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Abstract

In this paper, we introduce harmonic loss as an alternative supervisory signal for training
neural networks and large language models (LLMs). Harmonic loss differs from standard
cross-entropy loss by (a) replacing the usual SoftMax normalization with a scale-invariant
HarMax function and (b) computing logits via Euclidean distance rather than a dot product.
Harmonic loss enables improved interpretability and faster convergence, owing to its scale
invariance and finite convergence point by design, which can be interpreted as a class center.
We first validate the performance of harmonic models across algorithmic, vision, and language
datasets. Through extensive experiments, we demonstrate that models trained with harmonic
loss perform better than standard models by: (a) enhancing interpretability (i.e. geometry
of representations), (b) requiring less data for generalization, and (c) reducing grokking.
Moreover, we compare a GPT-2 model trained with harmonic loss to the standard GPT-2,
illustrating that the harmonic model develops more interpretable representations. We hope
our work will inspire future research exploring various methods to improve the geometry of
representations, paving the way toward building more interpretable AI models.

1 Introduction

As machine learning models become powerful, it has become increasingly important to thoroughly understand
the behavior of neural networks. One particularly intriguing characteristic of neural networks is their ability
to generalize: Empirical evidence shows that neural networks can perform well on unseen data not explicitly
encountered during training (Novak et al., 2018). This remarkable ability stems from the networks’ capacity
to learn generalizable representations and algorithms through training. However, current models face three
key challenges when it comes to generalization:

(1) Lack of interpretability: Neural networks often lack interpretability, which is a critical issue in
high-stakes applications like healthcare, finance, and autonomous systems. While multiple research efforts
have advanced our insight into inner workings of LLMs (Bereska and Gavves, 2024), we are still far from
fully explaining their outputs. Ultimately, it is crucial to design systems that are interpretable by design.
Otherwise, it is challenging to diagnose errors, ensure fairness, or build trust in a model’s decisions.

(2) Low data efficiency: Generalization often requires vast and diverse training data. This raises a critical
question: can models generalize effectively with less data? This issue is especially relevant in domains where
data availability is scarce, such as rare disease diagnosis or specialized scientific fields. Previous approaches for
improving neural network generalization include efficient data sampling (Li et al., 2024a) and modifications to
the training procedure to accelerate training (Wang et al., 2024). However, these methods focus on optimizing
existing training procedures rather than addressing the core issues in model design.

(3) Delayed generalization (grokking): Models sometimes experience a phenomenon known as “grokking,”
(Power et al., 2022; Liu et al., 2022a) where there is a noticeable delay between the convergence of the training
loss and the convergence of the test loss. This gap is problematic because: (i) it complicates determining the
optimal point to stop training in order to achieve generalization, and (ii) it necessitates extended computation
time and resources to continue training until grokking occurs.

As the saying goes, “The devil is in the SoftMax.” We attribute these three challenges in part to the widespread
use of the SoftMax function in cross-entropy loss (for classification) and propose harmonic loss as an
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alternative. Harmonic loss has two desirable mathematical properties that enable faster convergence and
improved interpretability: (1) scale invariance, and (2) a finite convergence point, which can be interpreted as
a class center. Through comprehensive experiments, we show that models trained with harmonic loss reduce
grokking, require less data for generalization, and enhance interpretability compared to standard models.
Furthermore, we compare a GPT-2 model trained with harmonic loss to the standard GPT-2 and show that
the harmonic model develops more interpretable representations. While its scalability to even larger models
remains to be evaluated in future works, we believe that the scale-invariant formulation of the harmonic
loss is crucial for enhancing representation geometry. We hope our work will inspire more future works on
developing training methods that yield interpretable representations.

The remainder of this paper is organized as follows: We first review the relevant literature in Section 2.
Section 3 introduces the principles underlying harmonic loss and explains why it is preferable to cross-entropy
loss in terms of generalization and interpretability. Section 4 details a comprehensive set of experiments on
algorithmic datasets, illustrating that models trained with harmonic loss have numerous desirable properties
that are absent in standard models. In Section 5, we demonstrate the performance of harmonic models on the
vision task of MNIST digit classification. In Section 6, we extend our analysis to large models, illustrating
that the advantages of harmonic loss also hold at scale. We present ablation experiments in Section 7. We
conclude the paper in Section 8.

2 Related Works

Representations and Mechanistic Interpretability: Numerous studies have shown that LLMs can
form conceptual representations across spatial (Gurnee and Tegmark, 2023), temporal (Li et al., 2021), and
color domains (Abdou et al., 2021). The structure of such representations includes one-dimensional concepts
(Gurnee and Tegmark, 2023; Marks and Tegmark, 2023; Heinzerling and Inui, 2024; Park et al., 2024a),
as well as multi-dimensional representations such as lattices (Michaud et al., 2024; Li et al., 2024b; Park
et al., 2024b) and circles (Liu et al., 2022a; Engels et al., 2024). While the structure of these representations
correlates with certain geometric patterns, significant unexplained variance frequently remains, necessitating
efforts to improve the interpretability of neural network representations.

