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ABSTRACT

The Key-Value (KV) cache is crucial for efficient Large Language Models (LLMs)
inference, but excessively long contexts drastically increase KV cache memory
footprint. Existing KV cache compression methods typically rely on input-side at-
tention patterns within a prompt observation window to estimate token importance
during the prefill stage. They fail to preserve critical tokens for future generation
since these assessments are not derived from the decoding process. Intuitively, an
effective observation window should mirror the decoding-stage queries to accu-
rately reflect which tokens the generation process will attend to. However, ground-
truth decoding queries are inherently unavailable during inference. For construct-
ing pseudo-queries to approximate them, we find that positional information plays
a more critical role than semantic content. Motivated by this insight, we pro-
pose decoding-aligned KV cache compression via position-aware pseudo-queries
(DapQ), a novel and lightweight eviction framework that leverages position-aware
pseudo-queries to simulate the output tokens, thereby establishing an effective ob-
servation window for importance assessment. It enables precise token eviction
that aligns closely with the actual generation context. Extensive evaluation across
multiple benchmarks and LLMs demonstrates that DapQ achieves superior per-
formance, particularly under strict memory constraints (e.g., up to nearly lossless
performance 99.5% on NIAH with 3% KV cache budgets). Our anonymous code
is available at https://anonymous.4open.science/r/ Anonymous-DapQ.

1 INTRODUCTION

Large Language Models (Achiam et al., 2023} |Jiang et al.| 2023} Team et al., 2024} Liu et al.,|[2024aj
Grattafiori et al., 2024} |Yang et al.,|2025a)) have achieved significant success across various domains
and demonstrated exceptional abilities for processing long-context tasks, such as contextual question
answering and document summarization (Liu et al.,2024c} |Guo et al., 2024} Liu et al.| [2025). A key
enabler of efficient inference is the KV cache mechanism, which significantly accelerates autore-
gressive decoding by reducing the computational complexity of self-attention from O(n?) to O(n).
However, with the growth of context length, the memory footprint of the KV cache and the high
computational overhead increase dramatically, posing a severe obstacle to the efficient deployment
and application of LLMs (Bai et al.| 2023)).

To tackle these challenges, a wide spectrum of methods has been proposed to compress the KV
cache, such as token eviction or merging (Zhang et al., 2023; [Tian et al., [2025), quantization (Liu
et al.,[2024d; Hooper et al.,[2024), head or layer-wise sharing (Ainslie et al., 2023} Yang et al.||2024)),
low-rank decomposition (Dong et al.l [2024; |Singhania et al., 2024). Among these, token eviction
remains a central and widely-adopted strategy. Nevertheless, the rapid growth in input length has
further intensified the demand for more effective eviction strategies. In response, as implemented
in SnapKV(Li et al.l 2024)), the observation window has proven superior for retaining critical to-
kens by combining with pooled accumulated attention scores. This approach is further extended
by PyramidKV(Cai et al.| 2024)), which dynamically allocates layer-wise cache budgets and selects
important KV pairs for compression using the window-based attention mechanism. These studies
demonstrate the potential of observation windows for effective KV cache compression.
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Figure 1: An overview of DapQ. A synthetic pseudo-context (length V) is appended to the original
input context (length L,,), forming an extended sequence of length L,+-N. The model processes this
sequence during the prefill phase and then obtains pseudo-queries for the synthetic tokens, which are
endowed with the correct positional encodings of the first N decoding steps. These pseudo-queries
compute attention scores with all keys from the original prompt, establishing the token importance
distribution. The topK tokens are retained in the compressed KV cache, while the others, along
with all the synthetic tokens are evicted. Autoregressive decoding then begins from the position L.

However, the input-centric observation window is inherently misaligned with the dynamic query of
actual decoding and relies solely on static prompt-based features, typically the last 16-32 tokens.
Consequently, they fail to reflect the importance distribution determined by the output-side genera-
tion process, leading to a misidentification of the critical tokens for decoding, particularly in complex
or noisy contexts. Crucially, ground-truth decoding queries are inherently unavailable during infer-
ence, rendering them impractical for directly guiding eviction. To mitigate this, the recent approach
LAQ++ (Wang et al., 2025)) attempts to better align the observation window with decoding queries
by pre-generating pseudo responses, its two-stage eviction process introduces a significant memory
peak issue that undermines its practical efficiency. Therefore, constructing effective pseudo-queries
to approximate the unavailable future queries without incurring any memory overheads is highly
desirable. Inspired by CaliDrop (Su et al)} |[2025), where queries at adjacent positions exhibit high
similarity, our experiments uncover a pivotal insight: positional information plays a more critical
role than semantic content in constructing query approximations and determining attention
patterns. This discovery implies that high-quality pseudo-queries, capable of reliably assessing the
importance distribution of KV cache, can be synthesized based on future positional encodings.

Motivated by this insight, we propose decoding-aligned KV cache compression via position-aware
pseudo-queries (DapQ), a novel and lightweight KV cache eviction framework that constructs
pseudo-queries using future positional encodings to accurately simulate the output tokens. These
queries serve as an effective observation window for importance scoring, enabling precise cache
eviction that aligns closely with the actual generation context. Extensive experiments across multi-
ple benchmarks and four different LLMs demonstrate that DapQ achieves superior performance and
outperforms existing eviction baselines, particularly under strict memory constraints.

2 RELATED WORK

Long-Context LLMs. The growing demand for LLMs to process long contexts intensifies inherent
computational and memory challenges. To address these, researchers have proposed various inno-
vations. These include specialized fine-tuning (Chen et al., 2023b) and extending effective context
windows through refined positional encoding techniques, such as interpolation and extrapolation
(Chen et al., 2023a; |Peng & Quesnelle, 2023). Concurrently, to mitigate attention’s computational
overhead, methods like sparse attention and linear attention have been widely explored (Kitaev et al.,
2020; Beltagy et al., [2020; Wang et al., 2020). Beyond traditional Transformer, novel architectures
such as State-Space Models (SSMs) (Ye et al., 2025} (Gu et al., [2021) offer intrinsically linear com-
plexity solutions for processing extended sequences. Additionally, memory optimization techniques,
such as KV cache compression (Xiao et al., [2023; |Li et al [2024), memory offloading(Yang et al.,
2025¢; |[Aminabadi et al.l |2022) have been developed. And speculative decoding (Leviathan et al.,
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2023} |Cai et al.| [2023) have been proposed to enhance inference throughput. These multifaceted
techniques collectively advance LLMs’ capabilities in handling ultra-long sequence tasks.

KV Cache Compression. KV cache compression is crucial for enhancing the inference efficiency
and deployability of LLMs, particularly under resource-constrained scenarios. Various methods
have been developed to reduce KV cache memory footprint. Token eviction strategies aim to retain
only the most important tokens based on importance metrics like attention scores (Li et al., 2024
Zhang et al., 2023)), positional heuristics (Xiao et al [2023)), special tokens (Ge et al., 2023} (Chen
et al., |2024)), or norm-based criteria (Devoto et al., [2024). Complementary to eviction, quantiza-
tion (Liu et al.l 2024d; [Hooper et al., [2024) reduces memory by storing less important KV pairs
with lower precision, some approaches even achieving sub-2-bit quantization via token-aware and
channel-aware techniques. Sharing-based approaches deliver significant memory savings and accel-
erate inference through head-wise sharing (Shazeer, |2019; |Ainslie et al., [2023), inter-layer sharing
(Sun et al., [2024; |Wu & Tu| 2024; [Brandon et al.| [2024), or prefix sharing across sequences (Ju-
ravsky et al., 2024} [Zhu et al., 2024). Low-rank decomposition (Kang et al., |2024; |Chang et al.,
2024) projects KV cache into lower-dimensional spaces to exploit inherent redundancy, as exem-
plified by the Multi-Head Latent Attention (Liu et al.| [2024b)) of DeepSeek, which effectively re-
duces cache size through low-rank compression and decoupled RoPE while preserving model per-
formance. KV merging(Tian et al., 2025} |Cui & Xul 2025) employs attention-pattern similarity or
reparameterization to merge similar semantic information, achieving effectively compression with
minimal performance loss. These techniques collectively enable efficient long-context inference.

3  OBSERVATION

Given the discussion in Section |1} constructing pseudo-queries to accurately approximate the un-
available ground-truth decoding queries becomes crucial. Building upon CaliDrop’s (Su et al.| 2025
insight that queries at adjacent positions exhibit high similarity, we hypothesize that this similarity is
strongly correlated with positional information rather than semantic content. This prompts us to in-
vestigate whether positional information alone can effectively approximate future decoding queries
without relying on true decoding content. See Appendix [Bfor details of preliminary experiments.

