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ABSTRACT

Language models are trained with teacher forcing but are used autoregressively,
so errors accumulate as more tokens are generated. This issue is well-studied but
remains a fundamental problem that harms generation quality. Building on past
work, we take the perspective that error accumulation is reflected in the model’s
entropy, so we can better understand and address it through the lens of entropy
calibration. A language model is entropy calibrated if its entropy over genera-
tions, i.e. its confidence, matches the log loss it incurs on actual text. First, we
find that models are indeed miscalibrated in practice: for base models across a
range of sizes, entropy per step increases as more tokens are generated, leading to
generations becoming incoherent over time. On the other hand, after instruction
tuning, the largest models now have too little entropy (i.e. are overconfident), lead-
ing to a lack of diversity in model outputs. From a theoretical perspective, entropy
calibration is difficult to attain because it is a global property of the entire genera-
tion process, which has an exponentially large output space. Per-step adjustments
are tractable but fail to preserve the model’s log loss, while global adjustments
preserve log loss but are intractable. Our main theoretical contribution is to pro-
pose future entropy scaling, an adjustment to the next token probabilities that uses
information about the future entropy of each token, i.e. the average entropy of
continuations from that token. With additional assumptions, we prove that this
adjustment calibrates the model while preserving log loss. While future entropy
estimation is expensive, this result suggests that calibration and stabilization of
the entropy should be possible without trading off model quality.

1 INTRODUCTION

Modern language models are trained with teacher forcing and achieve very low log loss when pre-
dicting one word at a time. However, when deployed, they are primarily used autoregressively, and
low log loss does not guarantee strong autoregressive performance because errors accumulate over
time as the model conditions on its own outputs. As a result, practitioners use various sampling
tricks (e.g. temperature reduction, distribution truncation) to stabilize generation (Holtzman et al.,
2020; Welleck et al., 2024). These tricks are applied ad hoc and it is not always clear when or why
they are necessary.

In this paper, we build on the work of Braverman et al. (2020) and provide theory and experiments to
better understand language model sampling through the lens of calibration. We say that a language
model is entropy calibrated if its entropy over generations, i.e. its confidence, matches the log loss
it incurs on actual text in expectation:

EX∼q[EY∼p∗(Y |X)[− log p̂(Y | X)]] = EX∼q[Hp̂(Ŷ | X)], (1)

where q denotes the prompt distribution, p∗ is the true conditional distribution, p̂ is the model, X is
the prompt, Y is the response, and Hp̂(Ŷ | X) is the entropy of p̂’s generation Ŷ given the prompt
X . If p̂ has at most ε KL divergence with p∗, calibration can also be thought of as requiring that the
entropy of model generations be within ε of the entropy of human text. The main premise of this
paper is that many errors and instabilities in autoregressive generation are reflected in the model’s
entropy deviating from that of human text. Accordingly, sampling methods are effective if they
correct miscalibration while preserving model quality. Using this framework, we find the following:
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Figure 1: Left: entropy per step of base models; right: entropy per step of instruction-tuned models.
The best model’s log loss, which serves as an upper bound for the entropy of human text, is plotted
in blue. In both plots, models are prompted with 128 tokens of context from a story from the
writingprompts dataset and asked to generate 1024 additional tokens. Key takeaways: (1)
For all base models, entropy per step increases over time, with stronger models starting lower but
increasing at a similar rate. (2) After instruction tuning, smaller models still have too much entropy,
while larger models now have too little entropy.

We analyze current language models, finding that they are miscalibrated across model sizes:
In expectation, the entropy rate (i.e. entropy per time step) of human text is constant or decreases
slightly over the length of a document (Genzel & Charniak, 2002; Verma et al., 2023). In contrast,

(a) For base models, entropy rate increases as more tokens are generated. As a result, outputs
become incoherent over time. This result holds across model sizes: compared to weaker models,
stronger models start at a lower entropy but still deviate upward at a similar rate (Figure 1).
The fact that models become incoherent over time has been observed in past work (Holtzman
et al., 2020), and practitioners use various truncation techniques to address this issue. We ana-
lyze the effect of these techniques on calibration and find that decreasing the sampling temper-
ature shifts the entropy curve downward while also decreasing the slope; other truncation meth-
ods have a similar effect (Figure 4). However, as has been observed in prior work (Hashimoto
et al., 2019; Zhang et al., 2021; Pillutla et al., 2021), this stabilization comes at the cost of model
degradation in the form of increased log loss and reduced diversity (Figure 5).

(b) After instruction tuning, smaller models still have too much entropy, but larger models now
have too little entropy (Figure 1). Miscalibration in the form of entropy being too low results
in generations lacking in diversity and sometimes becoming repetitive over time. Furthermore,
even for models whose entropy seems stable on average, individual generations still sometimes
derail and are just counterbalanced by low-entropy generations (Figure 2).
Existing methods are designed to decrease entropy, so they are not well-suited for calibrating
large instruction-tuned models (Figure 6).

We propose future entropy scaling and prove that it calibrates while improving log loss, sug-
gesting that calibration is possible without model degradation: Entropy calibration is difficult
to achieve because it is a global property of the entire generation process: adjusting each generation
step separately (e.g. with per-step temperature scaling) is tractable but harms log loss, while adjust-
ing the entire generation process as a whole (e.g. with global temperature scaling) preserves log loss
but is intractable because the output space is exponential (Braverman et al., 2020).

We prove that with additional assumptions, we can tractably calibrate entropy while preserving log
loss by adjusting each token’s probability based on what its future entropy would be. In particular,
for a parameter α ∈ RT (where T is the max generation length), let the future-entropy-adjusted
model p̂ent

α be given by

p̂ent
α (yt | x, y<t) = softmax{(1 + αt) log p̂(yt | x, y<t)− αtHp̂ent

α
(Ŷ>t | x, y<t, yt)}, (2)
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(b)

(a)

(c)

(c) …We’d not long after received the final 
transmission from Earth. It was cut short. In the 
two-century lag between messages, Earth had 
been overrun. Someone or something had finally 
broken past the walls of the final stronghold of 
humanity. Maybe they'd shoot down our ships…

(b) …Parents were required to daughter their 
lineage or son, whichever they preferred, upon 
reaching reproductive age. There were papabods 
on E Deck, crusty pores of "permission" seeping 
from their day-old stubble…

(a) Most of us had been born on this ship, 
Generation Ship 347, or GS347 for short. We 
didn't like to be reminded of this fact, though. 
That's why the public console in my room was set 
to play music instead of news…

Figure 2: Four generations from Llama-2-70B-chat-hf for the same prompt, with plots of
their entropy rate over time (blue: low entropy, red: high entropy). The model is prompted with
the following instruction (along with 128 tokens from a human-written story): “Write a long story
based on the following prompt: You are a part of the middle generation on a colony ship. You never
saw Earth and will not see your destination.” While the model has stable entropy rate on average
(Figure 1), individual generations can still sometimes derail: the second sample is initially high
quality (excerpt (a)) but has unstable entropy, leading to incoherent text (excerpt (b)). In contrast,
the first sample’s entropy remains stable, so it remains coherent until the end (excerpt (c)).

where future entropy Hp̂ent
α
(Ŷ>t | x, y<t, yt) denotes the total entropy of the entire continuation

Ŷ>t if token yt were to be chosen. Intuitively, per-step adjustments which only look at next word
probabilities are myopic, as any token that is generated also affects the remaining generation process.
Therefore, to properly calibrate, one needs to anticipate how each token affects the future entropy.

