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Abstract

Sampling-based decoding strategies have been
widely adopted for Large Language Models
(LLMs) in numerous applications, which tar-
get a balance between diversity and quality via
temperature tuning and tail truncation (e.g., top-
k and top-p sampling). Considering the high
dynamic range of the candidate next-tokens
given different prefixes, recent studies propose
to adaptively truncate the tail of LLM’s pre-
dicted distribution. Although improved results
haven been reported with these methods on
open-ended text generation tasks, the results
are highly dependent on the curated truncation
parameters and exemplar text. In this paper, we
propose a systematic way to estimate the intrin-
sic capacity of a truncation sampling method
by considering the trade-off between diversity
and risk at each decoding step, based on our
collected prefix tree which preserves the con-
text of a full sentence. Our work provides a
comprehensive comparison between existing
truncation sampling methods, as well as their
recommended parameters as a guideline for
users. Our code is available at anonymized
repository.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023; Jiang et al., 2023; Team
et al., 2023) have demonstrated incredible perfor-
mance in a variety of applications, and the reli-
ability of decoding strategies has become a criti-
cal concern, especially where diverse and coherent
samples are desired. Previous works have revealed
that likelihood-maximization such as beam search
(Fan et al., 2018; Holtzman et al., 2020; Welleck
et al., 2020; Meister et al., 2022) produces degen-
erated text which contains repetitive loops and in-
coherent context, particularly in the open-ended
tasks. Therefore, sampling-based decoding strate-
gies, e.g., Top-p (Holtzman et al., 2020) and Top-k
sampling (Radford et al., 2018; Fan et al., 2018),

have been widely adopted. The balance between
diversity and quality of the generated text could be
adjusted by tuning the temperature and truncation
position to some extend, but requires non-trivial
trial and error.

Recent studies (Basu et al., 2021; Zhu et al.,
2024; Hewitt et al., 2022; Meister et al., 2023) pro-
posed adaptive tail truncation mechanisms based on
different criteria or assumptions, which maintain an
allowed set of tokens with a flexible size according
to the given prefix. To validate the effectiveness
of a sampling method, they are often compared
through extrinsic evaluation based on open-ended
text generation applications. For example, story
generation (Fan et al., 2018) and document con-
tinuation (Merity et al., 2017). Various metrics
(Welleck et al., 2020; Meister et al., 2023; Pillutla
et al., 2021; Gao et al., 2021) have been adopted to
consider different aspects of the generated text.

We reveal that there exist two underlying issues
in the current evaluation setup, which might hinder
the assessment of a sampling method’s practical
significance in real-world applications:

* The improvement of one method against an-
other may be simply due to a better tuned
parameter for the targeted exemplar text:
the performance of sampling methods is sensi-
tive to their parameters, and parameter sweep
is often operated on a extremely sparse grid
due to the high computation cost. This is espe-
cially problematic considering the non-linear
dependency between performance and param-
eters.

» Users are agnostic to the optimal parame-
ters in real-world applications: Practically
speaking, users often pick parameters based
on their own need for the compromise be-
tween diversity and quality, after few number
of tryouts. There exits no universal optimal hy-
perparamters in different scenarios and users



are agnostic to the optimal hyerparameters for
their own tasks.

The above issues exactly indicate the need for an
evaluation that allows for estimating the theoretical
capacity of a sampling method, independent of
hyperparamter tuning. Moreover, the second issue
additionally highlights the need for identifying the
sweet spots of existing sampling methods, which
could serve as a general guideline for parameter
selection when applying a method.

Based on the above analysis, we propose a sys-
tematic way to assess the inherent adaptability of
a sampling method in different contexts. First, we
rearrange Wikipedia-English ! data in the form of
a word-level prefix tree structure, or the so-called
Trie (Fredkin, 1960; Ghasemi et al., 2019). As
shown in fig. 3, all possible words that appear after
a given prefix in the dataset are collected together
as the child nodes, and their preceding word is re-
garded as the parent node. Starting from "Begin
of Sequence" and collecting the child nodes recur-
sively, we are able to transform the full dataset
into a single prefix tree. It is noteworthy that a
n-gram Trie (Jurafsky, 2000) tends to produce over-
estimated data support size given a prefix (Bengio
et al., 2000), due to the lost of contextual infor-
mation outside the truncation window, as shown
in fig. 1. In a similar spirit to (Ding et al., 2024),
we intentionally construct the prefix tree with only
sentence-starting n-grams to preserve the context
of a full sentence. thus we refer to the collected
data as Context-Preserving Trie (CP-Trie).

Hot|dogs are considered as fast|food.

These(dogs are considered as fastfrunners.

Figure 1: N-gram models tend to provide an overesti-
mate of the data support size given a prefix (marked by a
red line) due to the truncation of a full sentence (marked
with a blue window).

Since the child nodes of the ancestral prefix
define the data support, the recall of a sampling
method w.r.t. data support is able to be computed.
Though the training datasets of modern LL.Ms are
significantly larger than Wikipedia dataset, such
a data support serve as a reasonable lower-bound,
especially when only sentence-level context are
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Figure 2: Histogram of the estimated optimal truncation
values for gpt2-x1, which achieve exactly full recall of
data support given different prefixes.

considered for evaluation, see section 4.1 for more
details.

