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Abstract001

Sampling-based decoding strategies have been002
widely adopted for Large Language Models003
(LLMs) in numerous applications, which tar-004
get a balance between diversity and quality via005
temperature tuning and tail truncation (e.g., top-006
k and top-p sampling). Considering the high007
dynamic range of the candidate next-tokens008
given different prefixes, recent studies propose009
to adaptively truncate the tail of LLM’s pre-010
dicted distribution. Although improved results011
haven been reported with these methods on012
open-ended text generation tasks, the results013
are highly dependent on the curated truncation014
parameters and exemplar text. In this paper, we015
propose a systematic way to estimate the intrin-016
sic capacity of a truncation sampling method017
by considering the trade-off between diversity018
and risk at each decoding step, based on our019
collected prefix tree which preserves the con-020
text of a full sentence. Our work provides a021
comprehensive comparison between existing022
truncation sampling methods, as well as their023
recommended parameters as a guideline for024
users. Our code is available at anonymized025
repository.026

1 Introduction027

Large Language Models (LLMs) (Achiam et al.,028

2023; Touvron et al., 2023; Jiang et al., 2023; Team029

et al., 2023) have demonstrated incredible perfor-030

mance in a variety of applications, and the reli-031

ability of decoding strategies has become a criti-032

cal concern, especially where diverse and coherent033

samples are desired. Previous works have revealed034

that likelihood-maximization such as beam search035

(Fan et al., 2018; Holtzman et al., 2020; Welleck036

et al., 2020; Meister et al., 2022) produces degen-037

erated text which contains repetitive loops and in-038

coherent context, particularly in the open-ended039

tasks. Therefore, sampling-based decoding strate-040

gies, e.g., Top-p (Holtzman et al., 2020) and Top-k041

sampling (Radford et al., 2018; Fan et al., 2018),042

have been widely adopted. The balance between 043

diversity and quality of the generated text could be 044

adjusted by tuning the temperature and truncation 045

position to some extend, but requires non-trivial 046

trial and error. 047

Recent studies (Basu et al., 2021; Zhu et al., 048

2024; Hewitt et al., 2022; Meister et al., 2023) pro- 049

posed adaptive tail truncation mechanisms based on 050

different criteria or assumptions, which maintain an 051

allowed set of tokens with a flexible size according 052

to the given prefix. To validate the effectiveness 053

of a sampling method, they are often compared 054

through extrinsic evaluation based on open-ended 055

text generation applications. For example, story 056

generation (Fan et al., 2018) and document con- 057

tinuation (Merity et al., 2017). Various metrics 058

(Welleck et al., 2020; Meister et al., 2023; Pillutla 059

et al., 2021; Gao et al., 2021) have been adopted to 060

consider different aspects of the generated text. 061

We reveal that there exist two underlying issues 062

in the current evaluation setup, which might hinder 063

the assessment of a sampling method’s practical 064

significance in real-world applications: 065

• The improvement of one method against an- 066

other may be simply due to a better tuned 067

parameter for the targeted exemplar text: 068

the performance of sampling methods is sensi- 069

tive to their parameters, and parameter sweep 070

is often operated on a extremely sparse grid 071

due to the high computation cost. This is espe- 072

cially problematic considering the non-linear 073

dependency between performance and param- 074

eters. 075

• Users are agnostic to the optimal parame- 076

ters in real-world applications: Practically 077

speaking, users often pick parameters based 078

on their own need for the compromise be- 079

tween diversity and quality, after few number 080

of tryouts. There exits no universal optimal hy- 081

perparamters in different scenarios and users 082
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are agnostic to the optimal hyerparameters for083

their own tasks.084

The above issues exactly indicate the need for an085

evaluation that allows for estimating the theoretical086

capacity of a sampling method, independent of087

hyperparamter tuning. Moreover, the second issue088

additionally highlights the need for identifying the089

sweet spots of existing sampling methods, which090

could serve as a general guideline for parameter091

selection when applying a method.092

Based on the above analysis, we propose a sys-093

tematic way to assess the inherent adaptability of094

a sampling method in different contexts. First, we095

rearrange Wikipedia-English 1 data in the form of096

a word-level prefix tree structure, or the so-called097

Trie (Fredkin, 1960; Ghasemi et al., 2019). As098

shown in fig. 3, all possible words that appear after099

a given prefix in the dataset are collected together100

as the child nodes, and their preceding word is re-101

garded as the parent node. Starting from "Begin102

of Sequence" and collecting the child nodes recur-103

sively, we are able to transform the full dataset104

into a single prefix tree. It is noteworthy that a105

n-gram Trie (Jurafsky, 2000) tends to produce over-106

estimated data support size given a prefix (Bengio107

et al., 2000), due to the lost of contextual infor-108

mation outside the truncation window, as shown109

in fig. 1. In a similar spirit to (Ding et al., 2024),110

we intentionally construct the prefix tree with only111

sentence-starting n-grams to preserve the context112

of a full sentence. thus we refer to the collected113

data as Context-Preserving Trie (CP-Trie).114

Figure 1: N-gram models tend to provide an overesti-
mate of the data support size given a prefix (marked by a
red line) due to the truncation of a full sentence (marked
with a blue window).

