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ABSTRACT

Recent large language models (LLMs) have excelled across a wide range of tasks,
but their use in high-stakes and compute-limited settings has intensified the de-
mand for interpretability and efficiency. We address this need by proposing
Induction-head ngram models (Induction-Gram), a method that builds an efficient,
interpretable LM by bolstering modern ngram models with a hand-engineered “in-
duction head”. This induction head uses a custom neural similarity metric to effi-
ciently search the model’s input context for potential next-word completions. This
process enables Induction-Gram to provide ngram-level grounding for each gen-
erated token. Moreover, experiments show that this simple method significantly
improves next-word prediction over baseline interpretable models (up to 26%p)
and can be used to speed up LLM inference for large models through speculative
decoding. We further study Induction-Gram in a natural-language neuroscience
setting, where the goal is to predict the next fMRI response in a sequence. It
again provides a significant improvement over interpretable models (20% rela-
tive increase in the correlation of predicted fMRI responses), potentially enabling
deeper scientific investigation of language selectivity in the brain.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable predictive performance across a
growing range of diverse tasks (Brown et al., 2020; OpenAI, 2023; Dubey et al., 2024). How-
ever, their proliferation has led to two burgeoning problems. First, LLMs have become increasingly
difficult to interpret, often leading to them being characterized as black boxes and debilitating their
use in high-stakes applications such as science, medicine, and policy-making (Birhane et al., 2023;
Thirunavukarasu et al., 2023; Singh et al., 2024). Moreover, the use of LLMs has come under in-
creasing scrutiny in settings where users require explanations or where models struggle with issues
such as fairness (Li et al., 2023) and regulatory pressure (Meskó & Topol, 2023). Second, LLMs
have grown to massive sizes, incurring enormous energy costs (Bommasani et al., 2023) and making
them costly and difficult to deploy, particularly in low-compute settings (e.g., edge devices).

As an alternative to LLMs, ngram models can maintain complete interpretability and are signifi-
cantly more computationally efficient. While interpretable models can perform as well as black-box
models in some domains (Rudin et al., 2021; Mignan & Broccardo, 2019; Ha et al., 2021), there is
a considerable gap between the performance of interpretable models and black-box LLMs in next-
token prediction.

To shrink this gap, we propose Induction-head ngram models (Induction-Gram), a method to build
interpretable and efficient LMs by bridging ngram LMs with neural LLMs. Specifically, Induction-
Gram starts with Infini-Gram, a state-of-the-art scalable ngram model (Liu et al., 2024). While
effective, Infini-Gram struggles with adapting to new contexts and with matching queries that can
not be found exactly within a reference dataset (e.g., typos or rephrasings). To remedy these is-
sues, Induction-Gram uses fuzzy matching within the model’s context to retrieve suggestions for a
next-token completion, similar to the role played by “induction heads” found in pre-trained trans-
former models (Olsson et al., 2022; Akyürek et al., 2024). Similarly, Induction-Gram performs
matching by using a custom neural similarity metric that is trained to efficiently score two texts as
similar precisely if they lead to similar next-token completions. This extension allows Induction-
Gram to achieve state-of-the-art next-token prediction accuracy for an interpretable language model.
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Figure 1: Overview of Induction-Gram pipeline. Induction-Gram predicts the next token by inte-
grating an ngram model (Infini-Gram) with a constructed “induction head”, that efficiently searches
for potential next-token completions in the input context.

For example, when evaluating on the Pile dataset and using OpenWebText as the reference cor-
pus, Induction-Gram improve next-token prediction accuracy by 20%p over standard Infini-Gram,
shrinking the gap between interpretable models and the black-box GPT-2 model (see Table 1).

We further explore Induction-Gram in a natural-language fMRI context, where the goal is to pre-
dict the next fMRI response in a session rather than the next token in a sequence. In this setting,
Induction-Gram yields a 20% improvement over the baseline interpretable model and allows for au-
diting how models adapt to local context. Overall, Induction-Gram constitutes a major step towards
reverse-engineering mechanistically interpretable language models from modern LLMs.

