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ABSTRACT

One of the challenges in contrastive learning is the selection of appropriate hard
negative examples, in the absence of label information. Random sampling or
importance sampling methods based on feature similarity often lead to sub-optimal
performance. In this work, we introduce UnDiMix, a hard negative sampling
strategy that takes into account anchor similarity, model uncertainty and diversity.
Experimental results on several benchmarks show that UnDiMix improves negative
sample selection, and subsequently downstream performance when compared to
state-of-the-art contrastive learning methods. Code is available at anon. link.

1 INTRODUCTION

Due to the potential of alleviating data annotation costs and the substantial effort requirements in
encoding domain-specific knowledge, self-supervised representation learning methods have attracted
research effort, with recent contrastive learning frameworks even surpassing the downstream perfor-
mance of supervised learning (Chen et al., 2020a; He et al., 2020). Typically, contrastive methods
aim at minimizing distances in feature space for similar example pairs (positive examples) and
maximizing distances of dissimilar example pairs (negative examples) (Chopra et al., 2005). There
has been a growing interest in contrastive learning research, in particular for obtaining better data
representations (He et al., 2020; Robinson et al., 2021; Zhu et al., 2020; Chuang et al., 2020).

Several recent studies investigate the impact of negative sampling strategies, with recent work showing
that increasing the number of negative samples results in learning better representations. However, a
few of the hardest negative samples tend to have the same label as the anchor, hampering the learning
process (He et al., 2020; Cai et al., 2020). Hence, selecting appropriate informative hard negative
examples is a crucial step for the success of contrastive learning.

Various negative selection mechanisms have been proposed, that mainly aim to select discriminative
negative examples based on the current learned feature representations, often used in conjunction
with importance sampling or mixup interpolation (Li et al., 2021; Chen et al., 2020b; Shen et al.,
2022; Robinson et al., 2021; Xiong et al., 2021). Most contrastive methods either uniformly sample
negatives, i.e., assuming that all negative examples are equally important (Chen et al., 2020a; He
et al., 2020; Kalantidis et al., 2020), compute importance scores based on feature similarity (Robinson
et al., 2021; Huynh et al., 2022) or uncertainty (Ma et al., 2021), or employ mixing of features in the
feature/image space (Lee et al., 2021; Shen et al., 2022; Kim et al., 2020; Ge et al., 2021; Kalantidis
et al., 2020; Zhu et al., 2021). As such, there is no clear notion of “informativeness” incorporated in
the negative selection process. Particularly, prior works rarely consider the distance from the model
decision boundary, e.g., by incorporating model uncertainty, or diversity of the selected negative
examples, e.g., whether selected negatives indeed represent the diverse distribution of negatives.

Hard negative example selection in contrastive learning poses three challenges: (1) there is no
label information available, hence there is a requirement for unsupervised strategies for instance
selection, (2) an efficient sampling method should avoid false “hardest” negative samples, i.e.,
samples that are most similar and originate from the same class as the anchor, and (3) an ideal
set of negative examples should represent the whole population Robinson et al. (2021); Cai et al.
(2020). A selection mechanism should ideally capture all three properties: anchor similarity, model
confidence and diversity. Methods that only consider similarity with the anchor when sampling
negative examples, i.e., assuming that higher similarity aligns with higher importance, tend to select
same-class negatives (Figure 2(b)), which can be detrimental to the representation learning (Cai
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(a) Random (b) Anchor Similarity (c) UnDiMix (this work)

Figure 2: Illustration of negative samples (red shapes) for an anchor (yellow triangle) and its positive
pair (green triangle), selected by three negative sampling techniques. Gray areas represent three
clusters with different semantic labels. (a) Random sampling results in easy negatives being selected
(1 triangle, 2 plus, 1 pentagon). (b) Methods that only consider anchor similarity may sample
negatives that lie close to the anchor but also belong to the same semantic class (3 triangles, 1
pentagon). In contrast, (c) UnDiMix samples negatives that lie close to the decision boundary and
are far from each other, i.e., better representing the data population (2 plus, 2 pentagons).

et al., 2020). Besides, negative examples that lie closer to the decision boundary are naturally the
hardest examples, encapsulating rich information about different class categories. On the other hand,
diverse negative examples help to learn global representations of the data distribution. Consequently,
we argue that considering diversity, along with uncertainty and anchor similarity, is helpful when
selecting negative examples.
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Figure 1: SimCLR top-5% KNN
accuracy on CIFAR-100. Model
trained for 100 epochs with nega-
tive examples sampled from : =

{10, 20, 30, 40, 50} classes.

For demonstrating the importance of selecting diverse negative
examples, we train a SimCLR Chen et al. (2020a) model on
CIFAR-100 with all default settings but imposing a modified
sampling process. More specifically, we sample negative exam-
ples of class 2; 0 ≤ 2 ≤ : − 1, where : is the hyper-parameter
for controlling diversity of negative examples and is set to
: = {10, 20, 30, 40, 50}. As : increases, i.e., the diversity of
selected negative examples increases, accuracy also increases
(Figure 1). Hence, the diversity of the negative examples con-
tributes to learning better representations.

To address the aforementioned limitations, this paper introduces
Uncertainty and Diversity Mixing (UnDiMix) for contrastive
training, a method that combines importance scores that capture
model uncertainty, diversity, and anchor similarity. Specifically,
as illustrated in Figure 2(c), UnDiMix utilizes uncertainty to
penalize false hard negatives and pairwise distance among neg-
atives to select diverse examples in a computationally inexpensive way. We verify our method on
several visual, text and graph benchmark datasets and perform comparisons over strong contrastive
baselines. Experimental and qualitative results demonstrate the effectiveness of UnDiMix.

