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Abstract

Vision Transformer (ViT) has emerged as a powerful architecture in the realm of
modern computer vision. However, its application in certain imaging fields, such
as microscopy and satellite imaging, presents unique challenges. In these domains,
images often contain multiple channels, each carrying semantically distinct and
independent information. Furthermore, the model must demonstrate robustness
to sparsity in input channels, as they may not be densely available during training
or testing. In this paper, we propose a modification to the ViT architecture that
enhances reasoning across the input channels and introduce Hierarchical Channel
Sampling (HCS) as an additional regularization technique to ensure robustness
when only partial channels are presented during test time. Our proposed model,
ChannelViT, constructs patch tokens independently from each input channel and
utilizes a learnable channel embedding that is added to the patch tokens, similar to
positional embeddings. We evaluate the performance of ChannelViT on microscopy
cell imaging (main paper) as well as satellite imaging and pathology imaging (ap-
pendix). Our results show that ChannelViT outperforms ViT on classification tasks
and generalizes well, even when a subset of input channels is used during testing.
Across our experiments, HCS proves to be a powerful regularizer, independent
of the architecture employed, suggesting itself as a straightforward technique for
robust ViT training. Lastly, we find that ChannelViT generalizes effectively even
when there is limited access to all channels during training, highlighting its po-
tential for multi-channel imaging under real-world conditions with sparse sensors.
Our code is available at https://github.com/insitro/ChannelViT.

1 Introduction

Vision Transformers (ViT) have emerged as a crucial architecture in contemporary computer vision,
significantly enhancing image analysis. However, application to specific imaging domains, such as
microscopy and satellite imaging, poses unique challenges. Images in these fields often comprise
multiple channels, each carrying semantically distinct and independent information. The complexity
is further compounded by the fact that these input channels may not always be densely available
during training or testing, necessitating a model capable of handling such sparsity.

In response to these challenges, we propose a modification to the ViT architecture that bolsters
reasoning across the input channels. Our proposed model, ChannelViT, constructs patch tokens
independently from each input channel and incorporates a learnable channel embedding that is added
to the patch tokens, akin to positional embeddings. This simple modification enables the model to
reason across both locations and channels. Furthermore, by treating the channel dimension as the
patch sequence dimension, ChannelViT can seamlessly handle inputs with varying sets of channels.
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Figure 1: Illustration of Channel Vision Transformer (ChannelViT). The input for ChannelViT is
a cell image from JUMP-CP, which comprises five fluorescence channels (colored differently) and
three brightfield channels (colored in B&W). ChannelViT generates patch tokens for each individual
channel, utilizing a learnable channel embedding chn to preserve channel-specific information. The
positional embeddings pos and the linear projection W are shared across all channels.

Despite these advancements, two main challenges persist. While ChannelViT can leverage exist-
ing efficient implementations of ViT with minimal modifications, the increase in sequence length
introduces additional computational requirements. Moreover, if ChannelViT is consistently trained
on the same set of channels, its ability to generalize to unseen channel combinations at test time
may be compromised. To address these challenges, we introduce Hierarchical Channel Sampling
(HCS), a new regularization technique designed to improve robustness. Unlike channel dropout,
which drops out each input channel independently, HCS uses a two-step sampling procedure. It first
samples the number of channels and then, based on this, it samples the specific channel configurations.
While channel dropout tends to allocate more distribution to combinations with a specific number of
channels, HCS assigns a uniform weight to the selection of any number of channels. HCS consistently
improves robustness when different channels are utilized during testing in both ViT and ChannelViT.
Notably, our evaluation on ImageNet shows that using only the red channel, HCS can increase the
validation accuracy from 29.39 to 68.86.

We further evaluate ChannelViT on two real world multi-channel imaging applications: microscopy
cell imaging (JUMP-CP) and satellite imaging (So2Sat). In these applications, different channels
often correspond to independent information sources. ChannelViT significantly outperforms its ViT
counterpart in these datasets, underscoring the importance of reasoning across different channels.
Moreover, by treating different channels as distinct input tokens, we demonstrate that ChannelViT can
effectively generalize even when there is limited access to all channels in the dataset during training.
Lastly, we show that ChannelViT enables additional insights. The learned channel embeddings
correspond to meaningful interpretations, and the attention visualization highlights relevant features
across spatial and spectral resolution, enhancing interpretability. This highlights the potential of
ChannelViT for wide-ranging applications in the field of multi-channel imaging.

2 Results

We evaluate ChannelViT across four image classification benchmarks: ImageNet Deng et al. (2009),
JUMP-CP Chandrasekaran et al. (2022), Camelyon17-WILDS Koh et al. (2021) and So2Sat Zhu
et al. (2019). Due to space limits, we only present the results on JUMP-CP in the main paper and
leave the additional results and model details to the Appendix.

JUMP-CP is a microscopy imaging benchmark released by the JUMP-Cell Painting Consortium. The
objective is to predict the applied perturbation based on the cell image. The dataset includes a total of
160 perturbations. We focused on a compound perturbation plate ‘BR00116991’, which contains
127k training images, 45k validation images, and 45k testing images. Each cell image contains 8
channels, comprising both fluorescence information (first five channels) and brightfield information
(last three channels).
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Table 1: Test accuracy of 160-way perturbed gene prediction on JUMP-CP. Two training settings
are considered: one using only 5 fluorescence channels and the other incorporating all 8 channels,
which includes 3 additional brightfield channels. During testing, all possible channel combinations
are evaluated and we report the mean accuracies for combinations with the same number of channels
(See Appendix G for detailed error analyses). We observe that cross channel reasoning is crucial
when the inputs have independent information (fluorescence vs. brightfield).

ViT-S/16 ChannelViT-S/16 ViT-S/16 ChannelViT-S/16 ViT-S/8 ChannelViT-S/8

Use hierarchical
channel sampling? ✗ ✗ ✓ ✓ ✓ ✓

Training on 5 fluorescence channels

#c
ha

nn
el

s
fo

rt
es

tin
g 5 channels 48.41 53.41 55.51 56.78 60.29 60.03

4 channels 0.85 15.13 43.59 45.94 48.80 49.34
3 channels 1.89 5.12 33.14 35.45 37.13 38.15
2 channels 1.46 1.22 25.24 26.57 27.40 27.99
1 channel 0.54 1.25 20.49 21.43 21.30 21.58

Training on all 8 channels (5 fluorescence channels & 3 brightfield channels)

#c
ha

nn
el

s
fo

rt
es

tin
g

8 channels 52.06 66.22 56.87 68.09 66.44 74.77
7 channels 5.91 41.03 49.35 61.02 59.01 68.42
6 channels 1.81 24.57 42.38 53.45 51.29 61.26
5 channels 2.46 14.20 35.78 45.50 43.39 53.05
4 channels 2.38 8.56 29.84 37.37 35.60 43.87
3 channels 2.70 5.65 24.94 29.68 28.59 34.19
2 channels 2.63 3.24 21.54 23.77 23.32 25.73
1 channel 3.00 2.08 19.92 20.84 20.41 21.20

Table 2: ViT vs. ChannelViT when we have varying channel availability during training. Both models
are trained using HCS. The accuracy is evaluated using five fluorescence channels (top) and all eight
channels (bottom). ChannelViT consistently outperforms ViT across all settings, and the performance
gap notably widens as access to more 8-channel data is provided.

Combine fluorescence-only data and 8-channel data for training

% fluorescence-only data 100% 75% 50% 25% 0%
% 8-channel data 0% 25% 50% 75% 100%

Evaluating on 5 fluorescence channels
ViT-S/16 55.51 52.55 51.65 49.53 45.75
ChannelViT-S/16 56.78 58.01 58.19 58.42 57.60

Evaluating on all 8 channels
ViT-S/16 — 50.29 52.47 54.64 56.87
ChannelViT-S/16 — 57.97 61.88 64.80 68.09

Table 1 shows our result on the 160-way perturbed gene classification task on JUMP-CP. We utilize
ViT-S as our representation backbone, and we consider both the standard resolution with a patch size
of 16x16 and a high-resolution model with a patch size of 8x8.