Given the context-preserving prefix tree, we are
able to evaluate the theoretical capacity of a sam-
pling method, by examining the amount of tokens
within and out of the data support with varying
truncation parameter values. As can be seen in
fig. 2, the optimal truncation position vary drasti-
cally given different prefixes and Top-k sampling
could be regarded as a baseline method with zero
adaptability. Therefore, an effective adaptive trun-
cation mechanism is supposed to better follow
such a variation, so that improved diversity can
be achieved without harming the quality.

In summary, the contributions of our paper are
as follows:

* We establish an intrinsic evaluation bench-
mark based on the Context-Preserving Prefix
tree data, which allows for estimating the the-
oretical capacity of different sampling decod-
ing methods via our proposed diversity and
stability metrics.

* We conduct a comprehensive comparison of
existing sampling approaches on our proposed
benchmark, which serve as a guideline for
choosing the truncation sampling methods
and their corresponding parameter selection
in real-world applications.

2 Related Work

In this section, we summarize the recently proposed
sampling-based decoding strategies and the widely
adopted benchmarks as well as metrics for open-
ended text generation.

2.1 Sampling-based Decoding Methods

Vanilla sampling suffers from the risk of obtain-
ing incoherent tokens, thus truncation of the tail
distribution has been heavily discussed to alleviate
such an issue, e.g., Top-k ((Radford et al., 2018;
Fan et al., 2018)) and Top-p sampling ((Holtzman
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et al., 2020)). However, a fixed k or p is prob-
lematic when considering the high dynamic range
of next reasonable tokens, as pointed out in more
recent studies on adaptive sampling methods: Miro-
stat (Basu et al., 2021) is proposed based on Zipf
statistics and the assumption of a steady perplexity
during generation. Hewitt et al. (2022) introduce
n-sampling which dismisses the tokens with low
probabilities in the tail of the predicted distribution
based on absolute and relative thresholds. Locally
Typical Sampling (Meister et al., 2023) assumes the
generated text to retain a similar entropy rate to that
of human-generated text. Adaptive Decoding (Zhu
et al., 2024) proposes to keep the entropy of the
truncated distribution close to the original entropy.
Although these approaches have been empirically
evaluated on open-ended text generation tasks with
curated truncation parameters and exemplar text,
there still lacks a comprehensive comparison of
their adaptability in more general cases.

2.2 Evaluation of Sampling-based Decoding

Benchmarks The commonly adopted bench-
marks include story generation with Writing-
Prompts dataset (Fan et al., 2018), document
continuation with WikiText-103 dataset (Merity
et al., 2017) and abstractive summarization on the
CNN/DAILYMAIL dataset (Nallapati et al., 2016).
These benchmarks suffer from the problem of lim-
ited exemplar text, which fails to capture the di-
verse nature of human language.

Statistical metrics are mostly based on n-gram
statistics and focus on a single aspect, such as Rep-
etition (Welleck et al., 2020), Diversity (Meister
et al., 2023), Semantic coherence (Gao et al., 2021),
Zipt’s coefficient (Holtzman et al., 2020) (simple
Unigram rank-frequency statistics) and Self-BLEU
(Zhu et al., 2018).

Exemplar-based metrics dominate the evaluation
of sampling-based decoding methods. As observed
by Fan et al. (2018); Holtzman et al. (2020), lower
perplexity of the generated text doesn’t necessarily
indicate better quality. And Holtzman et al. (2020)
suggested that the perplexity of the generated text
is supposed to be close to that of the human text.
MAUVE (Pillutla et al., 2021) takes the trade-off
between precision and recall into account, by com-
paring the learnt distribution from a text generation
model to the distribution of human-written text us-
ing divergence frontiers. A recent study (Shi et al.,
2024a) provides a comprehensive evaluation on a
large collection of tasks, which are mostly based

on exemplar-based metrics.

3 Revisiting Truncation Sampling

3.1 Problem Formulation
Definition 3.1.

P Z €A
Rrunc($t|:)3<t) = { e(xt|m<t)/ <t x Tt
0 o.w.,
(D
where A,_, € V denotes the allowed set compris-

ing candidate next-tokens for a given prefix, and
Zgoy = Z%eAm<i Py(xi|x<y) is the renormaliza-
tion term.

Given the Context-Preserving Trie of a reference
dataset, we could compute the estimate of the opti-

mal allowed set as follows :

Definition 3.2. Let A, _, , be the allowed set af-
ter truncation given the prefix ;. The optimal
allowed set A7, _, corresponds to the allowed set
with the minimum size, while covering the full data
support. It is the solution to the following objective
function:
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3.2 Remaining Issues

We reveal three major issues in the evaluation of
truncation sampling. We first summarize the prob-
lem of directly using probability as quality metric,
then show the choice of truncation parameter has
a significant impact on the evaluation. Finally, we
reveal that a minor difference of Recall and Risk
values may result in significant changes in diversity
and quality of the generated text.

Unreliable Probability The probabilities of both
the predicted and empirical distribution are not re-
liable for reflecting the quality of a text.

* Higher likelihood doesn’t necessarily imply
higher quality of the generated text (Fan et al.,
2018; Holtzman et al., 2020; Nandwani et al.,
2023; Wang and Zhou, 2024).

* Word frequencies are average statistics across
various topics, and assuming the optimal prob-
abilities or the optimal ranking of each reason-
able next token is ill-posed.

* Empirical distribution suffers from the spar-
sity issue (Shareghi et al., 2019; Li et al., 2016;
Jurafsky, 2000) of the N-gram models.