Contributions: (1) We delve into an empirical analysis of the efficacy of hard negative sampling
strategies and feature-based importance sampling methods, observing that incorporating diversity
improves downstream performance. (2) Based on our observations, we introduce an efficient method
to calculate the diversity score of negative examples based on pairwise similarity and propose
UnDiMix, a flexible and efficient hard negative sampling method for contrastive learning that selects
hard informative negatives based on anchor similarity, model confidence and diversity. (3) We
verify the effectiveness of the proposed method and show that UnDiMix improves downstream task
performance and negative selection quality on several benchmarks in 3 domains (image, text and
graph data). Qualitative analysis shows that the proposed method encourages sampling a diverse set
of negatives, resulting in better performance.

2 RELATED WORK

Contrastive Learning: Recent work has largely contributed in developing contrastive self-
supervised learning methods , such as SimCLR (Chen et al., 2020a), MoCo (Chen et al., 2020b),
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Debiased (Chuang et al., 2020), BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), i-Mix (Lee
et al., 2021), UnMix (Shen et al., 2022), FNC Huynh et al. (2022), etc. that have produced promising
results in a variety of domains, from learning unsupervised cross-modal representations and video
representations (Ma et al., 2021; Qian et al., 2021; Pan et al., 2021), to natural language process-
ing (Aberdam et al., 2021) and graph learning (You et al., 2020), often achieving comparable results to
supervised counterparts (Chen et al., 2020a; He et al., 2020). Research efforts can be largely divided
into improvements over the contrastive loss calculation (Chuang et al., 2020; Xie et al., 2021; Thota &
Leontidis, 2021; Oord et al., 2018; Zhu et al., 2020; Azabou et al., 2021; Ko et al., 2021; Chen et al.,
2021) and improvements over the hard positive/negative selection mechanisms (Shen et al., 2020;
Robinson et al., 2021; Kalantidis et al., 2020; Chen et al., 2020a). Our proposed UnDiMix falls under
the latter category and improves over feature-based contrastive importance sampling methods. We
compare UnDiMix with state-of-the-art hard negative sampling techniques, briefly described below.

Hard Negative Sampling: Selection strategies for mining high-quality negative instances in con-
trastive learning have attracted substantial research interest, resulting in a wide range of contrastive
methods proposed, e.g., i-Mix (Lee et al., 2021), HCL (Robinson et al., 2021), Mochi (Kalantidis
et al., 2020), AdCo (Hu et al., 2021), etc. In particular, AdCo (Hu et al., 2021) maintains a separate
global set for negative examples that is updated actively using the contrastive loss gradients w.r.t.
each negative example. However, the set of negative examples remains the same for all the anchors.
MMCL (Shah et al., 2021) formulated the contrastive loss function as an SVM objective and utilized
the support vectors as hard negatives, resorting to approximations to solve a computationally expen-
sive quadratic equation for each anchor. HCL (Robinson et al., 2021), Mochi (Kalantidis et al., 2020)
and FNC (Huynh et al., 2022) relied on feature similarity w.r.t. the anchor while selecting negative
examples and achieved improvements over MoCo-V2 and SimCLR. However, considering only
feature similarity results in assigning more importance to the same-class negatives, i.e., most likely
false negatives which are detrimental to the representation learning process (Cai et al., 2020). Wu
et al. (2020) used two hyperparameters to create a ring of negatives around the anchor. Motivated by
Mixup (Zhang et al., 2018), a few methods create synthetic examples either by interpolating instances
at an image/pixel or latent representation level (Kim et al., 2020; Shen et al., 2022; Zhu et al., 2021),
or by interpolating virtual labels (Lee et al., 2021). Other methods use either texture-based and
patch-based non-semantic augmentation techniques (Ge et al., 2021) or a asynchronously-updated
approximate nearest neighbor index of corpus (Xiong et al., 2021).

On the other hand, Ma et al. (2021) selects negative examples with high model uncertainty. In
active learning, Ash et al. (2020) utilized the gradients of the loss function w.r.t. the model’s most
confident prediction as an approximation of uncertainty. Ma et al. (2021) utilized this measure to
actively sample uncertain negatives when composing a memory bank. Our approach differs in that
we leverage the gradients of the last layer as a model-based uncertainty measure in order to assign
more importance to the samples closer to the decision boundary while sampling, but also incorporate
both anchor similarity and diversity to capture other equally useful properties.

Overall, to the best of our knowledge, none of the prior contrastive learning works jointly considers
model confidence, anchor similarity and diversity, let alone analyze the importance of interpolation
among such components. To this end, we propose UnDiMix, a simple and efficient method that
benefits from all aforementioned components when computing importance weights for negative
examples. Our experimental analysis shows that UnDiMix improves downstream performance and
diversifies the negative example set.

