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ABSTRACT

Recording neuronal activity using multiple electrodes has been widely used for
studying functional mechanisms of the brain. However, handling massive amounts
of data is still a challenge. In this paper, we propose a novel strategy to restore
high-frequency neuronal spikes from small-volume and low-frequency band sig-
nals. Inspired by the fact that high-frequency extrapolation is equivalent to super-
resolution problems in 2D signals, we applied a Swin transformer to extrapolate
high-frequency information from downsampled neuronal signals both in vitro and
in vivo. We found that aliasing components of input signals and the spike jittering-
based selection of the training batch improved the performance of reconstructing
accurate neuronal spikes. As a result, we observed reasonably restored neuronal
spiking activity, including the spike timing, waveforms, and network connectivity,
even with the ×8 subsampled dataset.

1 INTRODUCTION

Multichannel neuronal signal recordings are the key to the brain-machine interfaces (BMIs) be-
cause the network analysis allows decoding motor intentions or functional connectivity of the brain
[1]. Recent advancements in the multichannel recording hardware have particularly focused on in-
creasing the number of simultaneous recording electrodes to achieve more data for detailed network
analysis [2], [3]. For example, in the BMIs, the more electrode data we record, the wider variety of
functions we can classify for precise associated operations. Simultaneously, there have been numer-
ous efforts to implement untethered, wireless data transfer for efficient long-term implantation of the
recording systems [4], [5]. Despite these efforts, higher numbers of electrodes require either large
storage memory or induce higher power consumption in the recording and wireless communication
hardware, resulting in significant heat dissipation, which must be avoided in the implantable BMIs.

To decrease the size of recording data to ease the aforementioned constraints, reduced data sampling
approaches such as adaptive sampling [6], compressed sensing [7], on-chip spike detection [8], using
spiking band power [9], and downgrading raw signal qualities [10] have been suggested. While these
approaches have shown promising results in significant data compression, there are fundamental
limitations for the applications in advanced BMIs. It has been well studied that broader bandwidths
of neuronal signals, including low-frequency data such as local field potentials (LFPs), are strongly
correlated with brain functions [11]. In that sense, aforementioned approaches lack acquiring the
variety of signals. Previous algorithms are designed to only focus on the sparsity, abrupt changes in
spikes. However, raw recording signals including LFPs are not sparse by nature, and are strongly
affected by external sources such as signal drift or noise. Thus, the previous compression algorithms
are either unsuitable for reconstructing the entire information of neuronal signals or vulnerable to
the unavoidable changes in raw signals. Moreover, all these approaches require custom-designed
recording hardware for on-chip signal pre-processing, which also limits the universal applicability
to the state-of-the-art BMI technologies. Recently, deep learning techniques have been proposed for
frequency extrapolation problems [12, 13], but the demonstrations are limited to seismic waveforms
and microwave engineering, not to the spectrum of neuronal signals.

In this work, we introduce two methods of high-frequency extrapolation to restore neuronal spikes
from downsampled low-frequency band signals both in vitro and in vivo (Fig. 1). Our models utilize
a Swin transformer [15], [14]: Ours-D has an upsampling block within the network, whereas Ours
has a pre-interpolation process instead of the upsampling block. We demonstrated our system on
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Figure 1: Overview of high-frequency extrapolation using transformer-based neural networks. The
transformer used is SwinIR [14]. The low-pass filter used is a Butterworth filter that is a realistic
and non-ideal one.

multielectrode recording data from in vitro hippocampal cultures and in vivo mouse brains, prepro-
cessed by a low-pass filter and downsampled. We found that the aliasing component from the input,
which inevitably occurs due to the non-ideal nature of the low-pass filter, is essential for the high
frequency extrapolation. The accuracy of the extrapolation was further improved by selecting the
jittered spike window as training batches. Our system is compatible with common neuronal signal
acquisition hardwares.

Our main contributions are as follows:

• We demonstrated that our transformer-based method predicts accurate spikes from significantly
downsampled neuronal signals.

• We showed that the restored multichannel spikes maintained the spatiotemporal information,
including the spike timing, waveforms, and network connectivity.

• We found that high-frequency aliasing components of input signals are crucial to extrapolate
the high frequencies of the original spikes. In addition, our spike jittering-based batch selection
improves the reconstruction performances of the proposed Swin transformer.

• We showed that our pre-trained models could estimate accurate spikes on neural recordings not
only in vitro but also in vivo, empirically implying the generality of our approach.