In the first part of our analysis, we train all models using only the five fluorescence channels and
evaluate them on the test set under various channel combinations. Our observations are as follows: 1)
HCS significantly enhances the channel robustness for both ViT and ChannelViT; 2) High-resolution
models consistently outperform their low-resolution counterparts; 3) With the exception of the
5-channel evaluation with a patch size of 8x8, ChannelViT consistently outperforms ViT.

In the latter part of our analysis, we utilize all available channels for training, which includes three
additional brightfield channels for each image. For ViT, the high-resolution ViT-S/8 model improves
from 60.29 to 66.44, demonstrating the importance of the additional brightfield information, while
the improvement for ViT-S/16 is marginal (from 55.51 to 56.87). When focusing on ChannelViT,
we observe a significant performance boost over its ViT counterpart. ChannelViT-S/16 outperforms
ViT-S/16 by 11.22 (68.09 vs 56.87) and ChannelViT-S/8 outperforms ViT-S/8 by 8.33 (74.77 vs.
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Hierarchical Channel SamplingNo dropout Input channel dropout 0.1 Input channel dropout 0.2 Input channel dropout 0.3

Figure 2: HCS vs. input channel dropout on JUMP-CP (trained on all 8 channels). On the left, we
present the accuracy of ViT-S/16 and ChannelViT-S/16 under varying input channel dropout rates and
HCS. The accuracy is evaluated across all channel combinations, with the mean accuracy reported
for combinations with an equal number of channels (represented on the horizontal axis). On the right,
we illustrate the probability distribution of the sampled channel combinations during the training
process. We observe 1) ViTs trained with input channel dropout tend to favor channel combinations
that are sampled the most; 2) ChannelViT with input channel dropout outperforms ViT with input
channel dropout; 3) HCS surpasses input channel dropout in terms of channel robustness.
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Figure 3: Left: Class-specific relevancy attribution of ChannelViT-S/8 for each cell label (perturbed
gene) on JUMP-CP. For each perturbed gene (y-axis) and each channel (x-axis), we calculate
the maximum attention score, averaged over 100 cells from that specific cell label. This reveals
that ChannelViT focuses on different input channels depending on the perturbed gene. Right: A
visualization of the relevancy heatmaps for both ViT-S/8 (8-channel view) and ChannelViT-S/8
(single-channel view). Both models are trained on JUMP-CP using HCS across all 8 channels.
ChannelViT offers interpretability by highlighting the contributions made by each individual channel.

66.44). These improvements are consistent across different channel combinations. As we have seen in
Figure 4, fluorescence and brightfield channels provide distinct information. ChannelViT effectively
reasons across channels, avoiding the need to collapse all information into a single token at the first
layer, thereby enhancing performance.

Lastly, we delve into a comparative analysis between input channel dropout and hierarchical channel
sampling, as depicted in Figure 2. It is evident from our observations that the ViT model, when
trained with HCS, consistently surpasses the performance of those trained with input channel dropout
across all channel combinations. Furthermore, we discern a pronounced correlation between the
performance of models trained with input channel dropout and the probability distribution of the
number of channels sampled during training.

Data Efficiency In the realm of microscopy imaging, we often encounter situations where not all
channels are available for every cell due to varying experiment guidelines and procedures. Despite
this, the goal remains to develop a universal model capable of operating on inputs with differing
channels. ChannelViT addresses this issue by treating different channels as distinct input tokens,
making it particularly useful in scenarios where not all channels are available for all data. Table 2
presents a scenario where varying proportions (0%, 25%, 50%, 75%, 100%) of the training data
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have access to all eight channels, with the remaining data only having access to the five fluorescence
channels. The performance of ViT and ChannelViT is evaluated at test time using both the five
fluorescence channels (top section) and all eight channels (bottom section).

Our observations are as follows: 1) When only a limited amount of 8-channel data (25%) is available,
both ChannelViT and ViT show a decrease in performance when utilizing eight channels at test time
compared to five channels; 2) As the availability of 8-channel data increases, the performance of
the ViT baseline on the fluorescence evaluation steadily declines (from 55.51 to 45.75), while the
performance of ChannelViT sees a slight improvement (from 56.78 to 57.60); 3) When evaluated on
all eight channels, ChannelViT significantly outperforms ViT, with an average gap of 9.62.

Channel-specific attention visualization Attention heatmaps, generated by Vision Transformers
(ViTs), have emerged as a valuable tool for interpreting model decisions. For instance, Chefer et al.
(2021) introduced a relevancy computation method, which assigns local relevance based on the Deep
Taylor Decomposition principle and subsequently propagates these relevance scores through the
layers. However, a limitation of ViTs is their tendency to amalgamate information across different
channels. In the realm of microscopy imaging, discerning the contribution of each fluorescence
channel to the predictions is vital due to their distinct biological implications.

Figure 3 (right) presents the class-specific relevancy visualizations for ViT-S/8 and ChannelViT-S/8.
For the top cell labeled KCNH76, ChannelViT appears to utilize information from the Mito channel.
For the bottom cell labeled KRAS, ChannelViT seems to utilize information from the ER and RNA
channels for its prediction. Compared to ViT, ChannelViT facilitates the examination of contributions
made by individual channels.

In Figure 3 (left), we further compute the maximum attention score (averaged over 100 cells) for
each cell label (perturbed gene) and each input channel. Our observations indicate that ChannelViT
focuses on different channels for different labels (corresponding to perturbed genes), with the Mito
channel emerging as the most significant information source. This heatmap, which describes the
discriminability of different labels over different channels, can also aid in better understanding the
relationships between different gene perturbations.

3 Conclusion

In conclusion, our proposed model, ChannelViT, effectively addresses the unique challenges of
multi-channel imaging domains. By enhancing reasoning across input channels and seamlessly
handling inputs with varying sets of channels, ChannelViT has consistently outperformed its ViT
counterpart in our evaluations on ImageNet and diverse applications such as medical, microscopy
cell, and satellite imaging. The introduction of Hierarchical Channel Sampling (HCS) further bolsters
the model’s robustness when testing with different channel combinations. Moreover, ChannelViT not
only improves data efficiency but also provides additional interpretability, underscoring its potential
for broad applications in the field of multi-channel imaging.
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A Related work

Vision transformer and its applications to multi-channel imaging Vision Transformer (ViT)
has demonstrated state-of-the-art performance in various computer vision tasks Dosovitskiy et al.;
Touvron et al. (2021); Carion et al. (2020); Zhu et al. (2020b). Recently, researchers have started
adopting ViT for multi-spectral imaging. For example, in satellite imaging, Kaselimi et al. (2022)
showed that a ViT-based classifier outperforms CNN models, especially on imbalanced classes.
Additionally, Tarasiou et al. (2023) proposed acquisition-time-specific temporal positional encodings
to model satellite images over time, while Cong et al. (2022) demonstrated the benefits of using
distinct spectral positional encodings with ViT. Moreover, Scheibenreif et al. (2022) found that ViT,
when combined with self-supervised pre-training, performs on-par with state-of-the-art benchmarks.
In the field of cell biology, Sivanandan et al. (2023) utilized ViT with self-supervised pre-training
to learn representations of cells across multiple fluorescence channels. Furthermore, Hatamizadeh
et al. (2022a,b) leveraged ViT for segmenting 3D MRI images. Hussein et al. (2022) proposed to
train multiple ViTs, one for each input channel, for epileptic seizure predictions.

In contrast to previous work, we address a practical challenge in multi-channel imaging, where
different datasets often have different available channels.2 To tackle this challenge, we propose
ChannelViT, which unifies the modeling across data with different input channels and offers robust
performance at test time, even when only a subset of the channels is available.