Impact of Parameter Selection We highlight the
complexity and biases in parameter selection: Top-
k and Top-p have constant upper bounds, i.e., the
vocabulary size |V| and 1, respectively. In con-
trast, the upper bounds of n-sampling and adaptive
sampling are dependent on LLM’s predicted distri-
bution, because they truncate the tail distribution
based on the likelihood of tokens and the slope
of Min-Max scaled entropy, respectively. The im-
portance of identifying the effective ranges of such
parameters is also reflected in the authors’ choice of
numeral digit for their proposed parameters. For ex-
ample, AConf is set to 0.0005 in Zhu et al. (2024)
and € is chosen from 0.0001, 0.0009 and etc in
Hewitt et al. (2022). In comparison, the adopted
p values for top-p sampling are merely two digits
after zero, such as 0.95. Our analysis also shows
the significance of identifying the sweet spots of
different sampling methods.

The Butterfly Effect Although the top few samples
possess the most probability mass, we reveal that
a minor change in the size of the allowed set at
each decoding step could lead to major differences
in the quality of the generated text, due to LLMs’
auto-regressive nature. For example, the overall
probability of at least one bad token to appear at
the t*" position in a sequence of length T increases
rapidly as 7" increases (due to the product operator):

T
Py(Ary g Ay_,) =1~ HPQ(ZCt € Ay |T<t).

t=1

3)

Similarly, if only 1% probability mass is as-

signed to additional tokens at each step, for a se-

quence of length 7T, there will be 1 —0.997 chances
of obtaining extra diverse samples.

4 Method

In this section, we derive our method for evaluating
different sampling-based decoding strategies. To
circumvent the reliability issue of the probabilities
we merely check whether the predicted next-token
is in or out of the data support.

4.1 Probability-Independent Metrics

To quantify the diversity and quality of a sampling
method based on CP-Trie, we define the Recall
and Risk of a sampling method regarding a given
prefix below:

Definition 4.1.

A
Recally = Minimum <|’;<**7| , 1> 4)

Tt

‘Aw<t,9‘
Azl

Tt

Risky = Maximum ( -1, 0) 5

Ag_, 6 is dependent on the parameter selection
for truncation, e.g., k value in top-k sampling.
When the allowed set is smaller than the optimal
one after truncation, Recall is smaller than one and
Risk is regarded as zero. With further increased
size of the allowed set, Recall reaches one but Risk
emerges. Since the sizes of reasonable sets vary
drastically for different prefixes, it is not possible
to always retain the optimal allowed set with a pre-
defined parameter. In this case, we reveal that the
adaptability w.r.t. the varying size of data support
of a sampling method indeed determines its effec-
tiveness in real-world application.

Note that we ignore the risk of obtaining bad
samples within the optimal allowed set, because
such type of risk is unsolvable by truncation and
is rather determined by the inherent capacity of
the trained LLMs. However, such risk is less se-
vere comparing to that introduced by inappropriate
truncation, since LL.Ms exhibit a significant capa-
bility in predicting the next token (Touvron et al.,
2023; Achiam et al., 2023; Jiang et al., 2023; Team
et al., 2023) and most bad samples reside in the tail
distribution.

More importantly, our evaluation doesn’t rely
on the empirical probability, which is biased and
inaccurate due to limited dataset size or context
window size. However, the tokens which appear in
the dataset could be confidently regarded as reason-
able, regardless of their actual probabilities. In ad-
dition, considering that temperature could change
the flatness of distribution arbitrarily, we use ra-
tio of token counts instead of probability mass to
make the evaluation independent on temperature
tuning and exemplar text. For a more detailed dis-
cussion with supporting examples, please refer to
appendix A.2.

4.2 Parameter-Independent Evaluation

To eliminate the huge impact of parameter tuning
on fair evaluation, we define the final diversity met-
ric Recall at a given Risk level as follows:



Definition 4.2.

Recallgisk_o.; = Recally s.t. Risky = 0.1
(6)

Analogously, a family of critical values such as
Recallgjsk—o.5 can be easily defined.

From the definition, it can be seen that such a
metric is no longer dependent on the selection of
parameter, thus it reflects the genuine capacity of
a sampling method regardless of parameter tuning.
This allows for a fair comparison between differ-
ent sampling methods, especially considering their
drastically different effective ranges, as mentioned
in section 1 and section 3.2.

4.3 The Priority of Low Variance in Risk

Despite that more diverse text is desired for many
generation tasks, the minimum requirement of the
text to be coherent and reasonable is mostly pri-
oritized in real-world applications. Besides the
average recall at a given risk level, it is noteworthy
that a stable adaptive truncation mechanism is also
preferred , i.e., the variance of risks should be kept
as low as possible at the given average risk level.

Conjecture 4.3. At a given average risk level, the
total amount of risk when generating a sequence of
length T is reduced with decreased variance of the
risks at each decoding step.

The above conjecture can be mainly understood
by the auto-regressive generation process of LLMs,
as shown in eq. (3). The in-distribution probabil-
ity dependent on the risk at each decoding step
and is minimized when the product of the proba-
bilities is maximized at a given average risk level.
We could infer that the sum of the in-distribution
probabilities is approximated determined at a given
average risk level. For simplification, we assume
their sum is unchanged. According to AM-GM
inequality, the maximum of the product is achieved
when each individual component is equal to each
other. Roughly speaking, the less variance of the
probability masses at each step, the larger their
product and thus the smaller the total risk is.