Since the child nodes of the ancestral prefix115

define the data support, the recall of a sampling116

method w.r.t. data support is able to be computed.117

Though the training datasets of modern LLMs are118

significantly larger than Wikipedia dataset, such119

a data support serve as a reasonable lower-bound,120

especially when only sentence-level context are121

1https://dumps.wikimedia.org/

Figure 2: Histogram of the estimated optimal truncation
values for gpt2-xl, which achieve exactly full recall of
data support given different prefixes.

considered for evaluation, see section 4.1 for more 122

details. 123

Given the context-preserving prefix tree, we are 124

able to evaluate the theoretical capacity of a sam- 125

pling method, by examining the amount of tokens 126

within and out of the data support with varying 127

truncation parameter values. As can be seen in 128

fig. 2, the optimal truncation position vary drasti- 129

cally given different prefixes and Top-k sampling 130

could be regarded as a baseline method with zero 131

adaptability. Therefore, an effective adaptive trun- 132

cation mechanism is supposed to better follow 133

such a variation, so that improved diversity can 134

be achieved without harming the quality. 135

In summary, the contributions of our paper are 136

as follows: 137

• We establish an intrinsic evaluation bench- 138

mark based on the Context-Preserving Prefix 139

tree data, which allows for estimating the the- 140

oretical capacity of different sampling decod- 141

ing methods via our proposed diversity and 142

stability metrics. 143

• We conduct a comprehensive comparison of 144

existing sampling approaches on our proposed 145

benchmark, which serve as a guideline for 146

choosing the truncation sampling methods 147

and their corresponding parameter selection 148

in real-world applications. 149

2 Related Work 150

In this section, we summarize the recently proposed 151

sampling-based decoding strategies and the widely 152

adopted benchmarks as well as metrics for open- 153

ended text generation. 154

2.1 Sampling-based Decoding Methods 155

Vanilla sampling suffers from the risk of obtain- 156

ing incoherent tokens, thus truncation of the tail 157

distribution has been heavily discussed to alleviate 158

such an issue, e.g., Top-k ((Radford et al., 2018; 159

Fan et al., 2018)) and Top-p sampling ((Holtzman 160
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et al., 2020)). However, a fixed k or p is prob-161

lematic when considering the high dynamic range162

of next reasonable tokens, as pointed out in more163

recent studies on adaptive sampling methods: Miro-164

stat (Basu et al., 2021) is proposed based on Zipf165

statistics and the assumption of a steady perplexity166

during generation. Hewitt et al. (2022) introduce167

η-sampling which dismisses the tokens with low168

probabilities in the tail of the predicted distribution169

based on absolute and relative thresholds. Locally170

Typical Sampling (Meister et al., 2023) assumes the171

generated text to retain a similar entropy rate to that172

of human-generated text. Adaptive Decoding (Zhu173

et al., 2024) proposes to keep the entropy of the174

truncated distribution close to the original entropy.175

Although these approaches have been empirically176

evaluated on open-ended text generation tasks with177

curated truncation parameters and exemplar text,178

there still lacks a comprehensive comparison of179

their adaptability in more general cases.180

2.2 Evaluation of Sampling-based Decoding181

Benchmarks The commonly adopted bench-182

marks include story generation with Writing-183

Prompts dataset (Fan et al., 2018), document184

continuation with WikiText-103 dataset (Merity185

et al., 2017) and abstractive summarization on the186

CNN/DAILYMAIL dataset (Nallapati et al., 2016).187

These benchmarks suffer from the problem of lim-188

ited exemplar text, which fails to capture the di-189

verse nature of human language.190

Statistical metrics are mostly based on n-gram191

statistics and focus on a single aspect, such as Rep-192

etition (Welleck et al., 2020), Diversity (Meister193

et al., 2023), Semantic coherence (Gao et al., 2021),194

Zipf’s coefficient (Holtzman et al., 2020) (simple195

Unigram rank-frequency statistics) and Self-BLEU196

(Zhu et al., 2018).197

Exemplar-based metrics dominate the evaluation198

of sampling-based decoding methods. As observed199

by Fan et al. (2018); Holtzman et al. (2020), lower200

perplexity of the generated text doesn’t necessarily201

indicate better quality. And Holtzman et al. (2020)202

suggested that the perplexity of the generated text203

is supposed to be close to that of the human text.204

MAUVE (Pillutla et al., 2021) takes the trade-off205

between precision and recall into account, by com-206

paring the learnt distribution from a text generation207

model to the distribution of human-written text us-208

ing divergence frontiers. A recent study (Shi et al.,209

2024a) provides a comprehensive evaluation on a210

large collection of tasks, which are mostly based211

on exemplar-based metrics. 212

3 Revisiting Truncation Sampling 213

3.1 Problem Formulation 214

Definition 3.1.

Ptrunc(xt|x<t) =

{
Pθ(xt|x<t)/Zx<t x ∈ Ax<t

0 o.w.,
(1) 215

where Ax<t ∈ V denotes the allowed set compris- 216

ing candidate next-tokens for a given prefix, and 217

Zx<t =
∑

x∈Ax<t
Pθ(xt|x<t) is the renormaliza- 218

tion term. 219

Given the Context-Preserving Trie of a reference 220

dataset, we could compute the estimate of the opti- 221

mal allowed set as follows : 222

Definition 3.2. Let Ax<t,θ
be the allowed set af- 223

ter truncation given the prefix x<t. The optimal 224

allowed set A∗
x<t

corresponds to the allowed set 225

with the minimum size, while covering the full data 226

support. It is the solution to the following objective 227

function: 228

min
θ
|Ax<t,θ

|

s.t.
|Ax<t,θ

⋂
Dx<t |

|Dx<t |
= 100%.

