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ABSTRACT

Recent advances in reinforcement learning (RL) have significantly enhanced the
agentic capabilities of large language models (LLMs). In long-term and multi-turn
agent tasks, existing approaches driven solely by outcome rewards often suffer
from the problem of sparse supervision. To address the challenge, we propose
Tree-based Group Relative Policy Optimization (Tree-GRPO), a grouped agent
RL method based on tree search, where each tree node represents the complete
agent interaction step. By sharing common prefixes, the tree search sampling
increases the number of rollouts achievable within a fixed budget of tokens or tool
calls. Moreover, we find that the tree-structured trajectory naturally allows the
construction of step-wise process supervised signals even using only the outcome
reward. Based on this, Tree-GRPO estimates the grouped relative advantages both
on intra-tree and inter-tree levels. Through theoretical analysis, we demonstrate
that the objective of intra-tree level group relative policy optimization is equivalent
to that of step-level direct preference learning. Experiments across 11 datasets and
3 types of QA tasks demonstrate the superiority of the proposed tree-based RL
over the chain-based RL method.
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Figure 1: Comparison of chain-based and tree-based sampling strategies in LLM multi-turn agent
RL. The tree structure brings two major advantages: (i) less rollout budget (both on tokens and tool-
calls); (ii) higher performance.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a pivotal post-training paradigm for Large Language
Models (LLMs), catalyzing the development of several frontier models (DeepSeek-AI Team, 2025;
Yang et al., 2025a; OpenAI, 2024). RL-tuned LLMs trained only with outcome rewards acquire
complex reasoning abilities and achieve remarkable gains in single-turn tasks, such as mathematical
proof and code generation (Kimi Team, 2025b; Yu et al., 2025; Chu et al., 2025a; Shao et al.,
2024; Xin et al., 2024). This suggests that LLMs can learn not only through static imitation, but
also by actively interacting with dynamic environments. Guided by this prospect, recent works
have extended this RL paradigm to more complex agent settings involving dynamic, multi-turn
interactions (Feng et al., 2025b; Singh et al., 2025; Wang et al., 2025a; Qian et al., 2025; Feng et al.,
2025a). It is believed that such agentic intelligence through long-horizon interaction in open-ended
environments is essential for next-generation foundation models (Kimi Team, 2025a).

The agentic RL manifests in two key challenges: i) Heavy budget taken in LLM rollouts. Agent
settings require LLMs to interact with the environment over multi-turns and complete tasks through
sequential decision-making, which consequently leads to agent trajectories with thousands or more
tokens alongside multiple tool-calls (Dong et al., 2025; Feng et al., 2025b). Existing group-based RL
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Agent step-level Tree Search (Ours)

Thought τ

Action	α
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Node
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+

Complete Agent Step

Token/Sentence-level Tree Search

Tokens / Sentence

Chain-based Rollout

Tokens / Sentence

Figure 2: Comparison between chain-based and tree-based rollout at different levels. Left: Chain-
based rollout. Mid: Tree search with nodes corresponding to tokens/sentence. Right (Ours): Tree
search with nodes corresponding to complete agent step.

methods sample multiple independent trajectories for each task in a chain-based rollout scheme, with
considerable redundancy in the sampling process. This is reflected in practical agentic RL by the fact
that the rollout phase dominates overall training time and tool-calls can incur substantial costs (e.g.,
high-priced search APIs). ii) Sparse supervision in long-horizon, multi-turn trajectories. Although
agent trajectories grow with the number of turns, current agent RL approaches are still primarily
driven by outcome rewards. Such trajectory-level sparse signals make it difficult to identify which
specific steps or actions in a multi-turn, interdependent sequence contributed to success or failure.
This means that even with a substantial increase in rollout budget, the sampled agent trajectories
are still supervised by the same limited amount of training signal, resulting in a highly imbalanced
learning process and even the training collapse (Wang et al., 2025b;a; Jin et al., 2025b). These two
challenges raise a question: Can we construct more fine-grained supervision signals for agent RL
under a limited rollout budget while still solely based on outcome rewards?

In this paper, we propose Tree-based Group Relative Policy Optimization (Tree-GRPO) with an
online rollout strategy based on tree search. Unlike current RL approaches that independently sam-
ple complete trajectory rollouts (Figure 2 left), we replace the chain-based sampling logic with a
tree-search process, which yields interleaved trajectories with shared prefix segments. Existing tree-
based RL methods (Hou et al., 2025; Li et al., 2025b) often use token/sentence-level units as tree
nodes (Figure 2 mid). For the agent tasks that have a clear step structure, it is natural to treat a com-
plete Thought-Action-Observation step as the tree node unit (Figure 2 right). This design with clear
contextual segmentation proves more suitable for agent RL (Appendix B.3) and explicitly constrains
the rollout budget in both tokens and tool-calls. Under the same budget, our tree-search method can
obtain around 1.5× samples (depending on the tree structure) compared to the chain-based method,
which is highly significant for multi-turn agentic RL training where rollout costs are substantial.

Furthermore, to address the challenge of sparse supervision, we construct more fine-grained process
supervision signals by estimating relative advantages based on the tree structure. Specifically, at
every branching point of the tree, we back-propagate outcome rewards from the respective subtree
leaves. The differences across sibling branches serve as a preference-learning objective, providing
process-level supervision signals between subtrees, where the subtree depth determines the granu-
larity of the process signal. Since our tree search strategy uses a random expansion, it inherently
yields process signals of varying granularity, enabling the model to learn intermediate decision mak-
ing. This meticulous design leverages the tree structure to transform trajectory-level signals into
process-level supervision. Its reliance solely on outcome rewards without additional supervision
highlights its scalability and plug-and-play nature.

In our experiments, we evaluate Tree-GRPO on 11 datasets across single-hop and multi-hop
knowledge-intensive tasks, along with hard web-agent tasks. Compared to chain-based methods,
our proposed tree-based method demonstrates consistent improvements across models of varying
series and scales. It is noteworthy that Tree-GRPO can successfully enable a base model to adopt a
pre-defined multi-turn agent interaction paradigm without any supervised fine-tuning (SFT), despite
operating under an extremely limited rollout budget (tokens/tool calls). Based on Qwen2.5-3b, our
Tree-GRPO achieves superior performance over the chain-based method while using only a quarter
of the rollout budget. Our contributions are summarized as follows:

• We introduce a tree-based rollout strategy with nodes anchored at the agent step level in place of
independent chain-based approaches for multi-turn agentic RL.

• We propose group-relative advantage estimation in both intra-tree and inter-tree level, incorporat-
ing an implicit step-level preference learning objective with a relatively stable baseline estimate.

• We provide theoretical and empirical evidence that Tree-GRPO outperforms chain-based methods
in agentic RL, attaining higher performance under less rollout budgets.
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2 PRELIMINARY

2.1 MULTI-TURN AGENT FRAMEWORK

We adopt the widely used ReAct (Yao et al., 2023b) as the agent framework. Unlike static single-
turn interaction, the agent engages in multi-turn Thought-Action-Observation cycles with the envi-
ronment to solve a given task. Specifically, at each step t = 0, 1, ..., T − 1, the LLM generates a
thought τt and a parsable textual action αt based on the existing context st. The action typically cor-
responds to tool use, through which the agent dynamically interacts with the environment to obtain
new observations ot. A complete T -step agent episode consists of three interleaved trajectories:

H = {(τ0, α0, o0), (τ1, α1, o1), ..., (τT−1, αT−1, oT−1)}. (1)

Such trajectories grow linearly with the number of steps, and for complex tasks requiring multiple
interactions, the full trajectory can reach tens of thousands of tokens.

Following analysis in related work (Wang et al., 2025a), such a dynamic process can be described
as a Markov Decision ProcessM = {S,A, P}, where S represents states (the complete interaction
context up to a given time stepH<t), A denotes the compound action space (each action comprising
a thought-action pair (τt, αt)), and P denotes the transition dynamics (includes both the external
environment Penv and the concatenation of the full context over time steps). The complete process
can be formulated based on LLM policy model πθ as:

pθ(s0:T , τ0:T , α0:T , o0:T ) = p(s0)

T−1∏
t=0

[
πθ(τt|st)πθ(αt|st, τt)Penv(ot+1|αt)

]
. (2)

2.2 AGENTIC REINFORCEMENT LEARNING

After formalizing the ReAct-based process as a Markov Decision Process, RL can be directly ap-
plied to optimize over the policy space by maximizing the expected return of the full state-action
trajectory (Wang et al., 2025a; Dong et al., 2025; Zhang et al., 2025b):

J(θ) = EH∼pθ
[R (H)] . (3)

In practice, optimization is performed with a variance-reduced advantage estimator Â(H), which
stabilizes gradient updates (Schulman et al., 2018; DeepSeek-AI Team, 2025; Zhang et al., 2025a).
Most existing agentic RL systems adopt an outcome-based reward, where a single scalar reward R(·)
determined by predefined rules or model-based scoring functions is delivered to the entire trajectory.

