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ABSTRACT

Cryogenic electron tomography (cryo-ET) can produce detailed 3D images called
tomograms of cellular environments. An essential step of cryo-ET reconstruction
and analysis is to find all instances of a protein in tomograms, a task known as
particle picking. Due to the low signal-to-noise ratio, artifacts, and vast diversity
in proteins, particle picking is a challenging 3D object detection problem. Ex-
isting approaches are either slow or limited to picking a few particles of interest,
which requires large annotated and difficult to obtain training datasets. In this
work, we propose ProPicker, a fast and universal particle picker that can detect
particles beyond those in the training set. Our promptable design allows for se-
lectively detecting a specific protein in the volume based on an input prompt. Our
experiments demonstrate that through a favorable trade-off between performance
and speed, ProPicker can achieve performance close to or on par with state-of-the-
art universal pickers, while being up to an order of magnitude faster. Moreover,
ProPicker can be efficiently adapted to new proteins through fine-tuning with a
few annotated samples.

1 INTRODUCTION

Cryo-electron tomography (cryo-ET) is very popular due to its unique capabilities of imaging bio-
logical macromolecules in their native environments (Turk & Baumeister, 2020; Hylton & Swulius,
2021). An ambitious goal of cryo-ET is to obtain an ‘atlas’ of the cell with all of its constituent
macromolecules mapped in their native environment. This would revolutionize our understanding
of essential protein interactions and has the potential to provide breakthroughs in modern medicine
spanning cell biology to drug discovery (Bodakuntla et al., 2023).

In this paper, we focus on particle picking, which is the task of finding all instances of a particle of
interest in 3D volumes, called tomograms, obtained with cryo-ET. Particle picking is an essential
step in cryo-ET reconstruction and analysis.

Particle picking is a challenging 3D object detection problem, for various reasons. First, due to the
fundamental limitations of data acquisition in cryo-ET, tomograms have a very low signal-to-noise
ratio and exhibit strong artifacts. Moreover, tomograms are often large (200× 1000× 1000 voxels
and up), and cryo-ET datasets can consist of more than a hundred tomograms, which makes their
analysis computationally demanding (Genthe et al., 2023; Zeng et al., 2023). Finally, due to the
significant diversity in protein types within the cell, there is a vast array of unique object classes to
be detected, many of which only differ subtly, rendering differentiation challenging. For instance,
the human body alone is estimated to contain more than 20,000 unique proteins (Li & Buck, 2021).

Given these challenges, a particle picking method should be accurate, fast, and universal, i.e., should
be able to pick any particle of interest. Existing methods for particle picking are either slow or not
universal, that is they are limited to picking a few (and fixed) particles of interest.

In this paper, we propose ProPicker, a Promptable particle Picker that can rapidly detect any type of
protein selected by a versatile prompting mechanism. ProPicker is inspired by the Segment Anything
Model (SAM) (Ravi et al., 2024; Kirillov et al., 2023) and CLIPSeg Lüddecke & Ecker (2022). For
fast particle picking, ProPicker leverages an efficient 3D segmentation network to segment particles
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Figure 1: Overview of ProPicker: We extract a generalized representation of the particle to be
picked in the tomogram by a prompt encoder. Conditioned on the prompt features, we segment the
tomogram for the desired particle. Finally, we leverage the output segmentation map to find the
particle coordinates, either by clustering or template-based approaches. The 3D objects shown in
this figure have been rendered using data from the SHREC 2021 dataset (Gubins et al., 2020).

of interest in tomograms and accurately locate their positions. To make ProPicker universal, we
propose a promptable segmentation architecture that uses a conditioning mechanism to control the
type of particle to be segmented by the network. The prompt provides a generalized representation
of the particle one wishes to pick and is not restricted to those encountered during training.

As large and diverse datasets of tomograms with annotated particles for training are not yet available
(efforts to collect them are well underway (Ishemgulova et al., 2023)), our paper primarily relies on
synthetic data for training and evaluation. We also demonstrate the applicability of ProPicker to
real-world tomograms. Our main contributions are as follows:

1. We propose ProPicker, a novel particle picker that offers a favorable trade-off between pick-
ing performance and speed. ProPicker can accurately pick a variety of different proteins
while simultaneously being up to 10× faster at single particle picking than the state-of-the-
art.

2. ProPicker is universal in that it can pick new particles that the model has not encountered
during training. For cases where ProPicker’s out-of-the-box picking performance on novel
particles is not satisfactory, we demonstrate that fine-tuning on little data can increase per-
formance.

3. We provide experiments which indicate that ProPicker can generalize to unseen real-world
tomograms, even though we train the model exclusively on synthetic data.

Overall, our findings demonstrate that ProPicker is a fast, high-performance and universal particle
picker that is based on the contemporary foundation model paradigm. As such, we expect major
further improvements in both performance and generalization in the near future when larger and
more diverse datasets for cryo-ET become available.