Table 1: Query similarity comparison under different content and position conditions. This table
presents cosine similarities between pseudo-queries and ground-truth decoding queries across four
distinct conditions: SC (Same Content), DC (Different Content), SP (Same Position), and DP (Dif-
ferent Position). Post ROPE denotes similarity measured after ROPE has been applied to the query
vectors. Pre ROPE indicates similarity measured before ROPE is applied.

Experiment Content Similarity Positional Similarity Post ROPE  Pre ROPE
SC & SP Samg “The 1‘cp)u|‘1 (‘II\CII\\C\) the Federal. .. - Airport Same(4424.4425.4426. ... 4453 4454.4455)
Improvement Program (AIP). The program”)
DC & SP Dl"_erenu"M)‘rr}. I don 1.\\1!()\\. Su‘nv\. I Ll-(.m t know. Sorry, I Same(4424.4425.4426. ... .. 4453.4454.4455)
don’t know. Sorry, I don’t know. Sorry, I”")
SC & DP Samfel The 1’0]7:1'1 (‘]I\L’L!.\\x‘.\ 1hu‘ I C(I\fl'lll: e Airport Different(0.1.2. .. ...29.30.31) 0.3267
Improvement Program (AIP). The program™)
DC & DP lefAerenu"Su‘rr‘\‘: I don 1.\\\10\\. S«}j‘r}i I L{Ax.»n t know. Sorry, I Different(0.1.2. .....29.30.31) 0.3522
don’t know. Sorry, I don’t know. Sorry, I")

3.1 THE DOMINANCE OF POSITION OVER CONTENT IN QUERY REPRESENTATION

We compare the cosine similarity between various pseudo-queries and the true decoding queries, as
detailed in Table|l| Specifically, pseudo-queries assigned the correct future positional IDs but com-
posed of completely irrelevant or nonsensical content (DC&SP), exhibit strong cosine similarity
( ) to the actual target decoding queries (SC&SP ). Conversely, queries with the identi-
cal semantic content but incorrect positional IDs (SC&DP vs SC&SP) fail to accurately approximate
the target queries (0.3267 vs ). Notably, the comparison between DC&SP and SC&DP further
highlights that maintaining correct positional alignment achieves 2.2x higher similarity than main-
taining correct content alone. The stark contrast underscores that the semantic content of queries
plays a secondary role compared to their positional encoding in constructing query approximations.
The consistently high similarity under Re-ROPE conditions ( to ) confirms that the
model’s underlying processing does not rely heavily on semantic content to distinguish between
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Figure 2: Analysis of Positional Dominance and Offset Sensitivity in Query Similarity. We set the
pseudo-queries of fixed length 32. (a) Boxplot of query similarity distributions for a 4k context
under different content and position conditions, each aggregated from 100 independent trials. DC:
pseudo-queries content is constructed by randomly sampling 32 tokens from the model’s vocabulary;
DP: pseudo-queries positions are assigned by randomly sampling a consecutive span of 32 index
positions from the context length range [0, m] (e.g., [0, 4000]). (b) Query similarity curves over
offset positions for contexts of lengths 2k, 4k, 6k, and 8k. The x-axis denotes the starting position
assigned to pseudo-queries (e.g., an x-axis value of 3500 corresponds to position IDs 3500 ~ 3531).

these query vectors, thereby underscoring that the dramatic disparity observed in Post-ROPE scores
is almost attributable to the positional information. A large-scale statistical analysis (Figure [2a))
confirms the pervasiveness of above phenomenon. From the perspective of query-key interactions,
this further implies that the attention mechanism relies heavily on positional information to route in-
formation and establish token importance, while exhibiting considerable robustness to variations in
semantic content. The results reinforces that deviation from the correct position drastically reduces
query similarity, while changes in context have a comparatively minor effect.

3.2 THE NECESSITY OF PRECISE POSITIONAL ALIGNMENT

Building upon the dominance of positional information, we further quantify how the positional
alignment of pseudo-queries affects their similarity to true decoding queries. As shown in Figure[2b]
we fix the pseudo-query content to match the true output and systematically vary their assigned posi-
tional IDs. The results reveal a monotonic decay in query similarity as the absolute offset increases
between the assigned position and the correct position. This decay phenomenon is consistently
observed across diverse context lengths (2k to 8k), which is more pronounced in longer context sce-
narios. The strong sensitivity to positional misalignment underscores that the query approximations
depends critically on precise positional information. Consequently, accurately simulating decoding
queries requires close alignment with the future generation positional IDs.

3.3 POSITION-AWARE PSEUDO-QUERIES FOR TOKEN EVICTION RECALL

The critical question is whether higher query similarity translates into more accurate cache eviction.
To quantify this, we evaluate the recall of eviction strategies, which measures its ability to retain the
tokens that are most important for the actual generation. Following the methodology of prior work
(Wang et al.| 2025)), the recall rate of the selected KV cache is defined as the proportion of indices
selected by the observation window that overlap with those selected by all response tokens from the
model. We define the recall metric as follows:

Let R be the set of all tokens in the ground-truth response, and let K be the full key cache from
the prefill stage. The gold standard set of indices Mg for a given budget B is determined by the
accumulated attention scores from all true response queries:

Mgoia = TopK ZAttention(qj,K) , (1)
i€lo,N) \ ich

where NNV is the number of all prefill tokens, and T'opK returns the indices of the tokens with the
highest accumulated scores. The predicted set of indices Mpyq is defined analogously to M4, but
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computed using only the queries in a candidate observation window W:

Mprea = TopK Z Attention(g;, K) | . )

1€[0,N) jew

The recall is the proportion of the gold-standard tokens that are correctly retained:

|Mg01d N Mpred'

Recallyy = Mol
go

3)

. . FullkvV DC & SP Si KV Sti ingLLM
We evaluate this recall metric on the GovReport ! o e

dataset for different observation windows. As shown
in Figure[3] the window composed of pseudo-queries
with randomized content but correct future positions
achieves significantly better recall than strong base-
lines like SnapKV and Streamingl.LLM. Notably, it
maintains high recall even as the window size is
reduced to 32 or 16, showing the high effective-
ness and accuracy of position-based estimation. This
demonstrates that a small set of pseudo-queries, in-
formed solely by precise positional forecasting, pro-
vides a highly effective basis for importance estima-
tion, enabling accurate eviction even under extreme
memory constraints.

In summary, our experiments converge on a pivotal 64

insight: the representation of a query vector is domi- ]

nated by its positional encoding, with semantic con- Figure 3: Recall Performance of different
tent playing a secondary role. Given that attention Methods across various Window Sizes.
scores are derived from query-key interactions, this finding implies that the positional information
is the primary determinant in shaping attention patterns. This leads to a profound practical implica-
tion: high-fidelity decoding pseudo-queries can be synthesized from positional encodings, entirely
bypassing the computationally expensive and memory-intensive process of token generation. This
position-aware query approximation forms the foundation of our method.

4 METHOD

Motivated by the pivotal insight that positional information dominates query representations, we
propose DapQ (as illustrated in Figure [I)), a novel KV cache compression framework that accu-
rately simulates decoding-stage contextual positioning during the prefill phase. DapQ synthesizes a
decoding-aligned observation window, composed of pseudo-queries endowed with future positional
encodings, which mirror the dynamic context of the actual decoding process. This precisely assesses
token importance, enabling accurate token eviction without altering the intended timeline.

