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ABSTRACT

While large neural networks demonstrate higher performance in various tasks,
training large networks is difficult due to limitations on GPU memory size. We
propose a novel out-of-core algorithm that enables faster training of extremely
large-scale neural networks with sizes larger than allotted GPU memory. Under
a given memory budget constraint, our scheduling algorithm locally adapts the
timing of memory transfers according to memory usage of each function, which
improves overlap between computation and memory transfers. Additionally, we
apply virtual addressing technique, commonly performed in OS, to training of
neural networks with out-of-core execution, which drastically reduces the amount
of memory fragmentation caused by frequent memory transfers. With our pro-
posed algorithm, we successfully train ResNet-50 with 1440 batch-size with keep-
ing training speed at 55%, which is 7.5x larger than the upper bound of physical
memory. It also outperforms a previous state-of-the-art substantially, i.e. it trains
a 1.55x larger network than state-of-the-art with faster execution. Moreover, we
experimentally show that our approach is also scalable for various types of net-
works.

1 INTRODUCTION

Deep Neural Networks (DNNs) achieve outstanding results in various tasks. In particular, it has
been demonstrated that larger neural networks outperform smaller ones. For example, on image
classification tasks, He et al.| (2016) shows ResNet with 1k-layers achieves accuracy improvement
by 2% over ResNet-110 without any changes except the number of layers. Likewise, larger models
achieve better performances on natural language processing (Devlin et al.|[2018;|Brown et al., 2020)
and image generation (Wang et al.| 2018b; Brock et al.,|2019). Supported by these evidences, making
model larger is one promising way to improve the model performance and realize brand-new systems
in the deep learning research and development.

Despite the high demand for large models, the GPU memory size is limited. For instance, NVIDIA
A100, one of the latest GPU devices, has only 40GB as its memory. Such limitation on memory
inevitably places an upper bound on the scope with which deep learning researchers and developers
design architectures of neural networks. It also limits the capacity of neural networks to perform
better on existing tasks or deploy richer amount of data that are not tractable on current GPU limita-
tions, such as 4K videos, 3D contents, and so on.

One possible way to address the limitations on GPU memory size is “out-of-core execution”. This
method utilizes CPU memory as a temporary cache for the GPU computation. Since neural net-
works, especially feed-forward networks, can be executed layer by layer sequentially, we can trans-
fer data from GPU to CPU memory when the variables are not necessary at the current computation.
In fact, the CPU memory size is much larger than GPU memory, e.g., larger than 1TB. Thus, using
CPU memory as a cache for GPU memory, we can virtually extend the size of GPU memory, as if it
has memory larger than 1TB.

As a naive strategy to realize out-of-core execution, we can transfer memory between GPU and CPU
before and after every layer execution. While this approach can execute the maximum size of model
on limited memory budget, this approach puts GPU computation on hold at every layer until the end
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Figure 1: (Top) Directed graph of functions in topological order. Any feed-forward neural networks
can be considered as a sequence of functions and can be executed from f; to f,, in order. (Bottom)
A sequence of variables corresponding to the sequence of functions. Each function uses variable
internally and different functions can have the same variable (connection between variables). We
estimate distances between functions by sum of bytes of variables within two functions (e.g. we
estimate the distance between f; and f; 3 as the sum of bytes of {V;11, V;12} in this picture).

of corresponding memory transfers. On the other hand, if we place too many variables on GPU to
accelerate computation, we can execute only models with limited size. Therefore, it is necessary to
find a better memory transfer algorithm that enables execution of larger models without sacrificing
computational time.

Many existing works attempted to achieve a faster execution with models larger than allotted GPU
memory in the setting with out-of-core execution (Rhu et al 2016} Jin et al., 2018} [Wang et al.,
2018a). Recently, [Le et al.[|(2019) formulated out-of-core execution as inserting memory transfer
operations in the graph on TensorFlow (Abadi et al.l 2015). This method can be applied to arbitrary
architecture of neural network, and they successfully enable a faster execution with larger model
than previous works. However, they only focus on the fixed distance represented by edges on the
graph and do not consider memory usage of each function and variable. It thus results in significant
overhead, especially as the model size grows. Moreover, to the best of our knowledge, none of the
previous methods tackled a memory fragmentation problem caused by frequent memory transfers.
The memory fragmentation wastes the limited memory budget on GPU and limits the scalability of
model size.