2 BACKGROUND & RELATED WORK

SW — lots of changes here because reviewers complained about us not mentioning enough
other works

Deep learning methods have already revolutionized particle picking from 2D micrographs in the
context of single particle cryo-EM (Wang et al., 2016; Bepler et al., 2019; Wagner et al., 2019).
They are also on the rise for particle picking particles in 3D tomograms produced with cryo-ET.
However, traditional methods still play an important role:
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Particle Picking with Template Matching. Template Matching (TM) is the most widely used
method for particle picking in cryo-ET (Bohm et al., 2000; Cruz-León et al., 2024). TM-based
methods compare a template of the particle to be picked to candidate sub-tomograms extracted from
a 3D sliding window. This approach is universal, as it can pick any particle as long as a template
is available. However, TM is computationally demanding (up to several hours per tomogram), as
the stride of the sliding window needs to be small for accurate picking (Genthe et al., 2023; Maurer
et al., 2024).

Building upon classical template-based approaches, the recent TomoTwin method (Rice et al., 2023)
utilizes a learned convolutional encoder to map both template and sub-tomogram into a structured
latent space, where similarity is evaluated. The training of the encoder follows a deep metric learning
approach such that latent representations of particles of the same class have high cosine similarity,
while those of different classes have low cosine similarity. TomoTwin is state-of-the-art among
universal particle pickers, can be faster than classical TM, and is more convenient to use.

Particle Picking with Deep Learning-Based Object Detection. Particle pickers using deep
learning-based object detection often outperform TM in terms of performance and picking speed
(Gubins et al., 2020; Genthe et al., 2023). Many such pickers, including our ProPicker method,
use a convolutional network to segment particles of interest belonging to one or more classes and
produce candidate particle locations by clustering the predicted segmentation masks. Examples for
such methods include DeepFinder (Moebel et al., 2021), DeePiCt (De Teresa-Trueba et al., 2023),
and DeepETPicker (Liu et al., 2024).

Deep learning-based object detection approaches for particle picking are typically significantly faster
than TM-like methods (Gubins et al., 2020), but current variants are not universal: they are trained
on datasets containing a fixed set of particles of interest and trained models are limited to picking
particles seen during training.

As a first step towards a universal segmentation-based picker, Zhao et al. (2024) have recently pro-
posed CryoSAM. CryoSAM uses tomograms and user-specified center coordinates of target proteins
as input. Leveraging DINOv2 (Oquab et al., 2023), it extracts features around these points and gen-
erates new prompts via feature matching. The general 2D segmentation model SAM (Kirillov et al.,
2023) then segments particles iteratively, slice by slice, using the generated prompts.

Relation of ProPicker to Existing Particle Pickers. ProPicker shares the setup of picking parti-
cles based on a single observation with TomoTwin and CryoSAM. In contrast to TomoTwin, ProP-
icker does not rely on slow template matching, but is based on fast 3D segmentation. CryoSAM
is segmentation-based but, the techniques used differ significantly from ProPicker. CryoSAM does
not involve any training or fine-tuning on cryo-ET specific data but relies on 2D models trained in
the general domain on mostly natural images. ProPicker on the other hand uses 3D segmentation
and has been trained on domain-specific cryo-ET data. We compare the performance and speed of
TomoTwin, CryoSAM and ProPicker in Section 4.

3 PROPICKER: PROMPTABLE SEGMENTATION FOR PARTICLE PICKING

After formally stating the problem we consider in this work, we describe ProPicker, illustrated in
Figure 1.

Problem Statement We are given a set of tomograms {x1,x2, ...}, represented as 3D voxel ar-
rays, i.e., xi ∈ Rn×n×n. Assume that the tomograms contain multiple instances of a type of particle
in which we are interested, and whose size is known. The individual instances can appear at arbi-
trary orientations. We consider the task of finding the set C∗ = {c∗1, c∗2, ...} containing the centers
c∗i ∈ R3, i = 1, 2, ... of all instances of the particle of interest in all of the tomograms.

3.1 PROPICKER ARCHITECTURE

ProPicker takes a tomogram x, and a prompt, a 3D voxel array p ∈ Rm×m×m representing the
particle of interest as input. The output is a set C containing predicted particle centers.

3
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In this work, a prompt p is a small sub-tomogram, i.e., a part of a larger tomogram, of shape
37 × 37 × 37 containing one instance of the particle of interest. The prompt sub-tomogram is
extracted from one of the tomograms to which we wish to apply particle picking. However, other
representations that uniquely identify particles, such as amino-acid sequences or atomic coordinates
could also be used as prompts.

ProPicker consists of a prompt encoder and a segmentation model, which we detail in the following.

The prompt encoder. The prompt encoder εp : Rm×m×m → Rd extracts a salient feature vector
zp ∈ Rd that encodes information required for efficiently detecting the particle in tomograms. We
focus on prompts in voxel-space and use the TomoTwin encoder (Rice et al., 2023) as the prompt
encoder due to its robustness and good performance in template-based particle classification (see
Section 2). Its input is a sub-tomogram that includes the particle of interest, and it outputs a concise
(d = 32) representation zp of the particle that we use to condition the segmentation model.