Our method is built upon the group-based RL algorithm (DeepSeek-AI Team, 2025). Unlike esti-
mating advantages based on extra value functions like PPO (Schulman et al., 2018), the group-based
RL methods estimate advantages Â by sampling a group of N candidate rollouts to estimate an in-
group baseline to guide the optimization direction.

3 TREE-BASED GROUP RELATIVE POLICY OPTIMIZATION (TREE-GRPO)

To achieve a more effective allocation of the rollout budget and address the sparse supversion chal-
lenges in multi-turn agentic RL, we propose to employ tree-search based sampling. By sharing
partial prefixes between rollouts, tree search method could obtain more rollouts under the same
token/tool-call budget. Based on the tree structure, we can further derive step-level process signals
purely from outcome rewards, introducing an implicit step-level preference learning target into on-
line RL. Figure 3 presents an overview of our proposed Tree-GRPO. In the following section, we
will detail the implementation of agent tree search (§ 3.1), the construction of tree-structured group
relative advantages (§ 3.2), and the analysis of step-level process signals (§ 3.3).

3.1 TREE SEARCH FOR AGENT ROLLOUT

Tree-search methods such as Monte Carlo Tree Search (MCTS) have proven effective for construct-
ing offline DPO datasets (Xie et al., 2024; Lai et al., 2024) and for test-time scaling (Yao et al.,
2023a; Xin et al., 2025), yet they are seldom used in online RL training. The main obstacle is its

3
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Figure 3: The overview of the Tree-GRPO training pipeline. The rollout is conducted in a tree-search
manner, where each node corresponds to a complete thought-action-observation step. The group
relative advantages are estimated at both intra-tree and inter-tree levels. Tree-GRPO constructs step-
level process supervision signals through a tree structure with a less rollout budget.

reliance on multi-turn sequential rollouts, which are poorly suited for parallelized LLM inference
engines. This mismatch bottlenecks rollout throughput and severely limits online RL efficiency.

To address this, we adopt an initialize-then-expand approach, in which multiple chains are first
initialized in parallel and nodes are then iteratively sampled for expansion. Furthermore, the clear
structured agent step-level process allows us to replace the token-level nodes with agent step-level
nodes, meaning that each node in the tree represents a corresponding (τ, α, o) tuple. More formally,
the overall tree-search sampling process is as follows:

1. Initialization. For each prompt xi, we first generate M independent chain-based trajectories
Y = {Hi ∼ πθ(·|xi)}M by policy model πθ as the initialization for M trees T .

2. Sampling. Then we randomly sample N nodes Pi = {pi,j ∈ Ti}N except the leaf node (agent
answer) from each tree Ti for expansion.

3. Expansion. For each selected node pi,j , we take the entire context from the root to that node
Hi

<t = {proot
i,j , ..., p

father
i,j , pi,j} and the original prompt xi as the input, continue generating the

remaining part of the response by Ynew = {Hi
≥t ∼ πθ(·|xi,Hi

<t)}N , then insert it into the
source tree as a new branch by Ti ← Ti ∪ Ynew.

By iteratively repeating steps 2 and 3 L times, this tree search process results in a total of M ×
(L×N +1) rollouts as final group size G for a single prompt. These rollouts are evenly distributed
across the M trees. Let the expectation rollout budget (both in tokens and tool-calls) of a single
agent trajectory be B. For each single random tree expansion, the expected depth of the selected
node is half of the maximum depth, and the corresponding expected cost is B

2 . This means we can
obtain a larger number of agent rollouts for training using tree search under the same token/tool-call
budget. Specifically, the total expected budget for tree-search sampling is determined by:

E[Btree] = M ·B + L ·N ·B/2. (4)

Under a fixed sampling budget, decreasing tree number M while increasing expansion number N,L
can raise the number of rollouts, but it also narrows the exploration scope, as more trajectories share
the same prefix. In our experiments, different tree configurations exhibit varying effects.

3.2 TREE-BASED GROUP RELATIVE ADVANTAGES

Beyond enabling more rollouts under the fixed budget, a more significant potential advantage of tree
search lies in the process supervision signals naturally embedded within the tree structure.

Given a group of complete trajectory rollouts {Hi}G based on each prompt, a naive way to apply
group-based policy optimization for agent RL is to organize the rollouts into trajectory-level groups.
For each rollout, the reward R(·) is only computed at outcome, and thus the advantage estimation
is also at the trajectory level. This means that the whole multi-turn agent trajectory including multi-
steps is assigned an identical credit as:

A(H) = A({(τ0, α0, o0), ..., (τT , αT , oT )}) = A({τ0, α0, o0}) = ... = A({τT , αT , oT }). (5)
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Due to the coarse credit assignment, such sparse rewards severely affect the stability of RL training
for long-horizon multi-turn agents.
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Figure 4: Comparison between chain-
based and tree-based rollouts.

Tree-based credit. Unlike independent chain-based
rollouts, tree-structured rollouts with shared prefixes
naturally embed process credit signals. As shown
in Figure 4, at every branching point of the tree,
the difference between the back-propagated outcome
rewards from respective leaves naturally constitutes
a preference-learning objective for the different sub-
trees. Such a form of preference learning results in
process signals of varying granularity modulated by
subtree depth. To achieve this form of tree-based credit
assignment, we perform grouped advantage estimation
within each tree Gintra-tree(Ti), serving as:

ÂIntra/Inter-tree(Hi) =
[
R(Hi)−mean({R(Hj)}GIntra/Inter-tree(Ti)

j )
]
/std({R(Hj)}GIntra/Inter-tree(Ti)

j ). (6)

Although the intra-tree group relative advantage incorporates explicit preference objectives, the lim-
ited number of rollouts within each tree may lead to unreliable baseline estimation. To better stabi-
lize the RL training, we also group rollouts across inter-trees (rollouts from all trees) and combine
the intra-tree and inter-tree group relative advantages to obtain the final advantage estimate as:

Âtree(Hi) = ÂIntra-tree(Hi) + ÂInter-tree(Hi). (7)

The final tree-based group relative policy optimization object is:

JTree-GRPO(θ) = E
x∼D,Htree-search∼ πold(·|x)

[
1

G

G∑
i=1

1

|Hi|

|Hi|∑
t=1

min
(
ri,t(θ)Âtree(Hi),

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âtree(Hi)
)
− βDKL

(
πθ(H|x) ∥πref(H|x)

)] (8)

where πref and πold represent the reference LLM and previous LLM, and DKL denotes the KL di-
vergence. The importance sampling ratio ri,t(θ) is defined at the token level t. The complete
Tree-GRPO workflow is Algorithm 1.

3.3 IMPLICIT STEP-LEVEL PREFERENCE LEARNING

Leaving aside cost and scalability, a potential way to address the granularity of sparse supervision
is to explicitly construct step-level DPO data with positive and negative pairs, thereby enabling
preference optimization at each step. In this section, to better understand Tree-GRPO in agentic RL,
we establish that intra-tree GRPO admits the same gradient structure as step-level DPO, with the
only difference at the weight term.

Assumption 3.1 (Binary Preference Setting) For each intermediate tree node (x,H<t), the sub-
sequent trajectory in terms of reward falls into two categories, denoted as Hwin

≥t and Hloss
≥t , with

associated rewards {1,0}. The trajectory probabilities are defined as

pθ(Hwin
≥t ) = 1− pθ(Hloss

≥t ) =

T∏
τ=t

πθ(Hwin
τ |x,H<τ ). (9)

Under this assumption, the step-level DPO objective can be expressed as optimizing the Bradley-
Terry likelihood between the winning and losing outcomes by:

∇θJstep-DPO(θ) = E(x,H<t,Hwin
≥t

,Hloss
≥t

)∼D

[
σ
(
β log pθ

(
Hloss

≥t

)
− β log pθ

(
Hwin

≥t

))
·
(
∇θ log pθ

(
Hwin

≥t

)
−∇θ log pθ

(
Hloss

≥t

)) ]
.

(10)
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Correspondingly, the gradient of intra-tree GRPO can be derived into a combined form consisting
ofHwin

≥t andHloss
≥t as:

∇θJIntra-tree(θ) = pθ(Hwin
≥t ) · pθ(Hloss

≥t ) · [∇θ log pθ
(
Hwin

≥t

)
−∇θ log pθ

(
Hloss

≥t

)
] (11)

Proposition 3.1 (Structural Equivalence of step-level DPO and Intra-tree GRPO) Under
Assumption C.1, both step-level DPO and intra-tree GRPO admit gradient estimators of the form

∇θJunified(θ) = w︸︷︷︸
Weight

·
(
∇θ log pθ

(
Hwin

≥t

)
−∇θ log pθ

(
Hloss

≥t

))︸ ︷︷ ︸
Preference Advantage Gradient

, (12)

where the only difference lies in the choice of the weight term w.