(2) 229

3.2 Remaining Issues 230

We reveal three major issues in the evaluation of 231

truncation sampling. We first summarize the prob- 232

lem of directly using probability as quality metric, 233

then show the choice of truncation parameter has 234

a significant impact on the evaluation. Finally, we 235

reveal that a minor difference of Recall and Risk 236

values may result in significant changes in diversity 237

and quality of the generated text. 238

Unreliable Probability The probabilities of both 239

the predicted and empirical distribution are not re- 240

liable for reflecting the quality of a text. 241

• Higher likelihood doesn’t necessarily imply 242

higher quality of the generated text (Fan et al., 243

2018; Holtzman et al., 2020; Nandwani et al., 244

2023; Wang and Zhou, 2024). 245

• Word frequencies are average statistics across 246

various topics, and assuming the optimal prob- 247

abilities or the optimal ranking of each reason- 248

able next token is ill-posed. 249

• Empirical distribution suffers from the spar- 250

sity issue (Shareghi et al., 2019; Li et al., 2016; 251

Jurafsky, 2000) of the N-gram models. 252
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Impact of Parameter Selection We highlight the253

complexity and biases in parameter selection: Top-254

k and Top-p have constant upper bounds, i.e., the255

vocabulary size |V| and 1, respectively. In con-256

trast, the upper bounds of η-sampling and adaptive257

sampling are dependent on LLM’s predicted distri-258

bution, because they truncate the tail distribution259

based on the likelihood of tokens and the slope260

of Min-Max scaled entropy, respectively. The im-261

portance of identifying the effective ranges of such262

parameters is also reflected in the authors’ choice of263

numeral digit for their proposed parameters. For ex-264

ample, ∆Conf is set to 0.0005 in Zhu et al. (2024)265

and ϵ is chosen from 0.0001, 0.0009 and etc in266

Hewitt et al. (2022). In comparison, the adopted267

p values for top-p sampling are merely two digits268

after zero, such as 0.95. Our analysis also shows269

the significance of identifying the sweet spots of270

different sampling methods.271

The Butterfly Effect Although the top few samples272

possess the most probability mass, we reveal that273

a minor change in the size of the allowed set at274

each decoding step could lead to major differences275

in the quality of the generated text, due to LLMs’276

auto-regressive nature. For example, the overall277

probability of at least one bad token to appear at278

the tth position in a sequence of length T increases279

rapidly as T increases (due to the product operator):280

Pθ(∃xt ̸∈ A∗
x<t

) = 1−
T∏
t=1

Pθ(xt ∈ A∗
x<t

|x<t).

(3)281

Similarly, if only 1% probability mass is as-282

signed to additional tokens at each step, for a se-283

quence of length T , there will be 1−0.99T chances284

of obtaining extra diverse samples.285

4 Method286

In this section, we derive our method for evaluating287

different sampling-based decoding strategies. To288

circumvent the reliability issue of the probabilities289

we merely check whether the predicted next-token290

is in or out of the data support.291

4.1 Probability-Independent Metrics292

To quantify the diversity and quality of a sampling293

method based on CP-Trie, we define the Recall294

and Risk of a sampling method regarding a given295

prefix below:296

Definition 4.1.

Recallθ = Minimum
( |Ax<t,θ

|
|A∗

x<t
|
, 1

)
(4) 297

Riskθ = Maximum
( |Ax<t,θ

|
|A∗

x<t
|
− 1, 0

)
(5) 298

Ax<t,θ is dependent on the parameter selection 299

for truncation, e.g., k value in top-k sampling. 300

When the allowed set is smaller than the optimal 301

one after truncation, Recall is smaller than one and 302

Risk is regarded as zero. With further increased 303

size of the allowed set, Recall reaches one but Risk 304

emerges. Since the sizes of reasonable sets vary 305

drastically for different prefixes, it is not possible 306

to always retain the optimal allowed set with a pre- 307

defined parameter. In this case, we reveal that the 308

adaptability w.r.t. the varying size of data support 309

of a sampling method indeed determines its effec- 310

tiveness in real-world application. 311

Note that we ignore the risk of obtaining bad 312

samples within the optimal allowed set, because 313

such type of risk is unsolvable by truncation and 314

is rather determined by the inherent capacity of 315

the trained LLMs. However, such risk is less se- 316

vere comparing to that introduced by inappropriate 317

truncation, since LLMs exhibit a significant capa- 318

bility in predicting the next token (Touvron et al., 319

2023; Achiam et al., 2023; Jiang et al., 2023; Team 320

et al., 2023) and most bad samples reside in the tail 321

distribution. 322

More importantly, our evaluation doesn’t rely 323

on the empirical probability, which is biased and 324

inaccurate due to limited dataset size or context 325

window size. However, the tokens which appear in 326

the dataset could be confidently regarded as reason- 327

able, regardless of their actual probabilities. In ad- 328

dition, considering that temperature could change 329

the flatness of distribution arbitrarily, we use ra- 330

tio of token counts instead of probability mass to 331

make the evaluation independent on temperature 332

tuning and exemplar text. For a more detailed dis- 333

cussion with supporting examples, please refer to 334

appendix A.2. 335

4.2 Parameter-Independent Evaluation 336

To eliminate the huge impact of parameter tuning 337

on fair evaluation, we define the final diversity met- 338

ric Recall at a given Risk level as follows: 339
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Definition 4.2.