The segmentation model. Given an input volume x ∈ Rn×n×n and prompt p, our promptable
segmentation model S : Rn×n×n × Rd → Rn×n×n can be conditioned on the input prompt that
steers the output map y ∈ {0, 1}n×n×n to the desired particle class, that is y = S(x; zp), where
zp = ε (p) . The model output y is the voxel-wise prediction of the model with respect to the
absence/presence of the particle described in the input prompt. promWe use a well-established
convolutional 3D U-Net (Ronneberger et al., 2015), which is an encoder-decoder architecture (see
Figure 1), as our segmentation model. The U-Net’s encoder consists of 5 spatial downsampling
layers, and the corresponding decoder has 5 spatial upsampling layers. In total, the U-Net has 124
million trainable parameters. More details on the segmentation model and how we condition it on
the encoded prompt can be found in Appendix B.

3.2 PARTICLE PICKING PIPELINE WITH PROPICKER

Next, we describe the steps of picking a single particle type in a tomogram using ProPicker.

1. Prompt extraction. First, we obtain a representation of the particle of interest in the tomogram.
We focus on voxel-space prompting, and therefore manually extract a sub-tomogram that includes
an instance of the particle of interest to be used as a prompt.

2. Particle segmentation. Next, we embed the extracted prompt and segment the tomogram using
ProPicker. As tomograms are typically very large, we segment the volume using a strided 3D sliding
window approach. Specifically, we slide a moderately sized window across the tomogram to extract
sub-tomograms, and segment each sub-tomogram individually. We obtain a full-sized segmenta-
tion mask for the tomogram by combining the sub-tomogram level masks, averaging overlapping
regions. A crucial hyperparameter of particle segmentation is the stride s of the sliding window,
which controls the overlap between segmented sub-volumes. Template-based pickers rely on high
overlap (low s), as these techniques need the window to be centered around the target particle. Our
segmentation-based approach is less sensitive to the amount of overlap, and thus performance can
be maintained with larger strides. Due to the 3D nature of the problem, a factor N reduction in stride
results in N3 times decrease in compute.

3. Finding particle center coordinates. We propose two strategies to map the segmentation
output y to particle center coordinates:

• Clustering-based picking (ProPicker-C): We detect clusters in the segmentation map by
finding connected components. The centroid of each cluster is a predicted particle center.
The precision of this approach can be improved by leveraging prior information about the
target particle size by excluding clusters that are too small or too large.

• TM-based picking (ProPicker-TM): We apply a TM-based picker to the input tomogram
over regions where our segmentation mask predicts the presence of a particle.

Our default variant, ProPicker-C, is fast as it directly predicts the particle centers from the segmen-
tation map using lightweight connected component finding.
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The performance of ProPicker-TM depends on the TM procedure which produces the actual picks.
Therefore, ProPicker-TM is particularly useful when the goal is to speed-up an existing TM pipeline
in case the latter is known to have good performance. As the segmentation masks produced with
ProPicker are typically very sparse in the volume (in our experiments, up to 98% of the tomograms
were masked out), ProPicker-TM can yield significant speedups for TM.

4 EXPERIMENTS

In this Section, we demonstrate that ProPicker is effective at picking particles. We consider two
different setups, divided into Section 4.1 and Section 4.2.

In Section 4.1, we consider picking all copies of a particle based on a single observation (prompt)
of the particle. As baselines, we consider TomoTwin (Rice et al., 2022) and CryoSAM (Zhao et al.,
2024). However, we find that TomoTwin performs better than CryoSAM and that CryoSAM is un-
able to handle diverse, crowded tomogram, and is less robust to noise (see Section 4.1.2). Therefore
the state-of-the-art TomoTwin is our main baseline. We do not compare to non-universal methods
or methods that require any data for training, as these do not match the setup. We compare to such
methods in Section 4.2.

In Section 4.2, we discuss fine-tuning ProPicker as means to improve performance and to adapt to
new particles. This setup is similar to that of non-universal pickers deep-learning-based pickers, out
of which we chose the popular and powerful DeepFinder method (Moebel et al., 2021) as baseline.

Before we discuss our experiments, we describe the training of ProPicker and our evaluation metrics.

Training Dataset of ProPicker. We train ProPicker on realistically simulated tomograms from
Rice et al. (2023) and Gubins et al. (2020), which have also been used to train TomoTwin. Our train-
ing set contains the majority of TomoTwin’s training data (we exclude some of it for generalization
and fine-tuning experiments; see Sections 4.1.2 and 4.2), and contains 79 tomograms and a total of
113 unique protein types, as well as gold fiducial markers, vesicles and filaments. Each tomogram
contains around 1500 protein instances, each belonging to a set of 10 unique protein types. We train
on sub-tomograms of size 64 × 64 × 64 extracted from all tomograms with a 3D sliding window
with stride 32.