Loss Functions: Previous research has shown that loss functions can influence how a model learns to
represent data, affecting its abilities in unique ways (Li et al., 2024c; Bosco et al., 2024; Sudre et al., 2017;
Demir et al., 2023; Salehi et al., 2017; Bommidi et al., 2023; Seber, 2024). We refer readers to (Alshammari
et al., 2025) and (Wang et al., 2022) for a comprehensive survey of different loss functions used in machine
learning. Our harmonic loss offers an alternative supervisory signal in standard supervised learning by (a)
replacing the usual SoftMax normalization with a scale-invariant HarMax function and (b) computing logits
via Euclidean distance rather than a dot product. While it bears resemblance to contrastive loss, which also
encourages maximal separation between different classes by using Euclidean distance as a metric, contrastive
learning methods are not inherently supervised: they typically append a cross-entropy layer to generate logits,
thus reintroducing SoftMax (and its drawbacks). We also show in Section 7 that using Euclidean distance
alone is insufficient to fully replicate harmonic loss’s capabilities. Furthermore, directly leveraging Euclidean
distance-based supervised learning has been relatively underexplored in language modeling outside of simple
tasks like sentence sentiment classification (Xu et al., 2023). We present a more comprehensive comparison of
harmonic loss with other loss functions in Appendix D.

3 Harmonic Loss

We first review cross-entropy loss and present the harmonic loss, visualized in Figure 1 (a). Denote the
unembedding matrix as W ∈ RN×V (N is the embedding dimension, V is the vocabulary size), and the
penultimate representation (the representation prior to the unembedding matrix) as x ∈ RN .

Cross-entropy loss: Logits y are defined as the matrix-vector multiplication, i.e., y = W T x ∈ RV (ignoring
biases), or yi = wi · x, where wi is the ith column of W . Probability p can be obtained by applying SoftMax
to y, i.e.,
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Figure 1: Cross-entropy loss versus harmonic loss (ours). (a) Definitions. Cross-entropy loss leverages the
inner product as the similarity metric, whereas the harmonic loss uses Euclidean distance. (b) Toy case 1
with two points (classes). Both the loss and l2 weight norm converge faster for the harmonic loss. (c) Toy
case 2 with five points (classes). Harmonic loss can pick out the red point in the middle. By contrast, the
cross-entropy loss cannot, since the red point is not linearly separable from other points. Weight matrices are
also more interpretable with harmonic loss than with cross-entropy loss.

pi = SoftMax(y)i ≡ exp(yi)∑
j exp(yj) . (1)

Suppose the real class label is c, then loss ℓ = −log pc. For notational simplicity, we call a linear layer
combined with the cross-entropy loss a cross-entropy layer.

Harmonic loss: The harmonic logit d is the l2 distance between wi and x, i.e., di = ||wi − x||2. We
interpret wi as keys and x as a query, so smaller di means a higher probability of pi. We define harmonic
max (HarMax) as

pi = HarMax(d)i ≡ 1/dn
i∑

j 1/dn
j

, (2)

where n (harmonic exponent) is a hyperparameter that controls the heavy-tailedness of the probability
distribution. If the true class label is c, then loss ℓ = −log pc. For notational simplicity, we call a
layer combined with the harmonic loss the harmonic layer. Since the last step of both losses is the same
(ℓ = −log p), comparing their values is meaningful. They only differ in the ways of computing probabilities
from representations 1.

A reasonable choice of n is n ∼ min(
√

D1,
√

D2), where D1 is the embedding dimension, and D2 represents the
intrinsic dimensionality of the underlying data. In LLMs, D2 could be approximated as D2 ≈ dembed, where
dembed is the embedding dimension. This approximation arises from considering an embedding initialized from
a D-dimensional Gaussian distribution. The squared distance between two points, normalized by the number
of dimensions D, is on the order of 1 ± O(1/

√
D). To ensure that the harmonic distance

[
1 ± O(1/

√
D)
]n

remains constant as we scale D, we require n ∼
√

D, since limx→∞(1+x−1)x = e. We also show the empirical
impact of the exponent on the learned representations in Appendix E.

Toy cases: To provide intuition about what advantages the harmonic loss has over the cross-entropy loss, we
consider two toy cases in 2D, as shown in Figure 1 (b)(c). In each toy case, we train the cross-entropy layer
and the harmonic layer with the Adam optimizer. Toy case 1: x1 = (1, 1) and x2 = (−1, −1) belong to two
different classes. The harmonic layer produces a faster loss decrease, because the harmonic loss only requires
di → 0 (converging point is finite) to get pi → 1. By contrast, cross-entropy loss requires yi → ∞ (converging

1Note that when we say “cross-entropy loss,” we do not only refer to ℓ = −log p, but rather refer to the whole pipeline
including penultimate representation, logit, probability, and loss.
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point is infinite) to get pi → 1. The harmonic loss already produces a l2 weight norm that plateaus to a
constant, while the cross-entropy loss leads to increasing l2, diverging towards infinity. Toy case 2: There
are 5 points in 2D, each of which belong to a different class. In particular, the red point (0, 0) is surrounded
by the other four points, i.e., cannot be linearly separated. The cross-entropy layer indeed cannot perform
well on this task, manifested by a high loss plateau. By contrast, the harmonic layer can drive the loss down
to machine precision. Similar to case 1, the harmonic layer has a plateauing l2 while the cross-entropy layer
has an ever-growing l2. We also observe that the weights of the harmonic layer correspond to x, which is
more interpretable than the weights of the cross-entropy layer.