2 RELATED WORK

ngram language models. Early language modeling techniques revolved around ngram mod-
els (Jurafsky & Martin, 2000; Katz, 1987), which generally stored next-token probabilities in large
tables learned from data (Brants et al., 2007). While neural LLMs have generally surpassed ngram
LMs, recent works have continued to improved ngram LMs, e.g., by scaling up the ngram reference
data (Allamanis & Sutton, 2013) and improving the ngram probability representations using suf-
fix arrays and suffix trees (Stehouwer & van Zaanen, 2010; Kennington et al., 2012; Shareghi et al.,
2015). This line of work culminated in Infini-Gram (Liu et al., 2024), which efficiently scales ngram
models to massive datasets and is the starting point for our work.

Bridging interpretable models and LLMs Some works have studied bridging ngram models and
LLMs. For example, Khandelwal et al. (2020) interpolate neural LMs with an ngram model and Li
et al. (2022) train a neural model to complement an ngram model. He et al. (2023) use ngram
models to speed up LLM inference via speculative decoding (He et al., 2023). Another approach
builds black-box nonparametric LMs using techniques such as k-nearest neighbor to improve LLM
predictions (Khandelwal et al., 2020; Borgeaud et al., 2022). Our Induction-Gram LM is also based
on a nonparametric LM, but unlike these other works, it maintains complete interpretability during
inference. In simplified settings such as text classification, some works have built fully interpretable
models that bridge LLMs and ngram models (Li et al., 2017; Singh et al., 2023a) or built partially
interpretable models based on approximating concepts with natural language (Yang et al., 2023a;
Sun et al., 2024; Morris et al., 2023; Feng et al., 2024).

2
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(a) (b)

Figure 2: Performance on the BabyLM dataset with Infini-Gram built from various reference
datasets. (a) Next-token prediction accuracy for each effective n. The dashed line indicates the
average accuracy. (b) The histogram illustrates the count for each effective n.

In parallel, there has been a surge of recent interest in mechanistic interpretability, which seeks to
understand what mechanisms are learned by transformer-based LLMs (Rai et al., 2024). This line
of work identified induction heads in toy LLM models (Olsson et al., 2022) as well as large-scale
pre-trained LLMs (Wang et al., 2022; Akyürek et al., 2024).

Natural language representations in fMRI In recent years, predicting brain responses to natural
language using LLM representations has become common in the field of language neuroscience (Jain
& Huth, 2018; Wehbe et al., 2014; Schrimpf et al., 2021; Goldstein et al., 2022). This paradigm
of using predictive “encoding models” to better understand how the brain processes language has
been applied in a wide literature to explore to what extent syntax, semantics, or discourse drives
brain activity (Wu et al., 2006; Caucheteux et al., 2021; Kauf et al., 2023; Reddy & Wehbe, 2020;
Kumar et al., 2022; Oota et al., 2022; Tuckute et al., 2023; Benara et al., 2024; Antonello et al.,
2024a) or to understand the cortical organization of language timescales (Jain et al., 2020; Chen
et al., 2023a). Separately, many works study the behavior of humans at recalling and processing
repeated text (Baddeley, 1992; Tzeng, 1973; Amlund et al., 1986; Miles et al., 2006) and relating
it to LLMs (Vaidya et al., 2023; Pink et al., 2024). Our work bridges these two areas, exploring
whether we can explicitly understand the cortical representations involved in recalling context by
predicting brain responses using Induction-Gram.

3 METHOD

We first introduce Infini-Gram, the ngram method we build on (Sec. 3.1), then introduce the efficient
induction head we develop (Sec. 3.2), before we combine them to yield Induction-Gram (Sec. 3.3).

3.1 PRELIMINARIES: INFINI-GRAM

Given an input text sequence, Infini-Gram (Liu et al., 2024) searches a reference corpus for the ex-
amples with the longest exact suffix match to the input, then calculates the next-token distribution
based on the token following each of the matches. This search is made extremely efficient by build-
ing large-scale suffix arrays that can scale to trillions of reference tokens. The length of the longest
match is referred to as the effective n, with the accuracy of the estimated probabilities increasing as
the effective n becomes larger.