2 PROBLEM FORMULATION

We formulate a reconstruction problem of a band-limited signal with sub-Nyquist samples. Let us
assume that our input signal is convolved with an anti-aliasing low-pass filter, hlpf (t), of cut-off
frequency fc and then downsampled. fc is set smaller than the Nyquist frequency (1/2Ts) where Ts

is a sampling period. This is written as follows:

ϕLPF [n] =
∑
n

ϕLPF (t)δ(t− nTs) (1)

ϕLPF (t) = F−1{ϕ̂⊙ Ĥlpf}(t) =
1

2π

∫
R
ϕ̂(ω)Ĥlpf (ω) e

jω t dω. (2)

where

Ĥlpf (ω) = F(hlpf ) =

{
1, |ω| < 2πfc
< ϵ, |ω| ≥ 2πfc

(3)

where F(·) and F−1(·) denote the Fourier transform and inverse Fourier transform, respectively.
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Figure 2: Neural network architectures and illustration of spike jittering-based batch selection.

We use two different inputs: ϕD[m] and ϕI [n]. The input ϕD[m] is a downsampled signal of the
low-pass filtered (LPF) signal ϕLPF [n], by a factor of M , which is represented by:

ϕD[m] = ϕLPF [mM ]. (4)

The other input ϕI [n] is an interpolated signal by re-upsampling ϕD[m] through the Fourier method
by a factor of L equal to the downsampling factor M ,

ϕ̂I(ω) =
L

2πMTs

∑
l

ϕ̂

(
ω − 2πl

L

MTs

)
, ϕI [n] =

1

2π

∫
R
ϕ̂I(ω) e

jω n dω. (5)

We aim to extrapolate frequencies above fc with supervised training.
θ∗ = argmin

θ
∥fθ(ϕD)− y∥2, for Ours-D (6)

φ∗ = argmin
φ

∥gφ(ϕI)− y∥2, for Ours (7)

where y is a ground truth (GT), high-pass filtered (HPF) signal having high-frequency components
with a high temporal resolution. It is convolved with a high-pass filter, hhpf (t), of the same cut-off
frequency fc. The frequency response of the filter is given by:

Ĥhpf (ω) = F(hhpf ) =

{
< ϵ, |ω| < 2πfc
1, |ω| ≥ 2πfc

(8)

After terminating the supervised learning, we can obtain high-frequency and high-resolution signals
from the trained network.

3 METHODS

3.1 NETWORK ARCHITECTURE

As shown in Fig. 2, both neural networks for signal reconstruction without (Eq. 6) and with pre-
interpolation (Eq. 7) include a common SwinIR block [14], consisting of the multi-head self-
attention-based Swin transformer layers [15]. The key differences between the networks are the
input resolution and the presence of an upsampling block in the last part for signal reconstruction.
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Common SwinIR block Given an input signal with a time length of T , a shallow feature of
the same length T with C channels is extracted by convolving the input signal with 1D kernels
(kSF (·) : RT×1 → RT×C). By passing the feature through several consecutive residual Swin
transformer blocks (RSTB) followed by an additional convolution layer, a deep feature with the
same size as the input feature is obtained (kDF (·) : RT×C → RT×C). The shallow and deep
features are combined with a skip connection.

Reconstruction without interpolation (Ours-D) Input of Ours-D is a downsampled LPF signal
by a factor of M , ϕD ∈ R T

M ×1. Through the SwinIR block, the same length of the output feature
with C channels is generated, and a 1D convolution layer adjusts the number of feature channels
from C to M (kCM (·) : R T

M ×C → R T
M ×M ). The following upsampling block is implemented

by efficient sub-pixel convolution [16]. By a 1D pixel shuffle operator, a one-channel output signal
with the length of T , ỹ = fθ(ϕD), is obtained (kPS(·) : R

T
M ×M → RT×1).

ỹ = kPS(kCM (FSF + FDF)) (9)
where FSF = kSF (ϕD), FDF = kDF (FSF).

Reconstruction with pre-interpolation (Ours) Input of Ours is an interpolated LPF signal with
the length of T . Because the length of the input signal is the same as that of the output signal
ỹ = gφ(ϕI), there is no layer for upsampling. Thus, the extracted feature from the SwinIR block is
sent into a 1D convolution to generate a one-channel output (kC(·) : RT×C → RT×1).