Training ProPicker. To reduce computational cost, we keep the prompt encoder frozen during
training (see Section 3.1). We train the segmentation model with the Adam optimizer (Kingma &
Ba, 2015) with fixed learning rate 0.01. For each gradient step, we first randomly sample a batch of
8 sub-tomograms. For each sub-tomogram, we also randomly sample 10 prompts, one for each of
the 10 unique proteins the sub-tomogram may contain (see ”Training Dataset”). We pass each sub-
tomogram and its corresponding prompts through the conditional segmentation model. This yields
a total of 80 = 8 · 10 predicted segmentation masks. Finally, we compute the average voxel-wise
binary cross entropy between the model outputs and the 80 single-class target masks as loss.

Evaluation Metrics. We measure picking performance with F1 score, and report best-case per-
formance with thresholds optimized on test data for all methods following common practice (Rice
et al., 2023), unless stated otherwise.

4.1 PICKING PARTICLES BASED ON A SINGLE PROMPT

ProPicker targets fast and universal picking. We first focus on picking speed and compare to To-
moTwin which achieves state-of-the-art performance for the dataset we consider.

4.1.1 PICKING SPEED (VS. TOMOTWIN)

Both TomoTwin and ProPicker process the tomogram in a 3D sliding window fashion. Therefore,
inference time is cubically related to the window stride. However, large strides (small overlap) often
results in low detection performance. Here, we explore this trade-off. To quantify speed, we report
the throughput in tomograms per hour on a single NVIDIA L40 GPU for picking a single particle of
interest in a tomogram of size 200× 512× 512.

5
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Figure 2: Picking performance (best-case F1 scores) and speed for our method with ProPicker-C,
ProPicker-TM and TomoTwin (TT) for 100 unique particles seen during training. Vertical markers
are medians, circles are means.

Method / PDB 1avo 1e9r 1fpy 1fzg 1jz8 1oao 2df7 Mean Median
CryoSAM 0.08 0.10 0.19 0.07 0.26 0.30 0.44 0.21 0.19
TomoTwin 0.59 0.72 0.86 0.48 0.73 0.70 0.92 0.71 0.72

ProPicker-C 0.66 0.82 0.76 0.55 0.79 0.70 0.98 0.75 0.76

Table 1: Best-case F1 picking scores for CryoSAM, TomoTwin (s = 2) and ProPicker-C (s = 32)
on 8 particles that were not seen during training.

As the speed at which a particle can be reliably picked depends on, e.g., the particle’s size (especially
for TM methods like TomoTwin), we measure picking speed on a set of 10 tomograms which contain
100 particles in total. Both TomoTwin ProPicker and have seen all of these particles during training,
but within in different tomograms, i.e., in different contexts. We evaluate performance on unseen
particles in Section 4.1.2.

As can be seen in Figure 2, ProPicker-C with s = 32 can pick most particles as well as TomoTwin
for s = 4 (TomoTwin’s default s = 2 gives slightly better performance but is almost 8× slower),
while being more than 5× faster. Increasing ProPicker’s stride to s = 56 doubles the speed while
resulting in a moderate loss of performance. Note that TomoTwin cannot be significantly accelerated
by increasing the stride, as even s = 8 leads to a large drop in performance (Fig. 2, bottom left).

ProPicker-TM (with TomoTwin TM) with s = 56 increases throughput by a factor of 10 at the cost
of a small decrease in performance over TomoTwin with s = 4. This shows that ProPicker-TM can
maintain the accuracy of the high-performing TM-based picker TomoTwin, while providing large
speedups by significantly reducing TomoTwin’s search space to the segmentation mask predicted by
ProPicker.

SW — The following paragraph is because reviewers complain that our speedup comes from
the U-Net. I don’t think that this is a bad thing but I want to be very upfront about it. Note that
ProPicker’s speed advantage over TomoTwin, and TM in general, is due to the efficient segmentation
with the 3D U-Net which is able to process large portions of the tomogram at a time. Other picking
methods that use convolutional models for segmentation like DeepFinder (Moebel et al., 2021),
DeePiCt (De Teresa-Trueba et al., 2023) or DeepETPicker (Liu et al., 2024) offer favorable speed-
performance tradeoffs similar to ProPicker but do not target universal picking.

4.1.2 GENERALIZATION TO UNSEEN PARTICLES (VS. TOMOTWIN AND CRYOSAM)

Next, we study the universality of our picker, i.e., its capability to generalize to unseen particles.
We test the generalization capability of ProPicker on a re-generated version of the generalization
tomogram from Rice et al. (2023). This tomogram contains 8 unique particles that are not part of
our training set, we generate it with the same simulator as most of ProPicker’s and TomoTwin’s
training dataset. The tomogram is therefore well suited for studying the generalization of ProPicker
to unseen particles in an environment similar to that seen during training.