Proposition C.1 indicates that intra-tree GRPO can be interpreted as implicitly performing step-level
preference optimization, thereby inheriting the key property of step-level DPO while operating in an
online rollout setting. Detailed derivations are put in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness of our proposed Tree-GRPO in LLM agentic RL, we con-
duct experiments on 11 benchmarks across three categories: (i) Multi-Hop QA including: Hot-
potQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), Musique (Trivedi et al., 2022),
and Bamboogle (Press et al., 2023); (ii) Single-Hop QA including: NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023); (iii) Web-Agent QA including: Sim-
pleQA (Press et al., 2023), GAIA (Mialon et al., 2023), WebWalkerQA (Wu et al., 2025b), and
BrowseComp (Wei et al., 2025).

Baselines. We compare the proposed Tree-GRPO against the following baseline: (i) Direct Prompt-
ing Methods including direct inference, ReAct agent framework (Yao et al., 2023b); (ii) Advanced
RAG Method Search-o1 (Li et al., 2025a); (iii) RL-based Methods including GRPO (DeepSeek-AI
Team, 2025) and GSPO (Zheng et al., 2025). Our implementation is built upon the Search-R1 (Jin
et al., 2025b) repository, including prompt template and agent-environment interaction.

Experimental Setups. For all settings, we exclusively use search engines as the designated tool.
For Multi-Hop QA and Single-Hop QA settings, we use an E5-based local retrieval server (Wang
et al., 2024) built on a Wikipedia dump (Karpukhin et al., 2020), while the Web-Agent QA setting
employs a real web search API for retrieval.

Metrics. Exact Match (EM) is used for both the training and test score in Single-Hop QA and
Multi-Hop QA. For Web-Agent QA, we utilize F1 scores for both training and test.

We conduct experiments using two series of models Qwen-2.5 (Base/Instruct) (Qwen et al., 2025)
and Llama-3.2 (Base/Instruct) (Llama Team, 2024) across different parameter scales including 1.5b,
3b, 7b, and 14b. If not specified, the default rollout budget is 4 for each prompt during training.
More implementation and experiment details are in Appendix A and B.

4.2 MAIN RESULTS

Multi-Hop QA. As shown in Table 1, in a multi-hop QA setting that requires multi-turn interactions,
although models within the ReAct framework can acquire information via tool calls, small models
(<7b parameters) exhibit little improvement over direct inference. This indicates that prompting
alone is insufficient for models to complete long-horizon agent tasks. Among RL approaches, our
Tree-GRPO method achieves a substantial margin over chain-based GRPO baseline on models be-
low 3b, yielding relative improvements ranging from 16% to 69% across both the Llama and Qwen
series models. Remarkably, Tree-GRPO remains effective on Qwen2.5-1.5b, whereas chain-based
methods struggle to stimulate multi-turn tool-use behavior. Although RL offers limited benefits on
Qwen2.5-14b, our tree-based method still achieves an average relative improvement of 8.4%. These
results demonstrate the superiority of the process signal provided by the tree-based method.
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Table 1: Overall performance on single-hop QA and multi-hop QA, with EM scores for each dataset.
The best results are indicated in bold.

Method
Single-Hop QA Multi-Hop QA

NQ Trivia PopQA Avg./∆%
rel Hotpot 2wiki Musiq Bamb Avg./∆%

rel

Q
w

en
2.

5-
1.

5b Direct Inference 7.1 22.4 9.9 13.1 5.9 4.3 2.6 8.0 5.2
Search-o1 10.2 30.9 15.0 15.4 11.6 12.2 3.1 13.0 10.0
ReAct 9.5 22.1 13.8 15.1 7.3 8.0 1.9 11.2 7.1
+ GRPO 39.4 51.0 39.7 43.4 ∆base 14.6 24.4 2.2 4.0 11.3 ∆base

+ GSPO 36.8 48.9 37.3 41.0−5.5% 15.8 23.7 2.5 4.8 11.7+3.5%

+ Tree-GRPO 43.6 57.3 41.6 47.5+9.5% 29.5 26.8 6.6 13.6 19.1+69%

Q
w

en
2.

5-
3b

Direct Inference 10.6 28.8 10.8 16.7 14.9 24.4 2.0 2.4 10.9
Search-o1 15.1 44.3 13.1 24.2 18.7 17.6 5.8 29.6 17.9
ReAct 21.1 43.5 28.3 31.0 19.2 19.1 4.8 20.0 15.8
+ GRPO 44.4 58.0 42.0 48.1 ∆base 39.0 36.3 15.2 36.8 31.8 ∆base

+ GSPO 43.0 58.8 42.5 48.1+0.0% 40.2 39.8 17.0 36.8 33.5+5.2%

+ Tree-GRPO 46.8 59.7 43.6 50.0+4.0% 42.4 43.7 17.8 43.2 36.8+16%

L
la

m
a3

.2
-3

b Direct Inference 16.2 29.6 7.4 17.7 12.6 9.2 2.0 8.0 8.0
Search-o1 24.2 48.4 8.8 27.1 19.4 17.4 6.0 32.0 14.1
ReAct 23.9 42.4 21.7 29.3 16.2 10.4 3.5 23.2 13.3
+ GRPO 45.5 58.2 42.4 48.7 ∆base 36.0 26.9 11.8 32.0 26.7 ∆base

+ GSPO 41.2 57.8 40.8 46.6−4.3% 28.1 24.5 8.6 32.0 23.3−13%

+ Tree-GRPO 47.7 59.9 42.3 50.0+2.7% 44.6 38.4 17.6 46.4 36.8+38%

Q
w

en
2.

5-
7b

Direct Inference 13.4 40.8 14.0 22.7 18.3 25.0 3.1 12.0 14.6
Search-o1 23.8 47.2 26.2 32.4 22.1 21.8 5.4 32.0 20.3
ReAct 30.6 56.3 34.6 40.5 27.9 25.3 11.3 28.8 23.3
+ GRPO 45.8 61.5 44.3 50.5 ∆base 42.5 40.7 19.1 43.2 36.4 ∆base

+ GSPO 47.0 64.5 46.1 52.5+4.0% 40.0 38.2 19.2 44.0 35.4−2.8%

+ Tree-GRPO 48.1 63.3 45.2 52.2+3.4% 44.6 42.3 20.2 44.0 37.8+3.9%

Q
w

en
2.

5-
14

b Direct Inference 19.8 53.1 18.4 30.4 21.7 25.3 4.5 16.0 16.9
Search-o1 34.7 63.5 24.1 40.8 26.8 16.1 9.9 41.6 23.6
ReAct 36.1 64.2 39.3 46.5 39.1 33.8 15.0 43.2 32.8
+ GRPO 51.3 67.2 46.7 55.1 ∆base 47.7 42.6 23.2 53.6 41.8 ∆base

+ GSPO 50.7 67.4 47.1 55.1+0.0% 50.1 50.2 23.8 52.8 44.2+5.7%

+ Tree-GRPO 51.7 68.1 47.3 55.7+1.1% 50.2 50.5 25.9 54.4 45.3+8.4%

Single-Hop QA. In the single-hop QA setting which requires fewer interaction turns, the 14b model
already exhibits agentic capabilities to complete tasks under the ReAct framework as Table 1. Com-
pared to chain-based RL methods, Tree-GRPO still shows stable improvements, especially for small
models like Qwen2.5-1.5b and Qwen2.5-3b. However, for most single-hop questions, the agent
does not require multi-turn ReAct-style interactions and can usually solve the problem with just one
round of retrieval followed by one round of answering. Due to the tree depth in this setting being
limited (typically 2), the gains from process-level signals over trajectory-level are also limited.

Web-Agent QA. Existing open-source web-agent QA benchmarks are predominantly test sets, with
a notable lack of training sets. Moreover, most of these test benchmarks are highly challenging, with
some tasks requiring dozens of web interactions. The limited training data we were able to collect
fails to match this level of difficulty and quality. Consequently, the performance improvement from
RL is relatively limited, as shown in Table 2. In this case, Tree-GRPO consistently outperforms the
chain-based GRPO across four test datasets, most notably on GAIA with a 28% average improve-
ment. However, on more challenging benchmarks such as BrowseComp, RL yields only marginal
gains, which is primarily constrained by the training data.

4.3 QUANTITATIVE ANALYSIS

In this section, we extend our study to more training configurations and analyze what the tree-based
method affords beyond performance.

Different Training Budget. In LLM agent RL training, the token/tool-call costs introduced by
multi-turn interactions are an important concern. Here we assess our method under different cost
constraints. As shown in Table 3, the tree-based method consistently demonstrates improvements
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Table 2: Overall performance on web-agent QA, with F1 scores for each dataset. The best results
are indicated in bold.

Method
SimpleQA General AI Assistant WebWalkerQA BrowseComp

Avg. Lv.1 Lv.2 Lv.3 Avg. Easy Med. Hard Avg. Avg.
D

ir
ec

t
32

b Qwen2.5-32b-Instruct 7.7 8.8 7.7 3.0 7.6 6.2 9.4 5.8 7.4 2.2
DeepSeek-R1-Distill-32b 12.6 19.2 7.8 4.1 11.7 9.4 13.3 9.4 11.0 2.4

Q
w

en
2.