Robustness for Vision Transformer Robustness can be defined in different ways. One aspect is
the vulnerability to adversarial attacks. Mahmood et al. (2021) found that ViTs are as susceptible
to white-box adversarial attacks as CNNs. To improve robustness, Robust ViT incorporates more
robust components like global pooling (Mao et al., 2022). Additionally, Chefer et al. (2022) propose
regularization of the relevancy map of ViT to enhance robustness. Zhou et al. (2022); Zhang et al.
(2021); Song et al. (2022) augments transformers with feature-wise attention to improve robustness
and performance. Another approach focuses on generalization over distribution shifts Sagawa et al.
(2019); Liu et al. (2021). Bao & Karaletsos (2023) introduces a context token inferred from ViT’s
hidden layers to encode group-specific information.

In our work, we specifically focus on improving the generalization performance across different
channel combinations, which is a common scenario in multi-channel imaging. We argue that the
original ViT is sensitive to changes in input channels, as it computes a single patch token across all
channels. In contrast, ChannelViT creates separate patch tokens for each channel, making it inherently
more robust to variations in channel availabilities. To further enhance channel robustness, we
introduce hierarchical channel sampling (HCS) during training. This methodology draws inspiration
from prior studies on channel dropout Srivastava et al. (2014); Tompson et al. (2015); Hou & Wang
(2019). However, instead of dropping out intermediate channels, our approach introduces a two-stage
sampling algorithm designed to selectively mask out the input channels.

B Method

ChannelViT is a modification of the original Vision Transformer (ViT) architecture proposed by
Dosovitskiy et al.. Unlike the original architecture, which condenses each multi-channel image patch
into a single ‘word’ token, ChannelViT segregates channel-specific information into multiple tokens.
This simple yet effective modification yields three key advantages:

1. ChannelViT facilitates reasoning across both positions and channels with Transformer;

2. By transforming the channel dimension into the sequence length dimension, ChannelViT
can seamlessly manage inputs with varying sets of channels;

3. ChannelViT can utilize existing efficient implementations of ViT.

In the following paragraphs, we explore the architecture and implementation of ChannelViT in detail.
Figure 1 provides a visual overview of the model.

2
For example (https://github.com/chrieke/awesome-satellite-imagery-datasets), satellite imaging often involves multiple signals such as

Sentinel-1 (SAR), Sentinel-2, UAV, etc.

10

https://github.com/chrieke/awesome-satellite-imagery-datasets


B.1 Channel Vision Transformer (ChannelViT)

Patch embeddings Consider an input image x with dimensions H ×W × C. Given a patch size
of P × P , this image can be reshaped into a sequence of non-overlapping patches

[x[c1, p1], . . . , x[c1, pN ], x[c2, p1], . . . , x[c2, pN ], . . . , x[cC , pN ], . . . , x[cC , pN ]] ,

where x[ci, pn] corresponds to the n-th P × P image patch at channel ci and N = HW/P 2. As the
Transformer encoder requires a sequence of one-dimensional vectors, each patch is flattened into a
1D vector. Unlike ViT, which generates a single token for a multi-channel image patch, ChannelViT
produces one token from every single-channel image patch.

Tied image filters We apply a learnable linear projection W ∈ RP 2×D to the flattened patches. It
is important to note that in a regular ViT, each channel has its own weights in the linear projection
layer. In ChannelViT, our preliminary experiments suggest that tying the image filters across channels
offer superior performance compared to untied image filters (Appendix F.2). Therefore, we tie the
learnable projection W across channels. The intuition behind this is that the low-level image filters
can be shared across channels (Ghiasi et al., 2022), and tying the parameters can improve the model’s
robustness across channels.

Channel-aware and position-aware patch embeddings Despite tying the linear filter across chan-
nels, it remains essential to preserve channel-specific information, given the distinct characteristics of
different channels (Appendix F.3). We introduce learnable channel embeddings [chn1, . . . , chnC ],
where chnc ∈ RD. In line with the original ViT, we also incorporate learnable positional embed-
dings to maintain positional information of each patch. We denote the positional embeddings as
[pos1, . . . , posN ], where posn ∈ RD. It’s worth noting that these position embeddings are also
shared across channels, enabling ChannelViT to recognize the same image patch across different
channels. Finally, we prepend a learnable classifier token CLS ∈ RD to the sequence to encode global
image features. The resulting input sequence can be written as[

CLS, pos1 + chn1 +W · x[c1, p1], . . . , posN + chn1 +W · x[c1, pN ],

. . . , pos1 + chnC +W · x[cC , p1], . . . , posN + chnC +W · x[cC , pN ]
]
.

Transformer encoder The above input sequence is fed into a Transformer encoder, which cap-
tures dependencies between image patches by embedding each patch based on its similarity to
others Vaswani et al. (2017). Specifically, the Transformer encoder comprises alternating layers of
multiheaded self-attention blocks and MLP blocks. Layer normalization, as proposed by Ba et al.
(2016), is performed before each block, and residual connections He et al. (2016) are established
after each block. We use the final layer representation of the CLS token to represent the input image.
For classification tasks, a linear classifier is employed, followed by a Softmax function, to predict the
corresponding label. We utilize the standard cross entropy loss as our training objective.

B.2 Hierarchical channel sampling (HCS)

Training ChannelViT directly presents two challenges: 1) The sequence length becomes proportional
to the number of channels, leading to a quadratic surge in the number of attentions required for
computation; 2) Training exclusively on all channels may result in the model not being prepared for
partial channels at test time, thereby affecting its generalization capability. To mitigate these issues,
we propose applying hierarchical channel sampling (HCS) during the training process. Specifically,
for an image x with C channels, we proceed as follows:

1. First, we sample a random variable m uniformly from the set {1, 2, . . . , C}. This m
represents the number of channels that we will utilize during this training step;

2. Next, we sample a channel combination Cm uniformly from all channel combinations that
consist of m channels;

3. Finally, we return the image with only the sampled channels x[Cm].

HCS shares similarity to channel dropout Tompson et al. (2015), but it differs in terms of the prior
distribution imposed on the sampled channels. In channel dropout, each channel is dropped based
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on a given probability independently. The probability of having m channels varies drastically for
different ms, which can negatively impact the final performance (Figure 2). In contrast, HCS ensures
that the sampling procedure equally covers each m.

HCS can also be interpreted as simulating test-time distributions during training. Compared to group
distributionally robust optimization (Sagawa et al., 2019), HCS minimizes the mean loss rather
than the worst-case loss. This approach is logical when considering channel robustness, as having
more channels will naturally enhance performance. We don’t want the model to over-focus on the
worst-case loss, which typically corresponds to situations when we sample very few channels.

C Implementation Details

This section elucidates the specifics of our implementation and the settings of our hyper-parameters.

C.1 Hierarchical Channel Sampling

In Section B.2, we outlined the channel sampling procedure of HCS. In this subsection, we offer a
comprehensive example of HCS in conjunction with ChannelViT and ViT.

Hierarchical Channel Sampling for ChannelViT Given a three-channel input x, as per Sec-
tion B.1, the input sequence for the Transformer encoder can be expressed as[

CLS, pos1 + chn1 +W · x[c1, p1], . . . , posN + chn1 +W · x[c1, pN ],

pos1 + chn2 +W · x[c2, p1], . . . , posN + chn2 +W · x[c2, pN ],

pos1 + chn3 +W · x[c3, p1], . . . , posN + chn3 +W · x[c3, pN ]
]
.

Let’s assume that our sampled channel combination from the HCS algorithm is {1, 3}. The corre-
sponding input sequence for the Transformer encoder would then be modified accordingly.[

CLS, pos1 + chn1 +W · x[c1, p1], . . . , posN + chn1 +W · x[c1, pN ],

pos1 + chn3 +W · x[c3, p1], . . . , posN + chn3 +W · x[c3, pN ]
]
.

It’s important to note that reducing the number of channels only modifies the sequence length.
Furthermore, since we sample the channel combinations for each training step, the channels utilized
for each image can vary across different epochs.