RecallRisk−0.1 = Recallθ s.t. Riskθ = 0.1
(6)340

Analogously, a family of critical values such as341

RecallRisk−0.5 can be easily defined.342

From the definition, it can be seen that such a343

metric is no longer dependent on the selection of θ344

parameter, thus it reflects the genuine capacity of345

a sampling method regardless of parameter tuning.346

This allows for a fair comparison between differ-347

ent sampling methods, especially considering their348

drastically different effective ranges, as mentioned349

in section 1 and section 3.2.350

4.3 The Priority of Low Variance in Risk351

Despite that more diverse text is desired for many352

generation tasks, the minimum requirement of the353

text to be coherent and reasonable is mostly pri-354

oritized in real-world applications. Besides the355

average recall at a given risk level, it is noteworthy356

that a stable adaptive truncation mechanism is also357

preferred , i.e., the variance of risks should be kept358

as low as possible at the given average risk level.359

Conjecture 4.3. At a given average risk level, the360

total amount of risk when generating a sequence of361

length T is reduced with decreased variance of the362

risks at each decoding step.363

The above conjecture can be mainly understood364

by the auto-regressive generation process of LLMs,365

as shown in eq. (3). The in-distribution probabil-366

ity dependent on the risk at each decoding step367

and is minimized when the product of the proba-368

bilities is maximized at a given average risk level.369

We could infer that the sum of the in-distribution370

probabilities is approximated determined at a given371

average risk level. For simplification, we assume372

their sum is unchanged. According to AM-GM373

inequality, the maximum of the product is achieved374

when each individual component is equal to each375

other. Roughly speaking, the less variance of the376

probability masses at each step, the larger their377

product and thus the smaller the total risk is.378

5 Experiment379

In this section, we conduct evaluation of existing380

sampling-based decoding approaches on our re-381

collected EnWiki CP-Trie dataset. We aim to esti-382

mate the inherent adaptability of exiting sampling-383

based methods and the results could be used as384

references for the application of LLMs in open-385

ended tasks.386

The: 
119714/5866531

The first: 
8463/67903

The film: 
1666/53919

The first two: 
888/2796

The first is: 
529/2165

The film was: 
834/13924

The film is: 
532/6042

The first two are: 
106/132
The first two are: 
92/131

The first is the: 
413/478
The first is a: 
260/306

The film was shot: 
62/1524

The film was a: 
206/1220

The film is about: 
123/731
The first is a: 
287/722

Figure 3: Illustration of the EnWiki CP-Trie. For brevity,
only two child nodes are shown at each depth. The
number at the left side of the slash symbol refers to the
branching factor at the current node, and the number at
the right side refers to the total number of leaves of the
sub-tree with the current node as the root node.

5.1 Data Collection 387

As mentioned above, the construction of the CP- 388

Trie is a re-collection of an existing dataset. We 389

apply the described procedure to the English sub- 390

set of Wikipedia dataset and name the resulting 391

dataset EnWiki CP-Trie. Although the core idea 392

is straight-forward to understand, we elaborate the 393

main design choices in the following: 394

Basic Unit There are many possible units for split- 395

ting the datasets into individual fragments, such 396

as article, paragraph, sentence and n-grams. Con- 397

structing a tree based on articles or paragraphs may 398

require a larger amount of data than the training 399

data of LLMs to guarantee an adequate number 400

of branches (because LLMs lean to interpolate), 401

whereas the construction based on n-grams suffers 402

from poor contextual information and are heavily 403

biased towards common tuplets of n tokens regard- 404

less of the context. Therefore, we adopt sentence 405

as the basic unit for our dataset, which guarantees 406

a coherent context at sentence-level and requires 407

a much smaller amount of data than the training 408

data. 409

Figure 4: The total number of leaves on the CP-Trie
against the total number of processed articles.
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Filtering To avoid invalid words or rare proper410