We prove that choosing α to minimize log loss results in an adjusted model p̂ent
α that is entropy

calibrated while having log loss at most that of p̂. However, the future entropy of p̂ent
α is not tractable

to compute in general. Therefore, the main assumption we need to make is that we can replace Hp̂ent
α

with Hp̂′
α

for some surrogate model p̂′α whose future entropy behaves similarly to that of p̂ent
α . In

practice, we use p̂ as the surrogate model, in which case we can estimate future entropy by averaging
over samples. We describe this algorithm and its proof sketch in Section 5.1.

While estimating future entropy via sampling is expensive, this result suggests that (1) calibration
is possible without trading off log loss, and (2) the main missing component in current methods is
information about the entropy of future trajectories. By computing future entropy on a small set of
examples, we also uncover interesting new failure cases of truncation-based samplers: while it is
well known that truncation results in loss of diversity by suppressing perfectly good tokens, we also
find cases where it fails to suppress tokens that, despite having moderate probability mass, can lead
to degeneration (Figure 3). We discuss these examples along with other analyses in Section 5.2 and
suggest potential opportunities for improving language model sampling.

2 RELATED WORK

Entropy in models and text. This paper draws upon a series of past works that study entropy
in text generation. Genzel & Charniak (2002) use n-gram models to validate the entropy rate con-
stancy principle, which posits that the entropy rate of human text is constant over time. Verma et al.
(2023) revisit this hypothesis using neural language models and find more varied entropy patterns,
but still find that after the first thirty or so tokens of a document, entropy rate is either constant or
decreases slightly. Braverman et al. (2020) study the entropy of autoregressive model generations,
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The Fox, the Wolf and the Husbandman is a 
poem by the 15th-century Scottish poet 
Robert Henryson … appended to it is a 
moralitas which elaborates on the moral that 
the fable is supposed to contain. However, the 
appropriateness of the moralitas for the tale 
itself has been questioned.
The ______

Token p Ent

poem 0.17 336

f 0.11 302

story 0.11 288

title 0.09 294

tale 0.06 308

Fox 0.06 278

…

opening 0.007 324

opening lines begin:
Whi will ymb and I segge do
(Þis syllable for ever blythen
(I hevene thòughe thier nanes
(Þis hymne whan hymn goue wee)...

opening of the poem is distinct from 
most of the other tales in the 
collection, in that it is accompanied 
by notes. The notes explain their 
content, enabling the reader to…

.

.

.

Ent: 450

Ent: 249

Prompt

Figure 3: In this example from TinyLlama v1.1 applied to wikitext-103, each candidate
next token is labeled with its probability under the base model, along with an estimate of its future
entropy for 128 tokens (left: prompt, middle: candidate tokens, right: model generations). The
highlighted token, “opening,” has moderate probability and is not suppressed when sampling at
temperature 0.9 (probability changes from 0.0070 to 0.0056). While the token is a reasonable one,
it raises the difficulty of the subsequent generation because the model is tasked with generating a
poem in Middle Scots, causing it to derail in roughly half of its continuations. In contrast, the correct
adjustment, which takes future entropy into account, properly suppresses this token, reducing its
probability from 0.0070 to 0.00013.

introducing the concept of entropy rate calibration. They first show that the entropy rate of language
models increases over time, when it should ideally be time-invariant. Next, recognizing the global
temperature scaling corrects miscalibration but is intractable, they instead propose a one-step looka-
head algorithm that reduces miscalibration but only attains a one-step guarantee. We build on their
work by proposing future entropy scaling, an algorithm that provably attains global entropy calibra-
tion. We also use entropy calibration to analyze current models and techniques, including base and
instruction-tuned Llama models (Touvron et al., 2023) and various truncation-based samplers (Fan
et al., 2018; Holtzman et al., 2020; Hewitt et al., 2022).

Error accumulation in autoregressive generation. The idea that autoregressive models accumu-
late errors during generation is well-known. Williams & Zipser (1989) introduce the term “teacher
forcing” to refer to the technique of training neural models on only one generation step at a time,
in contrast to autoregressive generation where the model must generate multiple steps in succes-
sion. To address this mismatch, also known as “exposure bias,” a variety of papers propose alternate
sequence-level training objectives (Ranzato et al., 2016; Welleck et al., 2020; Deng et al., 2020), but
teacher forcing remains the dominant training method.

Distribution truncation. To stabilize autoregressive generation, a large number of truncation-
based methods have been developed as alternatives to temperature scaling, including top-k sam-
pling (Fan et al., 2018), nucleus (top-p) sampling (Holtzman et al., 2020), epsilon/eta sampling (He-
witt et al., 2022), and typical sampling (Meister et al., 2023). However, increased quality from
truncation comes at the cost of diversity, and Hashimoto et al. (2019), Zhang et al. (2021), and Pil-
lutla et al. (2021) propose methods to evaluate how well these methods perform this tradeoff. Basu
et al. (2021) analyze how truncation parameters affect the entropy of the resulting sample, and use
these insights to propose a method which dynamically sets these parameters during generation. Fi-
nally, Freitag et al. (2023), Shi et al. (2024), and Welleck et al. (2024) survey and compare sampling
techniques across different models, datasets, and tasks, finding that the relative ranking between
them is highly dependent on the setting.
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Calibration. Model calibration is most commonly studied in binary classification, with some clas-
sic algorithms including binning, Platt scaling, and isotonic regression (Platt, 1999; Zadrozny &
Elkan, 2002; Guo et al., 2017; Kumar et al., 2019). Entropy calibration can be thought of as a re-
laxation of multiclass calibration, where each class corresponds to a possible output string and the
number of classes is exponential in the output length. Relaxing multiclass calibration to calibration
of a loss function is related to the work of Zhao et al. (2021), who use a similar idea to define a cal-
ibration notion for multiclass classifiers in decision theoretic settings. In contrast with our setting,
they consider settings like image classification where the number of classes is not exponential.

3 PRELIMINARIES

In this section, we define and provide intuition for entropy calibration, which was first proposed in
Braverman et al. (2020). For notation, let V denote the vocabulary, and let the prompt X ∈ V ∗ and
response Y ∈ V ∗ be random variables taking values in V ∗, the space of all strings over V . Also,
let X ∼ q and Y ∼ p∗(Y | X) denote the ground truth prompt and response distributions, and let
p̂ : V ∗ → ∆|V | be a language model mapping any string to a next token distribution over V . We
will use Ŷ ∼ p̂(Ŷ | X) to denote the response distribution induced by sampling autoregressively
starting from the prompt X .