ỹ = kC(FSF + FDF) (10)
where FSF = kSF (ϕI), FDF = kDF (FSF).

3.2 FREQUENCY BAND SEPARATION OF NEURONAL SIGNALS USING REALISTIC AND IDEAL
FILTERS

The neuronal signal of each electrode is separated into two components of a pair by using real-
istic filters, which are n-th order Butterworth low-pass and high-pass filters, with the same cutoff
frequency of fc. The frequency responses of the filters is given by:

Ĥlpf (ω) =
1√

1 +
(

ω
2πfc

)2n
, Ĥhpf (ω) =

1√
1 +

(
2πfc
ω

)2n
. (11)

For the ablation study, input and GT signals are perfectly segregated through ideal filters (a.k.a.
brick wall filters), whose frequency responses are given by:

Ĥbw−lpf (ω) =

{
1, |ω| < 2πfc
0, |ω| ≥ 2πfc

, Ĥbw−hpf (ω) =

{
0, |ω| < 2πfc
1, |ω| ≥ 2πfc

(12)

3.3 SPIKE JITTERING-BASED BATCH SELECTION FOR TRAINING

A spike is a rapidly changing voltage that occurs within a short time (about a few msec) compared to
the time duration in which only noise without spikes is present. For this reason, if a training batch is
randomly selected, it is unlikely that the batch will contain spikes. This can be a factor that increases
the inefficiency in learning the spike features. To achieve a more accurate reconstruction of spike
information, we construct a minibatch with a batch size of B and a window size of W : at least one
spike is included in the window for the first half of the batch, and their minimum peak is placed on
a random position within the window by jittering the spike timing as follows. Let us assume that
a time series data yk ∈ RN , which is high-frequency and high-resolution signal from electrode k,
has sk spikes (k = 1, . . . ,K). For the i-th spike of the electrode, nk

i denotes the time point where
the minimum peak of the spike waveform is located (i = 1, . . . , sk). To select windows of the first
half batch, we choose B

2 peaks n
kj

ij
, by picking out the electrodes and their corresponding spikes

{kj , ij} (j = 1, . . . , B
2 ) and the equal number of jitters τj in the interval (−W

2 , W
2 ] at random. With

the chosen variables, the data within the time interval [nkj

ij
+ τj − W

2 , n
kj

ij
+ τj +

W
2 ) is sampled as

the j-th batch window. The other windows in the second half batch are randomly sampled using the
time series data of N time points from K electrodes.
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Figure 3: Representative reconstruction results of a electrode of MEA1. (a) Raw traces of LPF input,
GT, and restored signals from Ours-D and Ours models with different scale factors. Except for the
LPF input signals, all others are plotted using the same scale. (b) Average waveforms of correctly
rebuilt spikes aligned to the GT timestamps.

4 RESULTS

We used two different neuronal datasets: in vitro and in vivo. The in vitro datasets were acquired
from independent neuronal cultures on two microelectrode arrays (MEA1 and MEA2). Signals
recorded from 100 electrodes of the MEA1 were utilized for training, and those from the other 13
electrodes of the MEA1 and 16 electrodes of the MEA2 were applied for evaluation. The in vivo
datasets were obtained in two brain regions (Cortex and hippocampus) of two different mice. Signals
from 12 electrodes in the cortex were used for training, and those from 4 electrodes in both regions
were employed for evaluation. The details of dataset acquisition are provided in Sec A.1.

4.1 NEURONAL DATASET PROCESSING

We separated the neuronal data, measured with a sampling frequency of 25 kHz, into LPF input and
HPF GT signals using zero-phase fourth-order Butterworth filters with a cutoff frequency of 200
Hz. The data pair were normalized to the maximum absolute value of the background noise of the
HPF signals. To obtain downsampled and interpolated inputs, the LPF signals were subsampled by
factors of 1, 8, 16, and 25 and then re-upsampled using the Fourier method by the same factors.
Neuronal spikes were detected by setting the threshold at −6 standard deviation of the noise level of
the GT signal with a detection dead time of 3 ms. Among the reconstructed spikes, the timestamps
within ± 500 µs of GT timestamps were considered to be correctly restored outcomes (true positive,
TP).