5 Experiment

In this section, we conduct evaluation of existing
sampling-based decoding approaches on our re-
collected EnWiki CP-Trie dataset. We aim to esti-
mate the inherent adaptability of exiting sampling-
based methods and the results could be used as
references for the application of LLMs in open-
ended tasks.
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Figure 3: Illustration of the EnWiki CP-Trie. For brevity,
only two child nodes are shown at each depth. The
number at the left side of the slash symbol refers to the
branching factor at the current node, and the number at
the right side refers to the total number of leaves of the
sub-tree with the current node as the root node.

5.1 Data Collection

As mentioned above, the construction of the CP-
Trie is a re-collection of an existing dataset. We
apply the described procedure to the English sub-
set of Wikipedia dataset and name the resulting
dataset EnWiki CP-Trie. Although the core idea
is straight-forward to understand, we elaborate the
main design choices in the following:

Basic Unit There are many possible units for split-
ting the datasets into individual fragments, such
as article, paragraph, sentence and n-grams. Con-
structing a tree based on articles or paragraphs may
require a larger amount of data than the training
data of LLMs to guarantee an adequate number
of branches (because LLMs lean to interpolate),
whereas the construction based on n-grams suffers
from poor contextual information and are heavily
biased towards common tuplets of n tokens regard-
less of the context. Therefore, we adopt sentence
as the basic unit for our dataset, which guarantees
a coherent context at sentence-level and requires
a much smaller amount of data than the training
data.
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Figure 4: The total number of leaves on the CP-Trie
against the total number of processed articles.



Filtering To avoid invalid words or rare proper
names which are unreasonable for the model to
predict, we exclude the sentences containing such
words by checking their presence in the WORD
LIST dataset, which is available on the website 2.
It contains a total amount of 354986 words and
explicitly excludes proper names and compound
words. Section titles are also excluded, because
they are often incomplete sentences with poor con-
textual information.

Statistics Wikipedia-English dataset has a total
number of 6, 458, 670 articles, which results in En-
Wiki CP-Trie with 31,557, 359 number of leaves
after conversion, as shown in fig. 4.

Storage The extracted prefix tree is implemented
as a nested dictionary and saved in a single JSON
file. Since each lookup at any depth has constant
complexity, the retrieval from our dataset is highly
efficient. Moreover, the dictionary is easily extend-
able if extra data are needed for a more accurate
estimation of the full data support.

5.2 Evaluation Setup

Baselines Our evaluation includes Top-k sampling
(Radford et al., 2018; Fan et al., 2018), Top-p sam-
pling (Holtzman et al., 2020), n-sampling (Hewitt
et al., 2022), Adaptive sampling (Zhu et al., 2024)
and Mirostat (Basu et al., 2021) into comparison.
Evaluation Data To guarantee a tight lower bound
of the ideal data support given different prefixes,
we first sort the sub-nodes according to their total
number of leaves at each depth, then we select the
top 10 sub-trees with different sentence starting
tokens for evaluation. Moreover, we keep the top
2 child nodes at each depth till depth 6, since the
empirical data support becomes less adequate at
large depth. This results in an evaluation set of 593
prefixes with varying lengths in total.

Evaluation Metrics As discussed in section 4.2,
we measure the improvement in diversity via the
increase of average recall at a given risk level, and
the reduction of the total risk in the auto-regressive
process via the decrease of standard deviation at a
given risk level, also referred to as stability.
LLMs To ensure that the obtained conclusion gen-
eralizes to different models, we adopt Llama-2
(Touvron et al., 2023), Llama-3 (Dubey et al.,
2024), Mistral (Jiang et al., 2023, 2024) families
of different sizes and GPT-2-XL (Radford et al.,
2019) for comparison.

2word-list dataset homepage

Implementation Our implementation mainly re-
lies on Pytorch (Paszke et al., 2017), HuggingFace
(Wolf et al., 2020) and OpenAl API 3 library. We
implement a truncation sampling method ourselves
if the official implementation is not available. For
all truncation methods, the minimum size of the
allowed set is set to 1 to prevent breaking the sam-
pling process.

5.3 Comparison at Different Risk Levels

In this section, we conduct a comprehensive study
of different truncation sampling methods at differ-
ent risk levels. As discussed in section 4.2, this
allows for a fair comparison which is independent
of parameter tuning. Moreover, we provide the
corresponding parameters for each truncation sam-
pling method at different risk levels, which could
serve as user reference for the parameter selection
of the compared methods.

As can be seen in table 1, different truncation
sampling methods are compared at the average risk
level of 1, 5, and 15 respectively. As discussed
in section 4.1, our defined risk and recall metrics
explicitly exclude the source of risk induced by a
LLM’s capacity by design, thus similar parameter
values correspond to the same risk level for most
sampling methods across various model types and
sizes. This exactly showcases the advantage of
our evaluation being parameter-independent and
sustainable to the rapid update of LLMs. Among
the evaluated methods, Eta-sampling (Hewitt et al.,
2022) is the most sensitive to the changes of model
type and size especially at risk levels of 1 and 5,
which might hinder its practical significance at a
low risk level.