For a fixed prompt X , let L(p∗ ∥ p̂;X) denote the model’s expected log loss on that prompt,
L(p∗ ∥ p̂;X) = EY∼p∗(Y |X)[− log p̂(Y | X)]

= EY∼p∗(Y |X)

len(Y )∑
t=1

− log p̂(Yt | X,Y<t)

 , (3)

and let Hp̂(Ŷ | X) denote the entropy of model generations on that prompt:

Hp̂(Ŷ | X) = EŶ∼p̂(Ŷ |X)[− log p̂(Ŷ | X)]

= EŶ∼p̂(Ŷ |X)

len(Ŷ )∑
t=1

− log p̂(Ŷt | X, Ŷ<t)

 . (4)

Then, we say that p̂ is entropy-calibrated if its entropy over generations, i.e. its confidence, matches
the log loss it incurs on actual text in expectation:

EX∼q[L(p∗ ∥ p̂;X)] = EX∼q[Hp̂(Ŷ | X)]. (5)
Entropy calibration error is then given by the difference between entropy and log loss, or

EntCE(p∗ ∥ p̂) = EX∼q[L(p∗ ∥ p̂;X)−Hp̂(Ŷ | X)]. (6)

The goal of calibration is to ensure that 1
T |EntCE(p∗ ∥ p̂)| ≤ ε after T autoregressive generation

steps, for some per-step miscalibration tolerance ε. A few notes about this definition:

(a) The model’s log loss is an upper bound for the entropy of p∗, with bound being tighter if its KL
divergence (i.e. excess log loss) is small: for KL divergence given by

EX∼q[DKL(p
∗ ∥ p̂;X)] = EX∼q[L(p∗ ∥ p̂;X)−Hp∗(Y | X)], (7)

we have that the KL is bounded by 0 ≤ EX∼q[DKL(p
∗ ∥ p̂;X)] ≤ ε if and only if the entropy

of p∗ is bounded by
EX∼q[L(p∗ ∥ p̂;X)]− ε ≤ Hp∗(Y | X) ≤ EX∼q[L(p∗ ∥ p̂;X)]. (8)

Therefore, if the model has low KL divergence, then entropy calibration can also be thought of
as requiring that the model’s entropy is close to the entropy of p∗ (Braverman et al., 2020).

(b) Due to the possibility of error accumulation during autoregressive generation, a model with
low KL is not necessarily entropy calibrated. In particular, even for a model with only ε KL
divergence per time step, Corollary 4.2 of Braverman et al. (2020) shows that the entropy at the
t-th step of generation can deviate as much as ε+

√
εt from that of p∗, growing with t.

(c) Like in binary calibration, one can easily attain entropy calibration by predicting the uniform
distribution for all inputs. Therefore, a calibration guarantee is only meaningful if it is accom-
panied by a guarantee that model quality is preserved.
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Figure 4: Generation entropy per time step of TinyLlama v1.1 applied to wikitext-103
with various truncation techniques applied, compared to the unadjusted model’s teacher-forced log
loss (in blue). In each method (temperature scaling, epsilon sampling, top-p sampling, top-k sam-
pling), the choice of truncation parameter shifts the entropy curve downward while also reducing
the slope. The parameter choice that stabilizes the model is the one with slope close to zero.

4 MISCALIBRATION IN LANGUAGE MODELS

Empirically, entropy is a useful indicator of generation quality and diversity: entropy too high typi-
cally indicates that generations are too random and incoherent, while entropy too low indicates that
generations have little variation. Therefore, models can be better understood by measuring their en-
tropy calibration error, and sampling methods can be better understood in terms of how they affect
miscalibration. With this insight, we find the following:

Current language models are miscalibrated. We first plot the entropy of a range of models, from
Llama-2-7B to Llama-2-70B (Touvron et al., 2023), on the writingprompts dataset (Fan
et al., 2018), where we give the models 128 tokens of context and ask it to generate 1024 additional
tokens (Figure 1). We average over 1024 examples and use quantization to fit models in GPU
memory (Dettmers et al., 2022); please see the appendix for other experimental details. For each
model, we plot the entropy at each step of generation, and we compare these curves to the best
model’s log loss on actual human-written examples, which serves as an upper bound for the entropy
of human text. In these plots, we observe the following:

(a) Base language models have entropy per step increasing over time, regardless of size: stronger
models start with lower entropy but deviate upward at a similar rate as weaker models. Due to
this deviation, generations become incoherent as more tokens are generated (see, e.g., Figure 2).
One explanation for this upward deviation is that because log loss severely penalizes putting
zero probability on valid tokens, but only weakly penalizes putting non-zero probability on
invalid tokens, language models are incentivized to put small amounts of probability on a large

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Left: the same temperature setting α = 0.1, corresponding to temperature 0.909, applied
to all four base models on the wikitext-103 dataset. Because models across different sizes are
similarly miscalibrated, they are also best sampled at similar temperatures. Right: entropy calibra-
tion error plotted against log loss for various temperature settings, applied to TinyLlama v1.1
on the wikitext-103 dataset. The unadjusted model attains the best log loss, and adjusting
temperature improves calibration at the cost of increasing log loss.

Figure 6: Left: Generation entropy per time step of Llama-2-70b-chat-hf applied to
writingprompts with no temperature change (α = 0) or a slight temperature increase (α =
−0.025, or temperature 1.026), compared to the calibration target (in blue). Right: Entropy per time
step for eight individual generations with temperature 1.026 (blue: low entropy, red: high entropy).
While we might hope to calibrate overconfident models by increasing the temperature, even a slight
temperature increase causes entropy to become unstable, increasing over time on average. This
increase is also not evenly distributed across generations: instead, individual generations become
more volatile, with some generations remaining low entropy and others completely derailing.

number of both valid and invalid tokens (Hewitt et al., 2022). Also, models typically have high
entropy on inputs containing invalid tokens. Then, the model’s entropy will be higher for later
generation steps, where it is more likely that the prefix contains at least one invalid token.

(b) After instruction tuning, smaller models still have entropy too high, while larger models have
entropy too low. This “overconfidence” of large instruction-tuned models is reflected in outputs
lacking diversity and sometimes growing repetitive over time.
One explanation for this pattern is that instruction tuning encourages models to restrict to a
subset of the language distribution, reducing entropy. Then, large models, which have larger
capacity to overfit to the instruction tuning step, have lower entropy than smaller models.

If these trends continue, we expect that as model sizes grow, base models will continue to have en-
tropy deviating upward, while instruction-tuned models will become more and more overconfident.

7
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Diversity has been found to be especially important when solving difficult tasks that require picking
from multiple generations (Li et al., 2022), generating synthetic data (Wang et al., 2023), or improv-
ing outputs by synthesizing multiple responses (Wang et al., 2024). Given that existing sampling
methods are designed to decrease entropy rather than increase it, this situation suggests that we are
in need of methods that calibrate overconfident models.