In this paper, we introduce a novel memory transfer scheduling algorithm for the training of ex-
tremely large-scale neural networks. Our key contributions are summarized as follows:

e We propose a novel cost-aware memory swapping scheduling algorithm that is simple yet
can find a faster schedule. Our model is the first to schedule memory transfers for training
neural networks with locally adaptive distance by modeling the memory usage, which can
find a faster schedule than existing methods.

e We introduce a novel memory allocation strategy to reduce memory fragmentation caused
by memory swapping. Based on a virtual addressing technique that is mainly used in
OS, our memory allocation strategy suppresses memory fragmentation and improve the
trainable model size.

e Through experiments, we validate our proposed method performs well in terms of both
training time and model size. On ResNet50, we show our algorithm clearly outperforms a
previous work. Additionally, we evaluate our method on the various networks for image
recognition, semantic segmentation, and image generation to show our approach can be
applied to various tasks.
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2 PRELIMINARIES

Feed-forward neural networks can in general be represented as a directed acyclic graph (DAG) G(V,
E) of functions (Figm (Top)), where V is a set of function { f;}}¥, and there is an edge from f; to £
if f; uses an output of f; as an input. Through topological ordering, we can index all functions in
ascending order from inputs to outputs of entire network such that if there is an edge from ¢ to j, then
we always have ¢ < j. Thus, we can simply consider a given network as a sequence of functions
[f1,--., fn] and can train the network by executing functions from f; to f,, in order. Out-of-core
execution on DNNs can utilize this fact of function order as a strong assumption to find a better
schedule for memory swapping. Namely, we can select which memory we should transfer from
GPU to CPU (Swap-out) and decide when we should start transferring a memory from CPU to GPU
(Swap-in) on the given topological order of functions.

Some early works focus on forward and backward process of DNNs (Rhu et al., 2016; Wang et al.,
2018a;|Jin et al.,2018). They employ a simple memory swap scheduling where they perform Swap-
out for the outputs of forward functions and Swap-in at corresponding backward functions. While
these methods enable the training of larger models than the setting without out-of-core execution,
there are two drawbacks on these methods. First, when a variable is used multiple times in a forward
pass, they perform Swap-out only at the last usage, which means the data of the variable is kept on
GPU memory until the last usage during the forward computation (even for backward). This is
problematic when the network is very large and it has, for example, skip connections which are seen
in currently popular models such as DenseNet (Huang et al.| 2017) and U-Net like architectures
(Ronneberger et al., 2015). Second, they do not carefully handle the overhead caused by Swap-in.
In order to make data for a variable ready on GPU memory before starting computation, they use a
naive heuristic where they trigger a Swap-in operation for a variable used in a function right before
the previous function of that (e.g. trigger Swap-in for f; at f;_1). It causes large overhead if f;_1’s
computation is too small compared to the memory transfer latency for Swap-in, i.e. the function has
to wait for the completion of the memory transfer.

Le et al.| (2019) recently proposed Large Model Support (LMS) as a module on TensorFlow, in
which they consider a distance on a graph (DAG) of a neural network to determine the memory
swap scheduling which handles the two issues described above. They introduce two hyperparame-
ters: swapout_threshold and swapin_ahead. They selectively trigger Swap-out on a variable used at
a function f; when d(f;, f;) < swapout_threshold where d(-, -) is a distance on the graph between
two vertices and f; is a closest function which uses the variable used in f; (¢ < j). This allows trig-
gering Swap-out at any point of the entire graph computation including forward and backward, and
enables training larger models with skip connections. Then, they trigger Swap-in for the swapped
out variable right before executing a function fj, where d( fx, f;) = swapin_ahead and k < j. Con-
sequently, they successfully train ResNet50 with 4.9 times larger batch-size and with less overhead,
which has not been achieved by the previous methods.