Benefits of harmonic loss: From these two toy cases, we understand the advantages of harmonic loss:
(1) nonlinear separability: in case 2, the red dot can be classified correctly even though it is not linearly
separable. (2) fast convergence: The fact that the converging point is finite leads both to faster loss decay,
and plateauing (non-diverging) l2. (3) scale invariance: Harmonic loss is scale-invariant, i.e., di → αdi leaves
pi (hence loss) invariant, whereas yi → αyi would produce a different cross-entropy loss. (4) interpretability:
the weight vectors correspond to class centers. We present the formal proof of these properties in Appendix F.

Notes on interpretability: Measuring interpretability is inherently challenging in the absence of ground-
truth representations. Hence, we propose two principled indicators of interpretability throughout the
paper: (1) Compression: Sparse, low-dimensional representations enhance interpretability by concentrating
semantics. We measure this via cumulative explained variance in PCA projections. (2) Geometry: In general
models, we hypothesize that parallelogram-like units with multiple one-dimensional semantic directions enable
compositional reasoning; This enables vector arithmetic such as man – woman = king – queen, and supports
faithful feature attribution. We measure this via parallelogram loss in Section 6.

4 Algorithmic Experiments

Algorithmic tasks are good benchmarks for interpretability since they are well-defined mathematically.
However, training neural networks on these tasks is non-trivial due to grokking (delayed generalization) (Power
et al., 2022) and the existence of multiple algorithms (Zhong et al., 2024), etc. We will show that harmonic
models learn better representations, are more data-efficient, and exhibit less grokking.

4.1 Models and Datasets

Models: We compare four models:

1. Standard MLP: Tokens are embedded into 16-dimensional embeddings, which are then concatenated
and used as the input. The model consists of two hidden layers with widths of 100 and 16, respectively.
The SiLU activation function is used.

2. Standard Transformer: Tokens are embedded into a 16-dimensional embedding, with a learnable
positional embedding added. The input passes through two transformer decoder layers, each
comprising two attention heads and an MLP with a hidden dimension of 64.

3. Harmonic MLP: Standard MLP with an harmonic unembedding layer of exponent n = 1.

4. Harmonic Transformer: Standard Transformer with an harmonic unembedding layer of exponent
n = 1.

We trained the MLP models for 7000 epochs and the transformers for 10000 epochs. For all four models, we
used the AdamW optimizer with a learning rate of 2 × 10−3, a weight decay of 10−2, and an L2 regularization
on the embeddings with strength 0.01.

Datasets: We trained the four models above using the following five datasets, and analyzed their performance
as well as the resulting representations:

1. In-Context Learning: In a 5×5 integer lattice, given three points on the lattice, the model is
trained to predict the fourth point that would form a parallelogram with the others. This task
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Figure 2: Visualization of the top two principal components of the embeddings in synthetic experiments.
The title of each subplot shows the explained variance by the first two principal components. Each row
corresponds to a pair of a dataset and a model, while each column represents the embeddings from different
training runs with varying seeds. Groups of consecutive two rows belong to the same dataset, with models
arranged in the order: {Standard MLP, Harmonic MLP}. The datasets are ordered as follows: {In-Context
Learning, Genealogy Learning, Equivalence Classes, Modular Addition, and Permutation Groups}. X and Y
axis spans are equal.

exemplifies in-context reasoning in LLMs, mirroring the classic man:woman::king:queen analogy by
requiring the model to complete the relational pattern such as ‘man is to woman as king is to queen’
based on the given context.

2. Modular Addition: Given two integers x, y, the model is trained to predict (x + y) mod 31.

3. Equivalence Classes: Given two integers 0 ≤ x, y < 40, the model is trained to predict if
x ≡ y mod 5.

4. Genealogy Learning: In a complete binary tree with 127 nodes, given a subject and a relation,
the model is trained to predict the corresponding object. The relation can be one of the following:
parent, grandparent, or sibling.

5. Permutation Composition: Given two permutations x and y in S4, the model is trained to predict
x ◦ y. On this dataset, we trained standard and harmonic transformers with an L2 regularization of
0.005, as we found this configuration led to more complete training.
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Figure 3: (a) Cumulative explained variance vs. principal components (mean over 20 seeds). Harmonic
representations are more compact than standard counterparts. (b) Test accuracy as a function of Train
Fraction (fixed seed). Harmonic models generalize faster with less data than standard counterparts. (c)
Epochs to Test Acc > 0.9 vs. Epochs to Train Acc > 0.9 for 20 consecutive epochs, for 20 different random
seeds. y = x line represents no grokking, where train and test accuracy improve simultaneously. Points closer
to the y-axis indicate a greater degree of grokking.

4.2 Representation Faithfulness

Figure 2 shows the plot of the top two principal components of the models’ embeddings for MLP tasks. We show
the complete embedding visualization for all tasks in Appendix A. Overall, harmonic loss representations are
cleaner and more organized than their cross-entropy counterparts. We found near-perfect circle representations
for the modular addition task, a clear tower-like structure for tree learning, and neat clusters for permutation
composition. We examine the representations task by task:

1. In-context Learning: Standard models’ representations are either imperfect lattices or exhibit unexplained
variance in higher dimensions, whereas harmonic models almost always perfectly (100%) recover the underlying
2D lattice structure across different random seeds.