Sampling parameters should be chosen to stabilize entropy. In Figure 4, we plot the entropy
per time step of TinyLlama v1.1 (Zhang et al., 2024) on wikitext-103 (Merity et al., 2017)
with various sampling techniques applied, including temperature scaling, epsilon sampling (Hewitt
et al., 2022), top-p (nucleus) sampling (Holtzman et al., 2020), and top-k sampling (Fan et al., 2018).
We find that for every method, adjusting the sampling parameter to make truncation more aggressive
shifts the model’s entropy downward and decreases the slope. If our goal is for entropy to be stable
over time, we should then choose the parameter which adjusts the slope to be close to zero.

We then apply the most stable temperature setting for TinyLlama v1.1 (α = 0.1, or temperature
0.909) to the larger Llama models (Figure 5). We find that because large and small models are
similarly miscalibrated, the same temperature setting works well for all four models. The downside
is that this stabilization comes at the cost of increased log loss due to reduced diversity, reproducing
similar findings in past work (Hashimoto et al., 2019; Zhang et al., 2021; Pillutla et al., 2021).

For instruction-tuned models, on the other hand, which have too little entropy, one might be tempted
to calibrate by increasing the temperature. While this approach can calibrate the model on average,
it does so by causing some generations to derail upward while other generations remain low entropy
(Figure 6). This degradation is not reflected in the log loss: log loss actually improves when in-
creasing the temperature (from 2.29 to 2.28), due to the model originally having too little diversity.
One approach in this setting might involve first increasing temperature to increase diversity, and then
calibrating the entropy back down with a procedure that preserves diversity. Unfortunately, existing
entropy reduction techniques do not preserve diversity.

5 FUTURE ENTROPY SCALING

5.1 THEORY

Because global adjustments are intractable and per-step adjustments increase log loss, a natural
middle ground is an algorithm that makes per-step adjustments with some global information. This
point of view motivates the future-entropy-adjusted model, which is given by

p̂ent
α (yt | x, y<t) = softmax{(1 + αt) log p̂(yt | x, y<t)− αtHp̂ent

α
(Ŷ>t | x, y<t, yt)} (9)

for calibration parameters α1, ..., αT , and where

Hp̂ent
α
(Ŷ>t | x, y<t, yt) = EŶ>t∼p̂ent

α (Ŷ>t|x,y<t,yt)
[− log p̂ent

α (Ŷ>t | x, y<t, yt)] (10)

denotes the total entropy of the entire continuation Ŷ>t if candidate token yt were to be chosen.
Intuitively, a positive α corresponds to not only decreasing the temperature, but also penalizing
tokens whose continuations have high entropy on average (and the reverse if α is negative). Our main
result is that for this specific form of adjustment, for any initial model p̂, one can simultaneously
achieve calibration and improve log loss by choosing each αt to minimize log loss:

α∗
t = argmin

αt

EX∼q[Lt(p
∗ ∥ p̂ent

α ;X)]. (11)

Unfortunately, estimating the future entropy of p̂α is not tractable without further assumptions. One
can estimate the entropy of p̂ to ε error by averaging over O((T/ε2) log |V |) samples (Algorithm 2)
because future entropy is bounded by T log |V |, where T is the length and |V | is the vocab size.
However, sampling exactly from p̂ent

α takes exponential time because evaluating p̂ent
α (· | x, y<t)

involves recursively evaluating p̂ent
α (· | x, y<t, yt) for every candidate token yt ∈ V . Therefore, we

need to assume the existence of a surrogate model p̂′α whose future entropy approximates that of
p̂ent
α . With such a model, computing and sampling from p̂ent

α becomes tractable.

With this assumption, we prove the following result (please see the appendix for the full proof):

8
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Algorithm 1 Future entropy scaling

Inputs: model p̂, max length T , future entropy estimator Ĥ(x, y<t, yt;α>t), prompt distribution q,
true conditional distribution p∗

1: Define

p̂ent(yt | x, y<t;αt, α>t) = softmax{(1 + αt) log p̂(yt | x, y<t)− αtĤ(x, y<t, yt;α>t)}.

2: Initialize α1 = ... = αT = 0.
3: For t = T, ..., 1:
4: Choose αt to minimize expected log loss at step t:

αt = argmin
α′

t

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Yt | X,Y<t;α
′
t, α>t)]].

5: Return α1, ..., αT .

Algorithm 2 Future entropy estimation (sampling)
Inputs: surrogate model p̂′α, max length T , prefix z = (x, y<t, yt), number of samples n

1: Sample n trajectories from the model applied to prefix z:
(
Ŷ

(i)
t+1, ..., Ŷ

(i)
T

)n

i=1

i.i.d.∼ p̂′α(Ŷ>t | z).

2: Compute

Ĥ =
1

n

n∑
i=1

T∑
s=t+1

− log p̂′α(Ŷ
(i)
s | z, Ŷ (i)

<s ).

3: Return Ĥ .

Theorem 5.1. Suppose that the future entropy estimator Ĥ satisfies |Ĥ(z;α>t)−Hp̂ent
α
(Ŷ>t | z)| ≤

δ uniformly over prefixes z and parameters α. Then, the output of Algorithm 1 satisfies

|EntCE(p∗ ∥ p̂ent
α )| ≤ Tδ,

EX∼q[L(p∗ ∥ p̂ent
α ;X)] ≤ EX∼q[L(p∗ ∥ p̂;X)].

If each αt is an εt-stationary point instead of an exact stationary point, then we instead have

|EntCE(p∗ ∥ p̂ent
α )| ≤ Tδ +

T∑
t=1

(1 + αt)εt.

At a high level, the proof involves taking the gradient of the log loss with respect to each αt and
using the fact that it is small to show a certain calibration-like guarantee for each t. Combining these
guarantees with induction then provides the full calibration guarantee.

5.2 EXPERIMENTS

While future entropy scaling provably preserves log loss, the most straightforward implementation
involves averaging over multiple samples per candidate token, which is expensive (Algorithm 2).
Nonetheless, we provide evidence that using future entropy is necessary empirically to avoid model
degradation when calibrating, suggesting that efficient approximations of future entropy scaling can
improve upon existing sampling techniques.

First, we plot the histogram of future entropy values for low probability tokens (p < 0.0003) and
compare it to the histogram for high probability tokens (p > 0.01) (Figure 7). For 512 prefixes
from wikitext-103, we estimate the 32-step future entropy (averaged over 32 trajectories) of
the top 512 tokens of TinyLlama v1.1. To interpret future entropy as an indicator for derailing,
we define the baseline future entropy of a prefix as the average future entropy for high-probability
tokens (which we assume are unlikely to derail the model). Then, for a given prefix, a token derails

9
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Figure 7: Histograms of the 32-step future entropy (relative to the average over high probability
tokens for that prefix) for high probability tokens (in red) versus low probability tokens (in blue), for
TinyLlama v1.1 applied to examples from wikitext-103. We find that there is substantial
overlap between the two histograms, suggesting that there are many low-probability tokens that do
not derail the generation, and some moderate-probability tokens that do derail the generation.

the model if it leads to a future entropy substantially larger than the baseline future entropy: models
typically have high entropy when the input contains invalid tokens, leading to incoherent text.