Hierarchical Channel Sampling for ViT Given the identical three-channel input x, the input
sequence for the Transformer encoder can be articulated as[

CLS, pos1 +W1 · x[c1, p1] +W2 · x[c2, p1] +W3 · x[c3, p1] + b,

. . . , posn +W1 · x[c1, pn] +W2 · x[c2, pn] +W3 · x[c3, pn] + b
]
.

Here W1,W2,W3 represent the weights associated with each input channel, and b is the bias term.
Let’s continue with the assumption that our sampled channel combination from the HCS algorithm
remains {1, 3}. We then adjust the above input sequence as follows:[

CLS, pos1 +W1 · x[c1, p1] · 3/2 +W3 · x[c3, p1] · 3/2 + b,

. . . , posn +W1 · x[c1, pn] · 3/2 +W3 · x[c3, pn] · 3/2 + b
]
.

It’s noteworthy that, in addition to masking the input from the second channel, we also rescale the
remaining channels by a factor of 3/2. This is akin to the approach of Srivastava et al. (2014), and is
done to ensure that the output of the linear patch layer maintains the same scale, despite the reduction
in input channels.

C.2 Training with ViT and ChannelViT

Backbone For the vision transformer backbone, we employ the PyTorch implementation provided
by Facebook Research3. Due to computational constraints, we primarily utilize the ‘vit-small‘

3
https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
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architecture, which has an embedding dimension of 386, a depth of 12, 6 heads, an MLP hidden
dimension of 4 × 386 = 1544 and pre layer normalization. We also briefly experiment ‘vit-base‘
which increases the embedding dimension to 768, the number of heads to 12, and the MLP hidden
dimension to 4 × 768 = 3072. For ChannelViT, we retain the same parameter settings as its ViT
counterparts for the Transformer encoder. Note that ChannelViT has a marginally smaller number of
parameters, as the first linear projection layer is now shared across channels.

Objective We employ the standard cross-entropy loss for both ViT and ChannelViT across the four
image classification benchmarks. Specifically, we utilize the Transformer encoder’s representation
for the CLS token at the final layer, and append a linear layer, followed by a Softmax function, to
predict the probability of each class.

Optimization For optimization, we employ the AdamW optimizer (Loshchilov & Hutter, 2019).
The learning rate is warmed up for the initial 10 epochs, peaking at 0.0005 (Goyal et al., 2017), after
which it gradually decays to 10−6 following a cosine scheduler. To mitigate overfitting, we apply
weight decay to the weight parameters, excluding the bias and normalization terms. The weight
decay starts at 0.04 and incrementally increases during training, following a cosine scheduler, up to
a maximum of 0.4. Each model is trained for 100 epochs with a batch size of 256. The training is
conducted on an AWS p4d.24xlarge instance equipped with 8 A100 GPUs.

C.3 Training on datasets with varying channel availability

In Table 2 and Figure 6, we investigated scenarios where our training datasets exhibited varying
channel availability. This section provides a detailed description of the training settings we employed
and presents additional results for an alternative setting.

ChannelViT and ViT Despite the different channel combinations in the training datasets, we utiliz
a consistent approach (as detailed in Appendix ) to encode the images for both ChannelViT and ViT.
For ChannelViT, this entails having varying sequence lengths for images with different numbers of
channels. For ViT, this involvs masking out the unavailable channels and rescaling the remaining
ones.

Objective We continue to use the cross-entropy loss. However, in this instance, there are two
potential methods for data sampling.

1. Sampling a random batch from each dataset and minimizing their average loss. This
approach will assign more weight to datasets with fewer examples. Mathematically, it
optimizes

Lupsample =
|D1|+ |D2|

2|D1|
LD1

+
|D1|+ |D2|

2|D2|
LD2

,

where we assume D1 and D2 are the two training datasets with different channels.

2. Concatenate the two datasets and draw a batch from the combined datasets. This approach
simply minimizes the average loss

Laverage = LD1 + LD2 .

Our preliminary experiments indicate that the second method consistently outperformed the first. For
instance, in JUMP-CP when training with 25% 8-channel data, ChannelViT-S/16 achieves 57.97%
when training with Laverage but only reachs 45.52% when training with Lupsample. Similarly, ViT-S/16
achieves 50.29% when training with Laverage but only scores 42.58% when training with Lupsample.
We hypothesize that models exhibit overfitting when trained using the upsampling loss. Therefore,
we report the numbers for the normal average loss Laverage in Table 2 and Figure 6.

C.4 Evaluation across all channel combinations

To assess the channel robustness of the trained models, we enumerate all possible channel combina-
tions and report the corresponding accuracy for each.
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ImageNet JUMP-CP So2Sat

Correlations across different input channels

ImageNet JUMP-CP So2Sat

Correlations across ChannelViT’s learned channel embeddings
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Figure 4: Correlation patterns among image channels (left) and the learned channel embeddings
(right) for ImageNet, JUMPCP, and So2Sat. ImageNet displays a strong correlation among the three
RGB input channels while JUMPCP and So2Sat show minimal correlation between different signal
sources (Fluorescence vs. Brightfield, Sentinel 1 vs Sentinel 2).

For instance, in Table 1, we have considered two training scenarios: the top section pertains to
training on 5 fluorescence channels, while the bottom section pertains to training on all 8 channels.
For the top section, we can evaluate the models for all subsets of the 5 fluorescence channels. This
includes

• Combinations with 5 channels: there is only one C5
5 = 1 combination;

• Combinations with 4 channels: there are C4
5 = 5 combinations;

• Combinations with 3 channels: there are C3
5 = 10 combinations;

• Combinations with 2 channels: there are C2
5 = 10 combinations;

• Combinations with 1 channels: there are C1
5 = 5 combinations.

Consequently, we evaluate a total of 1+5+10+10+5 = 31 channel combinations. Given a specific
channel combination, we mask out the testing images accordingly (as described in Appendix C.1) and
compute the corresponding testing accuracy. We then report the average accuracy over combinations
that have the same number of channels. As one might intuitively expect, models tend to perform
better when provided with more channels.

C.5 Dataset details

In Figure 4 (top), we illustrate the correlation among different input channels for each dataset. As
observed, ImageNet exhibits a strong correlation among the three RGB channels. For JUMP-CP,
while there is a strong correlation within the fluorescence channels and within the brightfield channels,
there is minimal to no correlation between the brightfield and the fluorescence channels. A similar
group structure among the channels is observed for So2Sat.

Camelyon17-WILDS, binary classification The Camelyon17-WILDS dataset encompasses 455k
labeled images from five hospitals. The task involves predicting the presence of tumor tissue in the
central region of an image. Although the dataset employs standard RGB channels, these are derived
from the hematoxylin and eosin staining procedure, which can vary across hospitals. We adopt the
processed version from the WILDS benchmark4.

JUMP-CP, 160-way classification We use the processed version of JUMP-CP released by Bao
& Karaletsos (2023)5. Each image consists of a single masked cell and includes five fluorescence
channels: AGP, DNA, ER, Mito, RNA, as well as three brightfield channels: HighZBF (Brightfield-1),
LowZBF (Brightfield-2), and Brightfield (Brightfield-3). Each cell has been perturbed by a chemical
compound, and the goal is to identify the gene target of the chemical perturbation.

So2Sat, 17-way classification This satellite imaging benchmark encompasses half a million image
patches from Sentinel-1 and Sentinel-2 satellites, distributed across 42 global urban agglomerations.
Each image patch incorporates 18 channels, with 8 originating from Sentinel-1 and the remaining 10
from Sentinel-2. The primary objective of this dataset is to facilitate the prediction of the climate
zone for each respective image patch, with a total of 17 distinct climate zones being represented. We

4
https://wilds.stanford.edu

5
https://github.com/insitro/ContextViT
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Table 3: Validation accuracy on ImageNet under different testing conditions (using all three channels
or only one channel). We observe that 1) hierarchical channel sampling significantly boosts single-
channel performance at test time; 2) ChannelViT consistently outperforms the ViT baseline. The
expert models, trained using only one channel, represent the upper bound of potential performance.