5
7b

ReAct 25.1 6.2 3.5 1.1 4.2 8.0 9.2 5.6 7.6 1.3
+ GRPO 61.5 17.7 14.9 4.5 14.7 8.9 11.4 11.6 10.9 2.3
+ Tree-GRPO 62.4 19.3 17.5 5.7 16.8 9.3 11.8 11.9 11.2 2.7

Q
w

en
2.

5
14

b

ReAct 43.3 11.4 7.1 0.9 8.0 9.5 11.3 7.4 9.5 1.2
+ GRPO 65.4 21.6 15.0 5.5 16.4 11.4 14.8 10.3 12.4 2.4
+ Tree-GRPO 67.8 20.8 24.3 7.3 21.0 11.1 15.5 10.8 12.8 2.6

Table 3: Performance with different training budget (defined as the cost of several complete agent
trajectories per prompt). The base model is Qwen2.5-3b. The best results are indicated in bold.

Method
Single-Hop QA Multi-Hop QA

NQ Trivia PopQA Avg./∆%
rel Hotpot 2wiki Musiq Bamb Avg./∆%

rel

Rollout Token/Tool Budget ≈ 2/per prompt
Chain-based 42.0 56.7 40.8 46.5 ∆base 17.9 25.6 3.3 12.8 14.9 ∆base

Tree-based (M = 1, N = 2, L = 1) 46.1 59.4 43.6 49.7+6.9% 39.5 40.2 13.7 32.8 31.6+112%

Rollout Token/Tool Budget ≈ 4/per prompt
Chain-based 44.4 58.0 42.0 48.1 ∆base 39.0 36.3 15.2 36.8 31.8 ∆base

Tree-based (M = 2, N = 2, L = 1) 46.8 59.7 43.6 50.0+4.0% 42.4 43.7 17.8 43.2 36.8+16%

Rollout Token/Tool Budget ≈ 8/per prompt
Chain-based 46.5 59.2 44.3 50.0 ∆base 39.4 36.4 16.1 33.6 31.4 ∆base

Tree-based (M = 4, N = 2, L = 1) 47.6 60.8 44.2 50.8+1.6% 42.0 42.9 19.5 36.0 35.1+12%

Rollout Token/Tool Budget ≈ 16/per prompt
Chain-based 47.8 61.1 44.7 51.2 ∆base 40.1 38.8 17.5 39.2 33.9 ∆base

Tree-based (M = 8, N = 2, L = 1) 48.6 61.7 44.9 51.7+1.0% 44.6 43.2 18.2 38.4 36.1+6.5%

Tree-based (M = 6, N = 3, L = 1) 48.5 61.6 45.0 51.7+1.0% 45.3 44.1 18.8 37.6 36.5+7.7%

Tree-based (M = 4, N = 5, L = 1) 48.4 61.3 43.8 51.2+0.0% 45.0 43.9 18.5 41.6 37.3+10%

under different budget settings. Especially under highly constrained rollout budgets (e.g., when only
two complete rollouts budget per prompt), chain-based RL struggles to learn multi-turn interactions,
whereas the tree-based method achieves substantially better results (112% relative improvement).
As the rollout budget increases, the superiority of the tree-based method having more training tra-
jectories gradually diminishes in the single-hop setting, whereas the benefit of finer process super-
vision signals remains in the multi-hop setting. Remarkably, our Tree-GRPO achieves superior
performance over the chain-based method while using only a quarter of the rollout budget. In ad-
dition, when the rollout budget is larger, tree-based sampling offers more flexibility in parameter
choices. More analysis is in Appendix B.4.

Chain-based vs. Tree-based Beyond Performance. Due to the sparse nature of outcome rewards
in multi-turn agentic RL, the model often struggles to learn more complex processes, tending in-
stead to favor shorter interaction paths rather than extended exploration, and in some cases even
learning toward unreasonable shortcuts. While such behavior is generally acceptable, it becomes a
limitation for agent tasks that inherently require longer multi-turn interactions. In our experiments
on the multi-hop QA setting in Figure 5, we find that beyond performance improvements in training
reward, the tree-based method also encourages the LLM agent to engage in longer interactions (i.e.,
making more tool calls) from 2.4 to 3.0 on average to solve each multi-hop QA. This is particularly
meaningful for training agents capable of solving more complex long-horizon tasks. Moreover, we
observe that the learning rate (LR) warmup is a particularly sensitive hyperparameter when training
small models below 3b. The results in Figure 6 show that our tree-based method outperforms the
chain-based method under all LR warmup ratio settings.

Tree-based Advantage. In Table 4, we compare the performance of different advantage estimating
methods. As a result, the training with only Âintra-tree is unstable and eventually leads to collapse.
When Âintra-tree and Âinter-tree are combined, the agent RL can introduce step-level preference learning
property while maintaining greater stability. It is worth noting that due to the more efficient sampling

8
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(a) Comparison on Qwen2.5-3b (b) Comparison on Llama3.2-3b-it

Figure 5: Comparison between tree-based and chain-based RL on reward and action number.

Figure 6: Ablation study on LR warmup ratio.

Table 4: Ablation study on tree-based advantages.

Advantage Hotpot 2Wiki Musiq Bamb Avg.
Qwen2.5-3b w. Chain-based

GRPO 39.0 36.3 15.2 36.8 31.8

Qwen2.5-3b w. Tree-based

Âintra-tree 1.1 1.7 0.2 1.6 1.2
Âinter-tree 40.6 41.3 16.5 36.8 33.8
Âintra-tree + Âinter-tree 42.4 43.7 17.8 43.2 36.8

of tree search under the same budget, when using vanilla global group relative advantage estimation
(e.g., Âinter-tree), the tree-based results are still better than the chain-based GRPO.

5 RELATED WORK

Reinforcement Learning for LLM and Agent. Recent advances in RL (Kaufmann et al., 2024;
Lambert et al., 2025) have demonstrated the effectiveness in LLM alignment and reasoning. Al-
though process reward models have been shown to provide more gains on complex reasoning
tasks (Lightman et al.; Shao et al., 2024; Zhang et al., 2025c; Wang et al., 2025b), most exist-
ing works still rely solely on outcome rewards for training due to the additional costs and lim-
ited scalability of process reward models. Techniques ranging from PPO (Schulman et al., 2018),
GRPO (DeepSeek-AI Team, 2025), GSPO (Zheng et al., 2025), along with more policy variants (Yu
et al., 2025; Chu et al., 2025b) are employed for LLM RL training. Recent works (Wang et al.,
2025a; Feng et al., 2025b; Dong et al., 2025) apply this paradigm to end-to-end agent training. In
addition to these online RL approaches, another line of work (Wang et al., 2025b; Xie et al., 2024;
Xiong et al., 2024) directly constructs step-level DPO training data in an offline manner to achieve
more fine-grained optimization objectives, while increasing the complexity of the training pipeline.

Tree Search for LLM Reasoning. One line of LLM tree-search research focuses on test-time
scaling. Yao et al. (2023a); Long (2023); Snell et al. (2024) propose tree-of-thought to allow LLMs
to consider multiple reasoning paths during solving complex tasks. Xin et al. (2024; 2025) employs
the Monte-Carlo tree search strategy to generate diverse proof paths for theorem proving problems.
Another line of research (He et al., 2024; Feng et al., 2024; Wu et al., 2024; Xie et al., 2024; Zhang
et al., 2025c; Lai et al., 2024) is to utilize tree-search structures for constructing step-level preference
learning data, which are then used in DPO or SFT. There are also some works (Hou et al., 2025;
Zhang et al., 2024; Yang et al., 2025b) similar to ours that employ tree search for sampling in LLM
online RL. However, since these tree search methods are still conducted at the token/sentence level
and cannot be directly employed on agent tasks.

6 CONCLUSION

In this work, we propose Tree-based Group Relative Policy Optimization (Tree-GRPO), adopting a
tree-search rollout strategy in place of independent chain-based rollouts for LLM agent RL. Based
on agent step-level nodes, Tree-GRPO carries out rollout sampling over a semantically well-defined
search tree. By sharing common prefixes, the tree search sampling significantly reduces the roll-
out budget in terms of both tokens and tool calls during training. Tree-GRPO leverages the tree
structure to conduct tree-based grouping for advantage estimation, introducing an implicit step-level
preference-learning objective. Empirical evaluations on 11 datasets demonstrate the superiority of
our tree-based approach for agentic RL.
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APPENDIX

A DATASETS

Since the agent exhibits varying characteristics across different benchmark settings, we consider
three experimental settings, where distinct training sets are employed.

A.1 SINGLE-HOP QUESTION ANSWERING

Single-hop QA is question answering solvable with a single supporting passage. For single-hop QA
training, we directly use the training split from NQ (Kwiatkowski et al., 2019). The whole training
data includes 79,168 QA pairs.

For single-hop QA test, we utilize the following datasets:

• Natural Questions (NQ) (Kwiatkowski et al., 2019) test set includes 3,610 QA pairs.
• TriviaQA (Joshi et al., 2017) test set includes 11,313 QA pairs.
• PopQA (Mallen et al., 2023) test set includes 14,267 QA pairs.