names which are unreasonable for the model to411

predict, we exclude the sentences containing such412

words by checking their presence in the WORD413

LIST dataset, which is available on the website 2.414

It contains a total amount of 354986 words and415

explicitly excludes proper names and compound416

words. Section titles are also excluded, because417

they are often incomplete sentences with poor con-418

textual information.419

Statistics Wikipedia-English dataset has a total420

number of 6, 458, 670 articles, which results in En-421

Wiki CP-Trie with 31, 557, 359 number of leaves422

after conversion, as shown in fig. 4.423

Storage The extracted prefix tree is implemented424

as a nested dictionary and saved in a single JSON425

file. Since each lookup at any depth has constant426

complexity, the retrieval from our dataset is highly427

efficient. Moreover, the dictionary is easily extend-428

able if extra data are needed for a more accurate429

estimation of the full data support.430

5.2 Evaluation Setup431

Baselines Our evaluation includes Top-k sampling432

(Radford et al., 2018; Fan et al., 2018), Top-p sam-433

pling (Holtzman et al., 2020), η-sampling (Hewitt434

et al., 2022), Adaptive sampling (Zhu et al., 2024)435

and Mirostat (Basu et al., 2021) into comparison.436

Evaluation Data To guarantee a tight lower bound437

of the ideal data support given different prefixes,438

we first sort the sub-nodes according to their total439

number of leaves at each depth, then we select the440

top 10 sub-trees with different sentence starting441

tokens for evaluation. Moreover, we keep the top442

2 child nodes at each depth till depth 6, since the443

empirical data support becomes less adequate at444

large depth. This results in an evaluation set of 593445

prefixes with varying lengths in total.446

Evaluation Metrics As discussed in section 4.2,447

we measure the improvement in diversity via the448

increase of average recall at a given risk level, and449

the reduction of the total risk in the auto-regressive450

process via the decrease of standard deviation at a451

given risk level, also referred to as stability.452

LLMs To ensure that the obtained conclusion gen-453

eralizes to different models, we adopt Llama-2454

(Touvron et al., 2023), Llama-3 (Dubey et al.,455

2024), Mistral (Jiang et al., 2023, 2024) families456

of different sizes and GPT-2-XL (Radford et al.,457

2019) for comparison.458

2word-list dataset homepage

Implementation Our implementation mainly re- 459

lies on Pytorch (Paszke et al., 2017), HuggingFace 460

(Wolf et al., 2020) and OpenAI API 3 library. We 461

implement a truncation sampling method ourselves 462

if the official implementation is not available. For 463

all truncation methods, the minimum size of the 464

allowed set is set to 1 to prevent breaking the sam- 465

pling process. 466

5.3 Comparison at Different Risk Levels 467

In this section, we conduct a comprehensive study 468

of different truncation sampling methods at differ- 469

ent risk levels. As discussed in section 4.2, this 470

allows for a fair comparison which is independent 471

of parameter tuning. Moreover, we provide the 472

corresponding parameters for each truncation sam- 473

pling method at different risk levels, which could 474

serve as user reference for the parameter selection 475

of the compared methods. 476

As can be seen in table 1, different truncation 477

sampling methods are compared at the average risk 478

level of 1, 5, and 15 respectively. As discussed 479

in section 4.1, our defined risk and recall metrics 480

explicitly exclude the source of risk induced by a 481

LLM’s capacity by design, thus similar parameter 482

values correspond to the same risk level for most 483

sampling methods across various model types and 484

sizes. This exactly showcases the advantage of 485

our evaluation being parameter-independent and 486

sustainable to the rapid update of LLMs. Among 487

the evaluated methods, Eta-sampling (Hewitt et al., 488

2022) is the most sensitive to the changes of model 489

type and size especially at risk levels of 1 and 5, 490

which might hinder its practical significance at a 491

low risk level. 492

Regarding diversity, i.e., the average recall at the 493

same average risk level, Adaptive sampling (Zhu 494

et al., 2024) and Mirostat (Basu et al., 2021) are 495

the best and second performers, which consistently 496

outperform the Top-k baseline by a considerable 497

margin. Top-p mostly exhibits inferior recall com- 498

paring to the Top-k baseline, so does Eta-sampling 499

at the risk level of 1. As for the stability repre- 500

sented by standard error of risks, Top-k sampling 501

reaches the best scores in most cases. In com- 502

parison, Adaptive sampling and Mirostat deliver 503

comparable standard error of risks to Top-k sam- 504

pling, whereas Top-p sampling and Eta-sampling 505

are again inferior. Considering both diversity and 506

stability, Adaptive sampling and Mirostat are the 507

3https://pypi.org/project/openai/
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Model Method Avg. risk level 1 Avg. risk level 5 Avg. risk level 15
Parameter Risk Std Error ↓ Recall ↑ Parameter Risk Std Error ↓ Recall ↑ Parameter Risk Std Error ↓ Recall ↑

G
PT

2-
X

L Top-k 15 0.006 0.220 64 0.613 0.290 184 1.781 0.340
Top-p 0.5705 0.015 0.170 0.746 2.129 0.240 0.8555 6.210 0.338

Adaptive 9.5e-4 0.006 0.252 1.1e-4 0.679 0.339 2.5e-05 2.241 0.413
Eta 0.318 0.013 0.198 0.011 1.484 0.301 0.001 4.261 0.404

Mirostat 4.425 0.005 0.236 5.9475 0.717 0.326 6.76 2.501 0.401

L
la

m
a-

2-
7b Top-k 14 0.126 0.226 61 0.587 0.296 177 1.722 0.369

Top-p 0.54 0.529 0.156 0.7665 2.331 0.254 0.9 6.208 0.400
Adaptive 1.1e-3 0.154 0.257 1.4e-4 0.856 0.364 3.1e-5 2.966 0.470

Eta 0.512 0.563 0.192 0.023 2.599 0.297 0.002 6.531 0.407
Mirostat 4.253 0.133 0.236 5.82 0.650 0.349 6.628 2.286 0.474

L
la

m
a-

2-
70

b Top-k 14 0.128 0.232 60 0.583 0.307 174 1.712 0.375
Top-p 0.6535 0.475 0.189 0.8465 2.136 0.316 0.9395 5.522 0.468

Adaptive 0.0011 0.142 0.269 1.2e-4 0.796 0.374 2.3e-5 2.697 0.485
Eta 0.092 0.304 0.236 0.003 1.590 0.378 2.1e-4 4.243 0.510

Mirostat 4.16 0.135 0.238 5.7875 0.684 0.353 6.67 2.125 0.478

L
la

m
a-

3-
8B

Top-k 14 0.128 0.228 59 0.576 0.290 172 1.701 0.346
Top-p 0.5395 0.451 0.154 0.736 2.061 0.224 0.855 5.770 0.326

Adaptive 1.1e-3 0.167 0.260 1.7e-4 0.787 0.343 3.7e-5 2.685 0.418
Eta 0.673 0.445 0.181 0.029 2.112 0.271 0.002 6.009 0.373

Mirostat 4.24 0.139 0.230 5.8175 0.804 0.318 6.693 2.630 0.393

L
la

m
a-

3-
70

B Top-k 14 0.127 0.230 60 0.581 0.295 173 1.695 0.352
Top-p 0.5695 0.502 0.158 0.758 2.386 0.237 0.8705 6.685 0.332

Adaptive 1.1e-3 0.137 0.263 1.4e-4 0.787 0.353 3.16e-5 2.778 0.424
Eta 0.37 0.137 0.263 0.014 2.231 0.295 0.001 6.265 0.398

Mirostat 4.21 0.138 0.230 5.91 0.708 0.332 6.84 2.193 0.417

M
ix

tr
al

-7
B Top-k 14 0.126 0.224 62 0.596 0.297 181 1.759 0.364

Top-p 0.6565 0.539 0.194 0.8375 2.476 0.303 0.9315 6.315 0.447
Adaptive 0.00105 0.152 0.260 1.2e-4 0.809 0.364 2.2e-5 2.757 0.466

Eta 0.075 0.307 0.243 0.003 1.542 0.368 1.96e-4 4.712 0.505
Mirostat 4.1825 0.141 0.236 5.8125 0.721 0.345 6.71 2.213 0.468

M
ix

tr
al

-8
x7

B Top-k 15 0.134 0.229 63 0.598 0.301 183 1.757 0.366
Top-p 0.6505 0.535 0.192 0.8375 2.423 0.303 0.9325 6.139 0.456

Adaptive 0.00105 0.148 0.265 1.1e-4 0.798 0.372 2.1e-5 2.802 0.476
Eta 0.087 0.335 0.241 0.003 1.822 0.375 2.15e-4 4.922 0.506

Mirostat 4.2775 0.143 0.238 5.845 0.710 0.346 6.6875 2.213 0.461

Table 1: Risk standard error (indicating stability) and recall mean (indicating diversity) of different truncation
sampling methods at different risk levels using different models. The corresponding parameter of each method at a
given risk level is also provided. The best and worst scores are marked in bold and blue, respectively. For more
detailed results, please refer to appendix A.1.

top 2 adaptive methods to be recommended, and508

Top-p sampling shall be the last to be considered.509

(a) Llama-2 family. (b) Llama-3 family. (c) Mistral family

Figure 5: Comparing the average recall at give risk
levels using different model sizes.