Backbone Use hierarchical
channel sampling?

Val Acc.
on RGB

Val Acc.
on R-only

Val Acc.
on G-only

Val Acc.
on B-only

Models trained on three channels (RGB)
ViT-S/16 ✗ 71.49 29.39 33.79 21.18
ViT-S/16 ✓ 73.01 68.86 69.78 67.59
ChannelViT-S/16 ✓ 74.64 69.90 70.30 68.48

Expert models trained on only one channel
ViT-S/16 (R-only) N/A — 70.04 — —
ViT-S/16 (G-only) N/A — — 70.61 —
ViT-S/16 (B-only) N/A — — — 69.47

use the processed version So2Sat released by the original authors Zhu et al. (2020a)6. We list the 8
channels from Sentinel-1:

1. the real part of the unfiltered VH channel;
2. the imaginary part of the unfiltered VH channel;
3. the real part of the unfiltered VV channel;
4. the imaginary part of the unfiltered VV channel;
5. the intensity of the refined LEE filtered VH channel;
6. the intensity of the refined LEE filtered VV channel;
7. the real part of the refined LEE filtered covariance matrix off-diagonal element;
8. the imaginary part of the refined LEE filtered covariance matrix off-diagonal element.

and 10 channels from Sentinel-2: Band B2, Band B3, Band B4, Band B5, Band B6, Band B7, Band
B8, Band B8a, Band B11 and Band B12.

D Supervised learning with ChannelViT

D.1 ImageNet

Table 3 showcases our results on ImageNet, using ViT small as the representation backbone and a
patch size of 16 by 16. We observe that without applying hierarchical channel sampling, ViT-S/16
achieves a validation accuracy of 71.49 using all three channels but fails to generalize when only one
channel is provided at test time. Simulating this test-time channel drop during training via hierarchical
channel sampling (HCS) significantly improves performance. For instance, the validation accuracy for
using only the red channel improves from 29.39 to 68.86, demonstrating the effectiveness of HCS as a
regularizer for enforcing channel robustness. Lastly, while there is limited room for improvement due
to the strong correlations among the input RGB channels, ChannelViT still consistently outperforms
the corresponding ViT baseline (by 1.2 on average), narrowing the gap (1.30 → 0.48) to the expert
models that are trained using only one channel.

D.2 So2Sat: Satellite Imaging

Our results on the So2Sat satellite imaging benchmark are presented in Table 4. We evaluate two
official splits: random split and city split, training both ViT-S/8 and ChannelViT-S/8 models using
hierarchical channel sampling across all channels (Sentinel 1 & 2).

Upon evaluation, ChannelViT demonstrats superior performance over its ViT counterpart, with an
improvement of 1.28 for the random split and 0.53 for the more challenging city split. In the realm

6
https://github.com/zhu-xlab/So2Sat-LCZ42

15

https://github.com/zhu-xlab/So2Sat-LCZ42


Figure 5: Relevancy visualizations for ViT-S/16 and ChannelViT-S/16 trained on ImageNet. For each
image, we generate the relevancy heatmap for two distinct classes (espresso and wine for the top
image, elephant and zebra for the bottom image) using the methodology described in Chefer et al.
(2021). It’s observed that ChannelViT precisely allocates its attention to the relevant channel (red
channel for predicting red wine). In the case of predicting a zebra, where the black and white contrast
pattern is present across all channels, ChannelViT utilizes all channels for its prediction.

Table 4: Test accuracy of 17-way local climate
zone classification on So2Sat. We consider two
official splits: random split and city split. Both
ViT and ChannelViT are trained on all channels
with hierarchical channel sampling. We evaluate
their performance on 18 channels (Sentinel 1 & 2)
as well as partial channels (Sentinel 1).

Sentinel 1
(Channel 0-7)

Sentinel 1 & 2
(Channel 0-17)

Random split (Zhu, 2021)
ViT-S/8 50.62 97.82
ChannelViT-S/8 59.75 99.10

City split (Zhu et al., 2019)
ViT-S/8 41.07 62.48
ChannelViT-S/8 47.39 63.01
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Figure 6: Test accuracy on So2Sat city split
with varying channel availabilities during train-
ing. Both ViT and ChannelViT are trained with
hierarchical channel sampling. Performances are
evaluated using all channels (Sentinel 1 & 2).

of satellite imaging, Sentinel 1 channels are derived from a Synthetic Aperture Radar operating on
the C-band, while Sentinel-2 is a multispectral high-resolution imaging mission. It’s worth noting
that Sentinel-2 data can be cloud-affected, underscoring the importance of models that can robustly
operate under partial signals using only Sentinel 1. In both random and city splits, ChannelViT
significantly outperforms ViT (59.75 vs. 50.62 in random split and 47.39 vs. 41.07 in city split).

Lastly, we explore the efficiency of ChannelViT in combining satellite training data with different
signals. As depicted in Figure 6, we consider varying proportions (10%, 25%, 50%, 75%, 100%) of
the training data with access to both Sentinel 1 & 2 signals, while the remaining data only has access
to Sentinel 1 signals. The models are evaluated using all Sentinel 1 & 2 signals. Our observations
consistently show ChannelViT outperforming ViT.

Interpreting the channel embeddings learned by ChannelViT Figure 4 presents the correlations
between the input channels. It’s noteworthy that the first four channels of Sentinel-1 correspond to:
1) the real part of the VH channel; 2) the imaginary part of the VH channel; 3) the real part of the VV
channel; and 4) the imaginary part of the VV channel. These four input channels are uncorrelated, as
evidenced by the bottom left corner of the So2Sat visualization heatmap. However, upon examining
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Table 5: Test accuracy of binary cancer classification on Camelyon17-WILDS. We consider all
channel combinations and report the mean accuracy over combinations with the same number of
channels. All models are trained with HCS. We observe 1) tying the linear patch projection layer
across channels improves out-of-distribution generalization; 2) ChannelViT outperforms ViT on
out-of-distribution hospitals.

ViT-S/8 ViT-S/8 ViT-B/8 ChannelViT-S/8 ChannelViT-S/8 ChannelViT-B/8

Tied weights
across channels? ✗ ✓ ✓ ✗ ✓ ✓

Evaluation on in-distribution hospitals
3 channels 99.14 98.46 98.28 98.98 98.99 99.13
2 channels 98.65 98.42 98.22 98.51 98.66 98.73
1 channel 97.59 98.24 97.98 97.71 98.14 98.11

Evaluation on out-of-distribution hospitals
3 channels 83.02 89.14 88.57 89.96 92.67 91.39
2 channels 85.12 88.78 88.32 88.11 88.25 87.17
1 channel 87.97 87.19 86.93 87.04 88.30 87.60

the correlations between the learned channel embeddings, we observe a high correlation between the
real and imaginary parts of both VV and VH channels. This intuitively aligns with the fact that the
real and imaginary parts are equivalent in terms of the information they provide. This demonstrates
that ChannelViT learns meaningful channel embeddings, which can provide additional insights into
the relationships between different input signals.

D.3 Camelyon17-WILDS: Medical Imaging for Histopathology

In this section, we introduce another dataset, Camelyon17-WILDS, which was not included in the
main paper due to space limitations.

Results Table 5 presents our results for Camelyon17, a medical imaging benchmark for histopathol-
ogy. Given the smaller image size (96 by 96), we employ a patch size of 8 by 8 for the ViT
backbone.