Our setup in this section is also well-suited to compare methods for universal picking. Therefore, we
consider TomoTwin and CryoSAM as baselines. We applied TomoTwin and ProPicker directly to

6
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Figure 3: Slices through a single real-world tomogram from EMPIAR 10045. TomoTwin’s thresh-
olded heatmap and our segmenation map are shown in transparent pink. The ribosomes appear as
round, bright white particles. For clarity, we denoise the tomogram with CryoCARE (Buchholz
et al., 2019). The images are high resolution, and we recommend readers to zoom in to judge the
picking performance of the methods.

the tomogram using the same prompts. We find that CryoSAM is unable to pick particles in the noisy
tomogram. Therefore, we applied CryoSAM to the clean ground truth tomogram that underlies the
simulation of the noisy tomogram, to probe the best-case performance.

As shown in Table 1, for these 8 particles, ProPicker-C (s = 32) performs on par with TomoTwin
(s = 2). This demonstrates that ProPicker-C pre-trained on a set of particles can efficiently general-
ize to new proteins by providing input prompts in a format compatible with the training setup.

CryoSAM achieves significantly lower F1 scores than TomoTwin and ProPicker for all particles.
Upon inspection, we find that CryoSAM’s segmentation masks suffer from low precision. We con-
jecture that both DINOv2 (Oquab et al., 2023) and SAM (Kirillov et al., 2023), which are both used
in CryoSAM without any fine-tuning on cryo-ET data, fail to discriminate between the particles
even in the absence of noise. Archit et al. (2023) made a similar observation when they investigated
the use of SAM on scientific microscopy data and found that fine-tuning is necessary in most cases.

4.1.3 GENERALIZATION TO REAL-WORLD TOMOGRAMS (VS. TOMOTWIN)

To further test the generalizability and universality of ProPicker, we perform case studies on real-
world tomograms.

First, we consider EMPIAR 10045, consisting of tomograms of purified 80S ribosomes, i.e. ribo-
somes embedded in ice without cellular context or other proteins (Bharat & Scheres, 2016). We also
consider EMPIAR 10988, containing tomograms with ribosomes within S. pombe cells (De Teresa-
Trueba et al., 2023). For both datasets, we picked ribosomes using ProPicker (with s = 32) and
TomoTwin (with s = 4).

Figure 3 and Figure 4 show segmentation masks without clustering or TM-based picking produced
with ProPicker alongside segmentation masks produced with TomoTwin.

The raw output of both TomoTwin and ProPicker are 3D volumes with voxel values between 0
and 1. For ProPicker this is the output of the segmentation U-Net (after sigmoid activation). For
TomoTwin, the raw output is a 3D heatmap which, at each voxel, contains the cosine similarities
between the embedded candidate sub-tomogram centered at this voxel and the embedded reference.
We threshold the output volumes to obtain the binary-valued segmentation masks in Fig. 3 and 4.

We find that, for both real-world tomograms, ProPicker performs significantly better when applied
to slightly denoised tomograms. In both cases, we applied very mild denoising with a Gaussian

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

E
M

P
IA

R
1
0
9
8
8

(D
en

o
is

ed
)

z

y

x

y

Tomogram

z

y

x

y

Expert Annotations

x

z

x

z

E
M

P
IA

R
1
0
9
8
8

(D
en

o
is

ed
)

z

y

x

y

TomoTwin

z

y

x

y

ProPicker

x

z

x

z

Figure 4: Slices through a single real-world tomogram from EMPIAR 10988. TomoTwin’s thresh-
olded heatmap and our segmentation map are shown in transparent pink. For clarity, we denoise
the tomogram with Topaz (Bepler et al., 2020). The images are high resolution, and we recommend
readers to zoom in to judge the picking performance of the methods.
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Figure 5: Dependence of the picking F1 score of ProPicker-C on the choice of the prompt for two
synthetic tomograms containing particles which were seen during training. The particles are labeled
according to their accession code in the protein data bank (PDB).

filter with kernel standard deviation 0.6. Note that for the synthetic tomograms, denoising was not
necessary, and we believe that the benefit of Gaussian denoising is largely caused by it changing
the distribution of the noise on the real-world data tomograms such that it is closer to the synthetic
noise. For more discussion, we refer the reader to Section 5.

In the EMPIAR 10045 tomogram (Figure 3), both TomoTwin and ProPicker pick a substantial
amount of the ribosomes. Note that although it seems that both methods produce false positives
in the noisy region shown in the x-y-plane (large panels), an inspection of the x-z-plane reveals that
the noisy region actually contains ribosomes which are correctly identified.

