1)ĜT

j Ĝj

)
, for scaling. Note that the trace is

equal to the sum of eigenvalues σj =
∑

d λj,d. Here, when
σj deviates significantly from the historical variance, we
assign a smaller learning rate, and vice versa:

γ
(fast)
j = Trunc (1 + τ − |σj − σ̄|) · γ̂(fast), (6)

where Trunc(·) is the truncation function that truncates the
input to the interval [a, b]. τ is a threshold and γ̂(fast) is
the base learning rate. The historical variance σ̄ is updated
as σ̄ ← ρσ̄ + (1 − ρ)σj and maintained for all samples
throughout the test stage, ρ is the update momentum.

Model Update. With the above gradient and learning rate,
we can perform a single iteration as the j-th fast update:

Θj = Θj−1 − γ
(fast)
j · ∇(fast)

j , (7)

where the subscript of Θ indicates the index of model update
in the current test sample.

3.2. Slow Update via Parameter Analysis

In the fast update phase, although we obtain concordant
optimization directions, the frequent parameter updates may

still dramatically change the VLN model. To maintain the
stability of the VLN model during online long-term usage,
we periodically revert the model to its historical states, and
conduct a decomposition-accumulation analysis on the pa-
rameter variation trajectory for direct parameter modulation.
The slow update phase shares the core formulation with the
fast phase, but shifts the focus from gradients to the model
parameters themselves.

Parameter Decomposition-Accumulation. Following the
completion of the fast update phase on the o-th test sample,
the model state (parameters) is recorded as Θo,Jo , where
Jo denotes the final fast update step on this sample, and the
subscript o has been omitted in the previous section. We
then treat these historical states as a parameter variation
trajectory to facilitate stable model updates. As shown in
the right part of Figure 2, the slow model update is invoked
every N samples. For the l-th update, historical model
states are collected as Ml = {Θ̃l,n}Nn=0, where Ml ∈
R(N+1)×D, Θ̃l,n indicates the o-th model state Θo,Jo when
o = N(l − 1) + n and n ̸= 0. Θ̃l,0 indicates the model
state produced by the previous slow update, and we use it
interchangeably with Θ(l−1) in the following. Note that in
the slow update phase, we additionally incorporate Θ(l−1)

from the previous update for analysis since it serves as a
starting reference point for direct parameter modulation.

Similar to the fast update phase, the centered parameter
matrix M̂l can be constructed, where the n-th row vector
in it reflects the deviation between Θ̃l,n and the averaged
historical parameter Θ̄l = 1/(N + 1)

∑
n Θ̃l,n. With M̂l,

we can obtain the following eigenvalues and eigenvectors:
ϵl,d, zl,d = SVDd(1/N · M̂T

l M̂l), where a larger ϵl,d cor-
responds to a higher variance of the parameter projection
length Mlzl,d and vice versa. Zl = {zl,dT}Dd=1 depicts the
local coordinate system where each axis depicts the direc-
tion of parameter variation. Intuitively, the principal axes
(with larger eigenvalues) delineate the primary directions
of historical parameter variation, while minor axes (with
smaller eigenvalues) often encompass noise (Wang et al.,
2023e). To find a reliable optimization path to traverse the
trajectory of primary parameter changes, we pay attention
on the axis with the large variance. Since there is no silver
bullet to learning an optimization direction with only param-
eters, a reference direction can significantly aid in guiding
the model towards a local optimal. Here, we leverage the
parameter variations to calculate the reference direction:

hl =
1∑N−1

i=0 qi

∑N

n=1
qN−n · (Θ̃l,0 − Θ̃l,n), (8)

where the hyper-parameter q ∈ (0, 1), which assigns larger
weight to the more recent parameter deviations as they en-
capsulate richer sample information. Then, we calculate the
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Table 1. Experimental results for different TTA strategies on REVERIE dataset.

Methods REVERIE Val Seen REVERIE Val Unseen REVERIE Test Unseen Time(ms)*
OSR SR SPL RGSPL OSR SR SPL RGSPL OSR SR SPL RGSPL

DUET (Chen et al., 2022d) 73.86 71.75 63.94 51.14 51.07 46.98 33.73 23.03 56.91 52.51 36.06 22.06 104.84

+ EATA (Niu et al., 2022) 74.05 72.17 63.41 49.94 52.09 47.40 33.46 22.65 57.21 52.91 35.19 21.65 133.12
+ CoTTA (Wang et al., 2022a) 73.79 71.05 62.91 49.36 52.46 47.56 31.43 21.83 56.14 52.52 34.66 21.06 3.89× 103

+ NOTE (Gong et al., 2022) 74.76 72.43 64.28 51.97 52.85 48.28 33.98 22.98 57.66 53.41 36.18 22.09 137.89
+ SAR (Niu et al., 2023) 74.84 71.75 64.43 51.70 53.26 48.00 33.92 23.09 57.11 53.04 36.07 22.27 145.53
+ ViDA (Liu et al., 2024) 73.99 72.49 63.49 50.89 52.53 48.14 32.45 21.92 56.78 52.74 35.10 21.77 3.97× 103

+ Tent (Wang et al., 2021) 70.07 70.73 61.67 49.31 49.43 46.87 31.90 20.15 54.58 50.56 33.37 20.32 126.91
+ Tent-INT-2 71.82 70.36 61.53 49.82 51.22 48.46 33.67 21.30 54.25 50.36 33.89 21.09 124.02
+ Tent-INT-3 74.54 72.58 64.44 51.05 52.28 48.60 34.65 23.12 56.66 52.92 35.84 21.89 119.34
+ Tent-INT-4 73.84 72.51 64.03 50.97 51.40 48.91 35.06 22.99 56.74 53.14 36.29 22.14 117.26
+ Tent-Stable 73.72 71.89 64.06 50.41 51.43 47.55 33.99 23.32 57.12 52.61 36.17 22.16 129.22

+ FSTTA 75.59 75.48 65.84 52.23 56.26 54.15 36.41 23.56 58.44 53.40 36.43 22.40 135.61
* Note that the last column displays the average execution time of the agent for a single instruction, calculated on the Validation Unseen set of REVERIE.

optimization path (gradient) in the slow update phase as:

∇(slow)
l =

∑
d
Ψd(ϵl,hl) · sign (< hl, zl,d >) zl,d, (9)

where the use of sign function sign(·) is to force the axes to
be positively related to the reference direction hl. Notably,
different from Eq. (4) that uses the projected components on
each axis for estimating an optimization direction, here we
only utilize the axes themselves for deriving ∇(slow)

l . The
reason is that these axes depict the parameter variation di-
rection, which can be directly used for estimating gradients.
Ψd(·) is referred as the adaptive coefficient for accumulating
all the axes (optimization directions), defined as:

Ψd(ϵl,hl) =
ϵl,d · ∥hl∥2
∥ϵl∥2

, (10)

where the L2-normalization is performed on eigenvalues to
convey different relative importance of axes. Besides, the
norm of the reference direction is utilized to automatically
tuning the magnitude of the analyzed gradient. In contrast
to Φd(·) in the fast update phase, Ψd(·) highlights those
axes with high variation due to the different characteristics
of gradients and parameters in model optimization.

Model Update. With∇(slow)
l , we can perform the l-th slow

model update as follows:

Θ(l) = Θ(l−1) − γ(slow) · ∇(slow)
l , (11)

where γ(slow) is learning rate. Since the slow update phase
is designed for stable model learning and is not frequently
invoked, we employ a fixed learning rate here instead of
conducting the dynamic learning rate scaling as done in the
fast phase. The updated parameter Θ(l) will be utilized for
the subsequently coming test samples in conjunction with
new fast update phases applied to them.