While|Le et al.[(2019)) achieves promising results, there still remain the following two issues: 1) They
rely on a fixed distance across the entire graph to determine the memory swap scheduling, while an
actual cost (latency) for computation and memory transfer between two vertices varies depending
on operations and data sizes appeared between them, which may lead undesirable overhead due to
the gap between the cost of computation and memory transfers. 2) Both of two hyperparameters
mentioned above balance a trade-off between reducing memory transfer overhead and GPU mem-
ory usage. Increasing either of the hyperparameters may result in out-of-memory error. Finding
good hyperparameters with less overhead and without raising memory error is difficult for humans.
Therefore they introduce an automatic tuning mechanism which relies on a fairly complicated sim-
ulation based on memory profiling and computational cost estimation for each operator manually
defined by humans.

3 SCHEDULING MEMORY SWAPPING BASED ON LOCALLY-ADAPTIVE
WINDOW

To overcome the aforementioned issues, we propose a novel memory transfer scheduling algorithm
which adaptively determines distance thresholds for the Swap-in and Swap-out operations while
considering memory budget limitation. Aside from a sequence of functions [f1, ..., fx] which we
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Figure 2: An overview of our scheduling algorithm at function f;. Red rectangle shows schedule-
window. Sliding this window from f; to f,, our algorithm performs (a) — (b) — (c) at each
function to schedule Swap-in and Swap-out. (a) Schedule Swap-in for all new variables coming into
the window. (b) If scheduling exceeds physical memory budget by scheduling Swap-in, we allocate
enough memory for Swap-in by determining Swap-out for previous variables. Specifically, Swap-
out is reserved right after the previous function using the variable, and waits for the Swap-out right
before f;. (c) Schedule Swap-out for variables used by f; and move the window to the first variable
of next function. (d) shows how we reduce unnecessary memory transfers. We skip Swap-out for
the variables used by f; if variables are never used in future or already reserved as Swap-in.

call function-sequence later, we introduce a sequence of all variables used in order in the function-
sequence, which we call variable-sequence. Let V. = {v, };V:’Jl be a set of all variables used on a

given network and V; C V be a subset of variables used by f;. Given a topological order of functions
[f1,---, fn], we can also define a topological sequence of variables (i.e., variable-sequence) v =

flatten([V1, ..., V,]) where flatten() represents flatten function (representing given matrix as 1-
dimensional array). Since multiple functions can use the same variable either as input or output, the
same variable can appear multiple times in this sequence (Fig[T|(Bottom)). Each variable has its size
in bytes, and a state representing whether it is on GPU or CPU now. We denote the size in bytes
of variable v; as b,,, and state of variable o (v;) € {0, 1}, which returns 1 if v; is placed on CPU,
otherwise 0.

Given a variable-sequence, our goal is to find a better schedule for which variables we should apply
Swap-in and Swap-out at each function. Unfortunately, finding the optimal schedule for Swap-in
and Swap-out on v is difficult, due to the huge search space. Let Vi/ be a set of variables which
never appears from function f;, and n be the number of functions. At each function, we must
consider which variables are on GPU. Therefore, the entire search space can be represented as

O([]}, 2'V\Vil). This is not tractable, since modern neural networks have more than a hundred
functions and variables.

In this paper, we employ a simple local greedy search in variable-sequence which requires only
a single hyperparameter schedule-window. At first, let us focus on when to trigger Swap-in for
variables swapped out previously. It is most ideal that we trigger Swap-in such that the computation
starts immediately after the completion of Swap-in memory transfer. If we trigger Swap-in too early,
it unnecessarily consumes more memory, while more overhead if too late. In order to determine this
ideal timing, we have to precisely estimate computation time and memory transfer time, which is
non-trivial. Instead, we use a very simple assumption where both computation and memory transfer
time are roughly proportional to the data size involved with them. We trigger Swap-in operations at
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a function f; by looking-ahead variable-sequence until accumulated variable size in bytes exceeds
the threshold schedule-window. More formally, we trigger Swap-in for variables in a sub-sequence
v[l : r] where [ is the index of the first variable of V; on v, and r is the maximum index which
satisfies Y., by, < schedule-window.