In this plot, we find that there is substantial overlap between the two histograms: in other words,
there are many low-probability tokens that do not derail the generation, and some tokens with mod-
erate probability that do. Therefore, existing truncation algorithms, which only look at the token
probabilities, cannot suppress tokens that cause derailing without also suppressing tokens that do
not, leading to loss in diversity.

Next, to gain insight into why these histograms have so much overlap, we qualitatively examine
TinyLlama v1.1 predictions on wikitext-103, and we find that future entropy is crucial for
the following cases (see the appendix for examples):

(a) Correcting model error: The model sometimes assigns too much probability to incorrect con-
tinuations and too little probability to correct ones. In such cases, algorithms which only look
at the next word probabilities, like temperature scaling, cannot suppress incorrect continuations
without suppressing correct ones as well. Such examples suggest that future entropy lookahead
is powerful enough to detect many model errors because errors often derail generation.

(b) Avoiding tokens that increase generation difficulty: In other cases, the model assigns mod-
erate probability to a token that is valid but raises the difficulty of the subsequent generation.
Figure 3 includes one such example where the model tasks its future self with generating a poem
in Middle Scots; more examples are in the appendix. In these cases, future entropy serves the
role of measuring prompt difficulty, helping the model avoid generating such prompts.

6 CONCLUSION

In this paper, we provided theory, algorithms, and analysis to better understand the entropy cal-
ibration of language models. Entropy miscalibration is a fundamental problem in autoregressive
generation: theoretically, even very accurate models can have entropy deviating over time due to
error accumulation, and empirically, large models are just as miscalibrated as smaller ones. Exist-
ing sampling methods, while beneficial, are myopic, hurt diversity, and are ill-suited for calibrating
overconfident models. On the other hand, our analysis of future entropy scaling suggests calibration
is possible without these tradeoffs. We hope that our work inspires new calibration techniques that
improve the quality and diversity of language model generations.
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A PROOFS

Recall: let V denote the vocabulary, and let the prompt X ∈ V ∗ and response Y ∈ V ∗ be random
variables taking values in V ∗, the space of all strings over V . Also, let X ∼ q and Y ∼ p∗(Y | X)
denote the ground truth prompt and response distributions, and let p̂ : V ∗ → ∆|V | be a language
model mapping any string to a next token distribution over V . We will use Ŷ ∼ p̂(Ŷ | X) to denote
the response distribution induced by sampling autoregressively starting from the prompt X .

For a fixed prompt X , L(p∗ ∥ p̂;X) denotes the model’s expected log loss on that prompt, and
Hp̂(Ŷ | X) denotes the model’s entropy on that prompt:

L(p∗ ∥ p̂;X) = EY∼p∗(Y |X)[− log p̂(Y | X)]

= EY∼p∗(Y |X)

len(Y )∑
t=1

− log p̂(Yt | X,Y<t)


Hp̂(Ŷ | X) = EŶ∼p̂(Ŷ |X)[− log p̂(Ŷ | X)]

= EŶ∼p̂(Ŷ |X)

len(Ŷ )∑
t=1

− log p̂(Ŷt | X, Ŷ<t)

 .

Then, entropy calibration error is given by

EntCE(p∗ ∥ p̂) = EX∼q[L(p∗ ∥ p̂;X)−Hp̂(Ŷ | X)].

Let the future-entropy-adjusted model be given by

p̂ent
α (yt | x, y<t) = softmax{(1 + αt) log p̂(yt | x, y<t)− αtHp̂ent

α
(Ŷ>t | x, y<t, yt)}

for calibration parameters α1, ..., αT , and where

Hp̂ent
α
(Ŷ>t | x, y<t, yt) = EŶ>t∼p̂ent

α (Ŷ>t|x,y<t,yt)
[− log p̂ent

α (Ŷ>t | x, y<t, yt)]

denotes the total entropy of the entire continuation Y>t if candidate token yt were to be chosen.
Then, we have that
Theorem A.1. Suppose that the future entropy estimator Ĥ satisfies |Ĥ(z;α>t)−Hp̂ent

α
(Ŷ>t | z)| ≤

δ uniformly over prefixes z and parameters α. Then, the output of Algorithm 1 satisfies

|EntCE(p∗ ∥ p̂ent
α )| ≤ 2Tδ,

EX∼q[L(p∗ ∥ p̂ent
α ;X)] ≤ EX∼q[L(p∗ ∥ p̂;X)].

If each αt is an εt-stationary point instead of an exact stationary point, then we instead have

|EntCE(p∗ ∥ p̂ent
α )| ≤ 2Tδ +

T∑
t=1

(1 + αt)εt.

The proof proceeds as follows: first, we take the gradient of the log loss with respect to each αt and
use the fact that it is small to show a certain calibration-like guarantee for each t. We then combine
these guarantees with induction to provide the full calibration guarantee.
Lemma A.2. Under the setting of Theorem A.1, suppose that αt is an ε-stationary point:∣∣∣∣ d

dα′
t

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Yt | X,Y<t;α
′
t, α>t)]]

∣∣∣∣ ≤ ε.

Then, we have the following bound:∣∣∣∣∣EX∼q

[
EY≤t∼p∗(Y≤t|X)

Ŷ>t∼p̂ent
α (Ŷ>t|X,Y≤t)

[− log p̂ent
α (Y≤t, Ŷ>t | X)]

− EY<t∼p∗(Y<t|X)

Ŷ≥t∼p̂ent
α (Ŷ≥t|X,Y<t)

[− log p̂ent
α (Y<t, Ŷ≥t | X)]

]∣∣∣∣∣ ≤ (1 + αt)ε+ 2δ.
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This lemma provides us with a partial calibration guarantee in the sense that it lets us swap out
Yt ∼ p∗ for Ŷt ∼ p̂ent

α in the expectation. The next lemma is helpful in showing that the t-th iteration
of Algorithm 1 preserves log loss:
Lemma A.3. At the t-th iteration of Algorithm 1, let αt+1, ..., αT be set arbitrarily, and let
α1, ..., αt−1 = 0. Then, we have

argmin
α′

t

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Yt | X,Y<t;α
′
t, α>t)]]

= argmin
α′

t

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Y | X;α<t, α
′
t, α>t)]];

in other words, optimizing αt with respect to the log loss at time t is equivalent to optimizing αt with
respect to the full log loss over all time steps.