4. Experimental Results
Datasets. We use the popular and standard VLN benchmark
REVERIE (Qi et al., 2020) to investigate test-time adapta-
tion within the realm of online VLN. REVERIE contains
10,567 panoramic images and 21,702 high-level instructions,
focusing on grounding remote target object within 90 build-
ings. In addition, we also adopt other three benchmarks for
evaluating the effectiveness of our proposed FSTTA. Among
them, R2R (Anderson et al., 2018) provides step-by-step
instructions for navigation in photo-realistic environments,
which includes 10,800 panoramic views and 7,189 trajecto-
ries. SOON (Zhu et al., 2021) also requires the agent to find
the target object with a more detailed description of the goal.
It has 3,848 sets of instruction and more than 30K long dis-
tance trajectories. Note that the performance comparisons
are based on their challenge report, specifically within the
provided val unseen and test unseen splits. R2R-CE (Krantz
et al., 2020) is a variant of R2R in continuous environments,
where an agent is able to move freely and engage with ob-
stacles. The dataset consists of 16,000 instruction-trajectory
pairs, with non-transferrable paths excluded.

Evaluation Metrics. We follow previous approaches (Qi
et al., 2020; Chen et al., 2022d;c; Li et al., 2022; Wang
et al., 2023f) and employ the most commonly used metrics
for evaluating VLN agents, i.e., TL (Trajectory Length):
the agent’s average path length in meters; NE (Navigation
Error): average distance in meters between the agent’s fi-
nal location and the target one; SR (Success Rate): the
proportion of successfully executed instructions with the
NE less than 3 meters; SPL (Success weighted by Path
Length): SR penalized by Path Length, which is calculated
as 1

E

∑E
i=1 Si

li
max(pi,li)

, where E is the number of tasks, Si

denotes the success as a binary value, li and pi denote the
shortest path and actual path length for the ith task; OSR
(Oracle Success Rate): SR given the oracle stop policy;
RGS (Remote Grounding Success rate): proportion of suc-
cessfully executed instructions where the output bounding
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Table 2. Ablation study on REVERIE dataset.
Module REVERIE Val Unseen

Fast DLR Slow TL ↓ OSR SR SPL RGS RGSPL

- - - 22.11 51.07 46.98 33.73 32.15 23.03

Tent - - 22.52 52.28 48.60 34.65 32.66 23.12

✓ - - 22.65 53.50 49.74 34.91 33.70 23.36
✓ ✓ - 22.43 54.01 49.82 35.34 34.32 23.29
✓ ✓ ✓ 22.14 56.26 54.15 36.41 34.27 23.56

box has an IoU (intersection over union) ≥ 0.5 with the
ground truth; and RGSPL (RGS weighted by Path Length):
RGS penalized by Path Length. Among them, SR and SPL
are the most common metrics for evaluation. Note that only
the optimal values of experimental results are highlighted
in bold across all tables. Moreover, from Tables 5 to 8,
different font colors are employed to indicate whether our
method exceeds the performance of the corresponding base-
line methods, i.e., using red to denote superior results and
blue for inferior ones.

Implementation Details. To better conform to practical
applications, we set batch size to 1 during evaluation, where
each sample (and each action step) is forward propagated
only once. Owing to the lack of an authentic online VLN
evaluation setting, we shuffle test samples in each dataset
split and sequentially input them into the agent to simu-
late the online execution and adaptation. Specifically, for
VLN models equipped with TTA strategies, we run the
experiments with shuffled samples 5 times and report the
average results. We adopt DUET (Chen et al., 2022d) and
HM3D (Chen et al., 2022c) as the base models. Since
HM3D does not provide training code for R2R-CE, we
adopt another SOTA methods, WS-MGMap (Chen et al.,
2022b) and BEVBert (An et al., 2022), for TTA. Note that
for the base models, we report the results obtained from
running their official codes. In our FSTTA, we only utilize
the last four LN layers of base models for model updating,
all the feature dimensions of these layers are 768. We set
the intervals for fast and slow updates to M = 3 and N = 4,
the learning rates of the two phases are γ̂(fast) = 6× 10−4

and γ(slow) = 1 × 10−3. For the dynamic learning rate
scaling, we empirically set the threshold τ = 0.7 in Eq. (6)
and the update momentum ρ = 0.95 with the truncation
interval [0.9, 1.1]. And the hyper-parameter q in Eq. (8) is
set to 0.1. All experiments are conducted on a RTX 3090
GPU. See § A for more details.

4.1. Comparison with Different TTA Strategies

Currently, various TTA methods have been adeptly inte-
grated for the dynamic model updates, marking significant
progress. Although the exploration of TTA within the VLN
field remains relatively untapped, the integration of contem-
porary advanced TTA methodologies into VLN is feasible.

Table 3. Results on Validation Seen set of REVERIE.
FSTTA REVERIE Val Seen

Unseen Seen TL ↓ OSR SR SPL RGS RGSPL

× × 13.86 73.86 71.15 63.94 57.41 51.14

× −→ ✓ 15.13 75.59 75.48 65.84 58.62 52.23
✓ −→ × 13.40 73.16 71.78 64.18 57.05 51.18
✓ −→ ✓ 15.11 75.58 74.12 65.53 59.20 52.18

Table 4. Results on Validation Unseen & Seen sets of REVERIE.

Methods REVERIE Val Unseen & Seen
TL ↓ OSR SR SPL RGS RGSPL

DUET 19.18 61.53 57.49 45.66 41.56 34.38

+ Tent 20.23 57.33 54.86 41.90 38.09 32.46
+ EATA 20.29 62.77 57.31 44.59 41.54 34.16
+ SAR 20.52 63.59 57.80 44.72 42.45 34.88

+ FSTTA 20.48 63.36 60.23 47.96 43.58 35.65

Since efficiency is an important evaluation metric for TTA,
we provide the average time taken by each method to exe-
cute a single instruction for comparison. For the compared
methods, SAR and TENT are the popular entropy minimiza-
tion models, whereas NOTE, CoTTA, EATA and ViDA are
state-of-the-art continual TTA methods. The results in Ta-
ble 1 demonstrate the capability of our proposed FSTTA to
blend model performance with testing efficiency. Specifi-
cally, on the validation unseen dataset, our method exhibits
a discernible enhancement of 6.2% and 2.5% on the SR and
SPL metrics compared to the state-of-the-art SAR method,
concurrently manifesting a reduction of 7% in testing time.
From the results, we observe that directly applying exist-
ing TTA methods to the online VLN task does not lead to
significant performance improvements. Furthermore, we in-
vestigate different frequencies of updates based on TENT as
well as the stable update approach. ‘INT’ denotes the update
interval, which means averaging the gradient information
over a certain interval and then performing an iteration of
model update; these results are consistent with those in Fig-
ure 1(b). It can be seen that our method still outperforms
these strategies with marginally increased time costs.

4.2. Extensive Analysis of FSTTA

Ablation Studies of the Proposed FSTTA. In this work, we
propose a FSTTA method for online VLN, which consists
of both fast and slow model update phases. To validate their
effectiveness, we progressively integrate the two phases
into the baseline DUET model. In addition, we design a
baseline variant, which equips DUET with the vanilla TTA
objective (TENT (Wang et al., 2021)) and simply utilize the
averaged gradient in an interval (with the same M ) for fast
model updates. Empirical findings from Table 2 illuminate
that the integration of fast and slow phases progressively
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Table 5. Experimental results on REVERIE dataset.

