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Abstract
Semantic communication shifts the focus from tra-
ditional bit-level transmission to conveying mean-
ing and context accurately. While recent methods
use variational mutual information (MI) estima-
tors to maximize channel capacity, they often suf-
fer from high variance and unreliable estimates
under limited sample conditions. To overcome
these issues, we propose a novel MI estimation
approach that trains a probabilistic classifier to
distinguish true input-output signal pairs from
randomly shuffled ones. This framework can im-
prove the training stability and provide reliable
guidance for training the semantic encoder. Ex-
perimental results on the text transmission task
show that our model outperforms state-of-the-art
end-to-end semantic communication systems and
conventional source-channel coding schemes.

1. Introduction
In the rapidly evolving landscape of communication sys-
tems, the concept of semantic communication has emerged
as a transformative paradigm, shifting the focus from purely
syntactic information transmission to the conveyance of
meaningful information (Qin et al., 2019; Dörner et al.,
2017). Unlike traditional communication systems, which
prioritize the accurate transfer of bits or symbols (Tse, 2005),
semantic communication emphasizes the faithful transmis-
sion of context related to the task between the transmit-
ter and receiver. Semantic communication can reduce the
amount of data transmitted, making it highly efficient in
bandwidth-limited environments such as IoT devices and
mobile networks (Deng et al., 2024; Jankowski et al., 2020).
Additionally, semantic communication is expected to per-
form well in challenging communication channels, particu-
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larly in low SNR environments (Hu et al., 2023).

In communication theory, the channel capacity defined
through the mutual information (MI) between the input and
output of a channel, which represents the maximum rate at
which information can be reliably transmitted over a commu-
nication channel without errors. In the past decades, many
advanced channel coding techniques such as Reed-Solomon
(RS) codes (Reed & Solomon, 1960), Low-Density Parity-
Check (LDPC) Codes (Gallager, 2003), and turbo codes
(Heegard & Wicker, 2013), come closer to approach the
Shannon limit. The end-to-end semantic communication
system necessitates a rethinking of information-theoretic
frameworks and the development of novel techniques to
estimate and optimize the channel capacity.

Many early works treat the MI estimation problem as a
density estimation problem and use non-parametric den-
sity estimators (Darbellay & Vajda, 1999; Beirlant et al.,
1997; Paninski, 2003; Ross, 2014). However, these meth-
ods are susceptible to the curse of dimensionality and are
highly sensitive to hyper-parameter choices. Recent re-
search has shifted towards estimating variational bounds on
MI, utilizing a critic function within a class of functions
(parameterized with neural networks) to approximate the
density ratio (Donsker & Varadhan, 1975; Barber & Agakov,
2003; Nguyen et al., 2008; 2010). These approaches has
been utilized in (Xie et al., 2021; Fritschek et al., 2019) to
improve the semantic encoder by maximizing the channel
capacity and demonstrates better performance. However,
such variational estimators may have large variance grow
exponentially with the true MI (Song & Ermon, 2019), and
cannot provide reliable estimation when the training sam-
ples are limited (McAllester & Stratos, 2020).

This work aims to contribute to the understanding and devel-
opment of semantic communication systems by exploring
more reliable channel capacity maximizing models. More
specifically, we propose to approximate the channel capacity
through a probabilistic classifier that can separate the joint
signal pairs and the reshuffled random pairs. The numerical
results on the text transmission task demonstrate the effec-
tiveness of our model for both communication performance
and training stability.
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Figure 1. The framework of the proposed semantic communication with channel capacity maximization.

2. Problem Description
2.1. Notation

In this work, we use a sans serif capital letter X to denote
a random vector/variable and X for its alphabet set. pX de-
notes the distribution of X, which is a pdf if X is continuous.
E denotes the expectation operation. To simplify notation,
we will use the shorthand notation [n] to denote the indexing
set {1, . . . , n} for any positive integer n.

2.2. System Model

As shown in Figure. 1, we consider a task-oriented semantic
communication system with a transmitter, a stochastic phys-
ical channel, and a receiver. The problem is then formulated
as an end-to-end optimization by transmitting only the most
relevant information needed for the task at hand, reducing
redundancy and improving effectiveness in wireless com-
munication. The transmitter fθ(·) consists of a semantic
encoder and a channel encoder, which extracts key semantic
features as

X = fθ(S) (1)

from the source message S ∈ S, and θ denotes the param-
eters of the transmitter. Then the noisy channel delivers
a perturbed version Y to the receiver. More precisely, we
assume that the received noisy signal is

Y = hX+ Z, (2)

where Z is zero-mean Additive White Gaussian Noise
(AWGN) with Z ∼ N (0, σ2I) and h denotes the Rayleigh
fading channel with h ∼ CN (0, 1). Similarly, the receiver
gψ includes channel decoder and semantic decoder, acts on
Y and reconstructs the signal as

Ŝ = gψ(Y). (3)

For text transmission, cross-entropy between the estimated
probabilities and the true probability of the message can be
used as the semantic loss

Lce(S, Ŝ) := −
∑
s∈S

p(s) log gψ(hfθ(s) + Z) (4)

that captures task success for transmitting a sentence S.