The EMPIAR 10988 tomogram in Figure 4 is more challenging for particle picking due to the
crowded cellular environment. Still, both TomoTwin and ProPicker detect many ribosomes. When
comparing to the expert annotations (top right panel) by De Teresa-Trueba et al. (2023), we find that
most picks of TomoTwin and ProPicker are true positives. For a more quantitative evaluation, we
compute best-case picking F1 scores with respect to the expert annotations for both TomoTwin and
ProPicker. TomoTwin achieves a best case F1 of 0.60, ProPicker-C achieves 0.61. The F1 scores are
comparably low because the expert annotations seem to miss some particles, as can be seen when
zooming into Figure 4.

4.1.4 DEPENDENCE OF PICKING PERFORMANCE ON THE PROMPT

The user has to manually extract the prompt from a tomogram at inference, and the tomogram
typically contains many instances of the particle of interest. Thus, a natural question is how the
performance of ProPicker depends on the concrete choice of the prompt. We investigate this prompt-
dependence on two synthetic tomograms both containing 10 unique particles which have been all
seen during training. The two tomograms are part of the test set described in Section 4.1.1. As the
ground truth location of all particles is known for the synthetic tomograms, we randomly sampled
10 prompts for each particle and evaluated the best-case picking F1 score.

As can be seen in Figure 5, for all but few particles, the picking performance of ProPicker-C does not
vary much with the concrete choice of the prompt. For some particles like 5ahu and 6tps (both
in Tomogram 1), there are outlier prompts which yield significantly lower picking performance
compared to the rest. We therefore recommend to try a few prompts for each particle.

4.2 FINE-TUNING PROPICKER (VS. DEEPFINDER)

ProPicker is a generalist model trained to pick a wide range of particles. However, in practice the
goal is often to pick one specific type of particle. To improve the picking performance on specific
particles or tomograms ProPicker can be fine-tuned. In this section, we show that ProPicker’s per-
formance on unseen particles can be signficiantly, and data-efficiently improved through fine-tuning.
Our aim is not to outperform state-of-the-art non-universal pickers but to show that ProPicker can
match their performance.

9
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Figure 6: Best-case F1 scores of ProPicker-C and DeepFinder versus amount of fine-tuning data for
unseen particles. SW — numbers will change, but conclusion should be the same (currently
re-trainig ProPicker with proper tomotwin encoder)

Fine-tuning strategy for ProPicker. We describe how to fine-tune ProPicker to pick a single
particle of interest. This requires (parts of) one or more tomograms with corresponding ground-
truth binary segmentation masks of the particle, as well as a manually extracted example of the
particle that serves as prompt. During fine-tuninig, we keep this prompt and the prompt encoder
fixed, and only fine-tune the segmentation model and the prompt conditioning mechanism.

Dataset. We resort to a set of tomograms from TomoTwin’s training set each of which contains
observations of the same 8 unique particles. As TomoTwin’s training set was specifically desinged to
contain particles whose structures are all very different from one another (see (Rice et al., 2023) for
details), these 8 particles are hard, unseen examples for ProPicker. We have access to 8 tomograms,
out of which we use 7 for fine-tuning and one for testing. For the experiment in this Section, we
re-trained ProPicker and its TomoTwin prompt-encoder, and excluded the 8 particles from the both
training sets.

DeepFinder baseline. We choose DeepFinder (Moebel et al., 2021) as baseline from the class of
non-universal state-of-the-art deep-learning-based particle pickers. Like other pickers, e.g, DeePiCt
(De Teresa-Trueba et al., 2023) or DeepETPicker (Liu et al., 2024), DeepFinder is segmentation-
based and uses a 3D U-Net.

We compare to two variants of DeepFinder. For the first variant, ”DeepFinder (1 Class)”, we train
one DeepFinder model for each particle separately. This is exactly the same setup as when we
fine-tune ProPicker. For the second variant, ”DeepFinder (8 Classes)”, we train one DeepFinder
model to pick all 8 particles simultaneously. We consider this setup because Moebel et al. (2021)
have found that multi-class training can yield substantial improvements in performance for hard-
to-pick particles. Note that, in contrast to the single class setup, this the multi class setup requires
annotations for all 8 particles, which requires substantially more effort during annotation.

Results. Figure 6 shows the performance of DeepFinder and ProPicker for different amounts of
training/fine-tuning data.

Due to the particularly challenging data, we observe rather low picking F1 scores for ProPicker-C
on most particles when picking with a single prompt (left panel of Figure 6). Note that the re-trained
TomoTwin, from whose training set we excluded the 8 particles considered in this experiment, too,
struggles with picking, and achieves a mean F1 score similar to ProPicker. As it is not straight-
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forward how to fine-tune TomoTwin on individual particles, we only report the performance of the
re-trained TomoTwin for prompt-based picking.

Fine-tuning ProPicker-C significantly boosts picking performance for all particles. The performance
of the fine-tuned models saturates quickly as more data becomes available: Fine-tuning on a single
tomogram yields significant improvements for all particles whereas going from 4 to 7 fine-tuning
tomograms makes little or no difference.