Methods Val Seen Val Unseen Test Unseen
OSR SR SPL RGSPL OSR SR SPL RGSPL OSR SR SPL RGSPL

Seq2Seq (Anderson et al., 2018) 35.70 29.59 24.01 14.96 8.07 4.20 2.84 2.16 6.88 3.99 3.09 1.58
RCM (Wang et al., 2019) 29.44 23.33 21.82 15.36 14.23 9.29 6.97 3.89 11.68 7.84 6.67 3.14
FAST (Qi et al., 2020) 55.17 50.53 45.50 29.66 28.20 14.40 7.19 4.67 30.63 19.88 11.61 6.08
SIA (Lin et al., 2021) 65.85 61.91 57.08 42.65 44.67 31.53 16.28 11.56 44.56 30.80 14.85 9.20
RecBERT (Hong et al., 2021) 53.90 51.79 47.96 35.61 35.02 30.67 24.90 15.27 32.91 29.61 23.99 13.51
Airbert (Guhur et al., 2021) 48.98 47.01 42.34 30.01 34.51 27.89 21.88 14.18 34.20 30.28 23.61 13.28
HAMT (Chen et al., 2021) 47.65 43.29 40.19 25.18 36.84 32.95 30.20 17.28 33.41 30.40 26.67 13.08
HOP (Qiao et al., 2022) 53.76 54.88 47.19 33.85 36.24 31.78 26.11 15.73 33.06 30.17 24.34 14.34
BEVBert (An et al., 2022) 76.18 73.72 65.32 51.73 56.40 51.78 36.37 24.44 57.26 52.81 36.41 22.09
LANA (Wang et al., 2023d) 74.28 71.94 62.77 50.34 52.97 48.31 33.86 22.77 57.20 51.72 36.45 22.85
GridMM (Wang et al., 2023f) - - - - 57.48 51.37 36.47 24.56 59.55 55.13 36.60 23.45

DUET (Chen et al., 2022d) 73.86 71.75 63.94 51.14 51.07 46.98 33.73 23.03 56.91 52.51 36.06 22.06
DUET-FSTTA 75.59 75.48 65.84 52.23 56.26 54.15 36.41 23.56 58.44 53.40 36.43 22.40

HM3D (Chen et al., 2022c) 66.76 65.00 55.70 41.66 62.11 55.89 40.85 26.76 59.81 53.13 38.24 22.68
HM3D-FSTTA 69.41 67.79 58.28 41.60 63.74 57.02 41.41 26.55 63.68 56.44 39.58 23.04

Table 6. Experimental results on R2R dataset.

Methods Val Seen Val Unseen
TL ↓ NE ↓ SR SPL TL ↓ NE ↓ SR SPL

Seq2Seq (Anderson et al., 2018) 11.33 6.01 39 - 8.39 7.81 22 -
RCM (Wang et al., 2019) 10.65 3.53 67 - 11.46 6.09 43 -
EnvDrop (Tan et al., 2019) 11.00 3.99 62 59 10.70 5.22 52 48
PREVALENT (Hao et al., 2020) 10.32 3.67 69 65 10.19 4.71 58 53
RecBERT (Hong et al., 2021) 11.13 2.90 72 68 12.01 3.93 63 57
HAMT (Chen et al., 2021) 11.15 2.51 76 72 11.46 3.65 66 61
HOP (Qiao et al., 2022) 11.26 2.72 75 70 12.27 3.80 64 57
DAVIS (Lu et al., 2022) 12.45 3.16 80 76 12.65 3.16 67 61
BEVBert (An et al., 2022) 13.56 2.17 81 74 14.55 2.81 75 64

DUET (Chen et al., 2022d) 12.33 2.28 79 73 13.94 3.31 72 60
DUET-FSTTA 13.39 2.25 79 73 14.64 3.03 75 62

HM3D (Chen et al., 2022c) 13.30 2.70 77 71 14.29 2.83 74 62
HM3D-FSTTA 13.52 2.57 78 71 14.86 2.71 75 63

bolsters the base model by 2.8% and 4.3% on the SR metric.
Moreover, the dynamic learning rate scaling module (DLR)
also contributes to enhancing the model’s performance.

Will our method experience catastrophic forgetting? For
an online VLN agent endowed with the TTA capability, it
faces the issue of catastrophic forgetting of historical envi-
ronments and instructions upon continually executing new
instructions in new environments. To assess whether our
method harbors this issue, we re-evaluate our methods on
the REVERIE validation seen set. Compared with the base
model, as shown in Table 3, we find that: (1) Obviously,
directly applying FSTTA with the base model on seen data
can noticeably enhance performance. (2) After performing
FSTTA on the unseen set, the obtained model, when tested
directly on the seen dataset without TTA, achieves perfor-
mance comparable to the base model, confirming that our
method does not suffer from catastrophic forgetting. (3)
Applying the updated model from unseen set to the seen set
with TTA yields comparable results against the seen-only-
TTA version. This indicates that our method is effective in
environment adaption and experience accumulation.

Generalization Testing in More Practical Environments.
In practical applications, agents might encounter both previ-
ously seen and unseen scenarios. In preceding experiments,
we exclusively test on the validation seen and unseen sets
separately. To verify the generalizability, we combine the
seen and unseen sets into a unified set for online VLN. Ta-
ble 4 shows that FSTTA outperforms other TTA methods in
effectively managing a variety of testing scenarios.

4.3. Comparison with State-of-the-art VLN Models

REVERIE. Table 5 presents a comparison on REVERIE
dataset. Compared with the base models which do not
perform test-time adaptation, the proposed method shows
favorable performance improvement across most evalua-
tion metrics across the three dataset splits. Specifically, on
the validation unseen split, our model exhibits notable ad-
vantages over DUET, with improvements of 7.1% on SR,
and 2.7% on SPL. These results unequivocally affirm the
effectiveness of our fast-slow test time adaptation model,
showing the promising potential of TTA in the VLN field.

R2R. Table 6 shows the comparison results on R2R dataset.
Our approach outperforms the base models in most metrics
(e.g., 72% → 75% for DUET on SR, 62% → 63% for
HM3D on SPL). Notably, from the results of the above
two datasets, our method, while enhancing the success rate
of VLN, causes a slight increase in the path length (TL).
We speculate that a possible reason is that performing TTA
online may increase the likelihood of the agent deviating
from its original action execution pattern, leading to more
exploration or backtracking. This situation is also confirmed
in the analysis of various TTA strategies in Table 1.

SOON. The proposed FSTTA establishes new state-of-the-
art results across most metrics on this dataset. For instance,
as shown in Table 7, on the validation unseen split, our
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Table 7. Experimental results on SOON dataset.
Methods Val Unseen Test Unseen

OSR SR SPL RGSPL OSR SR SPL RGSPL

GBE (Zhu et al., 2021) 28.54 19.52 13.34 1.16 21.45 12.90 9.23 0.45
GridMM (Wang et al., 2023f) 53.39 37.46 24.81 3.91 48.02 36.27 21.25 4.15
KERM (Li et al., 2023) 51.62 38.05 23.16 4.04 - - - -
AZHP (Gao et al., 2023a) 56.19 40.71 26.58 5.53 - - - -

DUET (Chen et al., 2022d) 50.91 36.28 22.58 3.75 43.00 33.44 21.42 4.17
DUET-FSTTA 52.57 36.53 23.82 3.75 43.44 35.34 23.23 4.52

HM3D (Chen et al., 2022c) 53.22 41.00 30.69 4.06 47.26 40.26 28.09 5.15
HM3D-FSTTA 54.19 42.44 31.03 4.93 48.52 42.02 28.95 5.20

Table 8. Experimental results on R2R-CE dataset.