A.2 MULTI-HOP QUESTION ANSWERING

Multi-hop QA is question answering that requires compositional reasoning and aggregation of evi-
dence across multiple documents or entities. For multi-hop QA training, we directly use the training
split from HotpotQA (Yang et al., 2018). The whole training data includes 90,447 multi-hop QA
pairs.

For multi-hop QA test, we utilize the following datasets:

• HotpotQA (Yang et al., 2018) test set includes 7,405 QA pairs.
• 2WikiMultiHopQA (Ho et al., 2020) test set includes 12,576 QA pairs.
• Musique (Trivedi et al., 2022) is a challenging multi-hop benchmark, which requires not only

the model’s information retrieval capabilities, but also deeper semantic understanding and logi-
cal reasoning. The test set includes 2,417 QA pairs.

• Bamboogle (Press et al., 2023) is a 2-hop hand maded dataset. The test set includes only 125
QA pairs.

A.3 WEB-AGENT QUESTION ANSWERING

Web-agent QA is question answering in interactive web environments where the agent must search,
navigate, and perform single- or multi-turn exploration and information integration. The dataset
for web-agent QA training consists of two parts. For the first part, we sample 2k samples from
ASearcher-35K (Gao et al., 2025), where each question and answer is filtered and verified. The
second part is from released samples from WebDancer (Wu et al., 2025a), which includes 200 hard
web QA pairs. Due to the high cost of real search APIs and the difficulty of obtaining high-quality
training samples, the scale of our Web-Agent QA experimental setup is relatively small.

For web-agent QA test, we utilize the following datasets:

• SimpleQA (Press et al., 2023) includes 500 short, fact-seeking QA pairs, which is adversarially
collected against GPT-4 responses.

• GAIA (Mialon et al., 2023) is a hard general AI assistant benchmark consists of real-world
questions. It requires the model to have the abilities such as reasoning, multi-modality handling,
web browsing, and generally tool-use. We only use 103 text-only questions following previous
works.

• WebWalkerQA (Wu et al., 2025b) contains 680 web traversal QA tasks, which is splited into
three levels: easy, medium and hard.

• BrowseComp (Wei et al., 2025) is a challenging benchmark for measuring the abilityf ro agents
to browse the web. It comprises 1,266 extremely complex, hard-to-find information questions.
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B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

Our implementation is built upon Search-R1 (Jin et al., 2025b) based on VeRL. As Table 5, for all
experimental settings, we use the learning rate 1e-6, and K3 KL in loss with 0.001 coefficient. If not
specified, we use group size 4 for all chain-based RL, and (M = 2, N = 2, L = 1) for Tree-GRPO.
In particular, we follow Jin et al. (2025a) to add a format score λf to the training reward r(y) as:

r(y) =

{
score(y)− λf if fformat(y) = False
score(y) else

(13)

where λf is set to 0.2 in all experiments. The following are the different setups for different experi-
mental settings:

• For Single-Hop QA and Multi-Hop QA settings, our standard setup includes a total training
step of 180, training batch size 512, PPO mini batch size 64. The max response length is set to
4096 tokens, and the top 3 passages from local retrieval server will be passed to the agent.

• For Web-Agent QA setting, we set the total training setp 34 (which corresponds to 2 epoch),
training batch size 128, PPO mini batch size 64. The max response length is set to 8000 tokens,
and the top 10 passages from web serp API will be passed to agent.

Table 5: Hyperparameters for Tree-GRPO and baseline methods for all experiments.

Config Single-Hop QA Multi-Hop QA Web-Agent QA

optimizer AdamW AdamW AdamW
learning rate 1e-6 1e-6 1e-6
learning rate warmup ratio 0.285/0.5 0.285/0.5 0
KL type K3 K3 K3
KL coefficient 0.001 0.001 0.001
training data 79,168 90,447 2,200
total training steps 180 180 34
training batch size 512 512 128
PPO mini batch size 64 64 64
max response length 4096 4096 8000
max observation length 500 500 1000
max tool-calls 3 3 5
reward metrics EM EM F1 score
format scores 0.2 0.2 0.2
retriever local wiki local wiki Bing API
top-K retrieval passages 3 3 10

Following Jin et al. (2025b), content enclosed within <search> </search> tags is parsed as the search
query, which corresponds to the Action α. The returned search results are then wrapped in <informa-
tion> </information> tags to form the Observation o, thereby completing the ReAct tuple (τ, α, o).
The prompt template for each question as:

Prompt Template

Answer the given question. You must conduct reasoning inside <think> and </think> first
every time you get new information. After reasoning, if you find you lack some knowledge,
you can call a search engine by <search> query </search> and it will return the top searched
results between <information> and </information>. You can search as many times as your
want. If you find no further external knowledge needed, you can directly provide the answer
inside <answer> and </answer>, without detailed illustrations. For example, <answer>
Beijing </answer>. Question:
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B.2 BASELINES

Direct Inference. For direct inference, we directly employ instruct model to answer the question.
The prompt template no longer includes any tool-use instructions, and keeps only the directive
“Answer the given question. You must put the answer inside <answer> and </answer>”.

Search-o1 (Li et al., 2025a) is the search-enhanced reasoning framework, which integrates the agen-
tic RAG mechanism and reason-in-document module.

ReAct (Yao et al., 2023b) interleaves reasoning traces “Though” with “Actions” (tool calls) to enable
deliberate, step-by-step problem solving. The model decides when to think and when to act, using
observations to refine subsequent reasoning. We use the instruct model based on ReAct as the
baseline. All the RL-based methods are also based on ReAct.

GRPO (DeepSeek-AI Team, 2025) is a group-relative policy optimization method that updates the
policy using relative advantages computed across multiple trajectories for the same prompt. Com-
pared to PPO, it discards the value/critic model and associated losses, yielding a policy-only objec-
tive that simplifies the training pipeline with fewer components and hyperparameters. Our approach
is built on GRPO, and we adopt GRPO as the primary baseline for chain-based RL.

GSPO (Zheng et al., 2025) is a variant of GRPO that replaces token-level importance ratio calcu-
lation with trajectory-level reweighting. By unifying importance ratio computation and advantage
estimation at the trajectory level, GSPO improves the stability of LLM RL training.

B.3 TREE SEARCH AT DIFFERENT LEVELS

To verify the effectiveness of tree search at different levels, we also conduct tree search at the to-
ken/sentence level. Since existing tree-based RL methods (Hou et al., 2025; Yang et al., 2025b; Li
et al., 2025b) are not designed for agent tasks and cannot be directly applied, here we separately im-
plement a token/sentence level tree search for agent RL. Specifically, we build the tree where each
node corresponds to a token, and modify step 2 of Tree-GRPO to randomly sample tokens. During
sampling, we mask out tokens from the observation o that are not generated by the LLM for each
trajectoryHi in order to prevent information confusion as:

[MASK]i,j =
{
1, Hi

j ∈ {τ, α}
0, Hi

j ∈ o
(14)

Pi = Sample({pi,j ∈ Ti | [MASK]i,j = 1}). (15)

The other settings remain consistent with Tree-GRPO.

Table 6: Test score comparison between tree search at token/sentence-level and agent step-level.
The base model is Qwen2.5-3b. The rollout budget is 4/per prompt. Tree search parameters are
M = 2, N = 2, L = 1.

Method
Single-Hop QA Multi-Hop QA

NQ Trivia PopQA Avg. Hotpot 2wiki Musiq Bamb Avg.

GRPO 44.4 58.0 42.0 48.1 39.0 36.3 15.2 36.8 31.8

Token/sentence level 42.1 56.0 40.6 46.2 32.0 30.8 8.4 17.6 22.2
Agent step level 46.8 59.7 43.6 50.0 42.4 43.7 17.8 43.2 36.8

Table 6 and Figure 7 show that tree search at the token/sentence level performs worse than the
agent-step level in both single-hop QA and multi-hop QA, and even falls below the performance
of chain-based GRPO. We attribute this effect to two factors. On the one hand, exploring branches
in the middle of an agent step lacks a clear purpose and may lead to rollout budget waste. On the
other hand, the credit derived from token/sentence-level tree structure undermines the integrity of
the agent step, and the resulting process signal instead hinders the learning performance. Therefore,
we argue that tree search conducted at the token or sentence level is not suitable for agent RL tasks.
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Figure 7: Training reward comparison on multi-hop QA between tree search at token/sentence-level
and agent step-level.

B.4 PERFORMANCE WITH DIFFERENT TREE STRUCTURES

We try different tree-search structures in Table 7. When (N = 0, L = 0), the Tree-GRPO degener-
ates into vanilla GRPO. The results show that the impact of L and N is not much different. However,
since the expansion iterations L directly affect the rollout efficiency (as the iterations are executed
serially), we consider using a larger N and set L = 1 in most of the experiments. In addition,
while reducing the number of trees M saves rollout budget, the more constrained exploration in tree
search adversely impacts the performance of RL. Results indicate that, for different rollout budgets,
balancing M and N × L can strike a trade-off between exploration and exploitation in tree search,
leading to better performance.

Table 7: Performance on multi-hop QA with different tree structures. The base model is Qwen2.5-
3b. The best results are indicated in bold.