4.1 CONSTRUCTING DECODING-ALIGNED PSEUDO-QUERIES

The core of DapQ is to simulate the dynamic positional query of the decoding phase. For a prompt
sequence of length L,,, we append a set of [V artificially constructed tokens, denoted T pseudo, to form
an extended input sequence. Teuqo can be constructed or arbitrarily chosen from the existing con-
text (e.g., uniformly sampled or prefix-suffix concatenation), as their semantic content is secondary
to the positional assignment. The crucial operation is to assign T'eudo the correct positional indices
that they would occupy as the first /V tokens generated by the model, rather than arbitrarily:

Positions(Tpseudo) = [Lp, Lp +1,..., L, + N —1]. )

This yields an input sequence with length Lo = L, + N. The model processes this extended
sequence during the prefill phase, computing the KV cache for L, prompt tokens. The primary
purpose of this step is to obtain pseudo-queries (Qpscudo) Of these Tpeeudo, Which are endowed with
the correct positional encodings for the start of the decoding phase.
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4.2 IMPORTANCE ASSESSMENT AND TOKEN EVICTION

We leverage the ()pseudo to assess the importance of all Keys derived from the original prompt. The
importance score for the j-th (5 € [0, L, — 1]) prompt token is computed by aggregating its attention
scores from each pseudo-query ¢; € Qpscudo:

L4+N-1
S(j) = Z Attention(q;, k). )

i=Ly,
The T'opK tokens with the highest scores S(j) are retained:

Mretain = TOpK (S(J)) . (6)
JE[0,Lp—1]

The KV cache is pruned, discarding all key-value pairs not in M,enin. Crucially, the entire syn-
thetic segment T scudo is discarded immediately after performing the importance scoring. Au-
toregressive decoding phase then begins from position L,, utilizing only the compressed cache of
size K. This ensures the model’s generation remains consistent with the intended timeline.

5 EXPERIMENTS

5.1 SETTINGS

Models and Benchmarks. To evaluate the applicability and generalization of DapQ in various mod-
els, we conduct experiments on LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct (Grattafiori et al.,
2024)), Qwen2.5-7B-Instruct (Yang et al., |2025b), and Qwen3-8B (Yang et al., [2025a)). To ensure a
more comprehensive and robust assessment, we use five benchmarks: LongBench (Bai et al.||[2023),
LongBenchV2 (Bai et al.,[2024)), Ruler (Hsieh et al.,[2024), HELMET (Yen et al.,2024)), and Needle-
in-a-Haystack (Kamradt, 2024), each designed to assess distinct aspects of long-context inference,
thereby forming a solid foundation for validating DapQ’s performance across diverse scenarios.

Baselines. To comprehensively validate the performance of DapQ, we select six representative KV
cache compression methods as baselines: FullKV caches all keys and values for every token, which
is the standard approach for KV Cache in transformer-based models; SnapKV (L1 et al., [2024)
captures attention signals from an observation window and employs a clustering algorithm with a
pooling layer to select important KV pairs for compression; PyramidKYV (Cai et al., 2024) leverages
cross-layer attention distribution characteristics to dynamically allocate different KV cache budgets
and selects important KV pairs for compression; H20 (Zhang et al., [2023)) identifies Heavy Hitter
(H2) tokens based on cumulative attention scores and dynamically balances the retention of recent
and H2 tokens to compress KV cache; StreamingL.LLM (Xiao et al.l [2023) identifies the attention
sink and dynamically balances the retention of recent and initial tokens to compress KV cache;
LaCache (Shi et al.l 2025) adopts a ladder-shaped pattern in the prefilling stage to retain KV of
early tokens in shallow layers and gradually shift to later tokens in deeper layers. Note: To ensure
rigor and consistency, Compression is performed solely during the prefill stage.

Implementation Details. For all methods, we set the observation window size to 32 unless oth-
erwise specified (e.g., LaCache use its default settings). In DapQ, the pseudo-queries are con-
structed by concatenating a small number of tokens from the beginning and the end of the in-
put sequence(e.g., the first 4 and last 28 tokens, the first 2 and last 30 tokens). This design is
motivated by two key considerations: the beginning tokens, often high-frequency special tokens
(e.g.,<|begin_of_text |>), possess stable and generalizable embeddings due to their extensive
exposure during training; the ending tokens carry the most recent context, making their semantic
state highly relevant to the imminent decoding step. This finding is further supported by [Liu et al.
(2023). We also validate this strategy through experiments in Fig. [6a] where concatenating prefix
and suffix tokens consistently yields superior performance compared to using random or intermedi-
ate consecutive tokens from the input as query contents. Complete experiment results are presented

in Appendix
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Table 2: Main Results on LongBench: performance comparison of different KV cache compression
methods across 13 datasets on three models (Llama3-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B)

under cache sizes of 256, 128, and 64, with complete results available in Appendix@

Single-Document QA Multi-I QA ization Few-shot Learning Synthetic Code
o o Q@ IR g o e < Q> o o S < B
Methods ~ ps¥" R\ ‘\owo p \ﬂ'\“’\ﬂ\ C&“v&v Vl\ “\‘\ﬁ ,‘QS) "‘.\4\*& ‘5?31\5 e N g Avg.
FullKV 37.68 40.56 50.14 34.93 30.99 25.62 70.00 89.85 40.50 13.28 83.67 5644 5097 48.05
KV Cache Size = 256
H20 28.11 36.63 48.62 31.50 21.87 21.44 45.67 89.49 38.28 12.11 83.67 6149 5336 44.02
PyramidKV 30.88 38.11 50.20 33.88 22.54 21.84 60.00 89.26 37.07 12.78 83.67 6134 5251 4570
< SnapKV 30.84 38.39 49.75 33.80 22.18 21.53 57.00 89.65 36.97 12.11 84.00 61.78 5492 45.61
2 DapQ 32.55 38.18 50.67 34.35 22.25 21.89 60.67 90.48 38.34 11.78 83.67 6278 55.64 46.40
'E' KV Cache Size = 128
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H20 24.02 30.83 48.27 31.70 19.37 19.14 37.33 86.27 35.18 772 82.33 5920 5110 40.96
PyramidKV 22.04 31.80 47.01 31.54 15.70 16.34 39.00 76.80 3231 10.33 79.67 5519 4790 38.90
SnapKV 25.06 32.92 47.16 31.71 16.85 17.09 40.67 86.02 33.99 11.78 78.00 5795 5091 40.78
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FullKV 36.87 53.67 57.67 44.73 33.39 23.69 71.67 91.79 42.07 11.98 86.67 70.64 59.26 52.60
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H20 27.80 44.92 51.37 40.50 22.38 18.26 46.33 90.04 38.98 12.33 86.67 66.11 53.93 46.12
PyramidKV 30.41 47.81 51.00 41.37 22.36 17.41 61.67 90.96 37.65 13.00 86.33 67.01 50.11 4747
SnapKV 3240 49.29 5438 41.40 23.79 18.99 63.00 91.07 38.57 14.67  86.67 67.99 5377 4892
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DapQ 29.10 47.15 53.84 43.00 21.11 17.27 54.00 90.45 38.50 11.67 86.00 66.29 52.03 46.95
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Figure 4: Average Score on Ruler among 11 datasets across different models.

(b) Qwen2.5-7B-Instruct
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5.2 RESULTS

LongBench and LongBenchV2 Results. As shown in Table 2] DapQ outperforms all baselines
across every model and cache budget on the LongBench benchmark. The advantage is partic-
ularly pronounced under aggressive compression (e.g., budget=64), where DapQ shows a robust
ability to retain critical information and mitigate high-compression performance degradation. This
superiority is notable on complex reasoning and information integration tasks like HotpotQA and
2WikiMQA, underscoring DapQ’s ability in preserving the long-range contextual dependencies and
factual knowledge. The more challenging LongBenchV2 benchmark emphasizes deep reasoning
over diverse real-world scenarios beyond the mere length of contexts. Under a 64 cache budget,
DapQ attains 29.26% accuracy in the category of “Hard”, marking a +6.75% absolute improve-
ment over SnapKV (22.51%) on LLaMA3-8B (from Table ). This strongly confirms that DapQ
effectively identifies and retains the critical contextual elements across long contexts by accurately
simulating the decoding-stage positional context. The consistent performance advantage across dif-
ferent model architectures shows the strong generalizability and effectiveness of DapQ.

Ruler and HELMET Results. We further evaluate DapQ’s reasoning capabilities under extreme
memory constraints using the RULER benchmark, which tests models on synthetic long-context
tasks including multi-hop tracing, retrieval, aggregation, and question answering. Under strict mem-
ory constraints, DaqQ exhibits a significant advantage. For instance, Table [5] shows that on the
Llama3-8B model with a cache budget of 512, DapQ achieves a notable 59.6% accuracy in the chal-
lenging S-NIAH-3 task, substantially outperforming SnapKV (1.4%) and H20 (2.4%). This high-
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Figure 5: Results of Needle-in-a-Haystack on LLaMA-3-8B-Instruct with 8k context size and 256
KV size. The vertical axis of the figure represents the depth percentage, and the horizontal axis
represents the token length.

lights its superior capability in preserving essential information necessary for complex tasks. Fur-
thermore, DapQ consistently demonstrates the highest overall average score across nearly all budget
settings on different models, underscoring its robustness and generalizability. Unlike benchmarks
focused on synthetic or narrow-domain tasks, HELMET provides a comprehensive, application-
centric evaluation across diverse real-world scenarios like retrieval-augmented generation (RAG)
and many-shot in-context learning (ICL). On this challenging benchmark, DapQ also demonstrates
consistent and superior performance. Table [§| shows that on the Qwen2.5-7B-Instruct with a low
cache budget of 512, DapQ achieves an average score of 48.10, outperforming strong baselines
SnapKV (43.74), H20 (40.36), and PyramidKV (42.49). Overall, above results further underscore
the practical effectiveness and robustness of DapQ in diverse and demanding application scenarios.