2. Modular Addition: Harmonic MLPs consistently recover a perfect 2D circular representation in almost
all runs, whereas tstandard MLPs often fail to do so. Harmonic transformer has a similar success rate to the
standard transformer in constructing circles, but the explained variance captured by the first two principal
components is generally much higher, indicating that harmonic models discover more compact representations
with fewer uninterpretable components.

3. Equivalence Classes: While both standard and harmonic models are able to identify the underlying
groups, standard models’ representation tends to be more “elongated", or not completely grouped, compared

6



Under review as submission to TMLR

to its harmonic counterpart. This could be attributed to the fact that cross-entropy loss does not have an
incentive to reduce irrelevant variations to zero.

4. Genealogy Learning: Only Harmonic MLP recovers the underlying tree representation.

5. Permutation Composition: Harmonic MLP generally produces better-separated clusters. A particularly
clean representation that appears multiple times contains 6 clusters of 4 permutations, where each cluster is
a coset of the subgroup ⟨e, (12)(34), (13)(24), (14)(23)⟩ or one of its conjugates. In the harmonic transformer,
permutations commonly organize into 4 clusters that are cosets of ⟨e, (13), (14), (34), (134), (143)⟩ or one of
its conjugates, subgroups isomorphic to S3 (one element, in this case 2, never permutes).

Figure 3(a) further demonstrates that harmonic representations tend to be more compact than standard
models, with fewer uninterpretable components. In particular, harmonic models trained for in-context learning
achieve 100% explained variance using only the first two principal components.

4.3 Data Efficiency in Training

Figure 3(b) shows the test accuracy as a function of train data fraction for our synthetic experiments, indicating
how much data is necessary in order for the model to be generalizable. We observe that harmonic models
require comparable or much less amount of data to generalize, compared to their cross-entropy counterparts.
Such improvement is especially notable for in-context learning, where harmonic models generalize nearly
immediately.

4.4 Reduced Grokking

Grokking refers to the phenomenon of delayed generalization (Power et al., 2022): for example, it takes 103

steps to reach perfect accuracy on the training data, but it takes 105 steps to generalize to the test data.
Grokking is a pathological phenomenon that we want to avoid (Liu et al., 2022b). We find that harmonic
loss overall reduces grokking, as seen in Figure 3(c). Points on the y = x line represent models which trained
without grokking, with train and test accuracy improving together. This improvement is particularly evident
in learning modular addition and permutation composition: while the standard MLP exhibits severe grokking,
most data points for the harmonic MLP lie much closer to the y = x line.

4.5 Case Study: Modular Addition

In this section, we study modular addition as a case study and analyze why the harmonic MLP encourages
more interpretable representations and better generalization compared to the standard MLP. The standard
MLP trained for modular addition without weight decay often fails to generalize, as shown in Figure 4.
Generalization is only achieved with the addition of strong weight decay; however, (a) significant grokking
occurs, as depicted in Figure 4, and (b) while the first two principal components form an approximate
circle, they explain far less than the total variance, leaving significant unexplained variance. In contrast,
the harmonic model trained for modular addition generalizes quickly without grokking. Furthermore, the
embedding forms a perfect circle, as shown in Figure 4.

The better formation of a circle and improved generalization in harmonic MLP can be attributed to the
properties of harmonic loss, as explained in Section 3. To drive the probability to 1, the standard cross-entropy
loss requires driving the representation to infinity—i.e., making the logit infinite. In contrast, harmonic
loss achieves this by driving the harmonic logit to zero, which is easily accomplished by learning wi = x
in Equation 2. The existence of such a finite converging point results in (a) faster convergence, (b) better
generalization, and (c) more interpretable representations.

5 MNIST Experiments

For vision tasks, convolutional neural networks are shown to be (at least somewhat) interpretable by
demonstrating “edge detectors”, “wheel detectors”, etc. (Olah et al., 2020). In this section, we show that the
harmonic loss can lead to a more interpretable network for the MNIST dataset when it comes to training fully
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Figure 4: Left: Case study on modular addition. Standard MLP trained for modular addition without
weight decay often fails to generalize. Generalization is only achieved with the addition of strong weight
decay; however, (a) significant grokking occurs, and (b) while the first two principal components form an
approximate circle, they explain far less than the total variance. In contrast, the harmonic model trained for
modular addition generalizes quickly without grokking. Moreover, the embedding forms a perfect 2D circle.
EV in the plot represents the explained variance by the first two principal components of the embedding.
Right: Visualization of model weights trained for MNIST. Yellow cells show values less than 0.01. Both
models achieved ≈ 92.5% test accuracy.

connected networks. As a proof of concept, we compare one-layer neural networks trained using cross-entropy
loss and harmonic loss. The input images are first flattened and passed through a 784 × 10 linear layer to
obtain the logits. The models were trained with a batch size of 64, a learning rate of 0.001, and for 10 epochs,
achieving a 92.50% test accuracy for cross-entropy loss and 92.49% test accuracy for harmonic loss.

Figure 4 shows that the harmonic model’s weights are more interpretable than those of the standard model.
Consistent with its core principle, the harmonic model’s weights almost perfectly align with class centers
(images of each number). They also assign near-zero values to peripheral pixels, unlike the model trained
with cross-entropy loss, which lacks an incentive to reduce irrelevant background weights to exactly zero.