Regarding diversity, i.e., the average recall at the
same average risk level, Adaptive sampling (Zhu
et al., 2024) and Mirostat (Basu et al., 2021) are
the best and second performers, which consistently
outperform the Top-k baseline by a considerable
margin. Top-p mostly exhibits inferior recall com-
paring to the Top-k baseline, so does Eta-sampling
at the risk level of 1. As for the stability repre-
sented by standard error of risks, Top-k sampling
reaches the best scores in most cases. In com-
parison, Adaptive sampling and Mirostat deliver
comparable standard error of risks to Top-k sam-
pling, whereas Top-p sampling and Eta-sampling
are again inferior. Considering both diversity and
stability, Adaptive sampling and Mirostat are the

3ht’cps: //pypi.org/project/openai/
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Model ‘ Method

Avg. risk level 1

Avg. risk level 5

Avg. risk level 15

Parameter | Risk Std Error | Recall T | Parameter | Risk Std Error | Recall T [ Parameter | Risk Std Error | Recall T

I Top-k 15 0.006 0.220 64 0.613 0.290 184 1.781 0.340
> Top-p 0.5705 0.015 0.170 0.746 2.129 0.240 0.8555 6.210 0.338
a Adaptive 9.5e-4 0.006 0.252 1.1e-4 0.679 0.339 2.5e-05 2.241 0.413
% Eta 0.318 0.013 0.198 0.011 1.484 0.301 0.001 4.261 0.404

Mirostat 4.425 0.005 0.236 5.9475 0.717 0.326 6.76 2.501 0.401
e Top-k 14 0.126 0.226 61 0.587 0.296 177 1.722 0.369
Py Top-p 0.54 0.529 0.156 0.7665 2.331 0.254 0.9 6.208 0.400
g Adaptive 1.1e-3 0.154 0.257 1.4e-4 0.856 0.364 3.1e-5 2.966 0.470
= Eta 0.512 0.563 0.192 0.023 2.599 0.297 0.002 6.531 0.407
~ Mirostat 4.253 0.133 0.236 5.82 0.650 0.349 6.628 2.286 0.474
8 Top-k 14 0.128 0.232 60 0.583 0.307 174 1.712 0.375
Z Top-p 0.6535 0.475 0.189 0.8465 2.136 0.316 0.9395 5.522 0.468
& Adaptive 0.0011 0.142 0.269 1.2e-4 0.796 0.374 2.3e-5 2.697 0.485
£ Eta 0.092 0.304 0.236 0.003 1.590 0.378 2.1e-4 4.243 0.510
=i Mirostat 4.16 0.135 0.238 5.7875 0.684 0.353 6.67 2.125 0.478
a Top-k 14 0.128 0.228 59 0.576 0.290 172 1.701 0.346
s Top-p 0.5395 0.451 0.154 0.736 2.061 0.224 0.855 5.770 0.326
< Adaptive 1.1e-3 0.167 0.260 1.7e-4 0.787 0.343 3.7e-5 2.685 0.418
E Eta 0.673 0.445 0.181 0.029 2.112 0.271 0.002 6.009 0.373
~ Mirostat 4.24 0.139 0.230 5.8175 0.804 0.318 6.693 2.630 0.393
8 Top-k 14 0.127 0.230 60 0.581 0.295 173 1.695 0.352
E Top-p 0.5695 0.502 0.158 0.758 2.386 0.237 0.8705 6.685 0.332
& Adaptive 1.1e-3 0.137 0.263 1.4e-4 0.787 0.353 3.16e-5 2.778 0.424
£ Eta 0.37 0.137 0.263 0.014 2.231 0.295 0.001 6.265 0.398
= Mirostat 4.21 0.138 0.230 591 0.708 0.332 6.84 2.193 0.417
= Top-k 14 0.126 0.224 62 0.596 0.297 181 1.759 0.364
i Top-p 0.6565 0.539 0.194 0.8375 2.476 0.303 0.9315 6.315 0.447
g Adaptive 0.00105 0.152 0.260 1.2e-4 0.809 0.364 2.2e-5 2.757 0.466
§< Eta 0.075 0.307 0.243 0.003 1.542 0.368 1.96e-4 4712 0.505

Mirostat 4.1825 0.141 0.236 5.8125 0.721 0.345 6.71 2213 0.468
/A Top-k 15 0.134 0.229 63 0.598 0.301 183 1.757 0.366
& Top-p 0.6505 0.535 0.192 0.8375 2.423 0.303 0.9325 6.139 0.456
= Adaptive 0.00105 0.148 0.265 1.1e-4 0.798 0.372 2.1e-5 2.802 0.476
‘;E Eta 0.087 0.335 0.241 0.003 1.822 0.375 2.15e-4 4.922 0.506
= Mirostat 42775 0.143 0.238 5.845 0.710 0.346 6.6875 2213 0.461

Table 1: Risk standard error (indicating stability) and recall mean (indicating diversity) of different truncation
sampling methods at different risk levels using different models. The corresponding parameter of each method at a
given risk level is also provided. The best and worst scores are marked in bold and blue, respectively. For more

detailed results, please refer to appendix A.1.

top 2 adaptive methods to be recommended, and
Top-p sampling shall be the last to be considered.
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only 32, 000 vocabulary size. Moreover, our met-
rics also explicitly exclude the source of risk within
the optimal allowed set, which is heavily dependent
on a LLM’s capacity.
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Figure 5: Comparing the average recall at give risk
levels using different model sizes.