Methods Val Unseen Test Unseen
NE ↓ OSR SR SPL NE ↓ OSR SR SPL

Seq2Seq (Krantz et al., 2020) 7.37 40 32 30 7.91 36 28 25
Sim2Sim (Krantz & Lee, 2022) 6.07 52 43 36 6.17 52 44 37
CWP-BERT (Hong et al., 2022) 5.74 53 44 39 5.89 51 42 36
DREAMW (Wang et al., 2023a) 5.53 49 59 44 5.48 49 57 44
GridMM (Wang et al., 2023f) 5.11 61 49 41 5.64 56 46 39
ETPNav (An et al., 2023) 4.71 65 57 49 5.12 63 55 48

WS-MGMap (Chen et al., 2022b) 6.28 48 39 34 7.11 45 35 28
WS-MGMap-FSTTA 6.16 49 40 35 7.62 46 37 28

DUET (Chen et al., 2022d) 5.13 55 46 40 5.82 50 42 36
DUET-FSTTA 5.27 58 48 42 5.84 55 46 38

BEVBert (An et al., 2022) 4.57 67 59 50 4.70 67 59 50
BEVBert-FSTTA 4.39 65 60 51 5.45 69 60 50

model HM3D-FSTTA achieves SR and SPL of 42.44%
and 31.03%, respectively, while the state-of-the-art method
GridMM are 37.46% and 24.81%. On the test unseen split,
our approach improves the performance of DUET by sub-
stantial gains (e.g., 21.42%→ 23.23% for SPL).

R2R-CE. FSTTA also generalizes well on the continuous
environment, i.e., R2R-CE dataset, as shown in Table 8. The
results indicate that our approach demonstrates superior or
comparable performance against other methods.

Qualitative Analysis. Figure 3 provides a visualization of
the agent’s instruction execution process, validating that our
proposed FSTTA approach can indeed dynamically enhance
the VLN performance of the agent during testing.

Other Experiments. Please refer to Appendixes for other
experiments, such as detailed results on 4 datasets in § B.1,
comprehensive comparison with TTA strategies in § B.2,
and parameter analysis in § B.3.

5. Conclusions
This paper explores the feasibility of TTA strategies for
online VLN. We propose a fast-slow test-time adaptation
method, which performs decomposition-accumulation anal-
ysis for both gradients and parameters, achieving a balance
between adaptability and stability. The encouraging perfor-
mance is validated in extensive experiments.

Limitations. Several limitations are noteworthy. Firstly, our
approach focuses on adapting normalization layers within
the model. While these layers are widely employed in deep
learning, there are still a few methods that do not utilize

DUET

Washing Machine 
in the 

Laundry Room

Ours

Washing Machine 
in the 

Laundry Room

INSTRUCTION: Go to the laundry room on level 2 and empty the washing machine.

Container 
on the counter

DUET

Container 
on the counter

Ours

INSTRUCTION: Go to the second floor bathroom and bring me the container that’s                   
sitting on the counter.

Big ball
on the floor

DUET Ours Big ball
on the floor

INSTRUCTION: Go into the gym and roll the big ball on the floor. 

Figure 3. Representative visual results on REVERIE validation
unseen set. Yellow points denote start locations, while the directed
lines with green and red points depict the predicted trajectories with
target and incorrect endpoints, respectively. With FSTTA, the basic
agent (DUET) demonstrates enhanced exploration capabilities,
effectively moving towards the correct direction, and succeeds
based on the object context and scene layouts.

them. One viable approach to address this issue is to intro-
duce additional normalization layers to the corresponding
models and retrain them using the training data. In the fu-
ture, we will also explore how our model can update other
types of layers. Secondly, In this paper, we simulate the on-
line VLN setting simply by sequentially inputting data from
the test set. In the future, we aim to construct a more realistic
agent online learning dataset that aligns with practical appli-
cation scenarios, to better evaluate TTA methods. Thirdly,
compared to the base model, the introduction of TTA in-
evitably incurs additional computational cost, which is a
direction for future improvement. Finally, the frequencies
of fast and slow updates are fixed and periodic. Adaptive
update invocation strategies is worthy of consideration.
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A. Implementation Details
Online vision-and-language navigation refers to a VLN setting wherein an agent navigates through diverse environments,
possessing the capability to continuously update and adapt its model upon encountering new test data. To date, the majority
of existing VLN tasks have not adhered to an online setting. Typically, they follow a distinct train-test paradigm, wherein
models are trained on a training set and then fixed and evaluated on a test set without undergoing adaptive model updates
during testing. To better conform to real-world application scenarios, for all datasets, we set the batch size to 1 during
evaluation. Each sample (or each action step) is forward propagated only once during the testing process. Note that for the
base models, we report the results obtained from running their official codes. For VLN models equipped with TTA strategies,
we run the corresponding experiments 5 times while shuffling the order of the samples and report the average results. In our
FSTTA and other compared TTA strategies, we only utilize the last four LN layers of the base models for model updating,
all the feature dimensions of these layers are 768. We set the intervals for fast and slow updates to M = 3 and N = 4. For
the dynamic learning rate scaling, we empirically set the threshold τ = 0.7 in Eq. (6) and the update momentum ρ = 0.95
with the truncation interval [a, b] = [0.9, 1.1]. And the hyper-parameter q in Eq. (8) is set to 0.1. The learning rates of the
two phases are γ̂(fast) = 6× 10−4 and γ(slow) = 1× 10−3 for base model DUET, whereas the learning rates with base
model HM3D are γ̂(fast) = 4 × 10−4 and γ(slow) = 2 × 10−3. In addition, due to the disparities between discrete and
continuous environments, we employ specific hyper-parameters for the R2R-CE dataset. Specifically, for this dataset, the
learning rates of the two phases are γ̂(fast) = 5× 10−4 and γ(slow) = 1× 10−3. The intervals for fast and slow updates
are set to M = 7 and N = 4. To speed up the SVD decomposition, we utilize the fast SVD approach in (Wang et al.,
2023e). All experiments are conducted on a RTX 3090 GPU. Our model is implemented with PyTorch 1.7.1 and Python
3.8.5, required packages are listed in our code.