We also show in fig. 5 that larger models of the510

same family have higher average recall at the same511

risk level comparing to the smaller ones. This con-512

forms to the fact that larger models better captures513

the human text distribution. Please note that our514

metrics doesn’t allow a direct comparison between515

different model families, mainly due to their differ-516

ent vocabulary sizes and tokenizers, e.g., Llama-3517

has a 128,256 vocabulary size, while Llama-2 has518

only 32, 000 vocabulary size. Moreover, our met- 519

rics also explicitly exclude the source of risk within 520

the optimal allowed set, which is heavily dependent 521

on a LLM’s capacity. 522

(a) The Pearson’s correlation
is 0.24777 for GPT2-XL.

(b) The Pearson’s correlation
is 0.24784 for Llama-2-7B.

Figure 6: Scatter plots between the entropy values and
optimal truncation values.

Although Top-p sampling is indeed also adap- 523

tive regarding the truncation position, we show that 524

Top-p sampling have a inherent limitation. When 525

a larger portion of the probability mass is concen- 526

trated in the first few tokens (this often indicates 527

7



Question gpt2xl

What happens to you if you eat water-
melon seeds?

You will die.

Where did fortune cookies originate? Fortune cookies originated in the
United States.

Figure 7: Greedy decoding might exclude the paths
of correct answers, as shown in the answer to the first
question taken from the question list of TruthfulQA.

smaller entropy), a fixed cumulative probability528

threshold will cut a longer tail off, and vice versa.529

However, there’s merely a weak correlation be-530

tween the entropy of the LLM’s prediction and531

optimal truncation values, see fig. 6.532

Methods Mean(std) Accuracy ↑
Avg. risk level 1 Avg. risk level 5 Avg. risk level 15

Greedy 0.338

Naïve 0.421(0.004)

Top-k 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table 2: Evaluation on the TruthfulQA benchmark un-
der the open-ended generation setup. The best and worst
scores are marked in bold and blue, respectively. For
more detailed results, please refer to appendix A.1.

(a) Correlation at
risk level 1: −0.87

(b) Correlation at
risk level 5: −0.92

(c) Correlation at
risk level 15: −0.94

(d) Correlation at
risk level 1: 0.83

(e) Correlation at
risk level 5: 0.83

(f) Correlation at
risk level 15: 0.50

Figure 8: The scatter plots of TruthfulQA accuracy
against risk standard error (first row) and recall mean
(second row) at different risk levels.

5.4 Validation on TruthfulQA Benchmark533

Although our evaluation protocol is grounded by534

the thorough design process with reasonable simpli-535

fications, we would like to verify its effectiveness536

in the real-world scenario using the TruthfulQA 537

Benchmark (Lin et al., 2021). We evaluate the per- 538

formance of gpt2-xl model with each truncation 539

sampling method at the average risk levels of 1, 540

5 and 15 respectively. The evaluation results are 541

shown in section 5.3. For all the methods other 542

than greedy decoding, we run 3 times at each av- 543

erage risk level and report the mean and standard 544

deviation (parenthetical value). 545

It can be observed that greedy decoding falls far 546

behind sampling-based decoding strategies, which 547

conforms to the issue of likelihood-oriented decod- 548

ing discussed in section 1, as well as the findings 549

in recent studies (Cobbe et al., 2021; Wang et al., 550

2023; Wang and Zhou, 2024; Shi et al., 2024a). 551

The examples in fig. 7 also explain the unsatis- 552

factory performance of greedy decoding, i.e., the 553

decoding paths of the corrected answers might be 554

excluded after ignoring the non-peak likelihoods. 555

Similarly, all the truncation sampling methods at 556

the low risk level achieves lower accuracy compar- 557

ing to Naive sampling, due to the over-truncation 558

of the decoding paths. At the average risk level of 559

5, all the truncation sampling methods slightly im- 560

prove their own accuracy. Top-k sampling, Adap- 561

tive sampling and Mirostat also reach compara- 562

ble or slightly higher accuracy in comparison to 563

Naive sampling. However, further increased aver- 564

age risk level (means improved average recall and 565

thus diversity) doesn’t benefit the performance on 566

TruthfulQA, which is plausible. Moreover, there 567

exists a even stronger correlation between Risk SE 568

(Standard Error of Risks) and TruthfulQA accuracy, 569

validating the importance of stability when evalu- 570

ating an adaptive decoding method. The strong 571

correlation between TruthfulQA accuracy and our 572

proposed average recall as well as standard error of 573

risks at different risk levels validate the soundness 574

and effectiveness of our evaluation method. 575

6 Conclusion 576

In this work, we propose a evaluation protocol to 577

assess the intrinsic capacity of truncation sampling 578

methods for open-ended text generation. Our eval- 579

uation enjoys the merit of being independent on 580

parameter tuning for the curated tasks. Its effec- 581

tiveness is further validated by the results on the 582

open-ended text generation setup of TruthfulQA 583

Benchmark. The evaluation results also serve as 584

user reference for creative tasks. 585
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7 Limitations586