3 METHOD

Problem Formulation: Given an unlabeled dataset X, we wish to learn an encoding function
5 : X → R3 that maps a data point G8 ∈ X to a 3-dimensional embedding space, such that embeddings
of similar instances (G8 , G

′
8
) lie closer to each other, and vice versa. For a random subset (batch) of N

positive pairs X# = {(Ḡ8 , G̃8)}#8=1, where Ḡ8 , G̃8 are two augmented views of example G8 , the contrastive
loss for learning the encoder 5 is defined as

LG8 = − log
exp

(
B(Ḡ8 , G̃8)/g

)
exp

(
B(Ḡ8 , G̃8)/g

)
+ ∑
G̃ 9≠8 ∈X#

exp
(
B(Ḡ8 , G̃ 9 )/g

) , (1)
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Figure 3: Overview of the UnDiMix hard negative sampling. Given an anchor G8 and a set of negative
samples X# \ G8 , UnDiMix computes an importance score for each negative sample, by linearly
interpolating between gradient-based uncertainty, anchor similarity and representativeness indicators,
capturing desirable negative sample properties, i.e., samples that are in close vicinity to the anchor
(P1), lie close to the decision boundary (P2) and are represent a diverse sample population (P3).

where B(G8 , G 9 ) = 5 (G8)> 5 (G 9 )/‖ 5 (G8)‖‖ 5 (G 9 )‖ is the inner product of the normalized latent repre-
sentations, and g is a temperature scaling hyperparameter. Here, G̃8 is referred as the positive sample
for Ḡ8 and (Ḡ 9 , G̃ 9 ) 9≠8 ∈ X# are the remaining instances, that are considered negative samples.

The set of negative examples is typically selected by random sampling (Chen et al., 2020a;b).
Recent works have individually proposed various “hard” negative mining or generation techniques,
e.g., based on perturbations in the input space (Lee et al., 2021; Shen et al., 2022), feature-based
importance weights (Robinson et al., 2021) or uncertainty-based sampling (Ma et al., 2021). Yet,
these methods consider only one selection indicator and hence achieve sub-optimal performance in
learning contrastive representations. In this work, we propose a sampling technique, termed UnDiMix,
that jointly considers both model-based uncertainty and diversity to select negative examples. Below,
we describe how UnDiMix captures the necessary properties for mining informative negative samples.

UnDiMix Description: We wish to select high-quality informative hard negative examples that
exhibit the following properties:

P1: Hard negative examples resemble the anchor example, i.e., the feature representations of the
hardest negative examples lie close to the anchor in the embedding space. We refer to P1 as ANCHOR
VICINITY property.

P2: The selected negative example should also be close to decision boundary. P1 may sample false
negatives. To alleviate this, examples that are similar to the anchor but lie further away from the
decision boundary should have lower weights than examples that are close to the decision boundary
and thus more informative. We refer to P2 as the DECISION BOUNDARY VICINITY property.

P3: Informative negative examples are also diverse. In other words, semantically similar but not
identical diverse negative examples should be sufficient for contrastive training (Cai et al., 2020). We
refer to P3 as the DIVERSITY property.

In summary, UnDiMix selects hard negative samples based on calculated importance scores. The
higher the score is, the more informative the sample is assumed to be. The importance scores consist
of three components:

(1) a feature-based component that leverages the feature space geometry via instance similarity to
select informative negative samples, that satisfy P1,

(2) a model-based component that utilizes the loss gradients w.r.t. each negative sample as a measure
of uncertainty and approximates P2 by assigning more weight to the negative examples that lie closer
to the decision boundary, and
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(3) a density-based component that assigns more weight to negatives examples that are more distant
on average from other negative examples in the batch, and satisfies P3.

To incorporate P1 (ANCHOR VICINITY), we utilize instance similarity in the embedding space. Here,
we use the inner product of the normalized vector representations as a similarity score for example G 9
with respect to anchor G8 , i.e., B(G̃ 9 , Ḡ8) = 5 (Ḡ8)> 5 (G̃ 9 )/‖ 5 (Ḡ8)‖‖ 5 (G̃ 9 )‖. This means that the more
similar G 9 is to anchor G8 , the higher the importance of G 9 is (Robinson et al., 2021).

The lack of access to ground-truth label information makes it impossible to maintain P2 (DECISION
BOUNDARY VICINITY) completely. The challenge, therefore, lies in measuring the informativeness
of negative samples without label information. Model uncertainty measures the degree of confidence
of a model in its prediction i.e., high model uncertainty corresponds to lower model confidence, and
neural models typically assign higher uncertainty to examples closer to the decision boundary Liu
et al. (2020). We use this property to assign higher importance to negative examples, such that
negative examples that are closer to the anchor but far from the decision boundary will have lower
importance than negatives lying closer to the decision boundary.

Inspired by the use of similar information-theoretic metrics in metric learning (Dutta et al.,
2020), out-of-distribution detection (Mundt et al., 2019), and reinforcement learning (Zhao et al.,
2019), we consider a gradient-based uncertainty metric. In particular, pseudo-labeling (as an
implicit method for entropy minimization) and gradient-based uncertainty (where a smaller gra-
dient norm corresponds to higher model confidence) are established in semi-supervised and
active learning Lee et al. (2013); Ash et al. (2020). In addition, gradient-based uncertainty
comes with theoretical justifications for our chosen type of pseudo-labels Ash et al. (2020).
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Figure 4: Pseudo space
for augmented example pairs.
The pseudo-labeling task is
defined as matching an aug-
mented example with its cor-
responding augmented view.

More formally, we first define a pseudo-label space induced by
the data distribution. We denote the most confident prediction for
a negative example (Ḡ 9 , G̃ 9 ) 9≠8 ∈ X# as its pseudo-label Ĥ 9 , and
utilize the gradient of the last encoder layer w.r.t. this pseudo-
label. Specifically, we calculate the pseudo-posterior of the negative
example G 9 via

?
(
H 9

�� G̃ 9 ,X# )
=

exp
(
B(Ḡ8 , G̃ 9 )

)∑
Ḡ8′≠ 9 ∈X# exp

(
B(Ḡ8′ , G̃ 9 )

) , 8 ∈ [1, 2, . . . , #]
(2)

where B(G8 , G 9 ) = 5 (G8)> 5 (G 9 )/‖ 5 (G8)‖‖ 5 (G 9 )‖ is the inner product
of the normalized representations of G8 and G 9 , respectively. Equa-
tion (2) calculates the posterior as the similarity of a negative G 9 and
all other examples G8 ∈ X# , considering them as individual anchors.
Due to the absence of class information, we design an auxiliary pseudo-labeling task of predicting
the corresponding augmented example Ḡ 9 given its pair G̃ 9 . We denote the most confident prediction
as Ĥ 9 = = arg max:

[
?