Table 9. Experimental results on REVERIE datasets. Results better than the base model are highlighted in bold.
Methods REVERIE Val Seen REVERIE Val Unseen REVERIE Test Unseen

TL ↓ OSR SR SPL RGS RGSPL TL ↓ OSR SR SPL RGS RGSPL TL ↓ OSR SR SPL RGS RGSPL

Human - - - - - - - - - - - - 21.18 86.83 81.51 53.66 77.84 51.44

Seq2Seq (Anderson et al., 2018) 12.88 35.70 29.59 24.01 18.97 14.96 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
RCM (Wang et al., 2019) 10.70 29.44 23.33 21.82 16.23 15.36 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14
SMNA (Ma et al., 2019a) 7.54 43.29 41.25 39.61 30.07 28.98 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
FAST (Qi et al., 2020) 16.35 55.17 50.53 45.50 31.97 29.66 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
ORIST (Qi et al., 2021) 10.73 49.12 45.19 42.21 29.87 27.77 10.90 25.02 16.84 15.14 8.52 7.58 11.38 29.20 22.19 18.97 10.68 9.28
CKR (Gao et al., 2021a) 12.16 61.91 57.27 53.57 39.07 - 26.26 31.44 19.14 11.84 11.45 - 22.46 30.40 22.00 14.25 11.60 -
SIA (Lin et al., 2021) 13.61 65.85 61.91 57.08 45.96 42.65 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20
RecBERT (Hong et al., 2021) 13.44 53.90 51.79 47.96 38.23 35.61 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert (Guhur et al., 2021) 15.16 48.98 47.01 42.34 32.75 30.01 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT (Chen et al., 2021) 12.79 47.65 43.29 40.19 27.20 25.18 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
HOP (Qiao et al., 2022) 13.80 53.76 54.88 47.19 38.65 33.85 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
BEVBert (An et al., 2022) - 76.18 73.72 65.32 57.70 51.73 - 56.40 51.78 36.37 34.71 24.44 - 57.26 52.81 36.41 32.06 22.09
MiC (Qiao et al., 2023a) - - - - - - 20.64 62.37 56.97 43.60 37.52 28.72 18.11 62.40 55.74 41.97 35.25 26.17
LANA (Wang et al., 2023d) 15.91 74.28 71.94 62.77 59.02 50.34 23.18 52.97 48.31 33.86 32.86 22.77 18.83 57.20 51.72 36.45 32.95 22.85
BSG (Liu et al., 2023) 15.26 78.36 76.18 66.69 61.56 54.02 24.71 58.05 52.12 35.59 35.36 24.24 22.90 62.83 56.45 38.70 33.15 22.34
GridMM (Wang et al., 2023f) - - - - - - 23.20 57.48 51.37 36.47 34.57 24.56 19.97 59.55 55.13 36.60 34.87 23.45

DUET (Chen et al., 2022d) 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
DUET-FSTTA 15.13 ± 0.13 75.59 ± 0.25 75.48 ± 0.19 65.84 ± 0.07 58.62 ± 0.43 52.23 ± 0.18 22.14 ± 0.22 56.26 ± 0.14 54.15 ± 0.19 36.41 ± 0.13 34.27 ± 0.56 23.56 ± 0.30 21.52 ± 0.10 58.44 ± 0.13 53.40 ± 0.37 36.43 ± 0.23 32.99 ± 0.43 22.40 ± 0.16

HM3D (Chen et al., 2022c) 16.18 66.76 65.00 55.70 48.42 41.66 22.13 62.11 55.89 40.85 36.58 26.76 20.87 59.81 53.13 38.24 32.69 22.68
HM3D-FSTTA 16.24 ± 0.10 69.41 ± 0.13 67.79 ± 0.27 58.28 ± 0.23 48.14 ± 0.46 41.60 ± 0.18 22.37 ± 0.39 63.74 ± 0.05 57.02 ± 0.21 41.41 ± 0.30 36.97 ± 0.37 26.55 ± 0.13 21.90 ± 0.14 63.68 ± 0.07 56.44 ± 0.08 39.58 ± 0.27 34.05 ± 0.66 23.04 ± 0.12

B. Complementary Experiments
B.1. Full Results on the 4 Benchmarks

In our main paper, due to the space limitation, we only provide the representative comparison results on REVERIE (Qi et al.,
2020), SOON (Zhu et al., 2021), R2R (Anderson et al., 2018), and R2R-CE (Krantz et al., 2020) benchmarks. Here, we
show the full results on the ‘validation seen’, ‘validation unseen ’, and ‘test unseen’ splits of these benchmarks by comparing
more state-of-the-art methods. Note that since the base models DUET (Chen et al., 2022d) and HM3D (Chen et al., 2022c)
produce errors when online evaluating on the R2R ‘test unseen’ set, we don’t perform evaluation on this split. Moreover, we
follow (Chen et al., 2022d) to use the challenge splits of SOON for evaluation1. Table 9, Table 10, Table 11, and Table 12
show the full comparison with more approaches. Since the results of our proposed FSTTA are averaged over 5 random runs,
we report the mean and standard deviation. To further enhance the performance of online VLN, we will introduce additional
strategies for open-environment sensing (Hu et al., 2024; Gao et al., 2023b) and entity localization (Gao & Xu, 2021) in the
future, enabling the agent to acquire more comprehensive information. In addition, introducing external knowledge may be
a viable path to enhancing online VLN performance (Gao et al., 2021b).

In addition, to verify that our proposed FSTTA can handle larger domain gap, we design a new experimental setting that

1As shown in https://github.com/ZhuFengdaaa/SOON/issues/1, The SOON dataset (Zhu et al., 2021) does not
release the split in their original paper. Therefore, performance comparisons are based on their challenge report https://
scenario-oriented-objectnavigation.github.io.
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Table 10. Experimental results on R2R datasets.
Methods R2R Val Seen R2R Val Unseen

TL ↓ NE ↓ OSR SR SPL TL ↓ NE ↓ OSR SR SPL

Seq2Seq (Anderson et al., 2018) 11.33 6.01 53 39 - 8.39 7.81 28 22 -
SF (Fried et al., 2018) - 3.36 74 66 - - 6.62 45 35 -
Chasing (Anderson et al., 2019) 10.15 7.59 42 34 30 9.64 7.20 44 35 31
RCM (Wang et al., 2019) 10.65 3.53 75 67 - 11.46 6.09 50 43 -
SMNA (Ma et al., 2019a) - 3.22 78 67 58 - 5.52 56 45 32
PRESS (Li et al., 2019) 10.57 4.39 - 58 55 10.36 5.28 - 49 45
EnvDrop (Tan et al., 2019) 11.00 3.99 - 62 59 10.70 5.22 - 52 48
AuxRN (Zhu et al., 2020) - 3.33 78 70 67 - 5.28 62 55 50
PREVALENT (Hao et al., 2020) 10.32 3.67 - 69 65 10.19 4.71 - 58 53
RelGraph (Hong et al., 2020) 10.13 3.47 - 67 65 9.99 4.73 - 57 53
NvEM (An et al., 2021) 11.09 3.44 - 69 65 11.83 4.27 - 60 55
RecBERT (Hong et al., 2021) 11.13 2.90 - 72 68 12.01 3.93 - 63 57
AirBert (Guhur et al., 2021) 11.09 2.68 - 75 70 11.78 4.10 - 62 56
REM (Liu et al., 2021) 10.88 2.48 - 75 72 12.44 3.89 - 64 58
HAMT (Chen et al., 2021) 11.15 2.51 - 76 72 11.46 3.65 - 66 61
GBE (Zhu et al., 2021) - - - - - - 5.20 - 54 43
SEvol (Chen et al., 2022a) 11.97 3.56 - 67 63 12.26 3.99 - 62 57
HOP (Qiao et al., 2022) 11.26 2.72 - 75 70 12.27 3.80 - 64 57
DAVIS (Lu et al., 2022) 12.45 3.16 - 80 76 12.65 3.16 - 67 61
BEVBert (An et al., 2022) 13.56 2.17 88 81 74 14.55 2.81 84 75 64
LANA (Wang et al., 2023d) - - - - - 12.00 - 76 68 62
BSG (Liu et al., 2023) - - - - - 14.90 2.89 - 74 62
GridMM (Wang et al., 2023f) - - - - - 13.27 2.83 - 75 64