In this work, we focus on the truncation sampling587

methods specially designed for the open-ended text588

generation scenario. There exist many related de-589

coding strategies, which aim at improving different590

aspects of LLMs. For example, a line of decoding591

strategies are proposed to alleviate Hallucination or592

improve the reasoning ability, e.g., Dola (Chuang593

et al., 2023), Context-aware decoding (Shi et al.,594

2024b), Contrastive decoding (O’Brien and Lewis,595

2023) and etc. However, they are beyond the scope596

of this study and thus not included in the discus-597

sion. Although our study is only based on text598

data in English for clarity, the conclusion should599

be transferable to other languages as well.600

8 Broader Impact601

Our study on the intrinsic capacity of sampling602

methods and their appropriate parameters for open-603

text generation may further promote the applica-604

tion of LLMs in creative industries. There exists a605

potential risk that our provided findings might be606

abused for generating harmful or fake information.607

However, our study itself is neutral and the men-608

tioned risk is a general issue that LLMs face. We609

call for the attention on AI-Safety in the commu-610

nity.611
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A Appendix796

A.1 Complete Record of the Experiment Runs797

The scores of the individual runs on TruthfulQA798

benchmark are recorded in appendix A.2, and the799

means and standard errors of recalls and risks at all800

average risk levels are listed in table 4. Note that801

due to a fixed amount of computation budget, we802

search the corresponding parameter value for each803

truncation sampling method till the average risk is804

close enough to the predefined value, thus resulting805

in the variations of the average risks. However,806

such variations are negligible given the minor dif-807

ferences.808

A.2 The Advantage of809

Probability-Independent Metrics810

In this section, we explain the practical advantages811

of our proposed probability-independent recall and812

risk metrics. As can be seen in fig. 9, the empirical813

distribution aligns with the by gpt2-xl predicted814

distribution given the same prefix in general: most815

of the tokens which posses high likelihood in the816

prediction also has a high probability based on the817

word frequencies of our collected CP-Trie data.818

However, there exists two differences:819

• Some tokens with high likelihood according to820

gpt2-xl have much lower probability accord-821

ing to the empirical distribution. The ranking822

of each tokens w.r.t. probability also differ in823

the two distributions.824

• A few tokens which should be reasonable can-825

didates (by manual check) have 0 probability826

according to the empirical distribution.827

For the first issue, as discussed in section 3.2,828

there exists no ideal probabilities for each token,829

and the discrepancy is not solvable by simply in-830

creasing the size of the data. For example, the "per-831

fect" probabilities of the candidate tokens "with"832

and "at" are undefined and could even be regarded833

as equivalently important for open-ended text gen-834

eration.835

The second difference highlights the reliability836

of LLMs, i.e., the tokens which are assigned high837

likelihoods are in most cases reasonable. Note that838

we ignore the risk within the estimated optimal al-839

lowed set by design: All the tokens are counted as840

reasonable till the last token which has non-zero841

empirical probability, when they are arranged in a842

descending order according to the predicted proba-843

bilities. Thus these tokens with zero probabilities844

in the empirical distribution will not affect our eval- 845

uation of risk, making our method robust to noises 846

and insufficient data support. 847
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Methods
Evaluation Runs Mean/Std

Run 1 at average risk levels Run 2 at average risk levels Run 3 at average risk levels average risk levels
1 5 15 1 5 15 1 5 15 1 5 15

Greedy Decoding 0.338
Naive Sampling 0.420 0.426 0.416 0.421(0.004)
Top-k Sampling 0.412 0.447 0.410 0.389 0.432 0.435 0.402 0.428 0.419 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p Sampling 0.337 0.370 0.382 0.367 0.393 0.379 0.362 0.370 0.405 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive Sampling 0.403 0.416 0.433 0.403 0.416 0.419 0.378 0.440 0.411 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta Sampling 0.395 0.419 0.442 0.387 0.394 0.419 0.382 0.389 0.379 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.424 0.417 0.430 0.399 0.443 0.433 0.415 0.414 0.412 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table 3: Evaluation on the TruthfulQA benchmark. Since the GPT-3 API is no longer available, we use the by the
authors recommended BLEURT accuracy for comparison under the open-ended generation setup.

Method GPT2-XL
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.029 (0.006) 0.220(0.0006) 64 5.040 (0.613) 0.290 (0.017) 184 14.983(1.781) 0.340 (0.018)
Top-p 0.5705 0.999 (0.015) 0.170 (0.0005) 0.746 5.011(2.129) 0.240 (0.015) 0.8555 15.022 (6.210) 0.338 (0.016)

Adaptive 9.5e-4 1.000 (0.006) 0.252 (0.0007) 0.00011 4.997 (0.679) 0.339(0.018) 2.5e-05 14.995 (2.241) 0.413 (0.018)
Eta 0.318 1.000 (0.013) 0.198 (0.0005) 0.011 4.945 (1.484) 0.301 (0.016) 0.001 14.998 (4.261) 0.404 (0.017)

Mirostat 4.425 0.999 (0.005) 0.236 (0.0007) 5.9475 5.001 (0.717) 0.326 (0.018) 6.76 14.982 (2.501) 0.401 (0.018)

Method Llama-2-7b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.986 (0.126) 0.226 (0.016) 61 4.987 (0.587) 0.296 (0.017) 177 14.961 (1.722) 0.369 (0.018)
Top-p 0.54 0.999 (0.529) 0.156 (0.012) 0.7665 4.990 (2.331) 0.254 (0.015) 0.9 14.989 (6.208) 0.400 (0.016)

Adaptive 0.0011 1.051 (0.154) 0.257 (0.016) 0.00014 4.991 (0.856) 0.364 (0.017) 3.1e-5 14.995 (2.966) 0.470 (0.017)
Eta 0.512 1.000 (0.563) 0.192 (0.014) 0.023 5.007 (2.599) 0.297 (0.016) 0.002 13.487 (6.531) 0.407 (0.017)

Mirostat 4.253 1.000 (0.133) 0.236 (0.016) 5.82 4.993 (0.650) 0.349 (0.018) 6.628 15.022 (2.286) 0.474 (0.017)

Method Llama-3-8B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.023 (0.128) 0.228 (0.016) 59 4.982 (0.576) 0.290 (0.017) 172 15.025 ( 1.701) 0.346 ( 0.018)
Top-p 0.5395 1.000 (0.451) 0.154 (0.013) 0.736 4.998 (2.061) 0.224 (0.014) 0.855 14.993 ( 5.770) 0.326 ( 0.016)