6 GPT2 Experiments

Many mechanistic interpretability works have been dedicated to understanding large language models. For
example, probing and attribution methods are good post hoc analysis tools. Despite their (partial) success,
these tools are not creating interpretable models in the first place but are trying to find needles in the haystack.
We argue that it would be nicer if we could pre-train the language models to be more interpretable. By using
harmonic loss in training, we can produce a language model that can “grow" crystal-like representations,
while having comparable performance with a standard one (trained with the cross-entropy loss).

We pre-train a GPT-2 small model (128M, based on NanoGPT) on OpenWebText. The embedding matrix
and the unembedding matrix are tied (share the same weights). We use 8 V100 GPUs, choose block size
1024, batch size 480 blocks. We use the Adam Optimizer with β1 = 0.9, β2 = 0.95. For the harmonic loss, we
choose n =

√
768 ≈ 28, following the discussion on harmonic exponent in Section 3. For standard (harmonic)

GPT, we use a linear warmup learning rate schedule for 2k (1k) steps to maximum learning rate 6 × 10−4

(6 × 10−3), and a cosine decay schedule from 2k to 10k, ending at lr 3 × 10−5 (3 × 10−4). As shown in
Figure 5 top left, Harmonic GPT shows faster converging initially (partially due to larger learning rates), and
converges to similar performance in the end (at 10k steps). The final validation losses are 3.159 (standard)
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Figure 5: GPT2 experiments: (Top left) loss curves. Harmonic GPT achieves a slightly lower loss
compared to standard GPT. (Top right) cumulative distribution function with respect to parallelogram
loss, for twelve function-vector tasks. Harmonic GPT consistently shows lower parallelogram losses (i.e.,
better parallelograms). (Bottom) Parallelograms (1st and 2nd principal component) with quality ranked
in descending order from left to right. Harmonic GPT tends to produce parallelograms that are more
‘rectangular’, while standard GPT produces flat ‘parallelograms’.

and 3.146 (harmonic). From training loss curves, harmonic GPT also seems to have smaller fluctuations.
This suggests the effectiveness of the harmonic loss on real-world models.

To testify the interpretability of the learned embeddings, we take twelve function-vector tasks from (Todd
et al., 2023). Each dataset contains many input-output pairs that have a certain relation. For example,
the “present-past" dataset contains pairs like: jump-jumped, fasten-fastened, win-won, etc. To construct
parallelograms, we can draw two different pairs from the dataset, obtaining quadruples like (jump, jumped,
fasten, fastened) which are expected to form parallelograms. Each word is tokenized into tokens; if multiple
tokens are obtained, we use the last token. We project token embeddings onto the first two principal
components. The quadruple (i, j, m, n) has 2D PC embeddings (Ei, Ej , Em, En); we define the parallelogram
loss lpara to be

lpara = ∥Ei + En − Ej − Em∥/σ, (3)

where σ =
√

1
V

∑V
k=1 ∥Ek∥2 is a scale factor that normalizes the loss (Ek → aEk leaves lpara invariant). We

obtain 10000 quadruples, measuring the parallelogram qualities by computing their parallelogram losses. We
plot their cumulative distribution function in Figure 5 in the top right: for every task, the harmonic GPT
produces lower parallelogram loss (better parallelograms) than standard GPT. We show the parallelograms
obtained in the present-past task in Figure 5 bottom. The parallelograms are ranked with quality in descending
order from left to right. The harmonic GPT tends to produce visually appealing parallelograms that are more
‘rectangular’, while standard GPT produces flat ‘parallelograms’. Discussion about internal representations is
included in Appendix C.
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Figure 6: Learned embeddings on the lattice and modular addition tasks. Each pane shows the 5×5 class
embeddings after training (numbers denote class IDs). Columns vary random seeds; the four left columns are
for in-context learning, and the four right columns are for modular addition task. Rows correspond to loss
functions: (top) full harmonic loss (ℓ2 logits + HarMax), (2nd) ℓ2 logits + SoftMax, (3rd) dot-product
logits + HarMax, (bottom) standard cross-entropy layer. Here, we see that only ℓ2 distance paired with
HarMax successfully recovers both the lattice and circular structure.

7 Ablation Experiments

Harmonic loss makes two major modifications to the standard cross-entropy loss: (i) compute logits via
ℓ2 distances, and (ii) use HarMax function as shown in Eq. equation 2. To tease apart their individual
contributions, we perform a set of targeted ablations in which one component is replaced at a time while the
remainder of the training pipeline is left unchanged. Specifically, we train MLP models on the in-context
learning and modular addition tasks with the ablated loss functions.

Results are shown in Figure 6. In in-context learning tasks, we observe that including either HarMax or ℓ2
logits alone is sufficient to replicate the full performance of Harmonic Loss. However, for modular addition
tasks, both HarMax and ℓ2 logits are essential to achieve the full performance. While incorporating only one
component enhances the quality of the circular representation, the explained variance remains significantly
below 100%. Overall, both HarMax and ℓ2 logits play critical roles in improving representations.

8 Conclusions

In this paper, we introduced harmonic loss as an alternative to the standard cross-entropy loss for training
neural networks and large language models (LLMs). We found that models trained with harmonic loss
perform better than standard models by: (a) reducing grokking, (b) requiring less data for generalization, and
(c) improving interpretability. We also compared a GPT-2 model trained with harmonic loss to the standard
GPT-2, illustrating that the harmonic loss-trained model develops more interpretable representations. Further
study is needed to explore the scalability and applicability of our findings to even larger models.