DUET (Chen et al., 2022d) 12.33 2.28 86 79 73 13.94 3.31 81 72 60
DUET-FSTTA 13.39 ± 0.14 2.25 ± 0.29 86 ± 0.2 79 ± 0.2 73 ± 0.2 14.64 ± 0.12 3.03 ± 0.22 82 ± 0.2 75 ± 0.6 62 ± 0.2

HM3D (Chen et al., 2022c) 13.30 2.70 84 77 71 14.29 2.83 83 74 62
HM3D-FSTTA 13.52 ± 0.12 2.57 ± 0.39 85 ± 0.2 78 ± 0.4 71 ± 0.2 14.86 ± 0.10 2.71 ± 0.48 82 ± 0.2 75 ± 0.4 63 ± 0.2

Table 11. Experimental results on SOON datasets.
Methods SOON Val Unseen SOON Test Unseen

TL ↓ OSR SR SPL RGSPL TL ↓ OSR SR SPL RGSPL

GBE (Zhu et al., 2021) 28.96 28.54 19.52 13.34 1.16 27.88 21.45 12.90 9.23 0.45
GridMM (Wang et al., 2023f) 38.92 53.39 37.46 24.81 3.91 46.20 48.02 36.27 21.25 4.15
KERM (Li et al., 2023) 35.83 51.62 38.05 23.16 4.04 - - - - -
AZHP (Gao et al., 2023a) 39.33 56.19 40.71 26.58 5.53 - - - - -

DUET (Chen et al., 2022d) 36.20 50.91 36.28 22.58 3.75 41.83 43.00 33.44 21.42 4.17
DUET-FSTTA 35.32 ± 0.51 52.57 ± 0.06 36.53 ± 0.26 23.82 ± 0.21 3.75 ± 0.02 41.93 ± 0.25 43.44 ± 0.21 35.34 ± 0.18 23.23 ± 0.48 4.52 ± 0.04

HM3D (Chen et al., 2022c) 34.13 53.22 41.00 30.69 4.06 36.64 47.26 40.26 28.09 5.15
HM3D-FSTTA 34.91 ± 0.22 54.19 ± 0.20 42.44 ± 0.44 31.03 ± 0.34 4.93 ± 0.09 37.52 ± 0.12 48.52 ± 0.26 42.02 ± 0.24 28.95 ± 0.45 5.20 ± 0.05

transfers models trained on discrete dataset to continuous dataset. Here, the substantial gap between discrete and continuous
environments poses a challenge for the effective TTA. As shown in Table 12, DUETdiscrete refers to the DUET model
pretrained on discrete R2R dataset without finetuning on the continuous data. We can observe that the significant domain
discrepancy between discrete and continuous navigation environments leads to a serious performance drop for agents.
Experimenal results show that our FSTTA method effectively assists the model in enhancing its generalization ability.

Comparison of Time Costs. In our framework, using TTA inevitably incurs time overhead. Here, we compare the time
costs with several state-of-the-art methods. From Table 13 we can observe that our proposed approaches (DUET-FSTTA,
HM3D-FSTTA) achieve significant performance with moderate time cost. Note that, some methods, such as GridMM and
BEVBert, which use the features of bird-eye-view, have higher computational cost than our TTA-equipped methods.

B.2. More Results for Comparison with Other TTA Strategies

In our main paper, six state-of-the-art TTA strategies are adopted for comparison including Tent (Wang et al., 2021),
EATA (Niu et al., 2022), CoTTA (Wang et al., 2022a), NOTE (Gong et al., 2022), SAR (Niu et al., 2023) and ViDA (Liu
et al., 2024). The settings of these TTA strategies for VLN are introduced as follows:

Tent (Wang et al., 2021). We follow all hyper-parameters that are set in Tent. The optimizer is AdamW (Loshchilov &
Hutter, 2017) and the learning rate for batch size = 1 is set to (0.001/64).

EATA (Niu et al., 2022). We follow all hyper-parameters that are set in EATA. Specifically, the entropy constant E0 (for
reliable sample identification) is set to 0.1× ln 1000. The ϵ for redundant sample identification is set to 0.05. The trade-off
parameter β for entropy loss and regularization loss is set to 2000. The number of pre-collected in-distribution test samples
for Fisher importance calculation is 2,000. The update rule is the same as Tent.

CoTTA (Wang et al., 2022a). We follow all hyper-parameters that are set in CoTTA. Specifically, we use random
augmentation compositions including gaussian noise and dropout for our experiments, with a confidence threshold of 0.55.
The same AdamW optimizer as Tent is utilized for the practical implementation. The restoration probability is set to 0.01
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Table 12. Experimental results on R2R-CE datasets.
Methods R2R-CE Val Seen R2R-CE Val Unseen R2R-CE Test Unseen

TL ↓ NE ↓ OSR SR SPL TL ↓ NE ↓ OSR SR SPL TL ↓ NE ↓ OSR SR SPL

Seq2Seq (Krantz et al., 2020) 9.26 7.12 46 37 35 8.64 7.37 40 32 30 8.85 7.91 36 28 25
SASRA (Irshad et al., 2021) 8.89 7.71 - 36 34 7.89 8.32 - 24 22 - - - - -
CWTP (Chen et al., 2020) - 7.10 56 36 31 - 7.90 38 26 23 - - - - -
AG-CMTP (Chen et al., 2022a) - 6.60 56.2 35.9 30.5 - 7.90 39.2 23.1 19.1 - - - - -
R2R-CMTP (Chen et al., 2022a) - 7.10 45.4 36.1 31.2 - 7.90 38.0 26.4 22.7 - - - - -
LAW (Raychaudhuri et al., 2021) 9.34 6.35 49 40 37 8.89 6.83 44 35 31 9.67 7.69 28 38 25
WPN (Krantz et al., 2021) 8.54 5.48 53 46 43 7.62 6.31 40 36 34 8.02 6.65 37 32 30
CM2 (Georgakis et al., 2022) 12.05 6.10 50.7 42.9 34.8 11.54 7.02 42 34 28 13.90 7.70 39 31 24
CM2-GT (Georgakis et al., 2022) 12.60 4.81 58.3 52.8 41.8 10.68 6.23 41 37 31 - - - - -
WS-MGMap (Chen et al., 2022b) 10.12 5.65 51.7 46.9 43.4 10.00 6.28 48 39 34 12.30 7.11 45 35 28
Sim2Sim (Krantz & Lee, 2022) 11.18 4.67 61 46 42 10.69 6.07 52 43 36 11.43 6.17 52 44 37
CWP-CMA (Hong et al., 2022) 11.47 5.20 61 51 45 10.90 6.20 52 41 36 11.85 6.30 49 38 33
CWP-BERT (Hong et al., 2022) 12.50 5.02 59 50 44 12.23 5.74 53 44 39 13.51 5.89 51 42 36
ERG (Wang et al., 2023c) 11.8 5.04 61 46 42 9.96 6.20 52 41 36 - - - - -
DREAMW (Wang et al., 2023a) 11.6 4.09 59 66 48 11.3 5.53 49 59 44 11.8 5.48 49 57 44
GridMM (Wang et al., 2023f) 12.69 4.21 69 59 51 13.36 5.11 61 49 41 13.31 5.64 56 46 39
ETPNav (An et al., 2023) 11.78 3.95 72 66 59 11.99 4.71 65 57 49 12.87 5.12 63 55 48