Needle-in-a-Haystack Result. As shown in Figure [5|and Table [9] DapQ demonstrates universally
superior performance compared to all baselines, confirming its consistent effectiveness. A strik-
ing example is on LLaMA3-8B with a cache size of 256: DapQ achieves 99.5% accuracy, closely
approaching full-cache performance. This exceptional performance shows its ability to maintain
key contextual dependencies within constrained memory capacity. DapQ effectively simulates the
decoding-stage positional context via prospectively encoded pseudo-queries, enabling precise iden-
tification and retention of the key “needles” amidst a vast “haystack” of tokens.

6 ANALYSIS

6.1 THE IMPACT OF PSEUDO-QUERIES SEMANTIC CONTENT

Our central insight reveals that the semantic content of queries plays a secondary role compared
to their positional encoding in determining query representation and attention patterns. To further
investigate the practical impact of semantic variation on KV cache compression performance, we
conduct an ablation study by evaluating DapQ under a fixed cache budget while altering the seman-
tic content of pseudo-queries. As shown in Figure[6a] the average performance remains highly stable
(e.g., coefficient of variation ~ 1%), regardless of whether the pseudo-query window is constructed
from different semantic contents (e.g., the input’s prefix and suffix, random in-context tokens, or a
fixed nonsensical sequence). This consistency provides compelling empirical support for the con-
clusion that the attention mechanism relies significantly on positional information to assess token
importance, rendering the semantic content a secondary factor.

6.2 THE IMPACT OF PSEUDO-QUERIES LENGTH (WINDOW SIZE)

The length of pseudo-queries (the size of the observation window, V) is a crucial hyper-parameter,
controlling the breadth of the simulated decoding context used for importance estimation. Figure
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Figure 6: Ablation analysis of pseudo-queries with respect to quality and length. (a) Performance
under a fixed pseudo-queries length (i.e., 32), with varying semantic content of pseudo-queries:
Fm_Ln is the concatenation of the first m and the last n tokens from the input context; RS_C is
constructed by concatenating 32 randomly sampled individual tokens from the context; RC_C is a
randomly sampled consecutive span of 32 tokens from the context; and Fix_C is a fixed, repetitive
nonsensical sequence (e.g., “Sorry, I don’t know. Sorry, I don’t know...”). (b) Performance under
varying observation window sizes N, showing a non-monotonic relationship with performance.

[6b] reveals a non-monotonic relationship between N and performance, characterized by distinct
increasing and decreasing phases.

Increasing Phase (Small N): For small window sizes, performance increases sharply as N grows.
This is because a minimal window lacks the contextual breadth to robustly estimate the importance
of all relevant tokens, causing high uncertainty in the importance assessment. Adding more pseudo-
queries can provide a more comprehensive simulation of the decoding process, leading to a more
accurate and holistic importance distribution. This expanded window thereby enables the model to
identify and retain a greater number of critical tokens for future effective generation.

Decreasing Phase (Large N): Beyond a certain point, further increasing N leads to a gradual
performance decline. We attribute this to a dilution effect: while the initial queries in the window
are precisely aligned with the start of decoding, later queries represent increasingly speculative
future positions. The attention patterns for these distant positions become progressively diffuse and
attend to tokens less relevant for the initial generation steps, introducing noisier and less reliable
signals into the aggregated importance scores. And mutual attention among these queries introduces
additional interference, further diverting the focus from critical tokens.

This analysis identifies a “sweet spot” for the window size. The window should be sufficiently sized
to capture a representative decoding context but not so large as to dilute the attentional signal. The
existence of this optimum confirms that our method is not relying on a brute-force approach. Instead,
it performs a precise and efficient simulation by concentrating on the most relevant segment of the
decoding trajectory, thereby striking a balance between content fidelity and contextual breadth.

7 CONCLUSION

In this work, we introduce DapQ, a novel and effective KV cache compression framework that lever-
ages position-aware pseudo-queries to simulate the output tokens, thereby establishing an effective
observation window for importance assessment. During the prefill stage, it enables precise token
eviction that aligns closely with the actual generation context. Extensive experiments demonstrate
that DapQ consistently outperforms existing baselines and achieves superior performance in long-
context scenarios, particularly under strict memory constraints. This work underscores the primacy
of positional information over semantic content in constructing query approximations and determin-
ing attention patterns. This insight promotes us rethinking of the role of positional context in LLMs
optimization and efficient inference. Extending this positional simulation approach to dynamic,
layer-wise budget allocation and integrating it with quantization techniques present promising di-
rections for achieving more effective compression.
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A THE USE OF LARGE LANGUAGE MODELS

We use the large language model to aid or polish writing of this paper. This help is purely editorial
and do not involve any other contributions.

B PRELIMINARY EXPERIMENT DETAILS

B.1 QUERY SIMILARITY COMPARISON UNDER DIFFERENT CONTENT AND POSITION
CONDITIONS.

We conduct the query similarity analysis using a representative example from the GovReport dataset,
which is designed for document summarization tasks. The input sequence consists of 4424 tokens.
The ground-truth decoding queries are obtained by extracting the first 32 output tokens generated
by LLaMA-3-8B-Instruct for this input. The semantic content of these output tokens is: “The report
discusses the Federal Aviation Administration’s (FAA) state block grant pilot program, which is
part of its Airport Improvement Program (AIP). The program”, and they are assigned the positional
indices 4424-4455. We then construct a pseudo-context of length 32 with the repetitive content:
“Sorry, I don’t know. Sorry, I don’t know. Sorry, I don’t know. Sorry, I don’t know. Sorry, I”.
Notably, the positional IDs for the pseudo-context can be flexibly configured to emulate various
decoding scenarios.

B.1.1 EXPERIMENTAL DETAILS OF QUERY SIMILARITY COMPARISON

In Table [T} we evaluate pseudo-queries by varying two key attributes relative to the ground-truth
decoding queries: semantic content and positional assignment. The content is either consistent
with the true output (i.e., the actual beginning of the model’s summary, “The report discusses...”)
or different from it (a fixed, nonsensical sequence, e.g., “Sorry, I don’t know...”). Similarly, the
positional indices are either aligned with the true future decoding positions (4424-4455) or deviated
from them (assigned to a random consecutive span, e.g., 0-31). The cosine similarity between each
set of pseudo-queries and the ground-truth queries is reported under two measurement conditions:
Post ROPE, which captures the final query representation after the application of Rotary Position
Embedding (ROPE), and Re ROPE, which reflects the similarity before the positional encoding is
applied, thus isolating the effect of semantic content.

B.1.2 EXPERIMENTAL DETAILS OF QUERY SIMILARITY DISTRIBUTION ANALYSIS

To quantitatively assess the impact of positional and content variations on query representation,
we conduct a large-scale statistical analysis as depicted in Figure [6a] Each box in the boxplots is
aggregated from 100 independent trials, providing a stable estimate of the similarity distribution.
The Different Content (DC) condition is implemented by randomly sampling 32 tokens from the
model’s full vocabulary, effectively removing any meaningful semantic correlation with the true
output. The Different Position (DP) condition is implemented by assigning a consecutive span of
32 positions randomly sampled from two distinct ranges to introduce positional deviation: a general
deviation range (0-4000), which represents a random mismatch within the context window, and
an extreme deviation range (0-100), which is specifically chosen to maximize the absolute offset
from the correct positions (i.e., 4424-4455), thereby rigorously testing the hypothesis that positional
accuracy is dominant.