Fig[2] shows an overview of our scheduling procedure at f;. Let the sub-sequences determined
by schedule-window at f;_1, f;, and fiy1 be v[l™ : r~], v[l : 7], and »[IT : rT], respectively.
Our scheduling procedure at f; comprises following three steps: First, we schedule Swap-in for
variables {vy; € v[r~ + 1 : 1] | o(vy) = 1} (Figla). Second, we determine the completion
of previously scheduled Swap-out (oldest) such that the total variable size of Swap-in and Swap-out
doesn’t exceed the physical GPU memory budget (Fig[2b). These memory transfers are scheduled to
be performed before executing f;. Finally, we reserve Swap-out for V; which is the same as {v,, €
v[l : IT — 1]}, after executing f; and move schedule-window to the next function f; 1 (Fig. To
reduce redundant memory transfers, we skip schedules for variables if the same variables are already
scheduled (Fig[2d).

Compared to [Le et al. (2019), our algorithm determines both Swap-in and Swap-out scheduling
according to only a single hyperparameter with a physical memory budget constraint. Also, note
that our algorithm adaptively controls the Swap-in distance threshold at each function in function-
sequence in order to consider computation and memory transfer time for efficient scheduling, while
we simply use a fixed-size window in bytes in variable-sequence.

4 REDUCING MEMORY FRAGMENTATION WITH VIRTUAL ADDRESSING

Most deep learning frameworks (e.g. Tensorflow (Abadi et al.,[2015)), PyTorch (Paszke et al.,|2019),
and Neural Network Libraries) commonly utilize the “best-fit” algorithm with caching GPU mem-
ory as a memory allocation strategy. This approach utilizes memory space effectively by reusing
previously allocated memory for multiple variables. It performs well when the number of reusing
the same memory space is limited. However, in the setting with out-of-core execution, frequent
memory transfers between CPU and GPU result in reusing the same memory beyond the number
of times manageable by the best-fit algorithm. Thus, the memory allocation system will divide its
cached memory repeatedly, which results in severe memory fragmentation. This fragmentation is
generally known as External Fragmentation in the field of OS memory allocation. It is also im-
portant to tackle this memory fragmentation problem to maximize trainable model size under fixed
memory budget.

Since estimating exact amount of external fragmentation is difficult, we estimate it as the worst
case. Let a requested size of bytes be m,.. In the worst case, when this m, cannot be used for any
successive variables and also cannot be merged with consecutive memories, this m, memory is kept
in cache without being used during the training. Thus, the memory request of m,. bythe would waste
m, bytes in the worst case. When we grow model size with out-of-core execution, m,. could be in
order of GBs.

To tackle this external memory fragmentation, we apply virtual addressing (VA), which is commonly
used in memory management on OS, to the training of DNNs. Namely, we manage both physical and
virtual memory addresses on neural network libraries. When the memory allocation is requested,
we map small physical memory chunks with constant size to a consecutive virtual address. Once
a variable is cleared during the training of neural network, we release a virtual address and cache
physical memories for the future requests. Since physical memories could be combined in arbitrary
order, virtual addressing never suffers from external fragmentation on physical memory address.
In consequence, we can simply estimate the amount of fragmentation in virtual addressing by the
difference between requested memory size and the size of allocated virtual address for this request
(this memory fragmentation is known as internal fragmentation in OS).

Let m, be a size of physical memory chunk. To minimize the amount of wasted memory by internal
fragmentation, we allocate virtual address for the request as m, = km, where k = [72=]. In this
case, we can estimate the amount of internal fragmentation (I F') for a single allocation request as:

IF = mg—m, < me. (1)
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| Batch size H 64 \ 128 \ 190 \ 256 \ 512 \ 928 \ 1120 \ 1248 \ 1440 ‘
Baseline 235 | 255 | 258 X X X X X X
LMS (Le et al.,[2019) || 235 | 255 | 241 | 236 | 209 | 137 X X X
Baseline 336 | 492 | 581 X X X X X X
Schedule 320 | 439 | 533 | 559 | 457 | 400 X X X
Schedule + VA 304 | 389 | 415 | 424 | 446 | 409 | 398 347 321

Table 1: Training time and model size comparison between Le’s method and ours. We use images
/ sec (ips) for all values on the table, where x indicates Out-of-Memory and thus cannot be trained.
The top 2 rows show Le’s results and bottom 3 rows show ours. Since computational environments
are different (P100 vs V100), we show the results of baseline for both methods separately. All results
for|Le et al.|(2019)) are from the best values reported on the paper.