We also show in fig. 5 that larger models of the
same family have higher average recall at the same
risk level comparing to the smaller ones. This con-
forms to the fact that larger models better captures
the human text distribution. Please note that our
metrics doesn’t allow a direct comparison between
different model families, mainly due to their differ-
ent vocabulary sizes and tokenizers, e.g., Llama-3
has a 128,256 vocabulary size, while Llama-2 has

—2.75-2.50-2.25-2.00-1.75-1.50-1.25-1.00 —2.75-2.50-2.25-2.00-1.75-1.50-1.25-1.00
Entrany Entrany

(a) The Pearson’s correlation (b) The Pearson’s correlation
is 0.24777 for GPT2-XL. is 0.24784 for Llama-2-7B.

Figure 6: Scatter plots between the entropy values and
optimal truncation values.

Although Top-p sampling is indeed also adap-
tive regarding the truncation position, we show that
Top-p sampling have a inherent limitation. When
a larger portion of the probability mass is concen-
trated in the first few tokens (this often indicates



Question gpt2x1

What happens to you if you eat water-  You will die.

melon seeds?

Where did fortune cookies originate? ~ Fortune cookies originated in the

United States.

Figure 7: Greedy decoding might exclude the paths
of correct answers, as shown in the answer to the first
question taken from the question list of Truthful QA.

smaller entropy), a fixed cumulative probability
threshold will cut a longer tail off, and vice versa.
However, there’s merely a weak correlation be-
tween the entropy of the LLM’s prediction and
optimal truncation values, see fig. 6.

Mean(std) Accuracy 1

Methods Avg. risk level 1 Avg. risk level 5 Avg. risk level 15
Greedy 0.338

Naive 0.421(0.004)

Top-k 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table 2: Evaluation on the TruthfulQA benchmark un-
der the open-ended generation setup. The best and worst
scores are marked in bold and blue, respectively. For
more detailed results, please refer to appendix A.1.
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Figure 8: The scatter plots of TruthfulQA accuracy
against risk standard error (first row) and recall mean
(second row) at different risk levels.

5.4 Validation on TruthfulQA Benchmark

Although our evaluation protocol is grounded by
the thorough design process with reasonable simpli-
fications, we would like to verify its effectiveness

in the real-world scenario using the Truthful QA
Benchmark (Lin et al., 2021). We evaluate the per-
formance of gpt2-xl1 model with each truncation
sampling method at the average risk levels of 1,
5 and 15 respectively. The evaluation results are
shown in section 5.3. For all the methods other
than greedy decoding, we run 3 times at each av-
erage risk level and report the mean and standard
deviation (parenthetical value).

It can be observed that greedy decoding falls far
behind sampling-based decoding strategies, which
conforms to the issue of likelihood-oriented decod-
ing discussed in section 1, as well as the findings
in recent studies (Cobbe et al., 2021; Wang et al.,
2023; Wang and Zhou, 2024; Shi et al., 2024a).
The examples in fig. 7 also explain the unsatis-
factory performance of greedy decoding, i.e., the
decoding paths of the corrected answers might be
excluded after ignoring the non-peak likelihoods.
Similarly, all the truncation sampling methods at
the low risk level achieves lower accuracy compar-
ing to Naive sampling, due to the over-truncation
of the decoding paths. At the average risk level of
5, all the truncation sampling methods slightly im-
prove their own accuracy. Top-k sampling, Adap-
tive sampling and Mirostat also reach compara-
ble or slightly higher accuracy in comparison to
Naive sampling. However, further increased aver-
age risk level (means improved average recall and
thus diversity) doesn’t benefit the performance on
TruthfulQA, which is plausible. Moreover, there
exists a even stronger correlation between Risk SE
(Standard Error of Risks) and Truthful QA accuracy,
validating the importance of stability when evalu-
ating an adaptive decoding method. The strong
correlation between Truthful QA accuracy and our
proposed average recall as well as standard error of
risks at different risk levels validate the soundness
and effectiveness of our evaluation method.

6 Conclusion

In this work, we propose a evaluation protocol to
assess the intrinsic capacity of truncation sampling
methods for open-ended text generation. Our eval-
uation enjoys the merit of being independent on
parameter tuning for the curated tasks. Its effec-
tiveness is further validated by the results on the
open-ended text generation setup of TruthfulQA
Benchmark. The evaluation results also serve as
user reference for creative tasks.



7 Limitations

In this work, we focus on the truncation sampling
methods specially designed for the open-ended text
generation scenario. There exist many related de-
coding strategies, which aim at improving different
aspects of LLMs. For example, a line of decoding
strategies are proposed to alleviate Hallucination or
improve the reasoning ability, e.g., Dola (Chuang
et al., 2023), Context-aware decoding (Shi et al.,
2024b), Contrastive decoding (O’Brien and Lewis,
2023) and etc. However, they are beyond the scope
of this study and thus not included in the discus-
sion. Although our study is only based on text
data in English for clarity, the conclusion should
be transferable to other languages as well.

8 Broader Impact

Our study on the intrinsic capacity of sampling
methods and their appropriate parameters for open-
text generation may further promote the applica-
tion of LLMs in creative industries. There exists a
potential risk that our provided findings might be
abused for generating harmful or fake information.
However, our study itself is neutral and the men-
tioned risk is a general issue that LLMs face. We
call for the attention on Al-Safety in the commu-
nity.
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A Appendix

A.1 Complete Record of the Experiment Runs

The scores of the individual runs on Truthful QA
benchmark are recorded in appendix A.2, and the
means and standard errors of recalls and risks at all
average risk levels are listed in table 4. Note that
due to a fixed amount of computation budget, we
search the corresponding parameter value for each
truncation sampling method till the average risk is
close enough to the predefined value, thus resulting
in the variations of the average risks. However,
such variations are negligible given the minor dif-
ferences.