2.3. Problem Formulation

The optimal transmission rate in a communication system
is fundamentally governed by Shannon’s channel capacity,
which is defined through the MI between the input and the
output of a noisy channel PY|X. Under an average power
constraint P , the capacity is defined as

C := max
PX:E[X2]≤P

I(X;Y), (5)

where the supremum is taken over all possible choices of
PX. MI is defined as KL divergence between the joint distri-
bution and marginal distributions:

I(X;Y) = D(PXY∥PXPY)

= E
[
log

r(X,Y):=︷ ︸︸ ︷
dPXY(X,Y)

dPX(X)dPY(Y)

]
, (6)

where r(X,Y) denotes the density ratio.

Therefore, maximizing the MI I(X;Y) ensures that the en-
coding strategy not only adheres to physical transmission
constraints but also achieves information-theoretic optimal-
ity in semantic communication. However, MI estimation
with finite samples in high-dimensional space is a challenge
problem. Existing works (Xie et al., 2021; Fritschek et al.,
2019) utilize the following Donsker-Varadhan (DV) varia-
tional lower bound to maximize the channel capacity and
demonstrate certain improvement in wireless communica-
tion.

Lemma 2.1 (MINE (Belghazi et al., 2018)). For two ran-
dom variables X and Y, we have

I(X;Y) = sup
f :X×Y→R

E[f(X,Y)]− logE

[
ef(X

′,Y′)

]
(7)

where (X,Y) ∼ PX,Y and (X′,Y′) ∼ PXPY. The optimal
critic f∗(x, y) = log r(x, y) + c, where c is a constant.
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The main drawback of this approach lies in the difficulty of
training the parameterized neural network f . The works of
(McAllester & Stratos, 2020; Song & Ermon, 2019) show
that such training often suffers from high variance and re-
quires a large number of samples (exponential in the value
of MI) to achieve reliable performance. Therefore, it is
necessary to explore other solutions to make the training
more efficient and reliable for maximizing semantic channel
capacity.

3. Classifier-based Mutual Information Neural
Estimation

In this section, we will introduce the classifier-based MI
estimator (Tsai et al., 2020) and integrate it with seman-
tic communication systems to collaboratively optimize the
semantic encoder.

The joint sample pairs {(Xi,Yi)}i∈[n] ∼ PX,Y, i.e., the
paired transmitted signal and received signal, are labeled as
positive samples. We can also utilize the reshuffling trick
(Belghazi et al., 2018) to generate the samples of product of
marginals {(X′

j ,Y
′
j)}j∈[m] ∼ PXPY, which is referred as

negative samples. More specifically, the received signals are
rearranged and randomly paired with the transmitted signal
sequence. To precisely formulate the model, we introduce
an auxiliary random variable C ∈ {0, 1} to denote the class
label, i.e., assigning 1 to the positive and 0 to the negative
samples.

By combining the positive and negative samples, we can
define mixed random variables X̃, Ỹ subject to the following
distribution:

pX̃Ỹ = pC(1) pX̃Ỹ|C=1︸ ︷︷ ︸
:=pXY

+pC(0) pX̃Ỹ|C=0︸ ︷︷ ︸
:=pXpY

(8)

The motivation is to approximate the ratio r by training a
binary classifier to distinguish between the positive (C = 1)
and negative samples (C = 0). Then by Bayes’s theorem,
the density ratio r in (6) can be written as:

r(x, y) =
pX̃Ỹ|C(x, y|1)
pX̃Ỹ|C(x, y|0)

=
pC(0)

pC(1)
·
pC|X̃Ỹ(1|x, y)
pC|X̃Ỹ(0|x, y)

(9)

Given the mixture dataset {(X̃i, Ỹi)}i∈[m+n] ∼ PX̃Ỹ
1, the

posterior distribution pC|X̃Ỹ(1|x, y) can be approximated
using the neural network pϕ by minimizing the binary cross-

1To create a balanced classification problem, the number of
negative samples is typically set equal to the number of positive
samples, i.e., pC(0) = pC(1) =

1
2

which implies m = n.

entropy loss:

L := −E
[
log pϕ(C|X̃, Ỹ)

]
(10)

≈ − 1

m+ n

∑
i∈[m+n]

Ci log pϕ(Ci|X̃i, Ỹi)+

(1− Ci) log(1− pϕ(Ci|X̃i, Ỹi))