Combining these guarantees for t = 1, ..., T then provides a full calibration guarantee:

Proof of Theorem A.1. We will prove the calibration bound by induction. Applying Lemma A.2 for
t = 1, we have∣∣∣∣∣EX∼q

[
E Y1∼p∗(Y1|X)

Ŷ2,...,T∼p̂ent
α (Ŷ2,...,T |X,Y1)

[− log p̂ent
α (Y1, Ŷ2,...,T | X)]

− EŶ1,...,T∼p̂ent
α (Ŷ1,...,T |X)[− log p̂ent

α (Ŷ1,...,T | X)]

]∣∣∣∣∣ ≤ (1 + α1)ε1 + 2δ.

For ease of notation, we will write this guarantee as

|H̃({1}, {2, ..., T})− H̃({}, {1, ..., T})| ≤ (1 + α1)ε1 + 2δ

for H̃(I, J) given by

H̃(I, J) = EX∼q

[
EYI∼p∗(YI |X)

ŶJ∼p̂ent
α (ŶJ |X,YI)

[− log p̂ent
α (YI , ŶJ | X)

]
.

As our inductive hypothesis, suppose that for time t, we have that

|H̃({1, ..., t}, {t+ 1, ..., T})− H̃({}, {1, ..., T})| ≤ 2tδ +

t∑
s=1

(1 + αs)εs.

By Lemma A.2 for t+ 1, we have

|H̃({1, ..., t}, {t+ 1, ..., T})− H̃({1, ..., t+ 1}, {t+ 2, ..., T})| ≤ (1 + αt+1)εt+1 + 2δ.

Then, applying the triangle inequality, we have

|H̃({1, ..., t+ 1}, {t+ 2, ..., T})− H̃({}, {1, ..., T})| ≤ 2(t+ 1)δ +

t+1∑
s=1

(1 + αs)εs,

completing the inductive step.

To show that log loss is preserved, let α = (α1, ..., αT ) be output of the algorithm, and let αt =
(0, ..., 0, αt, ..., αT ) be the setting of α after the t-th iteration for t = T, ..., 1. By Lemma A.3
applied to iteration t, we have that

EX∼q[EY∼p∗(Y |X)[− log p̂ent
αt(Y | X)]] ≤ EX∼q[EY∼p∗(Y |X)[− log p̂ent

αt+1(Y | X)]],

where we define αT+1 = (0, ..., 0) (so p̂ent
αT+1 = p̂), because each αt is chosen to minimize log loss.

Because log loss improves at every step, we then have that

EX∼q[EY∼p∗(Y |X)[− log p̂ent
α1(Y | X)]] ≤ EX∼q[EY∼p∗(Y |X)[− log p̂ent

αT+1(Y | X)]]

as desired.
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It remains to prove the two lemmas, which we do below:

Proof of Lemma A.2. Taking the derivative of log loss with respect to αt, we have

ε ≥ d

dαt
EX∼q[EY∼p∗(Y |X)[− log p̂ent(Yt | X,Y<t;αt, α>t)]]

=
d

dαt
EX∼q[EY∼p∗(Y |X)[−log softmax((1 + αt) log p̂(Yt | X,Y<t)− αtĤ(X,Y<t, Yt;α>t))]]

= EX∼q[EY∼p∗(Y |X)[−(1Yt
− p̂ent

α (· | X,Y<t))
T (log p̂(· | X,Y<t)− Ĥ(X,Y<t, ·;α>t))]]

= EX∼q[EY≤t∼p∗(Y≤t|X)[−(log p̂(Yt | X,Y<t)− Ĥ(X,Y<t, Yt;α>t))]]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷt∼pent
α (Ŷt|X,Y<t)

[
−(log p̂(Ŷt | X,Y<t)− Ĥ(X,Y<t, Ŷt;α>t))

]]
,

where the two terms only differ in whether Yt ∼ p∗ or Ŷt ∼ p̂ent
α . Next, we can multiply both sides

by (1 + αt) to get
(1 + αt)ε

≥ EX∼q[EY≤t∼p∗(Y≤t|X)[−((1 + αt) log p̂(Yt | X,Y<t)− (1 + αt)Ĥ(X,Y<t, Yt;α>t))]]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷt∼pent
α (Ŷt|X,Y<t)

[
−((1 + αt) log p̂(Ŷt | X,Y<t)− (1 + αt)Ĥ(X,Y<t, Ŷt;α>t))

]]
.

Note that these expressions look similar to the argument of the softmax in the definition of p̂ent
α , with

only Yt differing from Ŷt. Both expressions are only missing the same normalizing constant, so we
can add and subtract this normalizing constant to get

= EX∼q[EY≤t∼p∗(Y≤t|X)[−(log p̂ent
α (Yt | X,Y<t)− Ĥ(X,Y<t, Yt;α>t))]]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷt∼pent
α (Ŷt|X,Y<t)

[
−(log p̂ent

α (Ŷt | X,Y<t)− Ĥ(X,Y<t, Ŷt;α>t))
]]

.

Next, we can add and subtract EX∼qEY<t∼p∗(Y<t|X)[− log p̂ent
α (Y<t | X)] from the right hand side

to get

= EX∼q[EY≤t∼p∗(Y≤t|X)[−(log p̂ent
α (Y<t, Yt | X)− Ĥ(X,Y<t, Yt;α>t))]]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷt∼pent
α (Ŷt|X,Y<t)

[
−(log p̂ent

α (Y<t, Ŷt | X)− Ĥ(X,Y<t, Ŷt;α>t))
]]

.

At this point, we can use the fact that Ĥ(X,Y<t, Ŷt;α>t) is within δ of the actual future entropy to
get

(1 + αt)ε+ 2δ ≥ EX∼q[EY≤t∼p∗(Y≤t|X)[−(log p̂ent
α (Y<t, Yt | X)−Hpent

α
(Ŷ>t | X,Y<t, Yt))]]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷt∼pent
α (Ŷt|X,Y<t)

[
−(log p̂ent

α (Y<t, Ŷt | X)−Hpent
α
(Ŷ>t | X,Y<t, Yt))

]]
.

Finally, note that by definition, we have

Hpent
α
(Ŷ>t | X,Y<t, Yt)) = EŶ>t∼p̂ent

α (Ŷ>t|X,Y<t,Yt)
[− log p̂ent

α (Ŷ>t | X,Y<t, Yt)],

which we can substitute into the previous equation to get

(1 + αt)ε+ 2δ ≥ EX∼q

[
EY≤t∼p∗(Y≤t|X)

Ŷ>t∼p̂ent
α (Ŷ>t|X,Y<t,Yt)

[− log p̂ent
α (Y<t, Yt, Ŷ>t | X)]

]

− EX∼q

[
EY<t∼p∗(Y<t|X)

Ŷ≥t∼p̂ent
α (Ŷ≥t|X,Y<t)

[− log p̂ent
α (Y<t, Ŷt, Ŷ>t | X)]

]
,

which proves the desired result.
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Proof of Lemma A.3. Let t0 denote the time step of interest. We can first write the full log loss as a
sum over t:

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Y | X;α)]]

=

T∑
t=1

EX∼q[EY∼p∗(Y |X)[− log p̂ent(Yt | X,Y<t;αt, α>t)]].