One limitation of Infini-Gram is that finding exact matches in the reference corpus becomes chal-
lenging when there is a distribution shift between the input context and the reference corpus. For
instance, when evaluating on the BabyLM1 test dataset, Infini-Gram built on larger corpora, such
as OpenWebText (Gokaslan & Cohen, 2019), shows lower performance and, on average, has fewer
instances of higher effective n compared to the model built on the BabyLM dataset (Fig. 2). With
far larger corpora like Pile-train (Gao et al., 2020), Infini-Gram is able to increase the number of
instances with a high effective n, resulting in improved performance. However, the Infini-Gram
built on BabyLM, which contains only 0.005% of the tokens found in Pile-train, still achieves the
highest performance. This highlights the difficulty Infini-Gram faces when there is a substantial gap
between the reference corpus and the input prompt, making it hard to find matching cases with a
large effective n. We propose to address this limitation with Induction-Gram.

1
https://babylm.github.io/
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Mr. and Mrs. Smith were chatting in the living room when Mrs. Smith mentioned a strange noise, prompting Mr. ___

...
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.

Figure 3: (a) Overview of training Fuzzy Matching Model via knowledge distillation from pretrained
LLM. (b) Calculation of similarity between sequences within input prompt to predict the next token.

3.2 BUILDING AN EFFICIENT INDUCTION HEAD

LLMs are well-known for their ability to perform in-context learning, effectively capturing the dis-
tribution of input context. In pre-trained LLMs, the induction head has been found to play a crucial
role in in-context learning (Olsson et al., 2022; Akyürek et al., 2024; Wang et al., 2022), which refers FIX
to attention patterns in LLMs that identify recurring sequences in prior context and use them to pre-
dict the next token (e.g., [A][B] ... [A] → [B]). To replicate this behavior, we propose to construct
an induction head based on ngrams to aid in next-token prediction. Building this induction head is
similar to applying the Infini-Gram algorithm restricted only to the input context: it treats the end
of the context as the query and searches for the best match within the context. After finding the best
match, the induction head takes the token following the match as the next-token prediction.

What constitutes a “good match” for our induction head? When finding an ngram-level match
within the context, exact matching can be overly restrictive, as minor rephrasings or typos may
derail an otherwise useful match. Consequently, we adopt fuzzy matching instead of exact matching
by assessing the similarity between sequences. While similarity can be defined in many ways,
in building an induction head we desire two texts to be similar if they yield similar next-token
distributions. To quantify this, we define the similarity between two sequences, x1 and x2, for fuzzy
matching using Jensen–Shannon divergence (JSD), as follows:

s(x1, x2) = exp (−JSD (Pnext(x1), Pnext(x2))) , (1)

where Pnext(·) is the estimated next-token probability distribution for a given sequence.

Computing s efficiently One approach for computing s would be to use a pre-trained LLM to
obtain Pnext, but this can be computationally expensive. Instead, we develop a small Fuzzy Matching
Model, which consists of 3 or 4 transformer layers and is trained via knowledge distillation from
existing LLMs. This model is designed to output feature embeddings that facilitate the calculation
of next token probabilities for similarity assessments. With Fuzzy Matching Model, the similarity
between x1 and x2, whose feature embeddings from the model are e1 and e2, is obtained as follows:

sFM(x1, x2) = exp (− (1− CosineSim (e1, e2)) /T ) , (2)

where T is a temperature, which is set to 0.1. The Fuzzy Matching Model is trained using a combi-
nation of Cross Entropy (CE) loss and reverse Kullback-Leibler divergence (KLD) loss (Fig. 3(a)).
Within each training batch, we create similarity pairs from randomly sampled sequences with an
LLM. The CE loss aids in identifying the most similar pairs. The reverse KLD loss encourages the
model to align with the distribution of similarity, emphasizing the importance of accurately estimat-
ing the overall similarity while ensuring that the closest pairs receive high similarity scores and the
distant pairs receive lower similarity scores. Further details can be found in Appendix A.1.