Limitations: As discussed earlier in the manuscript, measuring interpetability is inherently challenging in
the absence of ground-truth representations. For example, although harmonic loss slightly outperforms cross-
entropy loss on the ImageNet benchmark (see Appendix G), it is difficult to define ground-truth representations
of images, beyond the qualitative observation that semantically similar images tend to cluster in the
representation space. This makes it hard to quantify progress in interpretability. Nevertheless, we conjecture
that the scale-invariant formulation improves the parallelogram-like geometry of model representations as
demonstrated in this paper, which may facilitate identifying semantic feature directions. Further investigation
is required to refine our understanding of the extent to which representation geometry affects interpretability.
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A Full Representation Visualization

Figure 7 shows the visualization of representations for all models and datasets.
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Figure 7: Visualization of the top two principal components of the embeddings in synthetic experiments.
The title of each subplot shows the explained variance by the first two principal components. Each row
corresponds to a pair of a dataset and a model, while each column represents the embeddings from different
training runs with varying seeds. Groups of four rows belong to the same dataset, with models arranged in
the order: {Standard MLP, Harmonic MLP, Standard Transformer, Harmonic Transformer}. The datasets
are ordered as follows: {In-Context Learning, Genealogy Learning, Equivalence Classes, Modular Addition,
and Permutation Groups}.
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Figure 8: Harmonic loss (harmonic) and cross-entropy loss (standard) induce qualitatively different representa-
tions in the intermediate layer 6 of GPT2. We show the distribution of parallelogram loss for the parallelogram
dataset. Harmonic loss has more perfect parallelograms (spike close to zero loss) but demonstrates a heavier
tail.

B Identifying Coset Structure in Permutation Representations

To explore the coset structure in permutation representations of S4, we began by enumerating its subgroups.
Using this enumeration, we computed all possible left and right cosets of each subgroup in S4, yielding 28
distinct left cosets and 28 distinct right cosets.

Among these cosets, two pairs are equivalent, since we consider two of the four normal subgroups of S4: the
alternating group A4 and the Klein-4 group. To focus on meaningful structures, the trivial subgroup and the
entire group were excluded from further analysis.

The coset partitions were then compared using the silhouette score, a metric for evaluating the quality of
clustering. This comparison helped identify the partition with the most structured coset organization, which is
likely the structure that the model has captured during training. We then color the representation according
to the best-clustered partition, with each coset being a different color.

C Analyzing GPT2 hidden representations

In Section 6, we have shown that GPT2 trained with the harmonic loss has nicer structures in its embeddings
(i.e., parallelograms) than that trained with the standard cross-entropy loss. We now show that intermediate
representations (output of Block 6) induced by the harmonic loss are also qualitatively different from those of
the cross-entropy loss. In Figure 8, the harmonic loss produces more perfect parallelograms (spike around
zero parallelogram loss) but also displays a heavier tail for the parallelogram loss. The heavy tail is due to
the heavy-tailedness of the harmonic loss (power law), as opposed to the cross-entropy loss (exponential). It
remains to be understood if such heavy-tailedness is a feature or a bug for the harmonic loss, but the more
perfect parallelograms are probably a good thing, or this at least suggests that imposing the harmonic loss at
the end of the network can have noticeable influences in the intermediate representations. In Figure 9, we
also notice that for the Captalize dataset, the lowercase and uppercase words tend to overlap in the first
two PCs with the harmonic loss, but not with the cross-entropy loss. This again suggests the qualitative
difference between the harmonic loss and the cross-entropy loss.
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Figure 9: Visualization of layer 6 representations projected onto the first two principal components, for the
capitalize dataset. The harmonic loss (bottom) tends to collapse corresponding lower-case and upper-case
words, while the cross-entropy loss (top) places them at different locations.

D Comparison of Harmonic Loss to Alternative Loss Functions

We briefly contrast the harmonic layer (ℓ2 logits + HarMax) with three popular loss families. Throughout, let
x be an example embedding, wy the weight of the correct class y, and wi those of incorrect classes.

(a) Contrastive / InfoNCE. A generic form is

Lcontr =− log
exp
(
s(x, x+)/τ

)
exp
(
s(x, x+)/τ

)
+
∑

i exp
(
s(x, x−

i )/τ
) .

It enforces only relative ordering s(x, x+) > s(x, x−) + m, so entire constellations can drift or rotate. In
contrast, harmonic loss pulls every example directly toward a fixed class anchor wy and repels it from all
others, yielding a stable, globally referenced geometry.

(b) Margin-based SoftMax. Large-margin variants add a fixed gap ∆ to every class boundary, s(x, wy) ≥
s(x, wi) + ∆. Because ∆ is global, semantically close classes (e.g. dog vs. cat) are forced as far apart as
unrelated ones (dog vs. airplane). Harmonic loss adapts separation dynamically: pi ∝ ∥x − wi∥−n, so related
concepts converge while unrelated ones diverge, yielding meaningful hierarchies (e.g. the Family-tree task).

(c) Spherical / cosine losses. These constrain embeddings to the unit hypersphere and optimise angular
margins: Lsph = − log es cos θy∑

i
es cos θi

. While scale-invariant in angular space, they ignore absolute Euclidean
proximity; our tasks (lattice, modular-add) benefit from the latter, explaining the poorer alignment of
spherical loss.