DUET (Chen et al., 2022d) 12.62 4.13 67 57 49 11.86 5.13 55 46 40 13.13 5.82 50 42 36
DUET-FSTTA 12.39 ± 0.30 4.25 ± 0.23 69 ± 0.6 58± 0.2 50± 0.0 11.58 ± 0.17 5.27 ± 0.12 58 ± 0.4 48 ± 0.6 42 ± 0.4 13.17 ± 0.10 5.84 ± 0.22 55 ± 0.8 46 ± 0.2 38 ± 0.2

DUETdiscrete
* 10.34 5.18 64 55 48 9.97 6.47 53 47 38 11.45 7.01 47 40 35

DUETdiscrete-FSTTA 10.25 ± 0.47 5.22 ± 0.29 65 ± 0.4 56± 0.3 49± 0.2 10.16 ± 0.28 5.61 ± 0.19 55 ± 0.2 48 ± 0.4 38 ± 0.2 11.85 ± 0.37 6.45 ± 0.31 48 ± 0.4 43 ± 0.5 36 ± 0.7

BEVBert (An et al., 2022) 13.98 3.77 73 68 60 13.27 4.57 67 59 50 15.31 4.70 67 59 50
BEVBert-FSTTA 14.07 ± 0.49 4.11 ± 0.22 74 ± 0.4 69 ± 0.4 60 ± 0.6 13.11 ± 0.46 4.39 ± 0.22 65 ± 0.6 60 ± 0.4 51 ± 0.6 15.02 ± 0.51 5.45 ± 0.31 69 ± 0.4 60 ± 0.2 50 ± 0.4

* Note that DUETdiscrete refers to the DUET model pretrained on discrete R2R dataset without finetuning on the continuous data. In this setting, a significant domain discrepancy between discrete and continuous environments exists.

Table 13. Experimental results for different methods with time costs on REVERIE dataset.

Methods REVERIE Val Unseen Time(ms)*
TL ↓ OSR SR SPL RGS RGSPL

DUET (Chen et al., 2022d) 22.11 51.07 46.98 33.73 32.15 23.03 104.84

+ EATA (Niu et al., 2022) 23.41 52.09 47.40 33.46 32.09 22.65 133.12
+ CoTTA (Wang et al., 2022a) 24.88 52.46 47.56 31.43 31.82 21.83 3.89 × 103

+ NOTE (Gong et al., 2022) 23.15 52.85 48.28 33.98 32.77 22.98 137.89
+ SAR (Niu et al., 2023) 23.47 53.26 48.00 33.92 33.49 23.09 145.53
+ ViDA (Liu et al., 2024) 24.53 52.53 48.14 32.45 32.26 21.92 3.97× 103

+ Tent (Wang et al., 2021) 24.05 49.43 46.87 31.90 30.04 20.15 126.91
+ Tent-INT-2 24.24 51.22 48.46 33.67 32.43 21.30 124.02
+ Tent-INT-3 22.52 52.28 48.60 34.65 32.66 23.12 119.34
+ Tent-INT-4 22.59 51.40 48.91 35.06 32.59 22.99 117.26
+ Tent-Stable 22.05 51.43 47.55 33.99 32.34 23.32 129.22

+ FSTTA 22.14 56.26 54.15 36.41 34.27 23.56 135.61

HM3D (Chen et al., 2022c) 22.13 62.11 55.89 40.85 36.58 26.76 107.96
+FSTTA 22.37 63.74 57.02 41.41 36.97 26.55 141.70

BEVBert (An et al., 2022) - 56.40 51.78 36.37 34.71 24.44 161.43
GridMM (Wang et al., 2023f) 23.20 57.48 51.37 36.47 34.57 24.56 277.44

* Note that the last column displays the average execution time of the agent for a single instruction, calculated on the Validation
Unseen set of REVERIE.

and EMA factor is set to 0.999.

NOTE (Gong et al., 2022). We follow all hyper-parameters that are set in NOTE. Specifically, the soft-shrinkage width is
set to 4 and EMA momentum is set to 0.01. The update rule is AdamW with a learning rate as 0.0001.

SAR (Niu et al., 2023). We follow all hyper-parameters that are set in SAR. Specifically, the entropy constant E0 (for
reliable sample identification) is set to 0.4× ln 1000, and the neighborhood size for sharpness-aware minimization is set by
the default value 0.05. For model recovery, the moving average factor is set to 0.9 and the reset threshold is set to 0.2.

ViDA (Liu et al., 2024). We follow all hyper-parameters that are set in ViDA. Specifically, we use random augmentation
compositions including gaussian noise and dropout for our experiments. The same AdamW optimizer as Tent is utilized for
the practical implementation. The threshold value is set to 0.2 and the updating weight is set to 0.999.

B.2.1. DETAILED COMPARISON WITH TTA APPROACHES

In our main paper, we compare the proposed FSTTA approach with various TTA method on the REVERIE dataset. Here we
provide detailed comparison with the mean and standard deviation. From Table 14 we can find that our proposed FSTTA
obtains more stable results (with lower standard deviation).
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Table 14. Experimental results for different TTA strategies.
Methods REVERIE Val Seen REVERIE Val Unseen REVERIE Test Unseen

TL ↓ OSR SR SPL RGS RGSPL TL ↓ OSR SR SPL RGS RGSPL TL ↓ OSR SR SPL RGS RGSPL

DUET (Chen et al., 2022d) 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06

+ EATA (Niu et al., 2022) 14.48 ± 0.49 74.05 ± 0.93 72.17 ± 1.85 63.41 ± 1.55 56.92 ± 0.88 49.94 ± 0.65 23.41 ± 0.63 52.09 ± 0.61 47.40 ± 1.13 33.46 ± 1.47 32.09 ± 1.43 22.65 ± 0.33 22.15 ± 0.50 57.21 ± 0.72 52.91 ± 1.20 35.19 ± 1.39 31.39 ± 1.30 21.65 ± 0.29

+ CoTTA (Wang et al., 2022a) 15.75 ± 1.62 73.79 ± 1.21 71.05 ± 1.19 62.91 ± 0.86 55.64 ± 1.72 49.36 ± 1.21 24.88 ± 2.01 52.46 ± 1.22 47.56 ± 1.10 31.43 ± 1.03 31.82 ± 1.66 21.83 ± 1.55 23.45 ± 2.20 56.14 ± 1.96 52.52 ± 1.18 34.66 ± 1.34 31.28 ± 0.97 21.06 ± 1.04

+ NOTE (Gong et al., 2022) 14.32 ± 0.22 74.76 ± 0.77 72.43 ± 0.51 64.28 ± 0.60 58.61 ± 0.93 51.97 ± 0.55 23.15 ± 0.12 52.85 ± 0.20 48.28 ± 1.24 33.98 ± 0.96 32.77 ± 0.69 22.98 ± 0.65 21.85 ± 0.28 57.66 ± 0.36 53.41 ± 0.94 36.18 ± 0.86 32.21 ± 0.72 22.09 ± 0.43

+ SAR (Niu et al., 2023) 14.32 ± 0.66 74.84 ± 1.79 71.75 ± 1.27 64.43 ± 0.49 57.70 ± 0.60 51.70 ± 0.15 23.47 ± 0.70 53.26 ± 1.52 48.00 ± 1.75 33.92 ± 0.50 33.49 ± 1.14 23.09 ± 0.55 21.56 ± 0.99 57.11 ± 1.51 53.04 ± 0.98 36.07 ± 0.30 32.64 ± 0.20 22.27 ± 0.87