M, N, L Hotpot 2wiki Musiq Bamb Avg.
Rollout Token/Tool Budget ≈ 2/per prompt

(M = 2, N = 0, L = 0) 39.0 36.3 15.2 36.8 31.8
(M = 2, N = 2, L = 1) 42.4 43.7 17.8 43.2 36.8
(M = 2, N = 1, L = 2) 42.3 43.2 17.6 41.9 36.3
(M = 1, N = 5, L = 1) 41.5 39.3 15.8 37.6 33.6

Rollout Token/Tool Budget ≈ 16/per prompt
(M = 16, N = 0, L = 0) 40.1 38.8 17.5 39.2 33.9
(M = 8, N = 2, L = 1) 44.6 43.2 18.2 38.4 36.1
(M = 6, N = 3, L = 1) 45.3 44.1 18.8 37.6 36.5
(M = 4, N = 5, L = 1) 45.0 43.9 18.5 41.6 37.3
(M = 2, N = 11, L = 1) 43.0 42.2 16.1 40.0 35.3
(M = 2, N = 6, L = 2) 43.2 43.1 17.0 40.0 35.8
(M = 5, N = 2, L = 2) 44.6 43.8 17.9 36.8 35.8
(M = 2, N = 4, L = 3) 43.6 43.1 16.8 40.8 36.1

C THEORETICAL ANALYSIS

Assumption C.1 (Binary Preference Setting) For each intermediate tree node (x,H<t), the sub-
sequent trajectory in terms of reward falls into two categories, denoted as Hwin

≥t and Hloss
≥t , with

associated rewards {1,0}. The trajectory probabilities are defined as

pθ(Hwin
≥t ) = 1− pθ(Hloss

≥t ) =

T∏
τ=t

πθ(Hwin
τ |x,H<τ ). (16)
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By the assumption, the probability of Hwin
≥t could be normalized within the binary set C =

{Hwin
≥t ,Hloss

≥t } as:

pθ(Hwin
≥t ) =

T∏
τ=t

πθ(Hwin
τ |x,H<τ )

= pθ(Hwin
≥t |C, x,H<t)

=
elog pθ(Hwin

≥t|x,H<t)

elog pθ(Hwin
≥t

|x,H<t) + elog pθ(Hloss
≥t

|x,H<t)

= σ(log pθ(Hwin
≥t |x,H<t)− log pθ(Hloss

≥t |x,H<t)),

(17)

and the loss probability is:

pθ(Hloss
≥t ) = 1− pθ(Hwin

≥t ) = σ(log pθ(Hloss
≥t |x,H<t)− log pθ(Hwin

≥t |x,H<t)). (18)

For step-level DPO, the objective is to optimize Bradley-Terry preference likelihood by:

JDPO(θ) = E(x,H<t,Hwin
≥t

,Hloss
≥t

)∼D
[
log σ

(
β∆θ

(
x,H<t,Hwin

≥t ,Hloss
≥t

))]
, (19)

where preference is defined by:

∆θ(x,H<t,Hwin
≥t ,Hloss

≥t ) = log pθ(Hwin
≥t |x,H<t)− log pθ(Hloss

≥t |x,H<t). (20)

Let
z = β∆θ(x,H<t,Hwin

≥t ,Hloss
≥t ), (21)

where β is a temperature parameter, and we assume β = 1 for simplicity. Since DPO usually treats
the expectation as the empirical average of the sampled pairs (Hwin

≥t ,Hloss
≥t ), the gradient of Eq. 19

JDPO(θ) can be directly put inside as:

∇θJDPO(θ) = E[∇θ log σ
(
∆θ

(
x,H<t,Hwin

≥t ,Hloss
≥t

))
]

= E[∇θ log σ(z)]

=
d

dz
log σ(z) · ∇θz

= σ(−z) · ∇θz

= σ(−z) · ∇θ∆θ(x,H<t,Hwin
≥t ,Hloss

≥t )

= σ(−z) ·
[
∇θ log pθ

(
Hwin

≥t |x,H<t

)
−∇θ log pθ

(
Hloss

≥t |x,H<t

)]
= σ(−∆θ(x,H<t,Hwin

≥t ,Hloss
≥t ))

= σ(log pθ(Hloss
≥t |x,H<t)− log pθ(Hwin

≥t |x,H<t))

·
[
∇θ log pθ

(
Hwin

≥t |x,H<t

)
−∇θ log pθ

(
Hloss

≥t |x,H<t

)]
=

elog pθ(Hloss
≥t|x,H<t)

elog pθ(Hloss
≥t

|x,H<t) + elog pθ(Hwin
≥t

|x,H<t)

·
[
∇θ log pθ

(
Hwin

≥t |x,H<t

)
−∇θ log pθ

(
Hloss

≥t |x,H<t

)]
= pθ(Hloss

≥t |x,H<t) ·
[
∇θ log pθ

(
Hwin

≥t |x,H<t

)
−∇θ log pθ

(
Hloss

≥t |x,H<t

)]
= p(Hloss

≥t )︸ ︷︷ ︸
Weight

·
[
∇θ log pθ(Hwin

≥t )−∇θ log pθ(Hloss
≥t )

]︸ ︷︷ ︸
Preference Advantage Gradient

.

(22)

For our intra-tree group policy optimization, the objective can be expressed as the combination of
two categoriesHwin andHloss:

JIntra-tree(θ) = E[x,H<t,H≥t∼πθ(·|x,H<t)]
1

Gtree

Gtree∑
i=1

[
Âwin + Âloss

]
, (23)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where Gtree is the number of leaves within the tree. Then the gradient of Eq. 23 JIntra-tree(θ) is:

∇θJIntra-tree(θ) ≈ E
[
Âwin∇θ log pθ

(
Hwin

≥t |x,H<t

)
+ Âloss∇θ log pθ

(
Hloss

≥t |x,H<t

)]
= pθ

(
Hwin

≥t |x,H<t

)
Âwin∇θ log pθ

(
Hwin

≥t |x,H<t

)
+ pθ

(
Hloss

≥t |x,H<t

)
Âloss∇θ log pθ

(
Hloss

≥t |x,H<t

)
.

(24)

The baseline Rbase could be estimated by probability-weighting as

Rbase = 1 · pθ(Hwin
≥t ) + 0 · pθ(Hloss

≥t ). (25)

Here we simply use the difference between Rwin/loss and Rbaseline to express the advantage estimate
as:

Âwin = Rwin −Rbase = 1− pθ(Hwin
≥t ) = pθ(Hloss

≥t ), Âloss = Rloss −Rbase = −pθ(Hwin
≥t ). (26)

Combining Eq. 17, Eq. 18, Eq. 24, and Eq. 26, the gradient of intra-tree group policy optimization
can be reformulated as

∇θJIntra-tree(θ) = pθ
(
Hwin

≥t |x,H<t

)
Âwin∇θ log pθ

(
Hwin

≥t |x,H<t

)
+ pθ

(
Hloss

≥t |x,H<t

)
Âloss∇θ log pθ

(
Hloss

≥t |x,H<t

)
= pθ(Hwin

≥t |x,H<t) · pθ(Hloss
≥t |x,H<t) · ∇θ log pθ(Hwin

≥t |x,H<t)

− pθ(Hloss
≥t |x,H<t) · pθ(Hwin

≥t |x,H<t) · ∇θ log pθ(Hloss
≥t |x,H<t)

= pθ(Hwin
≥t )pθ(Hloss

≥t )︸ ︷︷ ︸
Weight

·
[
∇θ log pθ(Hwin

≥t )−∇θ log pθ(Hloss
≥t )

]︸ ︷︷ ︸
Preference Advantage Gradient

(27)

From Eq. 22 and Eq. 27, we can have the following Proposition C.1.

Proposition C.1 (Structural Equivalence of step-level DPO and Intra-tree GRPO) Under As-
sumption C.1, both step-level DPO and intra-tree GRPO admit gradient estimators of the form

∇θJunified(θ) = w︸︷︷︸
Weight

·
(
∇θ log pθ

(
Hwin

≥t

)
−∇θ log pθ

(
Hloss

≥t

))︸ ︷︷ ︸
Preference Advantage Gradient

, (28)

where the only difference lies in the choice of the weight term w.

D ALGORITHM WORKFLOW OF TREE-GRPO

The complete Tree-GRPO procedure is detailed in Algorithm 1.