A.2 The Advantage of
Probability-Independent Metrics

In this section, we explain the practical advantages
of our proposed probability-independent recall and
risk metrics. As can be seen in fig. 9, the empirical
distribution aligns with the by gpt2-xl predicted
distribution given the same prefix in general: most
of the tokens which posses high likelihood in the
prediction also has a high probability based on the
word frequencies of our collected CP-Trie data.
However, there exists two differences:

* Some tokens with high likelihood according to
gpt2-x1 have much lower probability accord-
ing to the empirical distribution. The ranking
of each tokens w.r.t. probability also differ in
the two distributions.

* A few tokens which should be reasonable can-
didates (by manual check) have 0 probability
according to the empirical distribution.

For the first issue, as discussed in section 3.2,
there exists no ideal probabilities for each token,
and the discrepancy is not solvable by simply in-
creasing the size of the data. For example, the "per-
fect" probabilities of the candidate tokens "with"
and "at" are undefined and could even be regarded
as equivalently important for open-ended text gen-
eration.

The second difference highlights the reliability
of LLMs, i.e., the tokens which are assigned high
likelihoods are in most cases reasonable. Note that
we ignore the risk within the estimated optimal al-
lowed set by design: All the tokens are counted as
reasonable till the last token which has non-zero
empirical probability, when they are arranged in a
descending order according to the predicted proba-
bilities. Thus these tokens with zero probabilities
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in the empirical distribution will not affect our eval-
uation of risk, making our method robust to noises
and insufficient data support.



Evaluation Runs Mean/Std

Methods Run T at average risk levels [ Run 2 at average risk levels | Run 3 at average risk levels average risk levels

I 5 15 [ 5 15 [ 5 15 I 5 15
Greedy Decoding 0.338
Naive Sampling 0.420 0.426 0.416 0.421(0.004)
Top-k Sampling 0412 0.447 0.410 0.389 0432 0.435 0.402  0.428 0.419 0.401(0.010)  0.436(0.008)  0.421(0.010)
Top-p Sampling 0.337  0.370 0.382 0.367  0.393 0.379 0362  0.370 0.405 0.355(0.013)  0.378(0.011)  0.389(0.012)
Adaptive Sampling | 0.403  0.416 0.433 0.403 0416 0.419 0.378  0.440 0.411 0.395(0.012)  0.424(0.011)  0.421(0.009)
Eta Sampling 0395 0419 0.442 0.387  0.394 0.419 0382 0.389 0.379 0.388(0.005)  0.401(0.013)  0.413(0.026)
Mirostat 0.424 0417 0.430 0.399  0.443 0.433 0415 0414 0.412 0.413(0.010)  0.425(0.013)  0.425(0.009)

Table 3: Evaluation on the TruthfulQA benchmark. Since the GPT-3 API is no longer available, we use the by the
authors recommended BLEURT accuracy for comparison under the open-ended generation setup.