Our next observation is that, if only few tomograms or only annotations for the particle of interest
are available, fine-tuning ProPicker-C yields superior performance compared to both variants of
DeepFinder. When training/fine-tuning on a single tomogram, the fine-tuned ProPicker-C pickers
significantly outperform DeepFinder with 1 class (center panel) and 8 classes (right panel). Even
as more data becomes available, the ProPicker-C performs as well as or better than the single-class
DeepFinder models, depending on the particle, but the performance gap is narrowing.

Finally, note that in this experiment, the benefit of ProPicker-C’s fine-tuning is not able to outweigh
the advantages of multi-class particle picking if enough training data is available. Depending on
the particle, DeepFinder trained on all 8 classes simutaneously performs on par or better than the 8
fine-tuned ProPicker-C pickers when training/fine-tuning on 4 or 7 tomograms. We again emphasize
that the price of the improved performance is having to annotate all particles in the tomogram even
if one is only interested in a single one.

5 DISCUSSION & CONCLUSION

In this work, we propose ProPicker, a particle picking method for cryo-ET that leverages a prompt-
able segmentation model for rapid and accurate detection of proteins. The core of ProPicker is an
efficient segmentation model capable of selectively detecting particles in tomograms based on a
prompt, i.e., a concise representation of the particle of interest.

Our experiments demonstrate that ProPicker offers a favorable trade-off between picking speed and
performance. Depending on the particle to be picked, ProPicker can achieve state-of-the-art picking
performance, in some cases even if the particle was not seen during training, while at the same time
offering significant speedups compared to the popular template matching baseline TomoTwin.

Through evaluation on two real-world tomograms, we demonstrated (see Section 4.1.3) that ProP-
icker can generalize to real-world data. In our experiments, we also encountered real-world tomo-
grams where ProPicker was unable to pick particles. This is not surprising because, due to a lack of
large real-world datasets, we rely exclusively on synthetic data for training. Such issues are not ex-
clusive to ProPicker (Bandyopadhyay et al., 2022): Huang et al. (2024) reported significant drops in
performance when applying deep learning-based particle pickers, among them DeepFinder (Moebel
et al., 2021)) and TomoTwin, to tomograms whose characteristics are too different from the training
data. Note that a concrete example of such a case can be found in Section 4.2, where we showed
that both ProPicker and TomoTwin struggle to pick particles that have not been seen during training
and that are very dissimilar from all other particles in the training dataset.

However, the fact that ProPicker is (after slight denoising) able to detect a substantial amount of
particles in the two real-world datasets highlights the great potential of the method. It is widely
accepted that training on larger and more diverse datasets improves the robustness of deep learning
models (Radford et al., 2021; Fang et al., 2022; Lin & Heckel, 2024). Therefore, a promising direc-
tion for future work is to collect large datasets of tomograms with ground truth particle annotations
for a variety of particles. Large scale efforts to do so have already been initiated, see for example the
CryoET Data Portal (Ermel et al., 2024) and (Ishemgulova et al., 2023). Once such datasets become
available, incorporating them into the training sets of universal particle pickers like TomoTwin and
ProPicker is likely to increase their robustness and performance.

ProPicker is a step towards a fast foundational particle picking model for cryo-ET. We expect particle
picking to profit significantly from adopting the foundation model paradigm where large pre-trained
models give good picking results out-of-the-box or are fine-tuned on little data (as, e.g., demon-
strated for ProPicker in Section 4.2).
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REPRODUCIBILITY STATEMENT

We provide code to train and evaluate ProPicker, as well as the weights of the trained model. All
datasets used in this paper are publicly available.
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Timo Lüddecke and Alexander Ecker. Image segmentation using text and image prompts. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7086–7096, 2022.

V. J. Maurer, M. Siggel, and J. Kosinski. Pytme (python template matching engine): A fast, flexible,
and multi-purpose template matching library for cryogenic electron microscopy data. SoftwareX,
25:101636, 2024.

E. Moebel, A. Martinez-Sanchez, L. Lamm, R. D. Righetto, W. Wietrzynski, S. Albert, D. Larivière,
E. Fourmentin, S. Pfeffer, J. Ortiz, et al. Deep learning improves macromolecule identification in
3d cellular cryo-electron tomograms. Nature Methods, 18(11):1386–1394, 2021.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. AAAI Conference on Artificial Intelligence, 32(11), 2018.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In Inter-
national Conference on Machine Learning, pp. 8748–8763, 2021.

N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson,
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APPENDIX

A SUB-TOMOGRAM AVERAGING

Sub-tomogram averaging is a central application of cryo-ET and one of the main motivations for
particle picking. The goal of sub-tomogram averaging is to get high-resolution models of parti-
cles like proteins based on data from tomograms. The idea is to align and average sub-tomograms
that show the same particle, which suppresses the strong noise and artifacts present throughout the
tomograms and can yield high-resolution models of the particle (Wan & Briggs, 2016). For this
procedure, particle picking is an essential component and bottleneck both in terms of time demands
and accuracy.