B.2 EXPERIMENTAL DETAILS OF POSITIONAL OFFSET SENSITIVITY

To systematically quantify the sensitivity of query representations to positional miscalibration, we
conduct the analysis presented in Figure[2b] The experiment investigates how the similarity between
pseudo-queries and the true decoding decays based on the absolute offset between their assigned
positional indices and the correct future positions. For this purpose, we select input examples of
varying context lengths (2k, 4k, 6k, and 8k tokens) from the GovReport dataset. For each con-
text length, we construct pseudo-queries with fixed semantic content (aligned with the true output)
but systematically vary their assigned starting position. The x-axis represents this starting position
assigned to pseudo-queries (e.g., an x-axis value of 3500 indicates that the 32 pseudo-queries are
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assigned the consecutive position IDs from 3500 to 3531). The y-axis measures the resulting cosine
similarity between the pseudo-queries and the ground-truth decoding queries. This approach allows
us to observe the monotonic decay in similarity with increasing positional offset.

C COMPLETE EXPERIMENT RESULTS AND DETAILS

C.1 RESULTS AND DETAILS ON LONGBENCH

We comprehensively evaluate the performance of DapQ and baselines on LongBench benchmark
with the following setup:

¢ Models: LLaMA-3-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B;
* KV Cache Budgets: 256, 128, 64 tokens.

The complete results are shown in Table[3]

C.2 RESULTS AND DETAILS ON LONGBENCHV?2

We comprehensively evaluate the performance of DapQ and baselines on LongBenchV2 benchmark
with the following setup:

e Models: LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B;
¢ KV Cache Budgets: 128, 64 tokens.

The complete results are shown in Table 4]

C.3 RESULTS AND DETAILS ON RULER

We comprehensively evaluate the performance of DapQ and baselines on Ruler benchmark with the
following setup:

e Models: LLaMA-3-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B;
* KV Cache Budgets: 4096, 2048, 1024, 512, 256, 128, 64 tokens.

The complete results are shown in Table 5] Table[6] Table

C.4 RESULTS AND DETAILS ON HELMET

We comprehensively evaluate the performance of DapQ and baselines on HELMET benchmark with
the following setup:

* Models: LLaMA-3-8B-Instruct, Qwen2.5-7B-Instruct;
¢ KV Cache Budgets: 2048, 1024, 512, 256, 128 tokens.

The complete results are shown in Table

C.5 RESULTS AND DETAILS ON NEEDLE-IN-A-HAYSTACK

We comprehensively evaluate the performance of DapQ and baselines on Needle-in-a-Haystack
benchmark with the following setup:

* Models: LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen3-8B;
* KV Cache Budgets: 256, 128, 64 tokens.

The complete results are shown in Table [0}
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Table 3: Performance comparison of different methods across various LLMs on LongBench.

Single-Document QA Multi-D QA ization Few-shot Learning Synthetic Code
5 s > o> & < < Q> o o N . <

Methods 39" W éewo p \ﬂ.\\b@ o @\0\\& RS o $Py‘ < @ A
FullKV 37.68 40.56 50.14 34.93 30.99 25.62 70.00 89.85 40.50 13.28 83.67 5644 5097 48.05

KV Cache Size = 256
H20 28.11 36.63 48.62 31.50 21.87 21.44 45.67 89.49 38.28 12.11 83.67 6149 5336 44.02
PyramidKV  30.88 38.11 50.20 33.88 22.54 21.84 60.00 89.26 37.07 12.78 83.67 61.34 5251 4570
< SnapKV 30.84 38.39 49.75 33.80 22.18 21.53 57.00 89.65 36.97 12.11 84.00 6178 5492 4561
2  DapQ 32.55 38.18 50.67 34.35 22.25 21.89 60.67 90.48 38.34 11.78 83.67 6278 55.64 46.40

§ KV Cache Size = 128
= H20 25.95 36.25 48.65 31.90 20.79 20.30 40.00 87.29 36.25 12.33 83.67 59.81 53.14 4279
2 PyramidKV 28.80 38.29 49.52 31.60 20.67 20.55 49.00 87.68 36.73 1244 8200 6036 52.03 43.82
e:") SnapKV 29.52 37.80 49.36 32.40 19.87 20.08 47.67 87.82 35.63 11.44 8233 6149 5240 43.68
£ DapQ 28.76 37.24 50.04 33.59 20.47 20.63 50.00 90.06 36.87 12.11 81.67 61.81 53.92 44.40

] KV Cache Size = 64
H20 24.02 30.83 48.27 31.70 19.37 19.14 37.33 86.27 35.18 772 8233 59.20 51.10 40.96
PyramidKV 22.04 31.80 47.01 31.54 15.70 16.34 39.00 76.80 32.31 10.33 79.67 55.19 4790 38.90
SnapKV 25.06 32.92 47.16 31.71 16.85 17.09 40.67 86.02 33.99 11.78 78.00 5795 5091 40.78
DapQ 25.99 37.36 49.11 32.88 18.46 18.70 38.67 87.38 35.30 11.89 77.67 60.19 4990 4181
FullKV 36.50 49.70 5591 44.70 31.64 22.84 66.33 89.34 42.49 11.00 86.33 6197 59.97 50.67

KV Cache Size = 256
H20 27.76 42.94 47.89 40.97 22.13 18.31 44.33 84.51 39.77 10.67 86.00 57.07 54.09 4431
., PyramidKV 29.65 46.37 49.89 40.77 20.42 16.80 53.00 87.89 39.61 10.67 86.00 52.61 4949 4482
2 SnapKV 3112 47.87 51.76 40.78 22.25 18.41 53.33 87.66 39.34 10.67 86.00 56.87 5436 46.19
g DapQ 30.21 45.00 51.92 41.46 22.35 18.40 56.67 88.64 39.92 11.00 86.00 5840 5382 4645

= KV Cache Size = 128
é H20 26.83 37.80 45.14 39.77 20.13 16.64 40.67 81.43 38.56 10.67 85.67 5397 5152 4222
v, PyramidKV 2637 43.09 46.57 39.07 18.01 15.15 43.33 84.69 38.40 10.67 84.67 4945 4690 42.03
té SnapKV 27.46 41.81 48.62 41.40 19.42 16.19 42.33 83.91 38.89 10.67 85.00 52.14 51.39 43.02
g DapQ 26.81 43.12 49.62 41.36 19.89 16.68 47.00 84.92 38.07 11.00 85.00 5446 51.70 43.82

<3 KV Cache Size = 64
H20 24.33 3236 44.94 39.06 17.96 15.05 37.33 82.76 35.27 10.67 85.00 4944 4552 3998
PyramidKV 22.36 35.19 43.51 38.08 14.04 11.10 37.33 84.81 35.58 10.67 80.33  44.67 4222 3845
SnapKV 22.90 40.66 45.56 40.28 15.42 12.03 37.67 85.11 36.92 10.67 82.00 46.16 4575 40.09
DapQ 25.58 42.65 49.66 41.25 16.90 14.05 39.67 84.16 35.49 11.00 80.67 4938 46.77 41.33
FullKV 36.87 53.67 57.67 44.73 33.39 23.69 71.67 91.79 42.07 11.98 86.67 70.64 59.26 52.60

KV Cache Size = 256
H20 27.80 44.92 51.37 40.50 22.38 18.26 46.33 90.04 38.98 12.33 86.67 66.11 5393 46.12
PyramidKV 30.41 47.81 51.00 41.37 22.36 17.41 61.67 90.96 37.65 13.00 86.33 67.01 50.11 4747
SnapKV 32.40 49.29 54.38 41.40 23.79 18.99 63.00 91.07 38.57 14.67  86.67 67.99 5377 4892
DapQ 32.14 50.78 54.79 44.47 24.16 19.01 62.67 91.15 39.61 14.17 86.67 67.20 53.83 49.28

8 KV Cache Size =128
Pé H20 26.60 41.37 48.10 39.85 20.83 17.27 41.33 90.21 38.16 11.72 86.67 6522 5277 44.22
2 PyramidKV 26.22 40.48 48.41 39.46 18.99 15.10 48.33 89.31 36.92 9.67 86.67 60.82 4878 43.78
o SnapKV 29.41 46.43 51.20 41.66 20.37 16.64 51.33 91.07 37.37 11.00 86.67 6536 51.65 46.17
DapQ 29.10 47.15 53.84 43.00 21.11 17.27 54.00 90.45 38.50 11.67 86.00 66.29 52.03 46.95

KV Cache Size = 64
H20 25.55 38.94 46.66 39.27 18.55 15.23 39.00 88.13 35.98 9.67 86.67 59.48 4895 4247
PyramidKV 25.32 40.44 46.61 39.20 16.25 12.93 44.67 88.27 34.63 1133 83.67 59.73 4648 4227
SnapKV 25.09 39.89 46.58 39.38 15.28 12.38 42.67 87.93 35.12 11.33 84.33 5796 4649 41.88
DapQ 25.78 43.17 49.84 41.28 17.16 13.95 43.00 88.97 36.00 12.67 83.00 60.31 4690 43.23
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Table 4: Performance comparison of different methods across various LLMs on LongBenchv2. For
DapQ, the pseudo-queries are constructed via prefix-suffix concatenation: using the first 8 and last
24 tokens for LLaMA series models, and the first 2 and last 30 tokens for Qwen models. Notably,
several compressed methods surpass the FullKV baseline.We attribute this phenomenon to the noise
reduction mechanism of cache eviction. By selectively retaining critical tokens, these methods ef-
fectively reduce noise and sparsify the context, potentially leading to more focused and efficient
model reasoning. This effect is particularly pronounced in long-context benchmarks .