4.2 IMPLEMENTATION DETAILS

For the SwinIR model, we set the number of RSTB, STL, feature channels, and a kernel size of 1D
convolution to 6, 6, 180, and 3, which are the same as the previous study [14]. In the training phase,
input sequences of 128 data points were randomly sampled from the downsampled LPF signals with
the corresponding GT sequences of 128r data points, where r is the upscaling factor. Different
networks were trained in individual scale factors (r = ×1, ×8, ×16, and ×25) for 200 epochs with
a batch size of 16, and a mean squared error loss and an Adam optimizer with a fixed learning rate
of 1e-4 were used for optimization. In the evaluation, 128 data points were sequentially presented to
the network by sliding the window by 64 data points. As baseline models for comparison, we used
CNN-based models, TCN [17] and EDSR-Baseline [18]. To make the number of parameters similar
to our models, hyperparameters of the baseline models were set as described in Sec A.1.
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Table 1: Hit rate of spike detection (TP / (TP + FN)) and normalized root mean square error
(NRMSE) between the restored and actual waveform on test datasets. The best results are in red.

Trainset: in vitro MEA1 (n = 100) Hit rate NRMSE

Testset Method ×1 ×8 ×16 ×25 ×1 ×8 ×16 ×25

MEA1
(n = 13)

TCN [17] 0.58 0.58 0.58 0.39 0.16 0.15 0.16 0.18
EDSR [18] 0.95 0.64 0.34 0.16 0.04 0.15 0.21 0.24

Ours-D 0.97 0.67 0.40 0.15 0.05 0.15 0.21 0.24
Ours 0.99 0.78 0.65 0.44 0.02 0.07 0.12 0.16

MEA2
(n = 16)

TCN [17] 0.76 0.75 0.72 0.46 0.15 0.14 0.15 0.18
EDSR [18] 0.97 0.82 0.40 0.09 0.03 0.15 0.21 0.24

Ours-D 0.99 0.84 0.51 0.08 0.04 0.15 0.21 0.24
Ours 1.00 0.91 0.80 0.51 0.02 0.06 0.11 0.16
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Figure 4: Restored signals of MEA2 in ×16 task (left) and enlarged spike waveforms of the time
window highlighted in the raw traces (right).

4.3 EVALUATION

Signal reconstruction with different scale factors We restored high-frequency and high-
resolution signals from LPF input signals with different scale factors. As shown in the representative
raw traces of a single electrode (Fig. 3a), the voltage fluctuations, especially spiking events, were
successfully reconstructed in both time windows of burst behavior and tonic firing while the over-
all signal amplitudes tend to decrease as the scale factor increased. Figure 3b present the average
waveforms of the correctly rebuilt spikes for each scale factor. The waveforms of Ours-D are shifted
toward a negative direction in time, and the degree of the shift is proportional to the scale factor. In
the case of the mean waveforms in Ours, there are no time delays of spike timestamps up to ×16.
The mean time delays of the electrodes for scales factors ×1, ×8, and ×16 are 0 µs, 6.15 ± 15.02
µs, and 16.67 ± 26.74 µs (mean ± standard deviation, n = 13 electrodes), which are smaller than
the sampling period (40 µs) of the high-resolution signal.

Validation on an unseen dataset and comparison with CNN-based methods Next, we tested
our models on the MEA2 dataset, which was not used for network training, and compared the per-
formance against other CNN-based methods, TCN [17] and EDSR-Baseline [18]. Table 1 provides
the quantitative comparisons between TCN, EDSR, and our models on two MEA datasets. For the
hit rate of detection and normalized root mean square error (NRMSE) of waveforms (windows from
−1 ms to 2 ms of GT timestamps), Ours achieves the best performance on both two MEA datasets
in all scale factors. Figure 4 shows output signals with the same scale factor of 16 for each model.
Among the models, Ours restores the most accurate spikes.

Analysis of restored spikes: functional connectivity and spike sorting Using the reconstructed
multichannel spikes, we first assessed how the spatiotemporal information for network connectivity
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Figure 5: Neuronal spike train analysis. (a) Correlation coefficient matrices between spike trains
from multiple electrodes. (b) Spike sorting by K-Means clustering (3-clusters case). Black circles
in the principal component space (PC1 vs. PC2) show incorrectly classified spikes (6/150 spikes).
Clustering accuracy of the reconstructed spikes: 96%.

is restored. Figure 5a shows correlation matrices for spike trains from multiple electrodes with dif-
ferent scale factors. Each element represents a Pearson correlation coefficient between a pair of rate
histograms (50 ms-bin width), and a higher value means a stronger network connection. Despite
some missing spikes and the shifted waveforms, the spatial network connectivity was reasonably
well reestablished for ×8 in Ours. Next, we performed spike sorting to compare how the spike
waveform features are reconstructed. Figure 5b presents clustering results of the GT and rebuilt
spikes (Ours, ×8) from a single electrode that has three clusters. By the K-Means clustering, the
spikes were sorted into different clusters, as visualized with different colors in the principal compo-
nent (PC) space and waveform plots. It shows high clustering accuracy (96%) on the restored spike
waveforms, with only a few spikes incorrectly grouped that were indicated as black circles in PC
space (6/150 spikes).