Because α<t has no involvement in the t-th prediction by the definition of future entropy scaling,
we can remove the summands t0 + 1, ..., T , which are constant with respect to αt0 . Next, note that
α1 = ... = αt0−1 = 0, so the predictions for these time steps are not adjusted:

p̂ent(Yt | X,Y<t; 0, α>t) = p̂(Yt | X,Y<t) for t < t0.

Therefore, all terms in the sum except the t0th one are constant with respect to αt0 , proving the
desired result.

B EXPERIMENTAL DETAILS

We use the TinyLlama (Zhang et al., 2024) and Llama 2 (Touvron et al., 2023) models (7b, 13b,
70b, 7b-chat, 13b-chat, 70b-chat) on the wikitext-103 (Merity et al., 2017) and writingprompts (Fan
et al., 2018) datasets, in pytorch (Paszke et al., 2019) and Hugging Face transformers (Wolf et al.,
2020). We use the xformers attention kernel (Lefaudeux et al., 2022), and models are quantized to 4
bits with bitsandbytes (Dettmers et al., 2022). Plots are generated in matplotlib (Hunter, 2007). To
generate multiple continuations for a prefix to estimate future entropy, we use the attention masking
trick described in Section 4.2 of Zelikman et al. (2024) to generate in parallel. All experiments are
run on a NVIDIA RTX 6000 Ada Generation 49.1GB GPU.

C FUTURE ENTROPY EXAMPLES

Below, we provide examples from TinyLlama v1.1 applied to wikitext-103. Specifically,
we compute the 64- or 128-step future entropy for the top 32 next tokens for each prefix, by aver-
aging over 32 trajectories sampled with temperature 0.909. We then identify examples where the
α = 0.1 temperature adjustment differs substantially from the α = 0.1 future entropy adjustment.
We identify the following categories:

(a) Model errors: the model often assigns moderate probability to incorrect continuations. Many of
these errors are due to choosing an alternate tokenization, inducing sudden topic shifts, choosing
tokens that only work in other contexts, or assigning too much or too little probability to ellipses
or newline characters. Some prefixes are also more difficult than others. As a result of model
errors, temperature scaling must truncate valid tokens with low probability if it also wants to
truncate invalid ones with moderate probability.

(b) Increasing generation difficulty: in other cases, the model assigns high probability to continu-
ations that are valid but make derailing more likely in the future. Some cases include tokens that
induce creative writing, or tokens that threaten a sudden topic change if not handled correctly.
Lookahead is necessary to detect these cases and avoid generating them.

Examples are provided below (p̂: original probability, Ĥ: estimate of future entropy, Ĥavg: average
future entropy for the top 32 tokens, p̂temp

α : probability after temperature scaling, p̂ent
α : probability

after future entropy scaling, H: entropy of the given continuation):
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Prompt Continuations Explanation
= Hello Good Morning =
“Hello Good Morning” is

a song by American rapper
and producer Diddy and his

band Dirty Money, from
their debut album, Last Train

to Paris. It was released
from March 30, 2010 as
the album’s third single.

The electronic dance song
incorporates an acid squelch
section in the middle 8, ad
was written by Marcella
Araica, Richard Butler,

Clifford ”T.I.” Harris and
Nathaniel ”Danja” Hills
who also produced the

song. T.I. has a featured
rap on the song. The song’s

Token: main (p̂ = 0.013)
Ĥ = 141, Ĥavg = 126

p̂temp
α = 0.010, p̂ent

α = 0.0006

Continuation (H = 193):
subject is “the past of and/or
coming from a relationship
and/or personal experience”
focused around “the older
sibling who has been there
but ain’t around anymore”

on which Diddy sings, “The
bruised, dirty, busted, broken
/ The come up after the coke

The token “main” causes
the model to start writing

about the subject and
lyrics of the song, and
the model is not strong

enough to do so coherently.

= Clavaria zollingeri =
Clavaria zollingeri, com-

monly known as the violet
coral or the magenta coral, is
a widely distributed species

of fungus. It produces
striking tubular, purple to
pinkish-violet fruit bodies
that grow up to 10 cm (3.9
in) tall and 7 cm (2.8 in)

wide. The extreme tips of
the fragile, slender branches

are usually rounded and
brownish. A typical member

of the clavarioid or club
fungi, Clavaria zollingeri is

Token: character (p̂ = 0.016)
Ĥ = 297, Ĥavg = 274

p̂temp
α = 0.014, p̂ent

α = 0.0005

Continuation (H = 340):
ized by a fruticose coralstrat-
ified habit, alternating scales
with at first green, but later

yellow and tan, usually insuf-
fers a perineal fungation on
its inedible fleshy frond-like

rhizoid. A Menzies suggested
an origin of its species name,

from the Latin name of
the plant, tardifera, which
means “slow-growing”...

In this example, choosing
the token “character” forces

the model to characterize
a type of coral that it
is not knowledgeable

about, causing it to derail.
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Prompt Continuations Explanation
= Directed acyclic graph =

In mathematics and computer
science, a directed acyclic
graph (DAG / ’dæg /), is a
finite directed graph with

no directed cycles. That is,
it consists of finitely many

vertices and edges, with each
edge directed from one vertex
to another, such that there is
no way to start at any vertex
v and follow a consistently-
directed sequence of edges
that eventually loops back
to v again. Equivalently,

a DAG is a directed graph
that has a topological

ordering, a sequence of the
vertices such that every

edge is directed from earlier
to later in the sequence.

Token: D (p̂ = 0.04)
Ĥ = 151, Ĥavg = 124

p̂temp
α = 0.038, p̂ent

α = 0.0018

Continuation (H = 170):
ifferentiation from acyclicity

Different concepts im-
ply same knowledge.

Both are correct. But in the
acyclic vs path acyclic paper,

the pole types are used.
Acyclic refers to di-

rection, not path way,
given no self loop.

In path acyclic graph

In this example, the model
assigns moderate prob-

ability to both “DA”
(p̂ = 0.06, Ĥ = 127) and
“D” (p̂ = 0.04, Ĥ = 151),
but it has only seen “DAG”

tokenized as “DA-G.” There-
fore, when it chooses the

alternate tokenization “D,” it
is unable to generate “DAG”

and derails as a result.

= U.S. Route 50 in Utah =
U.S. Route 50 (US-50) in

Utah crosses the center of the
state. The highway serves

no major population centers
in Utah, with the largest city
along its path being Delta.
Most of the route passes
through desolate, remote

areas. Through the eastern
half of the state the route is
concurrent with Interstate

70 (I-70). US-50 both enters
and exits Utah concurrent

with US-6, however the two
routes are separate through

the center of the state.