Starting with the standard ViT-S/8 (first column), we note that it achieves an accuracy of 99.14 for
the in-distribution hospitals. With HCS, it also attains an accuracy of over 97 when using only two or
one channels for predictions. However, when evaluated on out-of-distribution hospitals, its 3-channel
accuracy drops to 83.02. This is not only lower than its in-distribution performance, but also lower
than the accuracy achieved when using only one channel for evaluation in the out-of-distribution
hospitals (87.97). We hypothesize that this discrepancy is due to the staining shift across hospitals Gao
et al. (2022). The mismatch in color distributions results in out-of-distribution inputs for the first
linear patch embedding layer. To test this hypothesis, we experiment with tying the parameters
across different channels for the first linear patch embedding layer. As seen in the second column,
ViT-S/8 with tied weights, while performing slightly worse in the in-distribution hospitals, performs
significantly better in the out-of-distribution setting. We also explore ViT-B/8 but found it exhibited
overfitting.

By default, we share the first linear patch embedding layer across different channels for ChannelViT.
On the out-of-distribution hospital, ChannelViT-S/8 significantly outperforms ViT-S/8 (92.67 vs.
89.14). We also observe that if we untie the weights for different channels in ChannelViT, the
generalization performance degrades.

E Self-supervised pre-training with ChannelViT

This section delves into the integration of self-supervised learning with ChannelViT.
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Table 6: Top-1 Accuracy on ImageNet Using DINO Pre-training with ViT and ChannelViT. We
apply DINO pre-training with both ViT and ChannelViT on the ImageNet training data. Upon
completion of the pre-training phase, we conduct the standard linear probing evaluation , and the
resultant validation accuracy is reported. Hierarchical channel sampling is not used as we found that
it introduces extra instability during the DINO pre-training phase. The findings indicate that 1) In
comparison to supervised training, DINO inherently enhances the channel robustness for ViT; 2)
ChannelViT consistently outperforms ViT in a significant manner across all evaluations.

Backbone Val Acc.
on RGB

Val Acc.
on R-only

Val Acc.
on G-only

Val Acc.
on B-only

Models trained on three channels (RGB)
Supervised ViT-S/16 71.49 29.39 33.79 21.18
DINO + ViT-S/16 + LinearProb 72.62 64.34 65.46 61.12
DINO + ChannelViT-S/16 + LinearProb 74.38 67.44 67.85 65.97

Expert DINO models pre-trained on only one channel
DINO + ViT-S/16 (R-only) + LinearProb — 67.76 — —
DINO + ViT-S/16 (G-only) + LinearProb — — 68.09 —
DINO + ViT-S/16 (B-only) + LinearProb — — — 66.65

E.1 DINO

We use the DINO algorithm (Caron et al., 2021) for self-supervised learning. It involves a self-
distillation process where the student model, provided with local views of the input image, has to
learn from the teacher model which has the global views of the same input image.

We follow most of the the configuration suggested by DINO repository7. Specifically, we pre-train
DINO with ViT-S/16 and ChannelViT-S/16 for a total of 100 epochs on ImageNet with a batch size of
256. The AdamW optimizer (Loshchilov & Hutter, 2019) is employed, and the learning rate warm-up
phase is set for the first 10 epochs. Given our batch size, the maximum learning rate is set to 0.0005,
in line with recommendations from You et al. (2018). The learning rate is subsequently decayed
using a cosine learning rate scheduler, with a target learning rate of 10−6. Weight decay is applied to
all parameters, excluding the biases. The initial weight decay is set to 0.04 and is gradually increased
to 0.4 using a cosine learning rate scheduler towards the end of training. The DINO projection head
utilized has 65536 dimensions, and batch normalization is not employed in the projection head. The
output temperature of the teacher network is initially set to 0.04 and is linearly increased to 0.07
within the first 30 epochs. The temperature is maintained at 0.07 for the remainder of the training. To
enhance training stability, the parameters of the output layer are frozen during the first epoch.

E.2 Linear Probing

Upon the completion of the pre-training phase, the parameters of both ViT and ChannelViT are frozen.
In alignment with the methodology proposed by Caron et al. (2021), the final four layers of the CLS
representation are concatenated to represent the image. Subsequently, a linear classifier is trained
on this image representation. The training of the linear classifier is conducted using SGD, with a
learning rate of 0.005 and a momentum value of 0.9. The learning rate is decayed in accordance
with a cosine annealing scheduler. We train the linear classifier for 100 epochs using the ImageNet
training split. Once training is done, we report its Top-1 accuracy on the validation split.

E.3 Results

Table 6 showcases our results. It is noteworthy that hierarchical channel sampling is not used
during DINO pre-training due to its potential to introduce additional instability to the self-distillation
objective. However, we observe that DINO-pretrained ViT inherently provides superior channel
robustness. Compared to the supervised ViT-S/16, it achieves 64.34 on the red-only evaluation, which
is 34.95 better than its supervised version. Furthermore, the integration of DINO-pretraining with

7
https://github.com/facebookresearch/dino
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Table 7: Comparison of training times
for ViT and ChannelViT models on the
JUMP-CP dataset utilizing all eight chan-
nels. We train each model under identi-
cal conditions on a GPU cluster equipped
with eight A100 GPUs.

Model Time

ViT-S/16 2.8 hours
ChannelViT-S/16 w/o HCS 12.1 hours
ChannelViT-S/16 w/ HCS 10.2 hours

Table 8: ChannelViT-S/16: tied image filter vs. untied im-
age filter. Both models are trained on the five fluorescence
channels in JUMP-CP, with HCS applied during training.
Tying the image filter weights across channels enhances
both the performance and robustness.

Tied linear
projection weights? ✗ ✓

#c
ha

nn
el

s
fo

rt
es

tin
g 5 channels 54.78 56.78

4 channels 43.88 45.94
3 channels 33.67 35.45
2 channels 25.57 26.57
1 channel 21.07 21.43
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Figure 7: Illustration of ChannelViT with untied image filters. Each channel is assigned its unqiue
linear projection weight, denoted as Wc. Contrarily, in Figure 1, all channel share a common image
filter, represented by W .

ChannelViT consistently enhances performance across all evaluations, bridging the gap towards the
expert DINO model that is pre-trained on each individual channel.

F Additional analysis

F.1 Running time analysis

Our proposed ChannelViT model, which unfolds the channel dimension into the sequence length
dimension, inherently adds an additional computational cost. Table 7 illustrates the training time
of the ChannelViT-S/16 model on the JUMP-CP dataset, utilizing all eight channels. It is observed
that the training time increased significantly when ChannelViT is applied directly, without the use
of Hierarchical Channel Sampling (HCS). However, when HCS is incorporated, the training time is
reduced by 15% (from 12 hours 6 minutes to 10 hours 17 minutes). This indicates that HCS not only
enhances the model’s robustness but also significantly improves training efficiency.

F.2 Ablation: tied vs. untied image filters for ChannelViT

In the main paper, we introduced ChannelViT with a linear projection layer tied across various
channels. This section delves into the exploration of flexible weights for each channel (Figure 7).
The input sequence to the Transformer encoder can be represented as follows:[

CLS, pos1 + chn1 +W1 · x[c1, p1], . . . , posN + chn1 +W1 · x[c1, pN ],

. . . , pos1 + chnC +WC · x[cC , p1], . . . , posN + chnC +WC · x[cC , pN ]
]
,

where W1, . . . ,WC denote the linear transformations associated with the input channels. Table 8
showcases our findings on JUMP-CP. It is observed that ChannelViT, when trained with tied image
filter weights, consistently outperforms its untied counterpart. We hypothesize that the first layer
filters are generally shareable across channels, and tying the parameters can prevent overfitting,
thereby enhancing the model’s robustness.
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Figure 8: Illustration of ChannelViT with shared channel embeddings. We investigate the impace of
channel embeddings on the performance of ChannelViT. Specifically, we set replaced each channel
embedding by the mean channel embeddings across all channels. The resulting performance is
presnted in Table 9.

Table 9: Ablation study on the channel embeddings of channelViT. The ChannelViT models, trained
on JUMP-CP and So2Sat with hierarchical channel sampling across all channels, are utilized for this
ablation study. For the top row (✓), the mean channel embeddings across all channels are computed
and used to replace the channel embedding for each individual channel (see Figure 8). Observations
indicate that the preservation of original channel embeddings is critical for both datasets. Notably,
ChannelViT exhibits a higher sensitivity to modifications in channel embedding on JUMP-CP as
compared to So2Sat.