Adaptive 0.0011 1.133 (0.167) 0.260 (0.017) 0.00017 5.006 (0.787) 0.343 (0.018) 3.7e-5 15.007 ( 2.685) 0.418 ( 0.018)
Eta 0.673 1.000 (0.445) 0.181 (0.014) 0.029 5.009 (2.112) 0.271 (0.016) 0.002 15.012 ( 6.009) 0.373 ( 0.017)

Mirostat 4.24 1.001 (0.139) 0.230 (0.016) 5.8175 5.001 (0.804) 0.318 (0.018) 6.6925 14.996 ( 2.630) 0.393 ( 0.018)

Method Llama-3-70B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.014 ( 0.127) 0.230 ( 0.016) 60 5.038 ( 0.581) 0.295 ( 0.017) 173 15.024 ( 1.695) 0.352 ( 0.018)
Top-p 0.5695 1.001 ( 0.502) 0.158 ( 0.013) 0.758 4.999 ( 2.386) 0.237 ( 0.015) 0.8705 14.960 ( 6.685) 0.332 ( 0.016)

Adaptive 0.0011 1.004 ( 0.137) 0.263 ( 0.017) 0.00014 5.013 ( 0.787) 0.353 ( 0.018) 3.16e-5 14.986 ( 2.778) 0.424 ( 0.018)
Eta 0.37 1.004 ( 0.137) 0.263 ( 0.017 ) 0.014 5.032 ( 2.231) 0.295 ( 0.016) 0.001 15.076 ( 6.265) 0.398 ( 0.018)

Mirostat 4.21 1.001 ( 0.138) 0.230 ( 0.016 ) 5.91 5.001 ( 0.708) 0.332 ( 0.018 6.84 15.021 ( 2.193) 0.417 ( 0.018)

Method Llama-2-70b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.002 ( 0.128) 0.232 ( 0.016 ) 60 4.982 ( 0.583) 0.307 ( 0.017) 174 14.964 ( 1.712) 0.375 ( 0.018)
Top-p 0.6535 0.999 ( 0.475) 0.189 ( 0.013 ) 0.8465 4.988 ( 2.136) 0.316 ( 0.016) 0.9395 15.019 ( 5.522) 0.468 ( 0.016)

Adaptive 0.0011 1.000 ( 0.142) 0.269 ( 0.017 ) 1.2e-4 4.995 ( 0.796) 0.374 ( 0.017) 2.3e-5 15.007 ( 2.697) 0.485 ( 0.017)
Eta 0.092 1.002 ( 0.304) 0.236 ( 0.015 ) 0.003 5.057 ( 1.590) 0.378 ( 0.017) 0.00021 15.001 ( 4.243) 0.510 ( 0.017)

Mirostat 4.16 1.001 ( 0.135) 0.238 ( 0.016 5.7875 5.004 ( 0.684) 0.353 ( 0.018) 6.67 14.991 ( 2.125) 0.478 ( 0.017)

Method Mixtral-8x7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.028 ( 0.134) 0.229 ( 0.016) 63 4.978 ( 0.598) 0.301 ( 0.017) 183 14.967 ( 1.757) 0.366 ( 0.018)
Top-p 0.6505 1.000 ( 0.535) 0.192 ( 0.014 ) 0.8375 5.007 ( 2.423) 0.303 ( 0.015) 0.9325 14.966 ( 6.139) 0.456 ( 0.016)

Adaptive 0.00105 1.000 ( 0.148) 0.265 ( 0.017 ) 0.00011 4.994 ( 0.798) 0.372 ( 0.018) 2.1e-5 15.014 ( 2.802) 0.476 ( 0.017)
Eta 0.087 1.001 ( 0.335) 0.241 ( 0.015 ) 0.003 5.061 ( 1.822) 0.375 ( 0.017) 0.000215 14.991 ( 4.922) 0.506 ( 0.017)

Mirostat 4.2775 1.000 ( 0.143) 0.238 ( 0.016) 5.845 4.995 ( 0.710) 0.346 ( 0.018) 6.6875 14.998 ( 2.213) 0.461 ( 0.018)

Method Mistral-7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.965 ( 0.126) 0.224 ( 0.016) 62 4.968 ( 0.596) 0.297 ( 0.017) 181 15.006 ( 1.759) 0.364 ( 0.018)
Top-p 0.6565 1.001 ( 0.539) 0.194 ( 0.014) 0.8375 4.996 ( 2.476) 0.303 ( 0.016 ) 0.9315 15.038 ( 6.315) 0.447 ( 0.016)

Adaptive 0.00105 1.001 ( 0.152) 0.260 ( 0.016) 0.000115 4.993 ( 0.809) 0.364 ( 0.018) 2.2e-5 14.999 ( 2.757) 0.466 ( 0.017)
Eta 0.075 0.997 ( 0.307) 0.243 ( 0.015) 0.003 4.640 ( 1.542) 0.368 ( 0.017) 0.000196 15.009 ( 4.712) 0.505 ( 0.017)

Mirostat 4.1825 1.000 ( 0.141) 0.236 ( 0.016) 5.8125 4.999 ( 0.721) 0.345 ( 0.018) 6.71 14.978 ( 2.213) 0.468 ( 0.018)

Table 4: Critical Parameters of different truncation sampling methods at different risk levels using different models.
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(a) Top 30 by gpt2-xl predicted next candidate tokens and
their corresponding likelihood given the prefix "The film was"

(b) Top 30 by gpt2-xl predicted next candidate tokens and their
corresponding empirical probability given the prefix "The film
was".

(c) Top 30 by gpt2-xl predicted next candidate tokens and
their corresponding likelihood given the prefix "The film was
shot".

(d) Top 30 by gpt2-xl predicted next candidate tokens and their
corresponding empirical probability given the prefix "The film
was shot".

Figure 9: Comparing the probabilities predicted by gpt2-xl and calculated using the word frequencies based on our
collected CP-Trie data.
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