Difficulty Length
LLMs Methods Easy Hard Short Medium Long  Overall
FullKV 28.65  26.37 3222 24.19 25.00 27.24
KV Cache Size = 128
H20 3229 2540 3222 26.98 23.15 28.03
PyramidKV ~ 30.21 2444 31.67 26.05 19.44 26.64
Llama3-8B SnapKV 30.73 2572 3222 26.05 23.15 27.63
Instruct DapQ 30.73  27.65  33.33 2791 23.15 28.83
KV Cache Size = 64
H20 30.73 2476  28.89 26.51 25.00 27.04
PyramidKV ~ 27.08  23.47 24.44 27.44 20.37 24.85
SnapKV 3125 2251 23.89 26.98 26.85 25.84
DapQ 3073 29.26  31.11 28.84 29.63 29.82
FullKV 25.00 28.62  31.67 25.58 23.15 27.24
KV Cache Size = 128
H20 26.56  29.58 34.44 25.58 24.07 28.43
PyramidKV ~ 29.17  28.94  32.22 27.44 26.85 29.03
Llama3.1-8B SnapKV 27.08 2990  33.89 26.05 25.93 28.83
Instruct DapQ 27.08  30.55  34.44 27.44 24.07 29.22
KV Cache Size = 64
H20 23.44  27.01 30.56 23.72 21.30 25.65
PyramidKV ~ 28.12  28.62  33.89 24.19 27.78 28.43
SnapKV 25.00 26.69  29.44 24.65 23.15 26.04
DapQ 29.17 2894  33.89 26.98 25.00 29.03
FullKV 28.65 27.33 30.56 27.44 24.07 27.83
KV Cache Size = 128
H20 28.65  27.65  30.56 2791 24.07 28.03
PyramidKV ~ 29.17 2540 29.44 26.51 23.15 26.84
Qwen2.5-7B SnapKV 29.69  26.37 30.56 27.91 2222 27.63
Instruct DapQ 29.17 2733 30.56 28.37 23.15 28.03
KV Cache Size = 64
H20 28.65  26.37 31.11 26.51 2222 27.24
PyramidKV ~ 31.25  27.97 3222 28.37 25.93 29.22
SnapKV 30.73  27.33 32.78 27.44 24.07 28.63
DapQ 30.73 2830  31.67 28.37 26.85 29.22
FullKV 31.25 2830 3333 25.58 30.56 29.42
KV Cache Size = 128
H20 3438 2797 35.56 25.58 31.48 30.42
PyramidKV 3438  27.33 36.11 26.05 27.78 30.02
SnapKV 3490 27.33 34.44 26.05 31.48 30.22
Qwen3-8B DapQ 3385 2830 33.89 27.44 30.56 30.42
KV Cache Size = 64
H20 3542 27.65 34.44 28.84 27.78 30.62
PyramidKV ~ 38.02 26.69  34.44 28.37 30.56 31.01
SnapKV 36.46  27.33 33.33 29.30 29.63 30.82
DapQ 3594  28.62  36.67 26.51 32.41 31.41
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Table 5: Performance comparison of different methods across various kv cache size on Ruler for
Ilama3-8B-Instruct.

Single NIAH Multi-key NIAH
A D D
w W W » > > T
LLM  Methods P P S \\ \ \ BN BN a ¢ Ave
o o o wﬁ q&‘\{ ‘]\\gﬁ RS W SR

FullKV 100 100 100 99.2 91.8 95.8 99.75 97.5 97.82 8293 9832 96.65

KV Cache Size = 2048
Lacache 21 274 1.8 29.6 29 32 12.2 6.45 86.08 86.07 11.04 2853
StreamingLLM 26.6 254 25.4 22.6 24.2 17.8 24.1 243 49 78.6  21.16 26.82
H20 100 90 14 78 47 12.6 74.7 45 90.04 7933 97.68 66.21
PyramidKV 100 100 40.8 99 72.2 17.4 99 96.3 83.25 67.87 982 79.46
SnapKV 100 98.4 61.4 929 69 19.8 98.8 94.45 90.34 73.13 97.56 81.99
DapQ 100 99 96 99.2 67.2 244 99.05 95.45 90.68 75 97.64 85.78

KV Cache Size = 1024
Lacache 0.2 4.8 24 42 4 0 23 2.45 55.02 86.87 156 14.89
StreamingLLM 13.4 13.8 114 114 132 10.8 10.95 11.3 0.38 7507 8.16 16.35
H20 98.2 75.8 8 62 38.8 4.8 49.05 10.6 634 7507 922 52.54
PyramidKV 100 98.2 6.2 98.6 47.8 2 97 90.8 56.14 61.53 97.08 68.67
SnapKV 100 96.8 154 98.4 44.8 34 96.45 87.9 6542 6427 9648 69.94
DapQ 100 98.4 85.8 99.2 41.8 6.2 97.4 92.5 65.74 69.33 96.76 77.56

KV Cache Size = 512
Lacache 0 0.2 0 2.6 0.4 0 0.05 1.4 1652 788 0.08 9.10
- StreamingLLM 3.6 6.2 5.6 6.6 6.2 54 6.25 6.75 0.18 7533 1.08 11.20
§ H20 88.4 63.8 24 45 254 14 244 2.85 4656 646 69.64 39.50
% PyramidKV 100 95.6 0 97.4 35 0.2 91.8 73.5 23.56 528 9296 60.26
= SnapKV 100 95.6 1.4 96.8 30.4 0.4 91.1 71.65 30.82 5373 9448 60.58
a DapQ 100 97.8 59.6 98.6 29.8 1 91.95 82.9 27.16 6127 952 6775

[ KV Cache Size = 256
£ Lacache 0 0 0 0 0 0 0 0 3.64 58.2 0 5.62
5 StreamingLLM 12 12 12 2 34 24 23 245 0.14 78.6 0 8.63
H20 67.2 56.8 24 25.4 15.6 0 9.05 1.25 31.1 482 2064 2524
PyramidKV 100 94.8 0 89.6 29.4 0 73.5 35.15 9.42 39.8 758 49.77
SnapKV 100 95 0 90.2 26 0 76.5 36.3 13.66 452 9156 5222
DapQ 100 97.6 23 97.8 19.8 0 79.7 55 128 51.87 88.04 56.87

KV Cache Size = 128
Lacache 0 0 0 0 0 0 0 0 0.58 8.4 0 0.82
StreamingLLM 0.6 1.2 12 2 2 0 2.25 2.45 0.2 44.93 0 517
H20 414 38.8 24 14.8 2.8 0 22 0.3 18.06 13 7.88  12.88
PyramidKV 99.2 91 0 68.2 332 0 26.5 9.7 2.38 25.6 1876  34.05
SnapKV 98.8 89 0 60.2 354 0 17.25 745 518 2853 1324 3228
DapQ 99.6 97.6 1.4 94.4 214 0 28.85 20.05 432 3033 684 36.80

KV Cache Size = 64

Lacache 0 0 0 0 0 0 0 0 0.18 0.67 0 0.08
StreamingLLM 0 0 0 0 0 0 0 0 0.06 27.53 0 251
H20 22 21.2 0 3.8 0.2 0 0.4 0.25 57 0.07 3.52 5.19
PyramidKV 48.8 472 0 134 72 0 0.4 0.25 0.08 0 0.6 10.72
SnapKV 58.8 65.4 0 20.4 14 0 0.75 0.4 0.14 0.07 2.28 14.75
DapQ 85.2 87.4 0 26.2 19.6 0 3.65 1.35 0.78 0.33 3.6 20.74
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Table 6: Performance comparison of different methods across various kv cache size on Ruler for
Qwen2.5-7B-Instruct.