Application to in vivo datasets Finally, we employed our models in in vivo datasets collected
from mice, recorded in the auditory cortex (Ctx) and the hippocampus (Hippo). First, we applied
pre-trained networks on the in vitro trainset to in vivo testsets (Trainset: in vitro MEA1 in Table 2).
The reconstruction performance on the Ctx testset was similar to the results on in vitro testsets that
were presented in Table 1, whereas the hit rate of the Hippo testset was much lower than those of
in vitro testsets. This degradation seems to be caused by a significant error, especially in the time
window where the LPF input signal fluctuated greatly (3.5 − 4.0 sec of Hippo in Fig. 6). Next,
we trained our models on in vivo Ctx trainset and evaluated it on the other Ctx and Hippo testsets
(Trainset: in vivo Ctx in Table 2). In this case, it was possible to achieve a slight advance for the Ctx
testset (from 0.87 to 0.97) and a large improved restoration for the Hippo testset (from 0.55 to 0.81),
particularly with the scale factor of 8.

4.4 ABLATION STUDY

Aliasing components of input signals We separated neuronal data into low and high-frequency
band signals using a Butterworth filter, a realistic and non-ideal filter, as described in Section 3.2;
this inevitably made a frequency overlap of the two signals. To ablate this effect, we used a dataset
of input and GT signals, whose frequency bands are completely split through ideal filtering (IF,
Eq. 12). As shown in Fig. 7, the amplitude of signals in the IF case with spike jittering-based
training (+JT, Section 3.3) is much smaller than Ours (+JT) (77.67% decline), with a large time
delay. In the quantitative comparison in Table 3, the results of the ideal filter (IF (+JT)) show an
extensive reduction of the hit rate and greater error of the signals for all scale factors.
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Table 2: Quantitative results on in vivo datasets using two different trained networks (Trained on in
vitro MEA1 (n = 100) or in vivo Ctx (n = 12)). The best and the second-best results are in red and
blue, respectively.

Hit rate NRMSE

Testset Trainset Method ×1 ×8 ×1 ×8

Ctx
(n = 4)

in vitro MEA1 Ours-D 0.90 0.71 0.06 0.15
Ours 0.98 0.87 0.04 0.07

in vivo Ctx Ours-D 0.96 0.84 0.04 0.15
Ours 0.95 0.97 0.04 0.07

Hippo
(n = 4)

in vitro MEA1 Ours-D 0.82 0.38 0.09 0.16
Ours 0.89 0.55 0.06 0.10

in vivo Ctx Ours-D 0.86 0.49 0.09 0.16
Ours 0.86 0.81 0.05 0.09
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Figure 6: Representative restoration signals of in vivo datasets using the pre-trained networks on in
vitro MEA1 or in vivo Ctx. Ours model with the scale factor of 8 was used for the training. Except
for the LPF input signals, all other signals are plotted using the same scale.

Spike jittering-based window selection for training batches We set the minibatch for the train-
ing so that half of them include at least one spike within their batch window, as described in Sec-
tion 3.3. To remove this effect, we chose the batch by randomly picking out the windows across the
entire time series (-JT in Fig. 7). In our model with the non-ideal filter (Ours (-JT)), there is a slight
amplitude decrease (25.97% decrease from Ours (+JT) case), thereby reducing the performance for
all scale factors (Table 3). Moreover, the training without the jittering method on the dataset pro-
duced by ideal filtering (IF (-JT)) causes a dramatic failure to recover signals. Taking together, we
concluded that the overlapping frequency components highly enhance signal reconstruction perfor-
mance, and the spike jittering-based training improves the restoration capability of accurate spike
waveform.