It is notable that the upper-bound of 7 F' doesn’t depend on m,.. Hence, the maximum size of internal
fragmentation during training (I F},,4,) can be bounded by

IFmaw < Nmazmca (2)

where N, is the maximum number of variables that can be used on GPU memory simultaneously.
In general, this is suitable for the training of extremely large-scale neural networks under out-of-core
execution. In the out-of-core execution, we perform swap-out and only variables within Schedule-
window are placed on GPU. Therefore, N,,,,, becomes smaller as model size becomes larger, and
IF,,,. also approaches a small value.

Obviously, it is better to use smaller physical memory chunk to reduce internal fragmentation. How-
ever, there is a restriction on device. On CUDA Driver API, the minimum size of physical memory
chunk is defined depending on the type of GPU. In our environment, the minimum size of physical
memory chunk is 2MB. Besides, using smaller physical memory chunks causes additional overhead
for virtual address mapping. We experimentally decide the size of physical memory as 40MB, which
balances well between the cost of allocation and the amount of memory fragmentation.

5 EXPERIMENTS

All experiments were conducted on an IBM POWERY machine with 594GB of CPU RAM and
NVIDIA Tesla V100 GPUs (each GPU has 16GB of memory). Note that we only used single GPU
for all experiments. CPU and GPU are connected by two NVLinks (each can transfer memory
at 5S0GB/s). We employ Neural Network Librarie (NNL) as our deep learning framework under
CUDA Toolkit 10.2 and cuDNN v8.0.2.

In all experiments, we evaluate both scheduling alone and scheduling with virtual addressing de-
scribed in Section [Z_f} To evaluate scheduling alone, we use the default memory allocator on NNL,
which applies “best-fit” algorithm with caching memory in nearly identical manner as other deep
learning frameworks, such as Torch or TensorFlow.

5.1 IMAGENET CLASSIFICATION

We first compare our method with Le’s algorithm on ResNet-50 training on ImageNet (Deng et al.,
2009). We keep image size as 224 x 224 and increase only batch size, which is the same condition
reported by |Le et al.|(2019). Both methods are examined on the same GPU memory budget (16GB).
We examined our method on NVIDIA Tesla V100, while [Le et al.| (2019) uses P100. Thus, all
computations are theoretically faster on our environment. This however implies a more challenging
criterion for our model, as will be described below.

Table[T] shows comparison between Le’s algorithm and ours in terms of training time and trainable
model size. We first validate our scheduling without VA. Our scheduling not only successfully

"https://github.com/sony/nnabla
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Figure 3: Maximum defined memory budget and actual memory usage. In the setting with schedul-
ing alone, there are almost 2x differences at 928 batch size. This indicates memory fragmentation.
On the other hand, scheduling with VA prevents such fragmentation.

trains the maximum size of model which Le’s approach can train (batch size = 928), but also finds a
faster schedule than Le’s approach. Our schedule can keep training speed at 68% at 928 batch size,
while Le’s method performs at 53%. It is noteworthy that comparing results with absolute value of
ips is also reasonable, because in out-of-core execution, our primary interest is how much memory
transfers we can overlap with computation. Since the model size and memory budget are the same
on both methods, faster computational environment means that we have to transfer the same amount
of memory within shorter time. Even with such disadvantage, our schedule clearly outperforms Le’s
method in terms of absolute ips.