E CASE STUDY

In this section, we provide some cases of the model trained by Tree-GRPO. As illustrated by suc-
cessful Case 8 and Case 9, the model can execute multi-turn agent tasks through iterative tool calls
and autonomous information aggregation. For failed cases 10 and 11, the model selected a single
candidate solution path at the beginning from among several that only partially met the requirements
and did not pursue further exploration. In subsequent reasoning, it neither reconsidered nor verified
its choice in light of newly acquired information, resulting in an incorrect final answer. These find-
ings motivate future work to integrate reflective reasoning and richer exploration into the training
loop for complex, open-domain agents.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are used to polish the content, adjust the format, write tables, and provide
writing suggestions in some chapters.
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Algorithm 1: Tree-based Group Relative Policy Optimization
Input: Policy model πθ, search environment e, dataset D, hyperparameters M,N,L,

maximum action budget B
Procedure GenerateRollout(Hprefix)

// This procedure completes a trajectory from a prefix
H ← Hprefix;
b← budget of existing prefixHprefix;
while b < B do

GenerateHt ∼ πθ(·|x,H<t);
H ← H+Ht;
if yt = </search> then

Parse last action q ← Parse(y);
Observation o← e(q);
H ← H+ <information>o</information>;

else ifHt ∈ {</answer>,<eos>} then
break;

returnH;

/* Main algorithm logic starts here */
for step = 1 to Stotal do

Reference model πref ← πθ;
Training data x,H ← Dstep;
// Step 1: Generate independent chains for initial M trees
for i = 1 to M do
Hinitial ← GenerateRollout("");
AddHinitial to Ti;

for Expansion iter = 1 to L do
// Step 2: Sample N nodes from each tree Ti for expansion
Randomly sample M ×N expansion node from existing trees
Psample = {p1, p2, ..., pM×N};
// Step 3: Do expansion
foreach pi ∈ Psample do
Hexpansion ← GenerateRollout(pi);
Update M trees T withHexpansion;

for Updating iter = 1, ... do
Calculate intra-tree group relative advantage Âintra-tree by Eq. 6;
Calculate inter-tree group relative advantage Âinter-tree by Eq. 6;
Update the policy model πθ by maximizing the Tree-GRPO objective (Eq. 8);
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Table 8: Tree-GRPO case study 1 (successful).

Example from Multi-Hop QA Dataset Musique
Question: Who is the owner of the record label of the performer of Groovy Little Summer Song?

Ground Truth: Warner Music Group, Warner Music

Model Output by Tree-GRPO (14B)
<think> To answer this question, I need to identify the performer of the song "Groovy Little
Summer Song" and then find out who owns the record label that this performer is associated
with. </think>
<search> Performer of the song "Groovy Little Summer Song" </search>
<information> Doc 1(Title: "Groovy Little Summer Song") Groovy Little Summer Song
""Groovy Little Summer Song"" is a song co-written recorded by American country music artist
James Otto. It was released in March 2010 as the first single from his album ""Shake What God
Gave Ya"". The song was written by Otto ... Doc 2(Title: "Emm Gryner") is written about her.
Gryner was married to visual artist Sean Odell from 2004-2016. They have two children together.
Emm Gryner Emm Gryner (born 8 June 1975 in Sarnia, Ontario) is a Canadian singer-songwriter
best known for her 1998 indie hit ""Summerlong"". Gryner’s childhood ... Doc 3(Title: "Emm
Gryner") Emm Gryner Emm Gryner (born 8 June 1975 in Sarnia, Ontario) is a Canadian singer-
songwriter best known for her 1998 indie hit ""Summerlong"". Gryner’s childhood was spent
in Forest, Lambton County, Ontario. Her father was of half Irish heritage and her mother was
Filipina. Gryner ... </information>
<think> From the search results, it seems that the performer of the song "Groovy Little Summer
Song" is James Otto. Now, I need to find out who owns the record label that James Otto is
associated with. </think>
<search> Record label of the performer James Otto </search>
<information> Doc 1(Title: "James Otto") In June 2015, Otto signed with Blaster Records, and
""Somewhere Tonight"" was released to country radio on July 13, 2015 as his first single with the
record label. James Otto James Allen Otto (born July 29, 1973) is an American country music
artist who is ... Doc 2(Title: "James Otto") James Otto James Allen Otto (born July 29, 1973) is an
American country music artist who is a member of the MuzikMafia, a group of country musicians
known for their ""country music without prejudice"". Otto began his career on Mercury Nashville
Records in 2002 ... Doc 3(Title: "James Otto") signed as an opening act for Shania Twain on her
Up! Tour. His fourth single for Mercury, ""Sunday Morning and Saturday Night"", peaked at
No. 58. After the song fell from the charts, Otto exited Mercury’s roster. From there, he began
working with the MuzikMafia ... </information>
<think> From the search results, it seems that James Otto is associated with record labels such as
Mercury Nashville Records and Warner Bros. Records. Now, I need to find out who owns these
record labels. </think>
<search> Who owns Mercury Nashville Records and Warner Bros. Records </search>
<information> Doc 1(Title: "Warner Bros. Records") Records from EMI as part of its sale to
Universal Music Group. Most Parlophone artists (excluding Coldplay and Tinie Tempah, who
were placed under Atlantic) were placed under Warner Bros ... Doc 2(Title: "Warner Bros.
Records") Warner Bros. Records Warner Bros. Records Inc. is an American major record label
owned by Warner Music Group and headquartered in Burbank, California. It was founded in 1958
as the ... Doc 3(Title: "Mercury Records") Mercury Records Mercury Records is an American
record label owned by Universal Music Group. In the United States, it operates through Island
Records; in the UK, it is distributed by Virgin EMI Records ... </information>
<think> From the search results, it seems that Mercury Nashville Records is owned by Sony
Music Entertainment and Warner Bros. Records is owned by Warner Music Group. </think>
<answer> Warner Music Group </answer>
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Table 9: Tree-GRPO case study 2 (successful).

Example from Web-Agent QA Dataset GAIA
Question: What is the absolute difference in tens of thousands between the population of chin-
strap penguins on the Wikipedia page for penguin species populations as of the end of 2018
and the population recorded in the Nature.com "global population assessment of the Chinstrap
penguin" article from 2020, assuming two penguins per breeding pair?

Ground Truth: 116

Model Output by Tree-GRPO (14B)
<think> The user wants to know the absolute difference in tens of thousands between the popula-
tion of chinstrap penguins mentioned on the Wikipedia page for penguin species populations as
of the end of 2018 and the population recorded in the Nature.com article from 2020, considering
two penguins per breeding pair. To find the answer, we need to search for the specific population
figures for chinstrap penguins in both sources and then calculate the difference. </think>
<search> chinstrap penguin population in 2018 on Wikipedia </search>
<information> Page 1: The population of chinstrap penguins was estimated by IUCN in August
2018 and it is reported that there is a total of 8 million individual chinstrap penguins are living
in the world. Page 2: According to the IUCN Red List, the total population size of the Chinstrap
penguin is 8 million individuals or 4 million breeding pairs. Currently, this species is classified as
Least Concern . . . Page 3: Jun 13, 2018 · Most of the data analyses suggests a single large pop-
ulation of chinstrap penguins throughout the Southern Ocean, with minimal population structure
in the WAP region, and . . . Page 4: This is a list of Sphenisciformes species by global popu-
lation. While numbers are estimates, they have been made by the experts in their fields. Page
5: How many chinstrap penguins are there today? In 2018, the IUCN estimated about 8 million
mature chinstrap penguins worldwide, though the population is decreasing. Page 6: Most of the
data analyses suggests a single large popula-tion of chinstrap penguins throughout the South-
ern Ocean, with minimal population structure in the WAP re-gion, and absence of . . . Page 7:
BirdLife International has assessed 18 species. 16 (89% of total species) have had their popula-
tion estimated: those missing are the king and little penguins, both of which have been assessed
as being of least concern. [1][2] Page 8: Jun 13, 2018 · High genetic diversity, evidence of female
bias-dispersal and a sign of population expansion after the last glacial maximum around 10,000
mya were detected. Page 9: Nov 10, 2020 · Twenty-three previously known Chinstrap penguin
colonies are found to be absent or extirpated ... </information>
<think> From the Wikipedia page, the population of chinstrap penguins in 2018 was estimated
to be 8 million. </think>
<search> chinstrap penguin population in 2020 Nature.com </search>
<information> Page 1: Nov 10, 2020 · Using satellite imagery, drone imagery, and ground counts,
we have assembled the first comprehensive global population assessment of Chinstrap penguins
(Pygoscelis . . . Page 2: We estimate the global population of Chinstrap penguins at 3.42 (95th-
percentile CI: [2.98, 4.00]) million breed- ing pairs (Table 1) in 375 extant breeding sites, not
including recent... Page 3: Population Convey et al. (1999) estimate a world population of 4
million breeding pairs. Page 4: Using satellite imagery, drone imagery, and ground counts, we
have assembled the first comprehensive global population ... Page 5: The Antarctic Penguin Bio-
geography Project is an effort to collate all known information ... Page 6: Nov 10, 2020 · Using
satellite imagery, drone imagery, and ground counts, we have assembled the first comprehensive
global population assessment of Chinstrap penguins (Pygoscelis antarctica) at 3.42... Page 7:
Using satellite imagery, drone imagery, and ground counts, we have assembled the first com-
prehensive global population assessment of Chinstrap penguins (Pygoscelis antarctica) at 3.42...
Page 8: Feb 11, 2020 · Scientists discovered that colonies of chinstrap penguins – also known as
ringed or bearded penguins – have dropped dramatically since they were last surveyed almost 50
years . . . </information>
<think> The Nature.com article estimates the global population of chinstrap penguins in 2020 to
be 3.42 million breeding pairs. Since the user mentioned "two penguins per breeding pair", the
population would be approximately 3.42 million * 2 = 6.84 million chinstrap penguins. Now, we
need to find the absolute difference between the 2018 population (8 million) and the 2020 popu-
lation (6.84 million) in tens of thousands. The difference is 8,000,000 - 6,840,000 = 1,160,000.
In tens of thousands, this is 116. </think>
<answer> 116 </answer>
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Table 10: Tree-GRPO case study 3 (failed).