We also run some experiments contrasting harmonic loss with loss (a) contrastive loss and (c) spherical loss
for the in-context learning and modular addition tasks. Results for MLP and Transformer models are in
Figure 10 and Figure 11, respectively.

E Sweeping HarMax Exponent Value

We perform experiments sweeping the HarMax exponent value for the in-context learning and modular
addition tasks. Results are displayed in Figure 12 and Figure 13. We note that varying n has minor impacts
on lattice quality, with the default choice n=1 having the highest explained variances. Based on the modular
addition task, our overall takeaway is that MLPs prefer the default n=1, while explained variance and circular
structure for Transformer representations may improve with a slightly larger exponent.
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Figure 10: Results for MLP models. Rows show harmonic, DotProd+HarMax, ℓ2 +SoftMax, and standard
losses (top to bottom). Harmonic loss achieves the best reconstruction across seeds.

Figure 11: Results for Transformer models. Same ordering as Fig. 10.

F Properties of Harmonic Loss: Proofs

Theorem 1 (Finite Convergence of Harmonic Loss). Consider a classification model with K classes
and weight vectors w1, . . . , wK ∈ Rd (no bias). Let {(xi, yi)}n

i=1 be the training set, with yi ∈ {1, . . . , K}.
The cross-entropy loss is given by

LCE(W ) = −
n∑

i=1
ln exp(wyi

· xi)∑K
j=1 exp(wj · xi)

.

The harmonic loss (with exponent β > 0) is given by

LH(W ) = −
n∑

i=1
ln ∥xi − wyi

∥−β∑K
j=1 ∥xi − wj∥−β

.

If the training data is linearly separable (i.e. there exists W such that for all i, wyi · xi > wj · xi for j ̸= yi),
then:
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Figure 12: Effect of the harmonic exponent n on lattice in-context learning. We sweep n ∈ {1, . . . , 10}.
Columns 1–4: Harmonic–MLP, columns 5–8: Harmonic Transformer. The learned 5 × 5 lattice is remarkably
stable; n=1 already provides crisp and interpretable geometry.

• LCE(W ) has no finite minimum. In fact, for any weight matrix W that classifies all training points
correctly, one can decrease LCE further by scaling W to larger norm. Thus the infimum of LCE is 0
but it is approached only as ∥W∥ → ∞.

• LH(W ) attains a (global) minimum at some finite W . Once the weights are large enough to classify
all training points correctly (i.e. ∥xi − wyi

∥ < minj ̸=yi
∥xi − wj∥ for all i), increasing the norm of

W does not reduce LH. In particular, LH is scale-invariant: scaling all wk and all xi by a common
factor leaves the loss unchanged. Consequently, LH has a finite global minimizer.

Proof. For the cross-entropy loss LCE, suppose W classifies all training examples correctly. Then for each i,
wyi

· xi > maxj ̸=yi
wj · xi. Consider scaling W by a factor t > 1: replace each wk with twk. Then wyi

· xi

and wj · xi are both multiplied by t. The SoftMax probability of the true class yi becomes

PW (yi|xi) = exp(wyi
· xi)∑

j exp(wj · xi)
.

Under scaling tW , this becomes

PtW (yi|xi) = exp(t wyi · xi)∑
j exp(t wj · xi)

.
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Figure 13: Effect of the harmonic exponent n on modular addition. Columns 1–4: Harmonic–MLP, columns
5–8: Harmonic Transformer. MLPs remain stable across seeds, whereas Transformers are more sensitive yet
form tighter circles at higher n; n=1 works well for MLPs, while a larger n may benefit Transformers.

Since wyi
·xi is the largest logit for sample i, as t → ∞ we have PtW (yi|xi) → 1 and thus − ln PtW (yi|xi) → 0.

This holds for all i, so LCE(tW ) → 0 as t → ∞. Therefore, no finite W minimizes LCE; the infimum 0 is
approached only in the limit ∥W∥ → ∞.

For LH, once W is such that each training point is correctly classified by its nearest prototype (i.e. ∥xi−wyi∥ <
∥xi − wj∥ for all j ̸= yi), increasing the norms ∥wk∥ further will not improve the loss. In fact, if every xi is
closer to its correct wyi

than to any other wj , then the harmonic probabilities

PW (yi|xi) = ∥xi − wyi∥−β∑K
j=1 ∥xi − wj∥−β

remain unchanged under a uniform scaling: if we replace xi by cxi and wk by cwk, then ∥cxi − cwk∥ =
c ∥xi −wk∥, so the scaling factors cancel. Therefore, once correct classification is achieved, no further reduction
in loss is obtained by increasing ∥W∥, and LH achieves its minimum at finite W .

Theorem 2 (PAC-Bayesian Generalization Bound of Harmonic Loss). Assume all training examples
lie within a ball of radius R in input space, i.e. ∥xi∥ ≤ R for all i. Suppose a weight matrix W achieves a
distance margin of γ > 0 on the training set, meaning that for every training sample (xi, yi) and any other
class j ̸= yi,

∥xi − wyi∥ + γ ≤ ∥xi − wj∥.
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Then, with probability at least 1 − δ, the generalization (test) error of the harmonic classifier satisfies

Pr
(x,y)∼D

[
hW (x) ̸= y

]
≤ O

(
R ∥W∥
γ

√
n

+
√

ln(1/δ)
n

)
,

where hW (x) denotes the predicted class and n is the number of training samples.