Single NJAH Multi-key NIAH
N "W D
o o> W Y S Y o> W E ®
LLM  Methods P P B \\ \ N BN\ ~ ) <& AvVG
N o oV “\“\,& ‘[\\L}\ §I\(‘$ R W C «

FullKV 100 99.8 99.8 99.8 98 93.2 99.8 93.9 77.38 87.67 9536 9497

KV Cache Size = 4096
Lacache 3 1.8 24 4 8 3 33 2.25 62.78 8773 632 1649
StreamingLLM 26.4 28 27 244 19.6 11.6 26.1 27.1 36.96 91.53 22.84 31.05
H20 100 98.4 24 96.8 19.4 9.4 85.75 68.15 67.56 9233 9392 68.70
PyramidKV 100 99.4 41.8 99.4 19.8 3.6 91.6 834 47.66 91.07 93.96 70.15
SnapKV 100 99.8 86 99.8 39.6 13 97.15 88.6 67.72 912 93.64 79.68
DapQ 100 99.2 82 99 56.8 23.6 97.25 82.15 68.04 9253 9452 8137

KV Cache Size = 2048
Lacache 0.2 1.6 0 24 0.4 0 0 12 36.74 8733  0.68 11.87
StreamingLLM 13.8 134 11 11.4 9 6.2 10.8 11.3 556  94.67 9.6 17.88
H20 98 90.8 78 90.2 72 3.8 65.5 35 5578 93.07 89.72 57.90
PyramidKV 99.4 97.2 9.2 97.8 11 0.8 759 55 28.7 9473 96.04 60.52
SnapKV 100 99.2 47.6 98.8 25 2.4 92.25 79.85 5572 9533 956 7198
DapQ 100 96.4 53 97.2 432 7 93 69.4 5644 956 9444 7324

KV Cache Size = 1024
Lacache 0 1.6 24 32 0 0 1.8 2.35 13.56  84.47 0 9.94
StreamingLLM 44 6.2 5.6 6.6 4 42 6.2 6.7 026 9693 316 13.11
H20 96.4 73.8 24 78.2 2.8 1.6 38.2 11.15 42,12 8753 71.16 4594
PyramidKV 929 91 0.6 91.6 3.6 0 48.25 25.1 1208 952 9332 50.89
- SnapKV 99.4 98.4 14.4 97.8 13.8 0.8 78.1 58.7 37.94 964 9248 6257
2 DapQ 99.8 91.8 18.4 94.2 28.4 2.4 82.15 50.8 37.34 97 93.64 63.27

= KV Cache Size = 512
= Lacache 0 0 0 0 0 0 0 0 5 71.47 0 6.95
.::é StreamingLLM 1.6 12 1.2 2 22 2.6 23 2.4 026 9887 036 1045
¥y H20 91 534 24 524 0.6 0.8 14 3.75 25.64 6487 3992 31.71
':,‘ PyramidKV 96.8 74.8 0 62.6 1 0 15.6 8.6 252 8247 59.84 36.75
2 SnapKV 99 89.6 1 93.8 5 0.2 56.8 29.55 22.1 9333 9212 5295
& DapQ 99.6 82.8 34 87.4 16.6 0.4 62.4 29.75 21.9 952 8752 53.36

KV Cache Size = 256
Lacache 0 0 0 0 0 0 0 0 1.58  21.27 0 2.08
StreamingLLM 0.6 1.2 1.2 3.6 0.6 0 23 24 022 98.07 0 10.02
H20 63.8 224 2.4 13.6 0.6 0 4.25 1.5 1246 31.13  8.76 14.63
PyramidKV 67.4 37.6 0 16.6 0.8 0 0.75 0.6 036  60.67 2396 18.98
SnapKV 97.6 734 0 69.6 2 0 18.95 58 1052 81.6 54.84 37.66
DapQ 98.8 63.2 0.2 71.4 10.8 0 21.4 6.35 10.7 8373 5696 38.5

KV Cache Size = 128
Lacache 0 0 0 0 0 0 0 0.6 2.67 0 0.30
StreamingLLM 0.4 14 0 2 0.2 0 23 24 034 96.13 0 9.56
H20 6 34 0 3.6 0.2 0 0.05 2.05 7.26 34 0.48 240
PyramidKV 4.6 6 0 32 0 0 0 0 026 2127 248 3.44
SnapKV 57.2 30.8 0 16.8 0.6 0 0.4 0.3 1.02 3927 5.64 1382
DapQ 58 314 0 39.2 32 0 0.6 0.9 146 3473 996 16.31

KV Cache Size = 64

Lacache 0 0 0 0 0 0 0 0 0.7 0.67 0 0.12
StreamingLLM 0 0 0 0 0 0 0 0 0.38 0 0.04 0.04
H20 0.2 0 0 0 0 0 0 0 0.98 0 0.04 0.11
PyramidKV 0 0 0 0 0 0 0 0 0.2 0 0 0.02
SnapKV 0 0 0 04 0 0 0 0 0.28 0.07 0.44 0.11
DapQ 54 2.6 0 32 0.4 0 0 0 0.28 22 1.16 1.39
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Table 7: Performance comparison of different methods across various kv cache size on Ruler for
Qwen3-8B.

Single NIAH Multi-key NIAH
A\ g) e
o o W2 Nt Sl ol N W
LLM  Methods P M P \\ \b \{ 0 BN n) <& AvG
e o o “\(‘,\4 ‘I«;\ g&$ R W C <
FullKV 100 100 100 99.6 99.6 99.6 99.9 99.75 83.98  90.67 100 97.55
KV Cache Size = 4096
Lacache 17.6 14.6 132 16.8 20.2 74 14.75 6.2 62.46 6847 1248 23.11
StreamingLLM 26.6 28 27 244 19.6 184 26.15 27.1 36.62 93 22.96 31.80
H20 100 99.8 22 99.8 84.8 324 99.5 89.9 46.74 93 99.92  78.90
PyramidKV 100 100 24.8 99.6 91 51.2 99.9 99.55 574 9287 100 83.30
SnapKV 100 100 75.2 99.8 96 58 99.9 99.75 727 9327 100 90.42
DapQ 100 100 96.4 99.8 93 58.4 99.9 99.85 71.82  93.6 100 92.07
KV Cache Size = 2048
Lacache 2 1.6 24 3.4 12 0 245 0.9 43.86 694 2.04 11.75
StreamingLLM 13.8 13.4 11 11.4 9.4 9 10.85 11.3 1038 9547 972 1870
H20 100 99.4 7.8 97 64.8 10.6 94.7 48.3 28.48 9453 99.68 67.75
PyramidKV 100 100 1.6 100 79.4 19 99.9 93.6 3546  95.6 100 74.96
SnapKV 100 100 20 100 91.6 304 99.85 97.75 49.59 96 100 80.47
DapQ 100 100 55 100 88.05 31 99.95 95.15 4576 96.07 100 82.82
KV Cache Size = 1024
Lacache 0.2 1.6 24 32 0.4 0 2.45 1.05 15.86 62.07 0.32 8.14
StreamingLLM 4.6 6.2 5.6 6.6 3.8 5 6.25 6.7 0.8 96.47 324 1321
H20 97.8 92 24 81.6 38.2 2.4 72 15.85 2398 962 9392 56.03
PyramidKV 100 99.8 0 98.6 61.8 24 97.75 70.2 17.84 9247 99.12 67.27
SnapKV 100 99.6 1 99.6 79.2 13 99.25 83.05 26.52  96.27 98.84 7239
DapQ 100 99.8 142 99.6 75.4 14.8 99.75 78.25 23.78 97.73 99.12 7295
KV Cache Size = 512
23 Lacache 0 1.6 0 3 0 0 0 0.8 7.06 2607 0.08 3.51
vé StreamingLLM 1.8 4 12 3.8 24 3 3.75 44 0.76 97.6 056 1121
2 H20 90.4 66.2 24 57.2 15 0.8 30.6 5.1 14.8 89.2 6556 39.75
o PyramidKV 99 97.2 0 84.4 40.8 0.2 70.7 30 6.2 7027 7092 51.79
SnapKV 99.6 99.2 0 97.2 60.6 2 94.35 47.25 1478 93.6 98.64 6429
DapQ 100 99.6 58 95.4 68.6 52 94.85 42.45 12.38  96.27 96.08 65.15
KV Cache Size = 256
Lacache 0 0 0 0 0 0 0 0 1.7 7.93 0 0.88
StreamingLLM 0.8 1.2 1.2 2 24 0 23 24 0.72 95 0 9.82
H20 68 21.4 24 19 2.6 0 6.15 1.4 112 61.27 19.2 19.33
PyramidKV 94.8 60.4 0 41.6 14.4 0 58 5.6 1.22 34.07 24 25.63
SnapKV 97.4 87.8 0 81.6 35.2 0 472 13 9.7 84.47 7232 48.06
DapQ 100 88.8 0 75.4 59.4 0.2 47.55 10.2 6.1 88 58.04 4852
KV Cache Size = 128
Lacache 0 0 0 0 0 0 0 0.46 02 0 0.06
StreamingLLM 0.6 12 12 2 0.2 0 23 24 0.64 96 0 9.69
H20 19.8 24 1.6 3.6 0.2 0 0.05 0.25 8.4 2253 344 5.66
PyramidKV 11.4 2.8 0 0 12 0 0 0 0.84 4.6 3.68 223
SnapKV 68.8 31.2 0 2.6 32 0 0.15 0.45 206 4033 524 14.00
DapQ 97.8 34 0 7 20.8 0 0.2 0.1 1.1 40.53 547 18.82
KV Cache Size = 64
Lacache 0 0 0 0 0 0 0 0 0.72 0 0 0.07
StreamingLLM 0 0 0 0 0 0 0 0 04 32.33 0 2.98
H20 0 0 0 0 0 0 0 0 3.42 0 1.24 0.42
PyramidKV 0 0 0 0.2 0 0 0 0 0.78 0.4 0.56 0.18
SnapKV 0 0 0 0 0 0 0 0 0.8 0.07 0.88 0.16
DapQ 0.8 0.2 0 0 1.2 0 0 0 1 24 1.68 0.66
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Table 8: Performance comparison of different methods across various LLMs on sub-task categories
of the HELMET benchmark.