(
H 9 = Ḡ:

��G̃ 9 ,X# ) ]
:
, where [·]: corresponds to the index of example G8 in

the batch and 1 ≤ : ≤ # . That is, given the augmented view G̃8 of example G8 , the goal is to locate
the matching augmented example Ḡ8 from the set of augmented views {Ḡ: }#:=1 for all examples in
the batch. Figure 4 pictorially illustrates the pseudo-labeling task. We calculate the gradient of the
cross-entropy loss via

6G 9 =
m

m\;0BC
ℓ��

(
?

(
H 9

�� G̃ 9 ,X# )
, Ĥ 9

) ��
\=\ 5

, (3)

where ℓ�� is the cross-entropy loss function and \;0BC is the parameter vector of the last layer of
encoder 5 . Intuitively, the gradient 6G 9 measures the model change caused by the negative example
G 9 . The more uncertain the model is about its prediction for a particular sample, the higher the update
of the model parameters. Similarly, we compute 6G8 for a specific anchor G8 . We adopt the concept
of gradient similarity, Dhaliwal & Shintre (2018) to compute the influence of G 9 on the loss w.r.t
G8 . The uncertainty score of an example G 9 with respect to anchor G8 is defined as D(G̃ 9 , Ḡ8) = 6>G86G 9 .
This uncertainty metric assigns higher scores for the negative examples that are more influential for
the corresponding anchor.

Even so, incorporating only uncertainty and anchor similarity does not allow for a negative sample
set that is diverse. The addition of an appropriate diversity score aids in selecting informative
hard diverse negatives, maintaining P3 (DIVERSITY). Recent works utilize clustering of feature
representations for selecting prototypical examples (Li et al., 2021). However, clustering after each
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Algorithm 1 Pseudocode for UnDiMix

Input: Dataset X, batch size # , encoder 5
for batch X# = {(Ḡ8 , G̃8)}#8=1 ∼ X do
loss := 0
for 8, 9 = 1, . . . , # and 9 ≠ 8 do

# Acquire embeddings for positives and negatives, and calculate pairwise similarity scores
B(G̃ 9 , Ḡ8) = 5 (Ḡ8)> 5 (G̃ 9 )/‖ 5 (Ḡ8)‖‖ 5 (G̃ 9 )‖

?
(
H 9

�� G̃ 9 ,X# )
=

exp
(
B ( Ḡ8 , G̃ 9 )

)∑
Ḡ8′≠ 9 ∈X# exp

(
B ( Ḡ8′ , G̃ 9 )

) # Calculate pseudo-labels using Eq. (2)

6G 9 =∇\;0BC ℓ��
(
?

(
H 9

�� G̃ 9 ,X# )
, Ĥ 9

) ��
\=\ 5

# Calculate gradients using Eq. (3)
D(G̃ 9 , Ḡ8) = 6>G86G 9 # Calculate uncertainty score

A (G̃ 9 , Ḡ8) = 1
#−2

#∑
9′=1

9′∉{8, 9 }

(
1 − B(G̃ 9 , G̃ 9′)

)
# Calculate diversity score using Eq. (4)

F(G̃ 9 , Ḡ8) =_1D(G̃ 9 , Ḡ8)+_2B(G̃ 9 , Ḡ8)+_3A (G̃ 9 , Ḡ8) # Compute importance (_1, _2, _3 learnable)
# Compute contrastive loss with importance weights for negatives

loss += − log
exp

(
B(Ḡ8 , G̃8)/g

)
exp

(
B(Ḡ8 , G̃8)/g

)
+ ∑
G̃ 9≠8 ∈X#

F(G̃ 9 , Ḡ8) exp
(
B(Ḡ8 , G̃ 9 )/g

)
end for
update the model to minimize the loss

end for

update is computationally challenging and requires hyperparameters (number of clusters). To simplify
the calculation, we instead compute its average distance from all other negative examples in the
embedding space. The diversity score of an example G 9 given anchor G8 is

A (G̃ 9 , Ḡ8) =
1

# − 2

#∑
9′=1

9′∉{8, 9 }

(
1 − B

(
G̃ 9 , G̃ 9′

) )
. (4)

Intuitively, the negative examples which are farther away from other negative examples will have
higher scores and the negative examples which are closer to each other will have lower scores. In our
experiments, we observe that the proposed diversity score performs well and encourages sampling a
diverse set of negatives but adds little to no computational overhead. Finally, we define the importance
score of a negative example as follows:

F(G̃ 9 , Ḡ8) = ℎ
(
D(G̃ 9 , Ḡ8), B(G̃ 9 , Ḡ8), A (G̃ 9 , Ḡ8)

)
. (5)

Here ℎ is an aggregation function, e.g., linear interpolation or attention weights. In our experiments,
we use the latter and model the weight of each component as a learned hyper-parameter. Moreover,
we present ablation studies for a variation with fixed equal weights. Figure 3 presents an overview of
UnDiMix and Algorithm 1 provides the pseudocode for the calculation of importance scores.