The classifier-based MI estimator has demonstrated supe-
rior training stability (Hjelm et al., 2019) and sample com-
plexity (Mukherjee et al., 2020) compared to variational
bounds-based approaches. Additionally, to alleviate the
over-confidence issue in the trained neural network, we fur-
ther apply the label smoothing technique (Szegedy et al.,
2016) as suggested in (Wang et al., 2021). We define the
soft labels C′ as

C′ := (1− α) · C+ α · pU, (11)

where pU(·) := 1
2 is the uniform distribution, and α is

the smoothing factor. Therefore, the label-smoothed cross-
entropy loss can be approximated as :

Lmi ≈ −
1

m+ n

∑
i∈[m+n]

C′
i log pϕ(Ci|X̃i, Ỹi)+

(1− C′
i) log(1− pϕ(Ci|X̃i, Ỹi)) (12)

Therefore, the total loss function of the proposed model is

Ltotal = Lce(S, Ŝ; θ, ψ) + λLmi(X,Y; θ, ϕ), (13)

where λ is the importance weight of the MI loss term. As we
need to train an additional MI module, the training process
is divided into two phases corresponding to MI optimizing
and communication network training. The details are shown
in Algorithm 1.

4. Experiments
In this section, we consider the text transmission task and
evaluate our proposed classifier-based framework on the
open-source dataset based on the proceedings of the Eu-
ropean Parliament (Koehn, 2005). The dataset consists of
approximately 2 million sentences, and split into training
data and testing data. We compare our model with exit-
ing advanced models including the variational approach
(DeepSC) (Xie et al., 2021), the joint source-channel cod-
ing model (JSCC) (Fritschek et al., 2019), and traditional
method with Huffman and RS coding.

To ensure a fair comparison, we adopt Transformer-based
architectures for both the semantic encoder and decoder,
following the designs outlined in (Xie et al., 2021). The
probabilistic classifier consists of two sequential convolu-
tional layers (32 and 64 channels, respectively), each fol-
lowed by ReLU activation and max pooling, and a final
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Algorithm 1 Iterative training process of the proposed MI-
aid semantic communication framework.

Input: Knowledge base S := {Si}i∈[n].
Initialization: the parameters set of semantic encoder fθ,
semantic decoder gψ , probabilistic classifier hϕ;
repeat

Randomly draw a batch of source messages S ′ ⊂ S
1⃝ Training the MI estimator module

Freeze semantic encoder fθ;
Transmit the signal over the channel:
Xi ← fθ(Si),Yi ← hXi + Z,∀Si ∈ S ′;
Construct the mixture dataset and train hϕ with loss
(12);
2⃝ Training the semantic encoder and decoder

Freeze probabilistic classifier hϕ;
Train fθ, gψ jointly with loss (13)

until Convergence

fully-connected layer. The smoothing factor α = 0.01 in
(11). For all models, the batch size is 256 and the learning
rate is set as 10−4.

We use the BLEU score (Papineni et al., 2002) to measure
semantic differences between the transmitted and recovered
messages. The BLEU score between S and Ŝ is defined as

log BLEU = [1− lS/lŜ]
− +

∑N

n=1
un log fn,

where [x]− = min {x, 0}, lS and lŜ represent the lengths
of the input message and the output, respectively. un is the
weights of n-grams, and fn indicates the n-grams score:

fn =

∑
kmin

{
Ck(Ŝ), Ck(S)

}
∑
k Ck(Ŝ)

,

where Ck(·) is the function counting the frequency of the
k-th element in n-grams.

The communication performance results in Figure.2 show
that the Classifier-based Model (Ours) consistently outper-
forms DeepSC, JSCC, and Huffman+RS across different
SNR levels. It achieves the highest semantic accuracy, par-
ticularly at low to mid SNRs, demonstrating strong robust-
ness to channel noise. While DeepSC performs well, it
slightly lags behind. JSCC shows limited sensitivity to SNR
changes, and Huffman+RS only improves significantly at
high SNRs. These results highlight the superior adaptability
and reliability of the proposed model in Rayleigh fading
environments. As shown in Figure.3, with SNR = 8 dB,
our method also achieves faster convergence and more sta-
ble mutual information estimation than DeepSC, enabling
more accurate and reliable guidance for semantic encoder
training.
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Figure 2. Performance comparison between the proposed model
and existing algorithms with a Rayleigh fading channel.
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Figure 3. MI estimation during the training. SNR=8 dB.

5. Conclusion
This work explores a novel classifier-based channel capac-
ity maximization approach for semantic communication
to enhance system performance. Extensive experiments
demonstrate that our method consistently outperforms exist-
ing approaches, achieving not only higher communication
accuracy, but also faster convergence and more stable MI
estimation during training.
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