+ ViDA (Liu et al., 2024) 15.25 ± 1.02 73.99 ± 0.87 72.49 ± 0.83 63.49 ± 0.70 57.20 ± 1.23 50.89 ± 0.63 24.53 ± 0.97 52.53 ± 0.29 48.14 ± 1.10 32.45 ± 0.98 32.26 ± 1.54 21.92 ± 0.79 22.74 ± 1.05 56.78 ± 1.47 52.74 ± 1.16 35.10 ± 0.35 31.89 ± 0.41 21.77 ± 0.66

+ Tent (Wang et al., 2021) 15.51 ± 0.87 70.07 ± 1.03 70.73 ± 0.49 61.67 ± 1.31 55.19 ± 0.77 49.31 ± 0.51 24.05 ± 1.62 49.43 ± 1.25 46.87 ± 0.51 31.90 ± 1.53 30.04 ± 0.66 20.15 ± 0.35 23.88 ± 1.35 54.58 ± 1.41 50.56 ± 0.46 33.37 ± 0.79 30.30 ± 1.23 20.32 ± 0.42

+ Tent-INT-2 14.97 ± 0.45 71.82 ± 0.87 70.36 ± 0.42 61.53 ± 0.96 54.88 ± 0.54 49.82 ± 0.21 24.24 ± 1.84 51.22 ± 1.30 48.46 ± 0.48 33.67 ± 1.93 32.43 ± 0.36 21.30 ± 0.62 23.19 ± 1.02 54.25 ± 1.41 50.36 ± 0.67 33.89 ± 0.32 30.30 ± 0.71 21.09 ± 0.29

+ Tent-INT-3 14.18 ± 0.60 74.54 ± 0.89 72.58 ± 0.38 64.44 ± 1.02 56.96 ± 0.96 51.05 ± 0.27 22.52 ± 0.96 52.28 ± 0.70 48.60 ± 0.33 34.65 ± 0.84 32.66 ± 0.81 23.12 ± 0.28 21.95 ± 0.95 56.66 ± 0.62 52.92 ± 0.64 35.84 ± 0.18 31.98 ± 0.93 21.89 ± 0.37

+ Tent-INT-4 14.12 ± 0.51 73.84 ± 0.98 72.51 ± 0.60 64.03 ± 0.20 56.70 ± 0.93 50.97 ± 0.59 22.59 ± 0.80 51.40 ± 0.24 48.91 ± 0.40 35.06 ± 0.67 32.59 ± 0.36 22.99 ± 0.28 21.45 ± 0.61 56.74 ± 0.22 53.14 ± 0.42 36.29 ± 0.10 32.11 ± 0.62 22.14 ± 0.29

+ Tent-Stable 13.90 ± 0.74 73.72 ± 1.33 71.89 ± 0.29 64.06 ± 0.52 56.43 ± 0.95 50.41 ± 0.44 22.05 ± 0.95 51.43 ± 1.18 47.55 ± 0.39 33.99 ± 1.06 32.34 ± 0.55 23.32 ± 0.70 21.15 ± 0.88 57.12 ± 1.31 52.61 ± 1.04 36.17 ± 0.82 32.15 ± 0.76 22.16 ± 0.34

+ FSTTA 15.13 ± 0.13 75.59 ± 0.25 75.48 ± 0.19 65.84 ± 0.07 61.69 ± 0.43 52.23 ± 0.18 22.14 ± 0.22 56.26 ± 0.14 54.15 ± 0.19 36.41 ± 0.13 34.27 ± 0.56 23.56 ± 0.30 21.52 ± 0.10 58.44 ± 0.13 53.40 ± 0.37 36.43 ± 0.23 32.99 ± 0.43 22.40 ± 0.16

Table 15. Experimental results for different TTA strategies with their default updated parameters.

Methods REVERIE Val Unseen
TL ↓ OSR SR SPL RGS RGSPL

DUET (Chen et al., 2022d) 22.11 51.07 46.98 33.73 32.15 23.03
+ Tent (Wang et al., 2021) 23.71 ± 1.95 48.87 ± 1.65 44.28 ± 1.84 28.88 ± 0.94 30.70 ± 0.86 19.89 ± 0.73

+ EATA (Niu et al., 2022) 22.06 ± 1.62 52.85 ± 1.52 45.44 ± 0.89 32.79 ± 0.94 32.13 ± 1.27 23.14 ± 0.53

+ CoTTA (Wang et al., 2022a) 27.13 ± 2.88 43.48 ± 3.46 39.25 ± 2.56 25.44 ± 1.31 27.15 ± 0.94 17.01 ± 1.03

+ NOTE (Gong et al., 2022) 22.84 ± 1.85 50.78 ± 1.94 45.90 ± 0.71 31.82 ± 0.32 31.50 ± 0.66 22.14 ± 0.74

+ SAR (Niu et al., 2023) 22.26 ± 1.47 50.46 ± 1.85 44.39 ± 1.59 30.35 ± 0.91 31.03 ± 0.82 21.91 ± 0.56

+ FSTTA 22.14 ± 0.22 56.26 ± 0.14 54.15 ± 0.19 36.41 ± 0.13 34.27 ± 0.56 23.56 ± 0.30

B.2.2. COMPARISON WITH TTA STRATEGIES THAT UPDATE THEIR DEFAULT NUMBER OF PARAMETERS

In the previous section and § 4.1 of our main paper, to make the comparison between different TTA approaches fair, we use
the same amount of parameters for model updates among these methods. Astute readers might recognize that some of these
strategies conventionally encompass a vast subset of model parameters, e.g., all normalization layers (Wang et al., 2021; Niu
et al., 2022; Gong et al., 2022; Niu et al., 2023) or even the entirety of parameters (Wang et al., 2022a), for updates. Without
these settings, the compared TTA strategies may not obtain promising perfromance. Consequently, we let these competitors
use their default number of parameters for model update. However, the results in Table 15 indicate that even though these
TTA methods update more parameters, they still fail to achieve better performance on the VLN task. Additionally, updating
more parameters results in heavier computational burden. These findings underscore the challenges involved in devising
effective TTA strategies for the online VLN task.

B.2.3. COMPREHENSIVE COMPARISON WITH FREQUENT AND STABLE UPDATE STRATEGIES

In Figure 1(b), we provide the performance comparison with various frequent and stable update strategies on SR and SLP
metrics. To make a more comprehensive evaluation, as shown in Figure 4, we show the comparison results on all the metrics.
Note that, ‘Freq’ means frequent update that updates at certain intervals within each sample. ‘Stable’ refers to stable update
that initializes with the original base model (DUET) for each sample and uses different intra-sample update interval. ‘INT’
indicates the intra-sample update interval, which means averaging the gradient information over a certain action interval and
then performing an iteration of model update. The results still reveal that both overly fast and overly slow model updates
fail to achieve significant performance improvements, while our proposed FSTTA can achieve a better balance between
adaptablility and stability for pursing favorable performance.

B.3. Parameter Analysis

In our method, there exist four important hyper-parameters: the step size and learning rate for fast and slow update, namely
M , N , γ̂(fast), and γ(slow), which controls the frequency and speed of model adaptation. Figure 5 and Figure 6 show that a
moderate value of these parameters achieves favorable performance.
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Figure 4. Experimental Results of Frequent and Stable Update Strategies on REVERIE ‘Val Unseen’ set. The detailed performance value
for each methods are indicated.
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Figure 5. Experimental results for different settings of step size in fast update phase (left) and slow update phase (right).
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Figure 6. Experimental results for different settings of learning rate in fast update phase (left) and slow update phase (right).
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