4 EXPERIMENTS

We evaluate UnDiMix on several benchmarks from three (3) different domains (visual, text and
graph), totaling fifteen (15) evaluation tasks (six text, three image and six graph benchmarks) and
comparing against state-of-the-art contrastive learning methods.

4.1 IMAGE REPRESENTATIONS

Baselines: The baseline set is the most representative w.r.t. hard negative selection or generation
with competitive results over related works:

MoCo (Chen et al., 2020b), more specifically MoCo-V2, a general dictionary-based contrastive
learning method, for which negative examples are randomly sampled and stored in the dictionary.
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Table 1: Top 1% accuracy comparison over baselines. Mean and standard deviation reported over 10
trials. Green arrows indicate relative gains over the next best method.

Method CIFAR-10 CIFAR-100 TINY-IMAGENET
SwAV (Caron et al., 2020) 76.90±0.02 43.60±0.01 29.00±0.10
i-Mix (Lee et al., 2021) 79.26±0.18 41.58 ±0.25 24.10±0.02
MoCo (Chen et al., 2020b) 87.88±0.18 59.96±0.20 40.76±0.40
Patch-Based NS (Ge et al., 2021) 87.86±0.06 60.24±0.11 40.91±0.06
Mochi (Kalantidis et al., 2020) 87.33±0.12 60.83±0.06 42.11±0.18
HCL (Robinson et al., 2021) 91.19±0.03 67.87±0.09 45.62±0.07
Un-Mix (Shen et al., 2022) 92.42±0.06 69.15±0.06 48.44±0.06
UnDiMix 93.40±0.06↑0.98 71.60±0.13↑2.45 49.87±0.10 ↑1.43
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Figure 5: Learning curves, UnDiMix (orange lines) surpasses baselines across all datasets.

Mochi (Kalantidis et al., 2020), built on top of MoCo, this method generates synthetic hard negatives
by mixing negatives stored in the dictionary.

SwAV (Caron et al., 2020), an online contrastive learning algorithm that uses a swapped prediction
mechanism for clustering assignments.

i-Mix (Lee et al., 2021), a regularization strategy that mixes data in both input and prediction level.

Patch-based NS (Ge et al., 2021), a negative sample generation technique built upon MoCo-V2 that
generates negative examples from the anchor using patch-based techniques.

HCL (Robinson et al., 2021), a hard negative selection strategy that improves negative selection upon
SimCLR (Chen et al., 2020a) by computing importance scores based on feature representations.

Un-Mix (Shen et al., 2022), a self-mixture strategy in the image space using Mixup (Zhang et al.,
2018) and Cutmix (Yun et al., 2019).

Linear Evaluation: We follow prior contrastive learning works and train a linear classifier on
frozen feature representations acquired from pre-trained contrastive models, and evaluate performance
on the CIFAR-10, CIFAR-100, and TINY-IMAGENET datasets (Krizhevsky et al., 2009; Le &
Yang, 2015). Figure 5 depicts the consistent improvement of UnDiMix over all other baseline
methods. Table 1 presents the top-1% accuracy after fine-tuning the linear classifier for 100 epochs.
Results are averaged over multiple trials, i.e., we report the mean and standard deviation over 10
independent trials, and green arrows indicate relative gains over the next best method. UnDiMix
outperforms the best baseline (Un-Mix) by 1.06% on CIFAR-10, 3.54% on CIFAR-100 and
2.95% on TINY-IMAGENET. As far as the rest of the baselines, UnDiMix obtains on average an
improvement of 2.4% on CIFAR-10, 5.49% on CIFAR-100 and 9.3% on TINY-IMAGENET.

Qualitative Analysis: We compare the sampled negatives of both HCL (Robinson et al., 2021) and
UnDiMix. Figure 6(a) depicts the five most important negative examples sampled by HCL (top row)
and UnDiMix (bottom row) for the same anchor example of class “Acquarium Fish”. As discussed
earlier, UnDiMix samples more diverse negative examples and avoids false negatives. In contrast,
HCL has sampled the anchor as negative (indicated with a red bounding box). UnDiMix components
(uncertainty, feature similarity, and diversity) are aggregated with learned hyper-parameters as weights.
Figure 6(b) depicts the contribution of each component in calculating the overall importxance score
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Figure 6: (a) Qualitative evaluation on CIFAR-100. Best viewed in color. HCL (Robinson et al.,
2021) (top row) has sampled the anchor as a negative example (red bounding box). UnDiMix (bottom
row) samples more diverse true negative examples (green bounding boxes) and avoids false negative
examples. (b) Individual contribution of each of the three importance score components, for the top-5
important negative examples selected by our method (bottom row of left figure).

Table 2: Top-1% accuracy of different UnDiMix variations.

Components of F CIFAR-10 CIFAR-100 TINY-IMAGENET

Feature similarity 92.7 ± 0.07 70.1 ± 0.10 47.7 ± 0.10
Uncertainty 92.9 ± 0.08 70.5 ± 0.15 48.6 ± 0.07
Diversity 93.0 ± 0.05 70.2 ± 0.12 49.0 ± 0.10
Feature Similarity + Uncertainty 93.1 ± 0.08 70.6 ± 0.14 49.5 ± 0.05
Feature Similarity + Diversity 93.1 ± 0.07 70.4 ± 0.02 49.5 ± 0.10
Uncertainty + Diversity 93.0 ± 0.06 70.4 ± 0.10 49.6 ± 0.08
All (UnDiMix) 93.40±0.06 71.60±0.13 49.87±0.10

of the top five important negative examples selected by UnDiMix. We can observe that the diversity
component contributes the most. Additional qualitative examples can be found in Appendix G.