While our method successfully finds faster schedule, scheduling alone cannot train larger model
than 928 batch size as well as Le’s method. Fig[3]shows maximum memory budget we can define
for scheduling (blue line) and actual memory usage (green line). Red line shows physical memory
budget. Fig[3a] shows the results in the setting with scheduling alone. At 928 batch size, network
consumes almost 16GB while we set 8GB as a memory budget for scheduling. In fact, if we set
larger than 8GB for 928 batch size, training process causes Out-of-Memory even though a schedule
is found. This difference between the memory budget we set and actual usage indicates the memory
fragmentation and this is the reason why we cannot train a model with batch size lager than 928. On
the other hand, using our novel VA allocator with scheduling, we successfully train the same model
with 1,444 batch size, which is 1.6 x larger than previous limitation with small overhead. Moreover,
our scheduling with VA enables faster training at batch size of 928 against scheduling alone. This is
because we can set much more physical memory budget for scheduling. As we can see on Fig[3b]
the difference between the memory budget we can set for scheduling and actual usage is smaller,
even when we increase batch size. This indicates that VA drastically reduces fragmentation and
we can conclude that VA is beneficial for out-of-core execution, especially for training extremely
large-scale DNNs. Note that if we employ smaller m., this difference becomes smaller and we can
train much larger models, but the overhead in terms of training time becomes larger due to the cost
of virtual addressing.

5.2 TRAINING TIME AND MODEL SIZE ON VARIOUS NEURAL NETWORK ARCHITECTURES

We examined our proposed method over various network architectures in terms of training time
and memory usage as the model size grows. Followings are the list of network architectures we
examined: DenseNet (Huang et al.l|2017), Pix2PixHD (Wang et al.,2018b), and DeepLabv3+ (Chen
et al., [2018). For all networks, we increased batch size with fixed image size and all computations
are executed with float32 precision. As training dataset for each model, we use ImageNet with
224 x 224 as image size for DenseNet, Cityscapes dataset (Cordts et al.} 2016)) with 512 x 1024 for
Pix2PixHD, and PASCAL VOC dataset (Everingham et al.,2010) with 513 x 513 for DeepLabv3+.
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Figure 5: Memory usage as model size grows for various architectures. We evaluate the peak mem-
ory usage during forward, backward, and update for each network. Red dashed line represents
physical memory budget (16GB).

Fig[] shows training time against batch-size on 3 models. The horizontal axis represents batch
size, and the vertical axis represents ips for a single training step, including forward, backward
and update. In the baseline setting (blue line), the maximum batch sizes trained on 16GB memory
for DenseNet, Pix2PixHD, and DeepLabv3+ are 512, 4, and 6, respectively. With our scheduling
(green line), we can successfully train the models that are 1.5x, 4x, and 5.3x larger than baseline
setting. However, as we can see in Fig[3] training with scheduling alone reaches the physical memory
limit because of memory fragmentation. Applying proposed VA with our scheduling (orange line),
trainable batch size clearly improves with small overhead for all networks. Compared to the setting
with scheduling alone, our scheduling with VA can train 1.5x to 2x larger models. Fig[5]shows that
we can keep the memory usage almost constant with VA regardless of batch size. It is notable that
in pix2pixHD we achieve performance gain compared to baseline setting. We consider that larger
batch size is computationally beneficial, especially for slower networks (Pix2PixHD achieves only
around 3 images / sec).

6 CONCLUSION

In this paper, We propose a novel out-of-core algorithm that enables faster training of extremely
large-scale neural networks with sizes larger than allotted GPU memory. Under a given memory
budget constraint, our scheduling algorithm locally adapts the timing of memory transfers accord-
ing to memory usage of each function, which improves overlap between computation and mem-
ory transfers. Additionally, we apply virtual addressing technique, commonly performed in OS,
to training of neural networks with out-of-core execution, which drastically reduces the amount of
memory fragmentation caused by frequent memory transfers. Beyond GPU memory limitation, we
empirically show that our proposed method enables training of much larger networks than existing
methods, without sacrificing the training time. While our proposed algorithm clearly demonstrates
improvements over previous models, it is still not optimal, e.g., we ignore the order of variables for
Swap-out. We leave further optimization as future work.
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