In particular, ∥W∥ is finite for harmonic loss (by Theorem 1), and typically much smaller than the weight
norm of the solution obtained with cross-entropy loss. Thus, the harmonic classifier has a tighter generalization
bound.

Proof. Applying the standard PAC-Bayes margin bounds (see e.g. Neyshabur et al. (2017)), one obtains that
with probability at least 1 − δ,

Pr(hW (x) ̸= y) ≤ O

(
R ∥W∥
γ

√
n

+
√

ln(1/δ)
n

)
.

Since the harmonic loss yields a solution with finite ∥W∥, the bound is finite. In contrast, the cross-
entropy solution would have ∥W∥ → ∞ even when achieving zero training error, rendering a similar bound
meaningless.

Theorem 3 (Interpretable Representations of Harmonic Loss). At a critical point (in particular, a
global minimum) of the harmonic loss, each weight vector wk becomes an interpretable class center for class
k. Specifically, the stationarity condition implies

wk =
∑

i:yi=k

αi xi with αi ≥ 0,
∑

i:yi=k

αi = 1,

i.e. wk is a convex combination of the training examples of class k. Consequently, wk represents the center
point of its class, leading to more interpretable representations compared to cross-entropy loss.

Proof. Differentiate the harmonic loss with respect to wk. For simplicity, denote

pk
i = ∥xi − wk∥−β∑K

j=1 ∥xi − wj∥−β
.

For samples xi with yi = k, the derivative takes the form

∂LH

∂wk
= −

∑
i:yi=k

β

∥xi − wk∥2 (wk − xi) pk
i + terms from i with yi ̸= k.

At a critical point, the total derivative vanishes. Rearranging the stationarity conditions (and noting that the
repulsive forces from other classes tend to balance out overall on average due to long distance) yields

wk =
∑

i:yi=k
1

∥xi−wk∥2 xi +
∑

j:yj ̸=k
1

∥xj−wk∥2 xj∑
i:yi=k

1
∥xi−wk∥2 +

∑
j:yj ̸=k

1
∥xj−wk∥2

.

Since wk is closer to class-k examples than to others, the weights 1
∥xi−wk∥2 for i with yi = k dominate the

sum. Define

αi =
1

∥xi−wk∥2∑
i:yi=k

1
∥xi−wk∥2 +

∑
j:yj ̸=k

1
∥xj−wk∥2

.

Then wk can be written as a convex combination

wk =
∑

i:yi=k

αi xi +
∑

j:yj ̸=k

αj xj .
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Table 1: Validation accuracy on ImageNet using different loss functions.

Loss Top-1 Val Acc Top-5 Val Acc
Cross-Entropy (Our Impl.) 74.17% 91.88%
Harmonic Loss (Our Impl.) 75.08% 92.12%
Cross-Entropy (Khosla et al., 2020) 77.6% 95.3%
Supervised Contrastive Loss (Khosla et al., 2020) 78.7% 94.3%

Table 2: Probing F1 score on SST-2 and CoLA datasets.

Model SST2 (Layer 0) CoLA (Layer 0) SST2 (Layer 6) CoLA (Layer 6)
Cross-Entropy 76.2 ± 1.5% 73.9 ±1.0 % 79.9 ± 1.3 % 78.2 ± 1.7%
Harmonic 77.9 ± 1.1% 74.3 ± 1.0 % 79.9 ± 1.7 % 77.1 ± 4.2%

In many practical settings, the contribution from xj with yj ≠ k is negligible, so wk is nearly a convex
combination solely of class-k samples. By construction, αi ≥ 0 and the weights sum to 1. This shows that
wk is an interpretable vector representing its class center. In contrast, for cross-entropy loss the stationary
condition does not yield a similar expression for wk as a combination of data points.

Remark: Under cross-entropy loss, the weight vectors usually end up pointing to the average direction of
class elements, due to its use of the dot product. However, they do not have a closed-form formula like the
harmonic loss above, and the weight vectors are not linear combinations of all class feature directions. We
believe that enforcing such linear combination structure plays a crucial role in enhancing interpretability
– it directly aligns with the Linear Representation Hypothesis (Park et al., 2023), and natively supports
compositional generalization.

G Additional Benchmark Results

G.1 ImageNet

ImageNet (Deng et al., 2009) is a large-scale visual dataset commonly used in object recognition research.
We compare the performance of standard cross entropy loss and harmonic loss on ImageNet. We trained
ResNet-50 with AutoAugment data augmentation method for 90 epochs, starting with a learning rate of
0.1, which was reduced by a factor of 10 at epochs 10, 30, 60, and 80. The training results are presented
in Table 1. We have also implemented our own cross-entropy training pipeline, and compared them with
existing results in (Khosla et al., 2020). In our implementation, the harmonic model modestly outperformed
the standard model.

G.2 SST2 and GLUE

We also compare the standard GPT2 and harmonic GPT2 with the GLUE benchmark below. We evaluate
two tasks, COLA (linguistic acceptibility) (Warstadt et al., 2018) and SST2 (sentence sentiment classification)
(Socher et al., 2013). We train a 1-layer MLP probe with hidden dimension 16 that takes the model’s residual
stream representation as an input, and outputs the label. Table 2 shows the F1 score of the probe on
validation dataset.
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