Importance score components: We perform an ablation analysis for each of the score components,
i.e., uncertainty (D), similarity (B), and diversity (A). We train different variations of UnDiMix, with
one and two components at a time. Table 2 presents the top-1% linear evaluation accuracy on the
CIFAR-10, CIFAR-100 and TINY-IMAGENET datasets, respectively. Note that including only
feature similarity is essentially similar to HCL (Robinson et al., 2021). We notice that including
uncertainty and diversity outperforms HCL, and variants that combine two components outperform
the one component versions. Moreover, adding all components (UnDiMix) results in performance
improvements across all datasets.

Aggregation Function: UnDiMix combines uncertainty, similarity and diversity in a linearly
interpolated importance score, computed for each example via attention weights that are learned
during training. Table 3 presents the accuracy of linear evaluation for UnDiMix and a variation with
fixed equal weights. We observe that attention weights perform comparatively well.

4.2 SENTENCE REPRESENTATIONS

We evaluate UnDiMix on learning sentence representations using the Quick-Thought (QT) vec-
tors (Logeswaran & Lee, 2018), following the same experimental setting as Logeswaran & Lee
(2018). Specifically, we train sentence embeddings using the BookCorpus dataset (Kiros et al., 2015)
and evaluate the learned embeddings on six downstream tasks: semantic relatedness (SICK), product
reviews (CR), subjectivity classification (SUBJ), opinion polarity (MPQA), question type classifica-
tion (TREC), and paraphrase identification (MSRP). We reimplement the HCL baseline (Robinson
et al., 2021) for this experiment1. Results are reported in Table 4, with UnDiMix outperforming
baselines in all tasks.

1The HCL code for the text representation experiment is not provided, hence we implemented the method
based on the descriptions provided in the paper. All code will be made publicly available.
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Table 3: Top-1% accuracy comparison over UnDiMix variations with learned or fixed equal weights
for each component.

Method CIFAR-10 CIFAR-100 TINY-IMAGENET
UnDiMix �8G43 93.16 ± 0.08 71.07 ± 0.09 49.45 ± 0.12
UnDiMix !40A=43 93.40 ± 0.06 71.60± 0.13 49.87 ± 0.10

Table 4: Classification accuracy on CR, SUBJ, MPQA, TREC, MSRP downstream tasks and test
Pearson Correlation for Semantic-Relatedness (SICK) task. Sentence representations are learned
using Quick-Thought (QT) vectors on the BookCorpus dataset and evaluated on six classification
tasks. Evaluation with 10-fold cross-validation for binary classification tasks (CR, SUBJ, MPQA)
and over multiple trials for the remaining tasks (TREC, MSRP).

Method SICK CR SUBJ MPQA TREC MSRP
(Acc) (F1)

QT 67.7 67.5 79.9 80.3 66.0 68.0 80.1
HCL 60.6 62.7 74.1 79.3 58.6 68.3 79.8
UnDiMix 74.7↑6.97 78.0↑10.5 86.8↑6.9 78.7 82.8↑16.8 70.7↑2.7 80.9↑0.76

PROTEINS

74.1 74.173.3

PTC

56.1 58.655.3

IMDB-M

50.4 48.549.8 72.7 71.772.8

ENGYMES

50.6 48.451.5

MUTAGS

87.1 86.286.3

Average Accuracy

A
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u
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UnReMix(β=1.0)HCL(β=1.0)InfoGraph

IMDB-B

Figure 7: Classification accuracy for six benchmark datasets. Results reported are averaged over 5
independent runs, each with 10-fold cross-validation.Best performance highlighted with bold.

4.3 GRAPH REPRESENTATIONS

We also evaluate UnDiMix on a graph representation task. Using the experimental settings of
HCL (Robinson et al., 2021), we utilize the InfoGraph method (Sun et al., 2019) as the baseline and
fine-tune an SVM readout function on the learned representations using V = 1 (HCL hyperparameter)
for six graph datasets. Classification accuracy is presented in Figure 7. Overall InfoGraph performs
better in 3 out of the 6 benchmarks, and HCL has the best performance 2 out of 6 times. Our method
works better or is comparable to InfoGraph and HCL in 2 benchmark datasets. We hypothesize that
there is less variability in some of the graph datasets and thus diversity is not utilized completely.

5 CONCLUSION

In this work, we present UnDiMix, a hard negative selection strategy that samples informative
negative examples for contrastive training. We define the notion of “informativeness” by utilizing
feature representations, model uncertainty and diversity. As a measure of uncertainty, we extract
the gradients of the loss function w.r.t. a computed pseudo-posterior for the negative examples. In
addition, we utilize the average distance of each negative example from all other examples as a
measure of diversity. Feature representations from the last encoder layer are utilized in computing
anchor similarity. Our approach interpolates these three indicators to determine the importance
of negative samples. Through experimental analysis on a variety of visual, sentence and graph
downstream benchmarks, we showcase that our proposed approach, UnDiMix, outperforms previous
state-of-the-art contrastive learning methods, that either rely on random sampling for selecting
negative samples, or on importance sampling calculated solely via feature similarity. In the future,
we hope to evaluate our method in multi-modal large-scale benchmark datasets and extend UnDiMix
to prototypical and graph contrastive learning.
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6 REPRODUCIBILITY

All experiments and results reported in this paper are based on publicly available datasets, with links
and referrences included in the main tetx and appendices. Experimental setup information that is
necessary for reproducing our results, such as hyperparameters, training and evaluation details, are
documented in the main paper and in Appendix A. All code will be made publicly available with
appropriate documentation.
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A TRAINING AND HYPER-PARAMETER DETAILS

Image representation: For all models, we adopt the training setup of HCL (Robinson et al., 2021).
More specifically, we use Resnet-50 (He et al., 2016) as the base encoder, followed by a projection
head or reducing the dimensionality of the feature representations from 2048 to 128. We train
with Adam (Kingma & Ba, 2015), 10−3 learning rate and 10−6 weight decay. While our method is
implemented on top of Un-Mix, the underlying importance score computations are fairly general
and can be easily incorporated into any contrastive learning method. We pre-train all models for 400
epochs with a batch size of 256. All experiments are performed on an NVIDIA T4 GPU with 16GB
memory.