Example from Multi-Hop QA Dataset Musique
Question: Who is a cast member of the show that contains the character Michael Knight?

Ground Truth: Deanna Russo, Bruce Davison

Model Output by Tree-GRPO (14B)
<think> To answer this question, I need to identify the show in which the character Michael
Knight appears and then find out who is a cast member of that show. </think>
<search> Character Michael Knight in TV show </search>
<information> Doc 1(Title: "Michael Knight (Knight Rider)") Michael Knight (Knight Rider)
Michael Knight is a fictional character and the protagonist of the 1980s television series ""Knight
Rider"", played by David Hasselhoff. The character first appeared in the opening scenes as
Michael Long, played by Larry Anderson in the beginning of the pilot. Born Michael Arthur
Long on January 9, 1949 outside of Los Angeles, California, raised by a blue-collar working
family. In the late 1960s, while in his 20s, Long joined the Army, was part of the Green Berets,
and spent three years in counter-intelligence work in Vietnam. He got captured at one point
while on a Doc 2(Title: "Knight Rider (1982 TV series)") Knight Rider (1982 TV series) Knight
Rider is an American television series created and produced by Glen A. Larson. The series was
originally broadcast on NBC from 1982 to 1986. The show stars David Hasselhoff as Michael
Knight, a high-tech modern crime fighter assisted by KITT, an advanced artificially intelligent,
self-aware and nearly indestructible car. This was the last series Larson devised at Universal
Television before he moved to 20th Century Fox. Self-made billionaire Wilton Knight rescues
police Detective Lieutenant Michael Arthur Long after a near fatal shot to the face, giving him a
new identity (by plastic surgery) and Doc 3(Title: "Michael Knight (Knight Rider)") Industries,
an organization founded by Wilton Knight, a billionaire philanthropist. Michael was not Wilton
Knight’s first choice for the pilot program, but Wilton changed his mind and reopened the foun-
dation due to Michael’s arrival. In the context of the pilot, Wilton Knight (Richard Basehart) is
dying of an undisclosed illness. Wilton picked up Michael passed out in front of his car, on a
desert highway. Michael barely survived, thanks to the metal plate. Given a new face via facial
reconstructive surgery, Long is resurrected as Michael Knight (now played by David Hasselhoff).
Together with a high-tech automobile called the Knight </information>
<think> From the search results, it is clear that Michael Knight is a character in the show "Knight
Rider". Now, I need to find out who is a cast member of this show. </think>
<search> Cast members of Knight Rider </search>
<information> Doc 1(Title: "Knight Rider") Orci. On February 13, 2014, Schmoes Know reports
that actors Chris Pratt and Danny McBride are in talks for roles and may use a sort of action-
comedy hybrid in the same vein as ""21 Jump Street"". In December 2015, a media report
indicated that a new movie named ""Knight Rider Heroes"" is in the works and will include
David Hasselhoff. Knight Rider Knight Rider is an American entertainment franchise created
by Glen A. Larson. The core of ""Knight Rider"" is its three television series: ""Knight Rider""
(1982-1986), ""Team Knight Rider"" (1997–1998), and ""Knight Rider"" (2008–2009). The
franchise also includes three Doc 2(Title: "Knight Rider") to write the first script draft, with
the series’ lead actor David Hasselhoff attached as an advisor and also have an onscreen role. In
April 2003, Revolution Studios hired screenwriters David Elliott and Paul Lovett to pen the film’s
script. In April 2004, the premise of the film was described as having Hasselhoff reprise his role
as Michael Knight, now the mentor to the protagonist as Devon Miles mentored Knight in the
television series. The protagonist would be Knight’s son, inheriting his father’s role and driving
the vehicle KITT. The producers’ choice for the role was actor Ben Affleck. In Doc 3(Title:
"Knight Rider (2008 TV series)") Knight Rider (2008 TV series) Knight Rider is a 2008 series
that follows the 1982 television series of the same title created by Glen A. Larson and the 2008
television movie. The series stars Justin Bruening as Mike Traceur, the estranged son of Michael
Knight. The series also stars Deanna Russo as Sarah Graiman, Traceur’s former girlfriend and
love interest. Sarah is the daughter of Charles Graiman. Graiman, played by Bruce Davison, is
the creator of a new generation of KITT (Knight Industries Three Thousand), which is voiced by
Val Kilmer. The series was in production for just one season. </information>
<think> From the search results, it is clear that David Hasselhoff is a cast member of the show
"Knight Rider". </think>
<answer> David Hasselhoff </answer>
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Table 11: Tree-GRPO case study 4 (failed).

Example from Web-Agent QA Dataset WebWalkerQA
Question: As of December 2023, this individual was announced as the football team’s coach as
per an article published between 2019 and 2021 inclusive. The football team initially started as
a social football club in 1995 before changing its name in 2011 as per an article published that
began as a social club as per an article published between 2019 and 2021 inclusive. The football
club won a title in its home country league for the fourth successive time in a row as reported in
an article published between 2020 and 2023 inclusive. This league win was this individual’s third
with the football club and the fourth overall as reported in an article published between 2020 and
2023 inclusive. The individual underwent surgery for a back injury as per an article published in
2018. Tell me the full name of this individual.

Ground Truth: Norman Takanyariwa Mapeza

Model Output by Tree-GRPO (14B)
<think> To find the full name of the individual, I need to identify the football team and its league
in their home country. Then, I will look for articles about this team between 2020 and 2023 that
mention a coach who won a title for the fourth consecutive time and is the third time for this
coach. Additionally, I should look for an article about the coach’s surgery in 2018. The coach’s
name will likely be mentioned in these articles. </think>
<search> football team social club 1995 </search>
<information> Page 1: 1995 Stadium Club Football checklist, gallery, release date, inserts, paral-
lels, forum, and collection tracking Page 2: 1995 Stadium Club card list & price guide. Ungraded
& graded values for all 1995-96 Topps Stadium Club Football Cards ... Page 3: Get the best deals
on 1995 Topps Stadium Club Football Trading Cards when you shop the largest online selection
at eBay.com ... Page 4: A wide selection of single cards from the 1995 Stadium Club football
card set. Page 5: Shop COMC’s extensive selection of 1995 topps stadium club members only
football cards ... Page 6: Get the latest and most accurate trading card values and sets info for
1995 Stadium Club Football sports cards ... Page 7: 1995 Stadium Club Teams Arizona Cardinals
Atlanta Falcons Buffalo Bills Carolina Panthers Chicago Bears ... </information>
<think> The search results do not provide enough information to identify the football team or the
individual. I need to narrow down my search query ... </think>
<search> football team started as social club 1995, changed name 2011, coach won league title
four consecutive times between 2020 and 2023 </search>
<information> Page 1: The Crossword Solver found 30 answers to "football club changed name
2011 league title ... Page 2: May 27, 2016 · Leicester became the sixth club to win the Premier
League, completing ... Page 3: 18 hours ago · Live updating Football Club Started As Social
Club 1995 Renamed 2011 ... Page 4: List of football league clubs in the top four tiers of English
football (i.e. the ... Page 5: May 22, 2024 · Manchester City saw off West Ham United on the
final 2023/24 ... Page 6: Aug 29, 2023 · Manchester City wrapped up the 2022/23 season with an
incredible ... </information>
<think> From the search results, I learned that Manchester City won four consecutive domestic
league titles between 2020 and 2023. I need to find articles between 2020 and 2023 that mention
the name of the coach of Manchester City who won the league titles. Additionally, I should look
for an article about the coach’s surgery in 2018. </think>
<search> manchester city coach won league title four consecutive times between 2020 and 2023,
coach surgery 2018 </search>
<information> Page 1: May 19, 2024 · Manchester City won an unprecedented fourth consecutive
Premier League title on Sunday as Phil ... Page 2: May 19, 2024 · Pep Guardiola and Manchester
City made history on Sunday, when a 3-1 win over West Ham ... Page 3: May 20, 2024 · But
Guardiola now stands alone as the only boss to manage a quality quartet of title ... Page 4:
May 21, 2024 · Pep Guardiola was announced as the winner of the Premier League Manager
of the Season ... Page 5: May 19, 2024 · Manchester City have won their fourth consecutive
Premier League title, sealing yet ... Page 6: May 19, 2024 · Some wondered whether Manchester
City would retain their hunger after winning the ... Page 7: May 19, 2024 · Taking in spells at
Barcelona and Bayern Munich, Guardiola has now won the league ... </information>
<think> Based on the search results, the full name of the individual who was announced as the
football team’s coach is Pep Guardiola. </think>
<answer> Pep Guardiola </answer>
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