B ARCHITECTURAL DETAILS

B.1 PROMPTABLE SEGMENTATION MODEL

We use a well-established convolutional 3D U-Net (Ronneberger et al., 2015) as our segmentation
model. The U-Net’s encoder matches the architecture of the prompt encoder, and consists of 5 spatial
downsampling/upsampling layers with corresponding skip connections. We condition the decoder
on the encoded prompt zp, using a feature-wise linear modulation (FiLM) approach (Perez et al.,
2018) (see Appendix B.2). Conditioning only the decoder enhances our technique with additional
efficiency, as the encoder features can be re-used and decoded through multiple prompts in case one
wishes to pick more than one type of particle. As is common in segmentation tasks, we activate
the output of the U-Net with a sigmoid function to ensure the voxel values are between 0 and 1.
At inference, voxels have to be binarized according to a user-defined threshold for clustering via
connected component detection.

B.2 CONDITIONING

We condition each of the decoder’s 5 spatial upsampling layers with FiLM (Perez et al., 2018), which
works as follows: Let C be the number of channels (features) of an intermediate 3D feature map
after upsampling. First, we multiply the encoded prompt zp ∈ R32 with two (learnable) matrices
A,B ∈ RC×32. Finally, we map each channel k ∈ {1, ..., C}, with an affine transformation with
slope (Azp)k ∈ R and intercept (Bzp)k ∈ R, which gives the conditioned feature map. We use
one separate pair of matrices (A,B) for each of the 5 upsampling layers.

C TRAINING DETAILS

C.1 TRAINING THE PROMPTABLE SEGMENTATION MODEL

Training requires a dataset of tomograms that serves as model inputs and segmentation masks used
as targets. For each tomogram, there can be multiple segmentation masks, each corresponding to
a single type of particle. The annotations should be complete, i.e., all occurrences of the particles
should be correctly labeled, but not all types of particles have to be annotated. Moverover, we need
the centerpoints of some of the labeled particles to extract prompts for training.

We trained our model on a set of realistically simulated tomograms, which also served as the basis for
the generation of TomoTwin’s training dataset. In particular, we trained on 79 tomograms containing
a total of 113 unique protein types, as well as gold fiducial markers, vesicles and filaments.

The dataset consists of two parts: 70 of the tomograms have been simulated by Rice et al. (2023)
using the TEM-simulator (Rullgård et al., 2011). Each tomogram contains around 1500 proteins
belonging to one of 10 unique protein classes, and has 200 × 512 × 512 voxels The remaining
9 tomograms have been simulated by Gubins et al. (2020) for the purpose of the SHREC 2021
challenge. Each of these tomograms contain between 1000 and 3000 particles from the same 13
classes. After excluding empty areas, the tomograms consist of 180× 512× 512 voxels.
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Figure 7: F1 scores for TomoTwin (s = 2), DeepFinder and ProPicker-C (s = 32) achieved on
the SHREC 2021 test tomogram. The F1 scores for DeepFinder were taken from the SHREC 2021
challenge paper by Gubins et al. (2020) (Table 4).

We trained on sub-tomograms of size 64 × 64 × 64, which we extracted from all tomograms with
a stride of 32 voxels in each direction. Additionally, we used data augmentation, including random
flips and rotations.

C.2 FINE-TUNING DETAILS

We fine-tuned each model using Adam with a constant learning rate of 0.001 and early stopping
on the test tomogram to obtain best-case performance and to rule out distortions due to insufficient
validation data.

D FINE-TUNING ON SEEN PARTICLES

Finetuning of ProPicker can also improve performance on data seen during training. We consider
the synthetic SHREC 2021 dataset (Gubins et al., 2020) which is part of ProPicker’s training dataset
(see Appendix C).

The SHREC 2021 dataset is a popular synthetic benchmark for non-universal particle picking meth-
ods which target picking a fixed set of particles of interest. It consists of 10 synthetic tomograms
each containing 12 unique proteins. We train one model for each particle (12 models in total)
on 8 tomograms. We use the 9th tomogram for early stopping and optimizing the hyperparame-
ters (thresholds, maximal and minimal cluster sizes) of cluster-based picking. The 10th tomogram
serves as test tomogram. The test tomogram was part of neither the training dataset nor the fine
tuning dataset of ProPicker.

Figure 7 shows F1 scores for all particles in the SHREC 2021 dataset. The performance varies
widely among particles as some are easy to pick, whereas other particles, especially smaller ones,
pose greater challenges (see (Gubins et al., 2020) for an in-depth discussion).

Fine-tuning ProPicker-C on the SHREC 2021 dataset yields large improvements for some particles,
especially for the particles for which ProPicker-C without fine-tuning achieves relatively low F1
scores (e.g. 1s3x, 1u6g, 3gl1 and 3h84) can benefit significantly from fine-tuning. The overall
performance of all 12 fine-tuned ProPicker-C pickers is similar to that of a single DeepFinder trained
on all 12 classes.
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