Sentence representation: Similar to Robinson et al. (2021), we built upon the official exper-
imental settings of quick-thoughts vectors (https://github.com/lajanugen/S2V). For
each anchor sentence, the previous and next : sentences (hyper-parameter) are considered positive
examples, and all other examples are considered negative examples. Subsequently, Equation 1 is
used as loss function to learn the model with Adam optimizer (Kingma & Ba, 2015), batch size of
400, learning rate of 5 × 10−4, and sequence length of 30. We use the default values for all other
hyper-parameters and implement our importance calculation in s2v-model.py. Since the official
BookCorpus dataset Kiros et al. (2015) is not available, we use an unofficial version obtained from
https://github.com/soskek/bookcorpus, and following instructions from Robinson
et al. (2021).

Graph representation: We adopt the code of Robinson et al. (2021) (https://github.com/
joshr17/HCL/tree/main/graph) and incorporate our importance score calculation mecha-
nism in gan_losses.py. We utilize all datasets downloaded from www.graphlearning.io.
For a fair comparison to the original InfoGraph method and HCL Robinson et al. (2021), we train
all the models using the same hyper-parameters values. Following Robinson et al. (2021) we use
the GIN architecture Xu et al. (2018) with  = 3 layers and embedding dimension 3 = 32, trained
for 200 epochs with 128 batch size, Adam optimizer, 10−3 learning rate, and 10−6 weight decay.
Experiments in Figure 7 are reported over 10 experimental trials.

B EVALUATION ON IMAGENET-1K

We evaluate UnDiMix on IMAGENET-1K Deng et al. (2009) and compare with the baselines MoCo-
V2 Chen et al. (2020b) and UnMix Shen et al. (2022). For this experiment, we make use of the recently
released FFCV data loader Leclerc et al. (2022). We directly use the MoCo-V2 and UnMix official
implementation. Table 5 presents the top-1% and top-5% accuracy after training with contrastive loss
for 1000 epochs, and then fine-tuning for 100 epochs, with UnDiMix outperforming the baselines.

Table 5: Comparison of performance on IMAGENET-1K

Accuracy
Method Top-1% Top-5%

MoCo-V2 (Chen et al., 2020b) 48.74 72.7
UnMix (Shen et al., 2022) 50.8 74.9
UnDiMix 52.2↑1.4 76.1↑2.2

C TRANSFER LEARNING

We also evaluate the performance of UnDiMix in transfer learning. After pre-training models with
IMAGENET-1K we fine-tune on CIFAR-10 and CIFAR-100 datasets. Table 6 presents a top-1%
accuracy comparison of UnDiMix with the state-of-the-art baseline UnMix Shen et al. (2022). We
observe that UnDiMix outperforms UnMix by 0.6 and 1.1 in both CIFAR-10 and CIFAR-100
datasets respectively.
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Table 6: Transfer learning performance on CIFAR-10 and CIFAR-100 with models pre-tained on
IMAGENET-1K

Top-1% Accuracy
Method CIFAR-10 CIFAR-100
UnMix (Shen et al., 2022) 88.8 60.3
UnDiMix 89.4↑0.6 61.4↑1.1

D COMPARISON OF COMPUTATIONAL OVERHEAD
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Figure 8: Minutes required per epoch for HCL (Robinson
et al., 2021) (feature-based), UnDiMix and SWAV (Caron
et al., 2020) (clustering-based).

Figure 8 presents comparison of
the pre-training time in minutes
of our method UnDiMix with two
types of models: 1) a feature-
based model, HCL (Robinson et al.,
2021) 2) a clustering-based model,
SWAV (Caron et al., 2020). We ob-
serve that UnDiMix takes very little
time to complete one epoch in compar-
ison with the clustering-based model
SWAV and takes similar time as HCL.
Hence, UnDiMix improves negative
sample selection without adding sig-
nificant computational overhead.

E ABLATION STUDIES
OF IMAGE REPRESENTATIONS

Table 7: Top-1% accuracy of UnDiMix variations with gradients computed with (a) Cross-Entropy
loss (CE) and (b) NT-Xent loss.

Method CIFAR-10 CIFAR-100 TINY-IMAGENET

UnDiMix �� 91.99 69.43 48.12
UnDiMix #) −-4=C 91.95 69.27 47.29

E.1 LOSS FUNCTION FOR GRADIENT CALCULATION

In this experiment, we incorporate UnReMix to HCL to study the effect of the loss without the
influence of image interporaltion. We experiment with two types of loss functions for calculating
gradients w.r.t. each negative example in Eq. (3): 1) CROSS-ENTROPY (CE) loss and 2) NT-
XENT, i.e., the Normalized Temperature-scaled Cross-Entropy loss in Eq. (1). Table 7 presents
top-1% linear evaluation accuracy for UnDiMix trained with both variants and Figure 9 presents
the distribution of gradient values for negative examples. We notice that CE gradients exhibit more
variance than NT-XENT gradients (Figure 9), and that the gradient component based on CE results in
higher performance than the NT-XENT variation (Table 7). This might allude to the usefulness of
pseudo-labeling strategies for tasks with limited labels Lee et al. (2013); Zhai et al. (2019).