Predicting the next token Given the similarity scoring function sFM, we can build an induction
head that yields the predicted next-token probability distribution Pinduction given an input sequence
x. To do so, we find each match for the end of x, w:i−1, using a sliding window of size k (Fig. 3(b)).
We then count the occurrence of each token wi, among vocabulary set V , following each match in

4
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the input sequence, and then normalize to obtain the next-token probability:

P (fuzzy)
induction(w:i−1wi|x) =

cfuzzy(wi−k−1:i−1wi|x)∑
wj∈V cfuzzy(wi−k−1:i−1wj |x)

(3)

where cfuzzy(wi−k−1:i−1wi|x) =
∑

wj−k−1:j⊂x

1wj=wi
sFM (wj−k−1:j−1, wi−k−1:i−1). (4)

This similarity score serves as a floating count for the next token. In cases where the sequences
x1 and x2 are exactly matched, as in the case of Infini-Gram, we have sFM(x1, x2) = 1, which is
equivalent to increasing the count by one. The window size k specifies the number of tokens to be
considered in fuzzy matching.

3.3 INDUCTION-HEAD NGRAM MODELS: PUTTING IT ALL TOGETHER

To build our final Induction-Gram model (Eq. (5)), we integrate our induction head with the baseline
Infini-Gram model, which uses exact ngram matching:

P (y|x) =


P (exact)
∞ (y|x) n∞ > nx and n∞ > τ,

P (exact)
induction(y|x) nx ≥ n∞ and nx > τ,

P (fuzzy)
induction(y|x) Otherwise,

(5)

where n∞ and nx are the effective n when matching from a reference corpus or the input context,
respectively. When these values are low, fuzzy matching is employed to compensate for the limited FIX
effective n. When the effective n values from both the input context and reference corpus are equal,
priority is given to the input context estimate. τ is a hyperparameter that selects how often to use
exact matching rather than fuzzy matching; we set τ to 8 and 9 for GPT-2 and LLaMa-2 tokenizers,
respectively, using cross-validation test (details in Appendix A.2).

While we describe Induction-Gram for text, it can be applied to predicting tokens in sequences more
generally; Sec. 5.1 describes how to use Induction-Gram in a natural-language fMRI setting.

4 LANGUAGE MODELING RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We use 4 text datasets for evaluation: BabyLM2 (Warstadt et al., 2023), OpenWeb- FIX
Text (Gokaslan & Cohen, 2019), Pile (Gao et al., 2020), and FineWeb ((Penedo et al., 2024);
sample-10BT subset), using some as the reference corpus and some as test datasets (Table 1).
When testing, we report performance on 100k sequences randomly sampled with a context length
of 1024 and a stride of 512 (Liu et al., 2024; Khandelwal et al., 2020).3 In our speculative decoding
experiments, we utilize 1024 tokens from the beginning of each document as a prefix prompt. Six
prompts are employed with the BabyLM dataset, while 100 randomly sampled prompts are used for
the FineWeb and Pile datasets.

Metrics We evaluate our method in terms of both the accuracy and efficiency of next-token predic-
tion. We measure accuracy as whether the top-predicted token was the correct token.4 For efficiency,
we compare the inference time for speculative decoding (Leviathan et al., 2023; Chen et al., 2023b)
when using Induction-only (fuzzy) as the draft model.

4.2 IMPROVING NEXT-TOKEN PREDICTION ACCURACY WITH CONTEXTUALIZATION

Prediction improvements from in-context matching Induction-only (exact) relies solely on the
input context to predict the next token (limited to 1024 tokens in our evaluation). Table 1 shows

2
https://babylm.github.io/

3The BabyLM test set results in less than 100k sequences, instead yielding about 32k and 34k cases for the
GPT-2 and LLaMA-2 tokenizers, respectively.

4We do not compute perplexity, as the sparse next-token predictions from ngram models can frequently
assign the top token a probability of zero, skewing the perplexity to extreme values.

5
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Table 1: Next-token prediction accuracy (%) for Induction-Gram compared to baseline methods.
The gray shade represents the alignment between the reference corpus and the test dataset.