Shared channel
embedding?

ChannelViT-S/16 on JUMP-CP ChannelViT-S/16 on So2Sat

fluorescence
(5 channels)

fluorescence & brightfield
(8 channels)

Sentinel-1
(8 channels)

Sentinel-1 & -2
(18 channels)

✓ 1.26 2.49 10.44 52.13
✗ 57.60 68.09 47.39 63.01

F.3 Ablation: shared vs. unshared channel embeddings

In this section, we conduct an ablation study to investigate the impact of channel embeddings on
the performance of ChannelViT models. Specifically, we consider the following simplification of
ChannelViT where we have a shared channel embedding across all channels:[

CLS, pos1 + chn+W · x[c1, p1], . . . , posN + chn+W · x[c1, pN ],

. . . , pos1 + chn+W · x[cC , p1], . . . , posN + chn+W · x[cC , pN ]
]
.

We consider ChannelViTs trained on both JUMP-CP and So2Sat. A natural way to define chn is to
set it as the mean embeddings of the learned channel embeddings:

chn =
1

C

∑
c

chnc.

We present our ablation study in Table 9. We observe that this modification significantly harms
the performance, underscoring the importance of maintaining the original channel embeddings.
Interestingly, the ChannelViT model demonstrates a higher degree of sensitivity to alterations in
channel embedding on the JUMP-CP dataset as compared to the So2Sat dataset. This suggests that
the specific characteristics of the dataset can influence the model’s reliance on channel embeddings.

F.4 Investigation: do we need a separate classifier for each channel combination?

The application of hierarchical channel sampling results in the model receiving a variety of input
channel combinations, leading to significant changes in the input distribution. This prompts an
investigation into whether it’s necessary to further condition the final classifier based on the sampled
channel combinations. Table 10 presents our ablation analysis, where we consider three methods for
incorporating the information of the input channels into the final classifier:
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Table 10: Assessing the necessity of conditioning the classifier on input channel combinations
during hierarchical channel sampling. The backbone models, ChannelViT-S/16, are trained and
tested on 8 channels. Our findings suggest that the simplest shared linear classifier (bottom) delivers
superior results, eliminating the need for extra conditioning. We hypothesize that the utilization of a
shared linear classifier contributes to the regularization of the model’s internal representation, thereby
enhancing its robustness across channels.

Additional features
besides last-layer ‘[CLS]’

Classifier
on top of the features

Classifier shared across
channel combinations? Accuracy

Informing the final classifier of the sampled channel combination
None Linear ✗ 26.56
Embeddings for each channel comb. MLP ✓ 61.98
One-hot encoding of each channel comb. MLP ✓ 66.86

ChannelViT
None Linear ✓ 68.09

KC
NH7

GAA

CYP
1A

2
PA

RP3
PA

K4

GUCY1
B1

KC
NK1
PR

KC
B
CSK

TB
XAS1

ADORA
2A

HDAC
3

SC
NN1GMET

AKT1ASIC
1

RNASE
1

BRD4

GPR
11

9
HBB

JAK1
ED

NRB

SLC
7A

11IL1
B
ADA
HRH4

SS
TR

2
VEG

FA

AT
P5

F1
D

PT
PN

2
GLR

A3
CLK

1

SLC
O2B

1
HDAC

6
EL

ANE
CDK4

HIF1
A

NAMPT
TN

NC1
FG

F1
GPR

55
HPG

DS

ADRA
2B

UGT1
A9
PR

KC
E

TU
BB3
PD

E7
A

PN
LIP
PT

K2
B
GJB4
S1

00
B

AV
PR

1APPA
T
DHH
ADH1C

PD
E3

A
DCK

RGS4PLK
1

PT
GIR
USP

1
GHSR

ITG
B2
COMT

HSD
11

B1

CAT
SP

ER
4

KC
NJ1HCK

GABRB2
AG

ER
KC

NQ2
ABL1

CYP
3A

4
NONE

MMP2
AURKB

KC
TD

16ALK
KR

AS

KC
NMA1

HTR
2C

SLC
29

A1
FO

XM1
TN

F
EZ

H2

P2
RY

12
S1

PR
1
AT

M

CDC25
AF1

0

GRIN2A
CA5A

PPA
RD

CYP
2A

6
KC

NN1
FFA

R4
BAX

AKR
1B

1
PA

K1
ALD

H2
FLT

3
KC

NN4
ER

BB2
CA14

FPR
1

PT
GIS
MAPK

8

CAC
NA2D

3

PLA
2G

1B
S1

PR
2

ICAM1
BRA

F
DDR2

RPL2
3A

AKR
1C

1

CAC
NG1

MME
CCR1

KD
R

ANXA1
RET
CTS

G
OPR

M1

CHRM2

TG
FB

R1
PD

E4
D
PLD

1
PO

RC
N

S1
PR

4
HTR

3A
FFA

R2

CHRM3
BTK
NTR

K1LYN

MAPK
14
CDK7

HSP
90

AA1
OPR

L1
CDK2

DYR
K1

B
P3

H1

CAC
NB4

RPL3CDK9
IGF1

R
CASP

3

PIK
3C

G

DNMT3
A

CCND1
CSF

1R
SIR

T2

IMPD
H1
CHEK

2
LPA

R1

HSP
90

AB1
LC

K
TG

M2

TU
BB4B

PD
PK

1
TU

BB

target

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

 G
ai

n 
in

 C
ha

nn
el

Vi
T-

S/
8 

ov
er

 V
iT-

S/
8

Figure 9: Accuracy gain of ChannelViT-S/8 over ViT-S/8 over all cell labels (gene targets) on JUMP-
CP. Both models are trained using HCS over all 8 channels.

1. The first baseline involves learning a separate linear classifier on top of the ViT embeddings
for each channel combination.

2. The second baseline learns an embedding vector for each channel and constructs the repre-
sentation for the sampled channel combination by summing up all the embeddings for the
selected channels. This representation is then concatenated with the ViT representation and
fed to a shared MLP with one hidden layer.

3. The third method is similar to the second baseline, but uses one-hot encoding as the
representation for the sampled channel combination.

Our observations indicate that all three methods underperform when compared to the basic Chan-
nelViT, which uses a shared linear classifier across all channel combinations. We hypothesize that the
shared linear classifier regularizes the ViT to embed inputs with different channel combinations into
the same space. This bias appears to enhance robustness and performance.

F.5 Breaking down the performance gain on JUMP-CP for each gene target

In Figure 9, we delve into a comparative analysis of the performance between ChannelViT-S/8 and
ViT-S/8 across each cell label (gene target). Our figure reveals that ChannelViT surpasses ViT in 90%
of the gene targets, while underperforming in the remaining targets. It’s important to note that the gain
is computed from a 160-way classification task, where the models are trained to optimize the average
loss across all gene targets. If we reframe the problem using a multi-task learning objective, the
distribution of gains per gene could potentially differ, and we expect the improvements of ChannelViT
to be more consistent.
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Table 11: 160-way test accuracy of MultiViT (Hussein et al., 2022) on JUMP-CP. All models are
based on the ViT-S/16 backbone and are trained on all 8 channels. During testing, all possible
channel combinations are evaluated and we report the mean accuracies for combinations with the
same number of channels. MultiViT learns a separate ViT per channel and aggregates their output
CLS tokens together to form the overall image representation. Since the ViT encoder is separate for
each channel, it offers better channel robustness than the vanilla ViT. However, if we focus on the
performance using all channels, it actually leads to worse performance than the vanilla ViT-S/16,
highlighting the importance of parameter tying on the application of cell imaging.