F LIMITATIONS

Gradient-based uncertainty assigns higher importance to examples that lie closer to decision boundary
and vice versa. By doing so, it reduces the importance of “easy false negative" examples i.e., those
examples who are of the same class as the anchor and have low uncertainty, but it fails to reduce the
importance of the “hard false negatives" i.e., examples that are of the same class as the anchor and
also have high uncertainty (closer to the decision boundary). However, in our experimental analysis
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Figure 9: Distribution of gradients of negative examples using (a) Cross-Entropy Loss and (b)
NT-Xent Loss.

we verify that the probability of such examples in a given batch decreases as the number of classes
increases, e.g., in a batch of 256 examples, the number of negative examples of the same label as
the anchor is 26 and 2 for CIFAR-10 and CIFAR-100 respectively. Intuitively, the number will
be smaller for Tiny-Imagenet. Hence, the occurrence of such a situation is so infrequent that it
barely affects model training.

G QUALITATIVE EVALUATION

We present additional qualitative results for UnDiMix and HCL Robinson et al. (2021) for CIFAR-10,
CIFAR-100 and TINY-IMAGENET. Figures 10 and 11 depict the five most important negative
examples sampled by HCL (top row) and UnDiMix (bottom row), for eight anchor examples from
the CIFAR-10 and CIFAR-100 datasets, respectively. Similarly, Figures 12 and 13 depict the
seven most important negative examples sampled by HCL (top row) and UnDiMix (bottom row), for
each of the six anchor examples from the TINY-IMAGENET dataset, observing in total consistent
qualitative improvements for more than 22 anchor examples across all datasets.

CIFAR-10: In Figure 10 (a) we can observe that HCL assigns most importance to two pairs of
negative examples from the same class “Airplane” and “Truck” (orange bounding boxes (bboxes))
whereas UnDiMix selects one example from those classes and additionally selects examples from
diverse classes including “Deer” and “Automobile” (green bboxes). Similar scenarios are visible in
Figure 10 (b), (d), (e), (f), (g), (h). Moreover, Figure 10 (c), (e), (f), (g) depicts that HCL assigns
more importance to the negative example with the same class as the anchor, i.e., “Bird” (Figure 10
(c), (e)), “Truck” (Figure 10 (f)), “Frog” (Figure 10 (g)) (red bboxes). On the other hand, UnDiMix
avoids negative examples of the same class as the anchor by including gradient component in the
importance calculation of the negative examples. However, UnDiMix sometimes redundant negative
examples can also appear in the most five important negatives selected by UnDiMix because of the
fewer number of ground-truth classes in CIFAR-10 dataset (Figure 10 (c), (d), (h)).

CIFAR-100: In Figure 11 (a), (f), (h), we notice that the top five most important negative examples
for HCL contain examples of the same class as the anchor i.e., “Ray”, “Girl”, “Possum” (red bboxes)
whereas UnDiMix assigns most importance to diverse negative examples (green). Besides, in
Figure 11 (b), (c), (d), (e), (g), we can see that HCL assigns most importance to redundant examples
of the same image with different augmentations ((b), (c), (e), (g)) or examples of the same class
((d)) (orange bboxes). On the other hand, UnDiMix avoids assigning high importance to different
augmentations of the same example or examples of the same class.

TINY-IMAGENET: The qualitative results also follow similar trends as in CIFAR-10 and
CIFAR-100. For example, Figure 12 depicts that HCL selects redundant negative examples in the
top seven most important negatives, i.e., different augmentations of the same image (orange bboxes).
On the other hand, UnDiMix selects only one of those images (e.g., class 186) and additionally selects
examples from diverse classes (green bboxes). Similar observations can be made in Figure 12 (c),
Figure 13. Moreover, in Figure 12 (b), it is noticeable that HCL assigns most importance to a negative
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Figure 10: Qualitative evaluations on CIFAR-10, best viewed in color. Top Row: HCL (Robinson
et al., 2021) has sampled negative examples of the same class as the anchor as a negative example
(red bbox) or selected examples of the same class multiple times (orange bboxes). Bottom Row:
UnDiMix samples more diverse true negative examples and avoids false negative examples (green
bboxes).

example of the same label as the anchor (red). On the other hand, UnDiMix does not assign much
importance to that negative example and instead selects a diverse example set as top seven negatives.
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Figure 11: Qualitative evaluations on CIFAR-100, best viewed in color. Top Row: HCL (Robinson
et al., 2021) has sampled negative examples of the same class as the anchor as a negative example
(red bbox) or selected examples of the same class multiple times (orange bboxes). Bottom Row:
UnDiMix samples more diverse true negative examples and avoids false negative examples (green
bboxes).
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Figure 12: Qualitative evaluations on TINY-IMAGENET, best viewed in color. Top Row:
HCL (Robinson et al., 2021) has sampled negative examples of the same class as the anchor as
a negative example (red bbox) or selected examples of the same class multiple times (orange
bboxes). Bottom Row: UnDiMix samples more diverse true negative examples and avoids false
negative examples (green bboxes).
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Figure 13: Qualitative evaluations on TINY-IMAGENET, best viewed in color. Top Row:
HCL (Robinson et al., 2021) has sampled negative examples of the same class as the anchor as
a negative example (red bbox) or selected examples of the same class multiple times (orange
bboxes). Bottom Row: UnDiMix samples more diverse true negative examples and avoids false
negative examples (green bboxes).
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