ICL LONGQA RAG
exact_match 1 rougeL_f1 substring_exact_match
Ty 0 o o @ ®
Methods ‘)‘\\‘.“\% c\'\‘\"“\% c\)‘\ < oo o < ¢ »F P X\e\v“‘“ -\\\,“o‘ Q09&> \‘{“b“ Avg.
Y O Ch e \«Wz“ W W o -

FullKV 38.60 73.60 76.20 39.40 25.00 12.00 16.56 52.00 42.17 47.67 80.00 45.75

KV Cache Size = 1024
H20 32.00 64.00 70.60 36.00 21.20 11.30 15.28 47.67 44.17 47.67 81.50 42.85
PyramidKV 24.80 55.40 68.60 29.60 16.00 11.61 16.00 52.33 44.17 48.17 81.33 40.73
SnapKV 23.00 54.40 70.60 29.00 18.20 11.04 17.07 52.67 43.83 48.33 81.67 40.89
DapQ 26.80 64.40 72.60 39.80 15.40 11.81 16.67 50.00 45.00 48.33 81.83 42.97

KV Cache Size = 512
H20 18.00 51.80 63.00 28.80 18.00 10.65 14.45 48.33 44.17 48.00 82.00 38.84
‘g PyramidKV 17.40 39.80 56.00 22.20 12.20 11.69 15.87 50.67 44.17 48.00 82.17 36.38
‘E SnapKV 17.60 41.40 63.60 2220 14.20 11.34 16.67 50.67 44.50 47.17 82.83 3747
—? DapQ 21.60 52.80 64.00 39.20 15.40 11.18 16.89 49.00 46.00 48.17 82.17 40.58

5 KV Cache Size = 256
E H20 11.60 35.40 54.20 23.40 11.20 11.21 12.82 46.67 42.33 47.00 80.67 34.23
ﬁ PyramidKV 14.00 27.40 36.20 17.00 10.00 11.36 14.94 52.00 42.83 48.00 81.17 3226
SnapKV 16.80 27.80 47.60 17.80 9.00 11.52 14.76 50.67 42.67 46.83 81.67 33.37
DapQ 17.00 37.40 47.00 38.40 13.80 11.66 15.70 48.67 44.00 48.17 81.83 36.69

KV Cache Size = 128
H20 6.80 20.00 32.80 18.00 6.20 10.76 12.52 45.33 41.00 46.00 81.33 29.16
PyramidKV 11.20 21.80 19.60 14.80 8.20 10.70 14.03 48.00 39.33 46.50 83.50 28.88
SnapKV 13.80 19.60 21.40 14.60 8.80 10.92 13.66 46.00 38.83 47.07 84.33 29.00
DapQ 16.40 23.40 25.60 31.00 13.20 10.99 15.14 49.33 41.50 47.33 84.67 32.60
FullKV 74.00 71.00 53.80 75.60 31.80 20.53 30.33 56.00 49.83 57.67 86.67 55.20

KV Cache Size = 2048
H20 63.20 54.00 51.00 79.40 31.40 20.37 28.74 52.00 49.33 58.17 87.00 52.24
PyramidKV 68.40 61.40 53.20 77.40 33.20 19.46 28.52 53.67 48.00 60.83 85.33 53.58
SnapKV 68.40 62.00 51.40 78.00 33.20 20.35 29.41 55.67 47.83 58.33 86.67 53.75
DapQ 71.00 67.80 55.00 76.00 33.60 19.05 29.46 56.33 48.83 58.50 87.00 54.78

KV Cache Size = 1024
H20 44.60 33.20 28.00 79.40 25.40 19.52 27.24 50.67 48.50 57.00 85.50 45.37
g PyramidKV 58.40 40.60 39.00 78.20 29.20 20.30 28.11 50.67 44.50 61.00 84.50 48.59
; SnapKV 56.80 42.10 38.00 75.00 30.80 20.53 28.05 56.00 48.00 58.33 85.37 49.00
;T DapQ 66.00 56.40 49.80 76.20 31.20 20.20 28.76 54.33 46.67 57.50 85.67 52,07

w KV Cache Size = 512
"=" H20 28.60 19.40 17.00 76.20 17.80 18.51 26.88 51.27 45.33 57.67 85.33 40.36
5 PyramidKV 45.00 20.00 22.80 70.60 25.80 21.91 26.60 48.67 43.50 59.67 82.83 42.49
SnapKV 44.60 23.60 2220 71.80 26.80 20.17 27.85 53.00 47.17 58.17 85.83 43.74
DapQ 52.00 43.20 40.80 72.20 28.40 20.54 29.50 54.00 4533 57.33 85.83 48.10

KV Cache Size = 256
H20 21.20 12.00 9.20 74.40 14.40 18.26 26.12 48.67 43.00 58.67 83.33 37.20
PyramidKV 34.80 14.00 13.20 50.80 15.00 17.36 25.93 45.00 40.00 59.17 75.17 35.49
SnapKV 38.40 15.20 18.80 60.00 19.80 19.90 26.55 51.00 45.33 59.83 82.17 39.73
DapQ 41.40 25.40 27.60 67.40 21.00 17.64 26.55 51.33 47.00 59.00 85.17 42.68

21



Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of different methods across various LLMs on Needle-in-a-
Haystack.

LLM KV Cache Size ~ Method Acc

FullKV 100.00

H20 66.81

256 PyramidKV 93.94
SnapKV 90.97

DapQ 99.46
Llama3-8B-Instruct H20 50.92
128 PyramidKV 79.67
SnapKV 74.67

DapQ 95.75

H20 42.37

64 PyramidKV 55.45
SnapKV 61.70

DapQ 68.34

FullKV 98.02

H20 61.18

256 PyramidKV 78.30
- SnapKV 74.84
DapQ 84.70
Llama3.1-8B-Instruct H20 47.61
128 PyramidKV 65.23
SnapKV 61.45

DapQ 70.34

H20 40.36

64 PyramidKV 52.25
SnapKV 56.50

DapQ 62.20

FullKV 94.23

H20 75.64

256 PyramidKV 83.80
SnapKV 84.30

DapQ 85.11
Qwen2.5-7B-Instruct H20 70.45
128 PyramidKV 74.80
SnapKV 73.64

DapQ 76.25

H20 63.70

64 PyramidKV 56.11
SnapKV 72.84

DapQ 75.75

FullKV 96.52

H20 74.55

256 PyramidKV 88.50
SnapKV 90.41

DapQ 91.73

Qwen3-8B H20 67.50
128 PyramidKV 72.36
SnapKV 75.39

DapQ 77.89

H20 62.70

64 PyramidKV 61.32
SnapKV 59.73

DapQ 61.98
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