ViT
S/16

MultiViT
S/16

ChannelViT
S/16

ViT
S/16

MultiViT
S/16

ChannelViT
S/16

Use hierarchical
channel sampling? ✗ ✗ ✗ ✓ ✓ ✓

#c
ha

nn
el

s
fo

rt
es

tin
g

8 channels 52.06 49.06 66.22 56.87 30.25 68.09
7 channels 5.91 34.10 41.03 49.35 29.04 61.02
6 channels 1.81 23.77 24.57 42.38 27.44 53.45
5 channels 2.46 17.09 14.20 35.78 25.69 45.50
4 channels 2.38 12.98 8.56 29.84 23.96 37.37
3 channels 2.70 10.58 5.65 24.94 22.34 29.68
2 channels 2.63 9.61 3.24 21.54 20.89 23.77
1 channel 3.00 7.97 2.08 19.92 19.85 20.84

G Additional results and visualizations

G.1 Baseline: Concatenating Features from Multiple Single-Channel ViTs

Hussein et al. (2022) utilized ViTs for epileptic seizure predictions, proposing a method to train
multiple ViTs, one for each input channel. The final image representation is derived by aggregating
the output CLS tokens across all single-channel ViTs. An MLP is then attached to these aggregated
features to predict the image label. In this section, we implement this baseline based on the paper,
termed MultiViT, and evaluate its performance both with and without HCS.

Table 11 presents our results on JUMP-CP when training using all eight channels. Without HCS,
MultiViT underperforms compared to ViT when evaluated on all channels, despite having eight times
more parameters. This underscores the importance of parameter sharing across different channels
to combat overfitting. However, when testing on a subset of channels, MultiViT outperforms ViT,
as each ViT operates on a single channel, thereby improving robustness to changes in the input
channels. Interestingly, MultiViT does not perform well with HCS. While the accuracy improves
when testing on a subset of channels, the accuracy significantly decreases (from 49.06 to 30.25) when
using all eight channels. We hypothesize that this is due to the channel-wise feature aggregation being
performed after the single-channel ViTs, preventing the model from conditioning the representation
based on the input channel availability.

We find that ChannelViT significantly outperforms MultiViT. There are three key differences between
the two models:

1. ChannelViT learns a single ViT across all channels, rather than one ViT for each channel;

2. ChannelViT is aware of the input channel availability at the input patch sequence, while the
single-channel ViTs in MultiViT operate independently;

3. ChannelViT allows cross-channel cross-location attention, while MultiViT only permits
cross-location attention.

G.2 Baseline: Fully Attentional Networks (FANs)

Zhou et al. (2022) introduced a family of Fully Attentional Networks (FANs) that combine channel-
wise attention with the MLP in a transformer encoder layer. Notably, the channels in this context
extend beyond the input channels. FANs aggregate feature channels with high correlation values
across the transformer encoder layers and isolate outlier features with low correlation values.

22



Table 12: 160-way test accuracy of FAN (Zhou et al., 2022) on JUMP-CP. All models are trained on
all 8 channels. During testing, we evaluated all possible channel combinations and reported the mean
accuracies for combinations with the same number of channels. FAN incorporates a channel-wise self-
attention mechanism following the standard location-wise self-attention in the transformer encoder.
This enhances the model’s ability to reason across both input and hidden channels, outperforming the
ViT baseline. However, it remains sensitive to the availability of input channels.

Without HCS With HCS

#channels
for testing

ViT
S/16

FAN
S/16
(conv
patch)

FAN
S/16

(linear
patch)

ChannelViT
S/16

ViT
S/16

FAN
S/16
(conv
patch)

FAN
S/16

(linear
patch)

ChannelViT
S/16

8 52.06 65.13 65.42 66.22 56.87 3.49 20.31 68.09
7 5.91 1.24 3.63 41.03 49.35 3.88 20.52 61.02
6 1.81 0.64 4.82 24.57 42.38 3.96 17.46 53.45
5 2.46 2.11 6.62 14.20 35.78 3.15 15.17 45.50
4 2.38 3.80 6.68 8.56 29.84 3.92 11.74 37.37
3 2.70 5.03 6.03 5.65 24.94 4.54 9.42 29.68
2 2.63 4.36 5.97 3.24 21.54 2.21 6.65 23.77
1 3.00 2.68 2.92 2.08 19.92 2.90 2.52 20.84

We adopted the implementation provided at https://github.com/NVlabs/FAN/blob/master/
models/fan.py and evaluated the FAN small with a patch size of 16 by 16. It’s worth noting
that FAN, by default, employs four stacks of 3 by 3 convolution layers (each followed by GELU
activations) to construct the input patch tokens, whereas ViT and ChannelViT use a single linear layer
over the 16 by 16 input patches. We refer to this FAN baseline as FAN S/16 (conv patch). We also
experimented with replacing these convolution layers with the same linear projection used in the
regular ViT, terming this modified version of FAN as FAN S/16 (linear patch).

Table 12 presents our results on FANs. Without HCS, the default FAN-S/16 (conv patch) signifi-
cantly outperforms ViT (65.13 vs 52.06), demonstrating the effectiveness of cross-channel attention.
However, it still falls short of ChannelViT (65.13 vs. 66.22). Furthermore, when evaluated using a
subset of channels at test time, its performance significantly declines (1.24 vs. 41.03 on 7 channels).
Interestingly, we observed that the FAN with a linear patch embedding layer performs slightly better
than the default FAN with convolution patch embeddings.

We also investigated training FANs with HCS. We discovered that FAN with convolution patch
embeddings struggled to learn a meaningful classifier. Replacing the convolution layers with a
simple linear transformation improved the performance, and we observed that when trained with
HCS, FAN-S/16 (linear patch) outperforms its counterpart without HCS when evaluated on a subset
of channels. However, the performance is still significantly lower than the regular ViT-S/16. We
hypothesize that since FANs explicitly leverage the correlation between different hidden channels to
build its representations, it becomes more sensitive to channel perturbations at test time.

In conclusion, we highlight the key differences between ChannelViT and FANs:

1. ChannelViT performs cross-channel and cross-location attention jointly, meaning that each
patch token can attend to a different channel at a different location.

2. ChannelViT maintains the distinction of different input channels throughout the trans-
former encoder and tie the transformer encoder across channels, which we argue enhances
robustness to channel changes.
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Table 13: Improvements of ChannelViT over its ViT counterpart for the JUMP-CP microscopy cell
imaging benchmark. Mean and standard deviation is computed over all combinations with the same
number of channels.

ChannelViT-S/16
over ViT-S/16

ChannelViT-S/16
over ViT-S/16

ChannelViT-S/8
over ViT-S/8

Use hierarchical
channel sampling? ✗ ✓ ✓

Training on 5 fluorescence channels

#c
ha

nn
el

s
fo

rt
es

tin
g 5 channels 5.00 1.27 −0.26

4 channels 14.28± 6.27 2.35± 0.84 0.54± 0.79
3 channels 3.23± 4.86 2.31± 1.31 1.02± 0.95
2 channels −0.23± 2.93 1.33± 1.35 0.60± 1.25
1 channel 0.71± 1.62 0.94± 0.92 0.28± 0.97

Training on all 8 channels (5 fluorescence channels & 3 brightfield channels)

#c
ha

nn
el

s
fo

rt
es

tin
g

8 channels 14.16 11.22 8.32
7 channels 35.13± 18.37 11.67± 1.17 9.41± 1.80
6 channels 22.76± 18.64 11.07± 2.22 9.96± 1.90
5 channels 11.75± 11.33 9.72± 3.46 9.66± 2.30
4 channels 6.18± 6.86 7.52± 4.19 8.27± 3.08
3 channels 2.95± 5.27 4.74± 3.96 5.60± 3.58
2 channels 0.61± 3.97 2.24± 2.62 2.41± 2.82
1 channel −0.92± 7.49 0.93± 1.15 0.79± 0.95
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Figure 10: Extra visualizations of the relevance heatmaps for both ViT-S/8 (8-channel view) and
ChannelViT-S/8 (single-channel view). Both models are trained on JUMP-CP using HCS across
all 8 channels. ChannelViT offers interpretability by highlighting the contributions made by each
individual channel.
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