5 DISCUSSION

Two remaining issues need to be addressed in further studies. The first one is the restoration failure
at higher scale factors. Here, we set the measurement sampling frequency of 25 kHz and the cutoff
frequency of 200 Hz to obtain the low-frequency input signals. Since the Butterworth filter is a
non-ideal anti-aliasing filter, it is assumed that any given subsampling causes aliasing. In this sense,
we can say that we always encounter aliasing subsampled signals even beyond the Nyquist sampling
rate. As shown in the result of ×60 in Fig. 8, however, there were only too tiny signal fluctuations
to be detected as spikes. The other issue is computation time for real-time applicability. Table 4
shows the computation time for each model on NVIDIA RTX 3090 24 GB with a scale factor of
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Table 3: Quantitative results of the ablation study. The
best results are in red.

Hit rate NRMSE

×1 ×8 ×16 ×25 ×1 ×8 ×16 ×25

Ours (+JT) 0.99 0.78 0.65 0.44 0.02 0.07 0.12 0.16
Ours (-JT) 0.73 0.68 0.46 0.37 0.11 0.10 0.14 0.17
IF (+JT) 0.08 0.04 0.05 0.02 0.23 0.23 0.23 0.23
IF (-JT) 0.00 0.00 0.00 0.00 0.24 0.24 0.24 0.25

Table 4: The number of parameters (in
M), memory consumption (in MB), and
computation time (in ms) for ×16.

Method # Param. Mem. Time

TCN [17] 10.14 101.51 7.76
EDSR [18] 10.11 125.57 8.29

Ours-D 10.14 136.58 60.54
Ours 10.13 136.55 59.64

Figure 7: Qualitative ablation study with Ours model in ×16 task.
(a) Raw traces. (b) Average signal profiles.
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16. Although Ours showed the best accuracy, there was a long time delay (59.64 ms) in extracting
the output signal from the interpolated input (time length of the output signal: 5.12 ms). On the
other hand, Ours-D required less computation time (60.54 ms) than the time length of the output
signal (81.92 ms). Further study on optimizing a pass filter and model structure would be required
to improve the restoration capability even with higher scale factors and to resolve the trade-off
between accuracy and computation time.

Despite these issues, our proposed approach provides crucial advantages. First of all, our method
enables the acquisition of neuronal signals with high-frequency bandwidths through low-frequency
and small-volume data recording. The restored signals preserve precise spiking activity and network
connectivity for comprehensive and in-depth analysis. Moreover, our models can also work in in
vivo recording data, typically noisier environment. It showed good feasibility even for applying the
trained networks from in vitro to in vivo datasets and from one region to another regions of the brain
(Ctx to Hippo). In addition, our approach has a high universality in that it employs conventional
downsampling and interpolation methods for data processing and utilizes both signal regions with
and without spikes, compared to previous studies that dealt with only sampled spike windows [19],
[20], [21].

6 CONCLUSION

In this work, we presented a method for restoring high-frequency band multichannel neuronal sig-
nals both in vitro and in vivo with high resolution by recording low-frequency downsampled sig-
nals. Based on the Swin transformer, we demonstrated that our proposed model outperforms other
CNN-based methods for all scale factors, and well reconstructs the spiking activity and connectivity
information of neuronal networks. We also confirmed that higher restoration performance can be
achieved by the aliasing components of input and output signals and spike-focused batch selection.
We believe that our proposed framework opens a new direction in obtaining high-quality neural
information for neuroscience applications while reducing the data size being handled.
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7 REPRODUCIBILITY AND ETHICS STATEMENT

A complete description of data acquisition and processing are provided in Sec A.1 and Sec 4.1 for
reproducibility. All experiment procedures were approved by Institutional Animal Care and Use
Committee (IACUC), and all experiments were preformed in accordance with the guidance of the
IACUC.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Neuronal dataset acquisition We acquired biological neuronal signals from in vitro neuronal
cultures using a microelectrode array (MEA). Two MEAs used as a culture substrate and a read-out
interface have 120 microelectrodes (MEA1: 120MEA100/30iR-ITO, MEA2: 120MEA200/30iR-Ti;
Multi Channel Systems). Before cell cultivation, their surface was coated with 0.05 mg/mL of poly-
D-lysine (A3890401, Gibco) to make them cell-adhesive. Rat hippocampi isolated from 18-day-old
Sprague Dawley rats were dissociated, and the cell pellet was obtained by centrifugation. Following
resuspending the pellet in a medium, composed of Neurobasal medium (21103049, Gibco), B-27
supplement (17504044, Gibco), GlutaMAX supplement (35050061, Gibco), penicillin-streptomycin
(15140122, Gibco), and L-glutamine (25030081, Gibco), the neurons were seeded on the MEA with
the density of 1000 cells/mm2. Two weeks after the cultivation, spontaneous activities of cultured
neurons were measured from multiple electrodes and sampled at 25 kHz by a DAQ card (Hardware
filter: DC − 10 kHz, Firmware filter: 0.1 Hz − 3.5 kHz; MEA2100-Mini-Systems, Multi Channel
Systems).