Token: U (p̂ = 0.22)
Ĥ = 132, Ĥavg = 115

p̂temp
α = 0.24, p̂ent

α = 0.036

Continuation (H = 205):
tub

Cleared land
From the Warburton

Mine at Us-190, 44 hours
of drive time (US 50),

including a gap in the middle.
Allegheny Mountains;

Westwind,
Olivinus,

D: 03:

Like the example above,
the model assigns high

probability to “US” (p̂ =

0.32, Ĥ = 111), the correct
tokenization, and “U”

(p̂ = 0.24, Ĥ = 132),
the incorrect tokenization.
Because it has only seen

“US” tokenized as one unit,
it does not generate “S” after
“U” and derails as a result.

= Jim and Mary McCartney =
James “Jim” McCartney (7

July 1902 – 18 March 1976)
and Mary Patricia McCartney
(née Mohan) (29 September

1909 – 31 October 1956)
were the parents of musician,

author and artist Paul
McCartney of the Beatles
and Wings, and younger
brother photographer and

musician Mike McCartney
(better known professionally

as Mike McGear), who
worked with the comedy

rock trio the Scaffold.

Token: I (p̂ = 0.014)
Ĥ = 153, Ĥavg = 130

p̂temp
α = 0.012, p̂ent

α = 0.0004

Continuation (H = 186):
was looking for an article

entitiled “Sheba McCarthy
makes her family proud ”
on Allen Maddox’s site.

Found it and am still
wondering what is he

afraid of being truthful
Want to know what is he
afraid of being truthful?
He can’t read or write

In this example, the token
“I” derails the generation
by suddenly changing the
tone from a third person

article to first person
dialogue. Nonetheless, the
model still puts moderate
probability on this token.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt Continuations Explanation
= Black-tailed jackrabbit =
The black-tailed jackrabbit
(Lepus californicus), also
known as the American

desert hare, is a common
hare of the western United

States and Mexico, where it
is found at elevations from

sea level up to 10,000 ft
(3,000 m). Reaching a length

around 2 ft (61 cm), and a
weight from 3 to 6 lb (1.4
to 2.7 kg), the black-tailed

jackrabbit is the third-largest

Token: \n (p̂ = 0.015)
Ĥ = 140, Ĥavg = 119

p̂temp
α = 0.013, p̂ent

α = 0.0014

Continuation (H = 188):
Raw Dog Food

Used In The Jungle
I have researched many
things about this skin

condition and have found
or have been told, many

things that are not correct.
The skin condition I am
afraid of is Eczema. It
is a named dermatitic

condition and can start
very young and never end

The model often assigns
moderate probability to

the newline token despite
being in the middle of a

sentence. When the newline
token is chosen in this

way, the generation derails.

= Harajuku Lovers Tour =
The Harajuku Lovers Tour
was the first solo concert

tour of American recording
artist Gwen Stefani. The tour

began through October to
November 2005, to support
of her debut studio album

Love. Angel. Music. Baby.
(2004). Although Stefani

embarked on multiple
tours with her band No

Doubt, she initially opted
not to participate in a tour
to promote her album, an

attitude that the singer
eventually abandoned due to
the commercial success of
Love. Angel. Music. Baby.
The Harajuku Lovers Tour

Token: \n (p̂ = 0.012)
Ĥ = 75, Ĥavg = 116

p̂temp
α = 0.0098, p̂ent

α = 0.12

Continuation (H = 72):
The Harajuku Lovers Tour

was the second solo concert
tour of American recording

artist Gwen Stefani. The
tour kicked off in San

Francisco, California, and
ended in Los Angeles,
California, continuing

through the south of the
United States from mid-April

to mid-May. On March 1

In contrast with the previous
example, the newline token

does not always derail
the generation. Using
lookahead enables the

model to detect when the
character should be truncated

and when it should not.

= Stanley Matthews = Sir
Stanley Matthews, CBE (1
February 1915 – 23 Febru-
ary 2000) was an English

footballer. Often regarded as
one of the greatest players
of the English game, he is

the only player to have been
knighted while still playing,

as well as being the first
winner of both the European

Footballer of the Year and
the Football Writers’ Associ-
ation Footballer of the Year

awards. Matthews’ nick-
names included “The Wizard

of the Dribble” and “The
Magician”. Matthews kept

Token: pace (p̂ = 0.008)
Ĥ = 148, Ĥavg = 121

p̂temp
α = 0.006, p̂ent

α = 0.0002

Continuation (H = 174):
with real-life speedsters
like Billy Welsh, as well
as other invented speed

figures (including Panama
Lincoln, Shaqiri), and had
over 150 shots in a game
against Huddersfield. A
promising young player,
he was accused by the

press and his own club of

In this example, the model
assigns moderate probability

to “pace,” which is a
reasonable continuation to
“kept” in other contexts but
not in this one. Lookahead

allows us to detect that
this continuation is invalid

and leads to derailing.
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Prompt Continuations Explanation
= Allah =

Allah ( ... ) is the Arabic
word referring to God in
Abrahamic religions. The

word is thought to be derived
by contraction from al ilāh,

which means “the God”, and
has cognates in other Semitic
languages, including Elah in
Aramaic, ’Ēl in Canaanite

and Elohim in Hebrew.

Token: S (p̂ = 0.014)
Ĥ = 162, Ĥavg = 141

p̂temp
α = 0.012, p̂ent

α = 0.0007

Continuation 1 (H = 208):
acred Secret Of Other Galax-
ies Unique Mechanisms Of
Evolution Carbon Recycling

In The Ocean Worksheets
Science And Faith Col-
oreado Overswendner

Home Bible Verses Books
Of The Bible What Is The

Owner Of The Seventh Seal
Still On Earth Ancient Bee

Continuation 2 (H = 154):
uch universal terms (in
Arabic, either of two

Arabic words [...], or of
two Canaanite words

[...]) are frequently used

In this example, the model
generates the token “S,”
which makes derailing

more likely in the future
because only a few tokens
(like “Such”) stay on topic,

while others lead to derailing.

= Orval Grove =
Orval Leroy Grove (August
29, 1919 – April 20, 1992)
was an American pitcher in
Major League Baseball who
played for ten seasons in the
American League with the
Chicago White Sox. In 207
career games, Grove pitched
1,176 innings and posted a

win – loss record of 63 – 73,
with 66 complete games,
11 shutouts, and a 3.78

earned run average (ERA).
The

Token: best (p̂ = 0.018)
Ĥ = 140, Ĥavg = 108

p̂temp
α = 0.016, p̂ent

α = 0.0002

Continuation 1 (H = 183):
ones are those you devour

whole and savor. - John Prine
Whoever had to write a
death poem or life quote

always had to be a bit
insecure. - Harold Pinter

You’ve got to be out-
rageous in order to be
true. - Michael Krasny

Gover

Continuation 2 (H = 70):
seasons in Grove’s career
came in 1947, when he

won 19 games, was fourth
in the league with a 2.73
ERA and had a career-

best 184 strikeouts in 197
⁄ 3 innings pitched over

Like the example above,
choosing the token “best”

makes derailing more likely
because the subsequent token
has the possibility of causing

a sudden change in topic.
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