Method GPT2-XL
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 15 1.029 (0.006) 0.220(0.0006) 64 5.040 (0.613) 0.290 (0.017) 184 14.983(1.781) 0.340 (0.018)
Top-p 0.5705 0.999 (0.015) 0.170 (0.0005) 0.746 5.011(2.129) 0.240 (0.015) 0.8555 15.022 (6.210) 0.338 (0.016)
Adaptive 9.5e-4 1.000 (0.006) 0.252 (0.0007) 0.00011 4.997 (0.679) 0.339(0.018) 2.5e-05 14.995 (2.241) 0.413 (0.018)
Eta 0.318 1.000 (0.013) 0.198 (0.0005) 0.011 4.945 (1.484) 0.301 (0.016) 0.001 14.998 (4.261) 0.404 (0.017)
Mirostat 4.425 0.999 (0.005) 0.236 (0.0007) 5.9475 5.001 (0.717) 0.326 (0.018) 6.76 14.982 (2.501) 0.401 (0.018)
Method Llama-2-7b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 14 0.986 (0.126) 0.226 (0.016) 61 4.987 (0.587) 0.296 (0.017) 177 14.961 (1.722) 0.369 (0.018)
Top-p 0.54 0.999 (0.529) 0.156 (0.012) 0.7665 4.990 (2.331) 0.254 (0.015) 0.9 14.989 (6.208) 0.400 (0.016)
Adaptive 0.0011 1.051 (0.154) 0.257 (0.016) 0.00014 4.991 (0.856) 0.364 (0.017) 3.1e-5 14.995 (2.966) 0.470 (0.017)
Eta 0.512 1.000 (0.563) 0.192 (0.014) 0.023 5.007 (2.599) 0.297 (0.016) 0.002 13.487 (6.531) 0.407 (0.017)
Mirostat 4.253 1.000 (0.133) 0.236 (0.016) 5.82 4.993 (0.650) 0.349 (0.018) 6.628 15.022 (2.286) 0.474 (0.017)
Method Llama-3-8B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 14 1.023 (0.128) 0.228 (0.016) 59 4.982 (0.576) 0.290 (0.017) 172 15.025 (1.701)  0.346 ( 0.018)
Top-p 0.5395 1.000 (0.451) 0.154 (0.013) 0.736 4.998 (2.061) 0.224 (0.014) 0.855 14.993 (5.770)  0.326 ( 0.016)
Adaptive 0.0011 1.133 (0.167) 0.260 (0.017) 0.00017 5.006 (0.787) 0.343 (0.018) 3.7e-5 15.007 (2.685)  0.418 (0.018)
Eta 0.673 1.000 (0.445) 0.181 (0.014) 0.029 5.009 (2.112) 0.271 (0.016) 0.002 15.012 (6.009)  0.373 (0.017)
Mirostat 4.24 1.001 (0.139) 0.230 (0.016) 5.8175 5.001 (0.804) 0.318 (0.018) 6.6925 14.996 (2.630)  0.393 (0.018)
Method Llama-3-70B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 14 1.014 (0.127) 0.230 ( 0.016) 60 5.038 (0.581) 0.295 ( 0.017) 173 15.024 (1.695)  0.352(0.018)
Top-p 0.5695 1.001 ( 0.502) 0.158 (0.013) 0.758 4.999 (2.386) 0.237 (0.015) 0.8705 14.960 ( 6.685)  0.332( 0.016)
Adaptive 0.0011 1.004 ( 0.137) 0.263 ( 0.017) 0.00014 5.013 (0.787) 0.353 (0.018) 3.16e-5 14.986 (2.778)  0.424 (0.018)
Eta 0.37 1.004 (0.137)  0.263(0.017) 0.014 5.032 (2.231) 0.295 ( 0.016) 0.001 15.076 (6.265)  0.398 (0.018)
Mirostat 4.21 1.001 (0.138)  0.230(0.016) 591 5.001 ( 0.708) 0.332(0.018 6.84 15.021 (2.193)  0.417 (0.018)
Method Llama-2-70b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 14 1.002 (0.128)  0.232(0.016) 60 4.982 (0.583) 0.307 (0.017) 174 14.964 (1.712)  0.375 (0.018)
Top-p 0.6535 0.999 (0.475)  0.189(0.013) 0.8465 4.988 (2.136) 0.316 (0.016) 0.9395 15.019 (5.522)  0.468 ( 0.016)
Adaptive 0.0011 1.000 (0.142)  0.269 (0.017) 1.2¢e-4 4.995 ( 0.796) 0.374 (0.017) 2.3e-5 15.007 (2.697)  0.485(0.017)
Eta 0.092 1.002 (0.304)  0.236 (0.015) 0.003 5.057 ( 1.590) 0.378 (0.017) 0.00021 15.001 (4.243)  0.510( 0.017)
Mirostat 4.16 1.001 ( 0.135) 0.238 (0.016 5.7875 5.004 (0.684) 0.353 (0.018) 6.67 14.991 (2.125)  0.478 (0.017)
Method . Mixtral-8x78 ,
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 15 1.028 (0.134) 0.229 (0.016) 63 4.978 (0.598) 0.301 (0.017) 183 14.967 (1.757)  0.366 ( 0.018)
Top-p 0.6505 1.000 (0.535)  0.192(0.014) 0.8375 5.007 (2.423) 0.303 ( 0.015) 0.9325 14.966 (6.139)  0.456 (0.016)
Adaptive 0.00105 1.000 (0.148)  0.265(0.017) 0.00011 4.994 ( 0.798) 0.372 (0.018) 2.1e-5 15.014 (2.802)  0.476 (0.017)
Eta 0.087 1.001 (0.335)  0.241(0.015) 0.003 5.061 (1.822) 0.375(0.017) 0.000215 14.991 (4.922)  0.506 ( 0.017)
Mirostat 4.2775 1.000 ( 0.143) 0.238 ( 0.016) 5.845 4.995 (0.710) 0.346 ( 0.018) 6.6875 14.998 (2.213)  0.461 (0.018)
Method , Mistral-7B ,
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall
Top-k 14 0.965 ( 0.126) 0.224 ( 0.016) 62 4.968 ( 0.596) 0.297 (0.017) 181 15.006 (1.759)  0.364 ( 0.018)
Top-p 0.6565 1.001 ( 0.539) 0.194 (0.014) 0.8375 4.996 (2.476)  0.303 (0.016) 0.9315 15.038 (6.315)  0.447 (0.016)
Adaptive 0.00105 1.001 (0.152) 0.260 ( 0.016) 0.000115 4.993 (0.809) 0.364 (0.018) 2.2e-5 14.999 (2.757)  0.466 ( 0.017)
Eta 0.075 0.997 ( 0.307) 0.243 ( 0.015) 0.003 4.640 ( 1.542) 0.368 (0.017) 0.000196 15.009 (4.712)  0.505 ( 0.017)
Mirostat 4.1825 1.000 ( 0.141) 0.236 ( 0.016) 5.8125 4.999 (0.721) 0.345 ( 0.018) 6.71 14978 (2.213)  0.468 ( 0.018)

Table 4: Critical Parameters of different truncation sampling methods at different risk levels using different models.
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(a) Top 30 by gpt2-xl predicted next candidate tokens and (b) Top 30 by gpt2-x1 predicted next candidate tokens and their
their corresponding likelihood given the prefix "The film was" corresponding empirical probability given the prefix "The film

"

was

(c) Top 30 by gpt2-xI predicted next candidate tokens and (d) Top 30 by gpt2-x1 predicted next candidate tokens and their
their corresponding likelihood given the prefix "The film was corresponding empirical probability given the prefix "The film
shot". was shot".

Figure 9: Comparing the probabilities predicted by gpt2-x1 and calculated using the word frequencies based on our
collected CP-Trie data.
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