We also collected in vivo neuronal datasets from two C57BL/6J mice using 16-channels neural
probes (A1x16-3mm-50-703, NeuroNexus). Mice were born and reared in standard mouse cages
(16 × 36 × 12.5 cm3) with food and water available ad libitum, and weaned at 3 − 4 weeks of
age and housed together with sex-matched siblings with up to four animals per cage. Mice were
maintained at a 12:12-h light/dark cycle at 22 ± 1 °C. Surgery was aseptically carried out at 11 −
12 weeks. First, mice were anesthetized through intraperitoneal injection of urethane (1.5g/kg) and
placed in a stereotaxic apparatus (RWD Life Science, Shenzhen, China) for acute recording. Then,
neural probes were implanted in the auditory cortex (AP −3.0 mm ML +3.83 mm DV −2.5 mm) or
hippocampus (AP −1.6 mm ML +1.6 mm DV −1.7 mm). Reference and ground wires were inserted
into the cerebellum. Before the recording in the hippocampus, kainic acid (10 mg/kg, K0250-10MG,
Sigma Aldrich) was treated for induction of seizures through intraperitoneal injection. Using a DAQ
system (M4016, M4200, Intan Technologies), signals were recorded at 25 kHz (Hardware filter:
0.98 Hz − 7.60 kHz, Software notch filter: 60 Hz).

Specifications of baseline models As baseline models for comparison, we used CNN-based mod-
els, TCN [17] and EDSR-Baseline [18]. For the TCN model, the kernel size and the number of
stacked blocks were set to 3 and 6. The input of TCN was interpolated low-pass filtered (LPF) sig-
nal same as Ours, and the length was 127, which is the same with the receptive field. Because the
output length of the TCN is a single data point, the evaluation was performed by moving the input
window point by point. In the case of the EDSR model, the number of residual blocks was 16 with
a kernel size of 3. The input for EDSR was downsampled LPF signal, and its length and sliding
window were set to 128 and 64, identical to Ours-D. In order to make the number of parameters
similar to that of our models, the numbers of channels are determined to be 554 and 262 for TCN
and EDSR, respectively.
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A.2 ADDITIONAL RESULTS

Table A.1: Precision of spike detection on test datasets (TP / (TP + FP)). The values are high in
most conditions, implying that most detected spikes are correct.

Trainset: MEA1 (n = 100) Precision (mean ± SD)

Testset Method ×1 ×8 ×16 ×25

MEA1
(n = 13)

TCN [17] 0.91± 0.07 0.91± 0.07 0.88± 0.06 0.91± 0.08
EDSR [18] 0.98± 0.01 0.96± 0.04 0.94± 0.07 0.82± 0.15

Ours-D 0.85± 0.07 0.96± 0.04 0.94± 0.07 0.77± 0.15
Ours 0.93± 0.04 0.95± 0.03 0.89± 0.07 0.91± 0.08

MEA2
(n = 16)

TCN [17] 0.95± 0.05 0.94± 0.06 0.91± 0.06 0.94± 0.06
EDSR [18] 0.99± 0.01 0.98± 0.02 0.97± 0.04 0.91± 0.09

Ours-D 0.90± 0.07 0.98± 0.02 0.98± 0.03 0.85± 0.12
Ours 0.96± 0.03 0.97± 0.02 0.92± 0.07 0.92± 0.10
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Figure A.1: Power spectral density of raw and low-pass filtered signals.
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Figure A.2: Raster plots of neuronal spiking activity in ×1, ×8, ×16 and ×25 tasks. Red timestamps
represent missing spikes (false negative, FN). Consistent with the reduction in spike amplitude and
hit rate, the number of missing spikes increases as the factor rises.
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Figure A.3: Spike sorting by K-Means clustering (2-clusters case). A black circle in the principal
component space (PC1 vs. PC2) shows an incorrectly classified spike (1/130 spikes). Clustering
accuracy of the reconstructed spikes: 99.23%.
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