Reference Corpus Model Test Dataset

Type # of Tokens BabyLM-test FineWeb Pile-val

Tokenizer: GPT-2
- - Induction-only (exact) 36.7 17.2 37.0
- - Induction-only (fuzzy) 41.1 25.2 38.7

BabyLM-dev 17.4M Infini-Gram 37.6 14.7 16.0
Induction-Gram 42.2 (+4.6) 25.3 (+10.6) 40.0 (+24.0)

Pile-val 383M Infini-Gram 16.6 20.1 -
Induction-Gram 41.5 (+24.9) 25.5 (+5.4) -

OpenWebText 9.04B Infini-Gram 16.7 25.5 22.7
Induction-Gram 41.8 (+25.1) 27.2 (+1.7) 42.7 (+20.0)

Unknown ∼10B LLM (GPT-2) 46.9 39.0 52.3

Tokenizer: LLaMA-2
- - Induction-only (exact) 37.0 19.6 32.6
- - Induction-only (fuzzy) 42.7 28.3 38.5

BabyLM-dev 18.9M Infini-Gram 39.0 17.1 13.2
Induction-Gram 43.1 (+4.1) 28.6 (+11.5) 39.6 (+26.4)

Pile-val 394M Infini-Gram 19.0 24.1 -
Induction-Gram 42.9 (+23.9) 28.4 (+4.3) -

OpenWebText 10.3B Infini-Gram 20.1 29.5 27.1
Induction-Gram 43.2 (+23.1) 30.3 (+0.8) 42.1 (+15.0)

Pile-train 383B Infini-Gram 33.5 39.3 49.2
Induction-Gram 49.4 (+15.9) 38.0 (-1.3) 50.3 (+1.1)

Unknown ∼2T LLM (LLaMA2-7B) 62.2 57.1 64.4

(a) (b)

Figure 4: Comparison of next token prediction accuracy on BabyLM-test dataset, depending on
effective n from (b) Infini-Gram and (b) Induction-only (exact). LLaMA-2 tokenizer is used.

that, despite this, it outperforms Infini-Gram—which uses the 10B-token OpenWebText dataset as a
reference corpus—by a margin of 5.5%p to 20%p on the BabyLM and Pile datasets. When Infini-
Gram utilizes BabyLM-dev as the reference corpus, it achieves slightly better performance than
Induction-only (exact) on the BabyLM-test set, with improvements of 0.9%p and 2.0%p for the
GPT-2 and LLaMA-2 tokenizers, respectively, where the reference corpus and input context are
aligned. As shown in Fig. 4(a), Infini-Gram (green) performs better in cases with a high effective
n, even surpassing LLM (blue). However, there are significantly more cases with a low effective n
(histogram), where Induction-only (exact) (orange) demonstrates superior performance. This find-
ing underscores that in-context matching reflects the input query’s distribution, resulting in more
accurate next-token predictions than reference matching, especially when there is a distribution shift
between the reference corpus and the test input.

Prediction improvements from Induction-Gram Induction-only (fuzzy), using Fuzzy Match-
ing Model, consistently outperforms Induction-only (exact) with a margin of 1.7%p to 8.7%p (Ta-
ble 1). This improvement is particularly evident in cases with low effective n. As illustrated in
Figure 4(b), the majority of cases within the input context have low effective n (histogram), indicat-
ing that finding exactly matched long sequences within the limited amount of tokens is challenging.
Fuzzy matching helps to provide better estimations for next-token predictions in these scenarios.

6
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Table 2: Speed of speculative decoding (SP). Accept. denotes the acceptance rate (%). The mean
and standard deviation of 3 runs are reported.

Draft Model Large Model SP BabyLM-test Pile-val

Accept. Speed Accept. Speed

ms/token (↓) Up (↑) ms/token (↓) Up (↑)

A
40
×

1

LLaMA2-7B 30.2±0.0 30.2±0.1
TinyLLaMA-1.1B LLaMA2-7B ✓ 78.7±0.5 21.3±0.0 1.42 78.3±0.1 21.3±0.6 1.42
Induction-only (fuzzy) LLaMA2-7B ✓ 74.9±1.1 17.7±0.7 1.71 71.2±0.5 20.1±0.4 1.50

LLaMA2-13B 52.4±0.0 52.0±0.2
TinyLLaMA-1.1B LLaMA2-13B ✓ 78.2±0.0 26.7±0.5 1.96 77.6±0.1 26.3±0.5 1.98
Induction-only (fuzzy) LLaMA2-13B ✓ 73.5±0.1 24.8±0.1 2.11 69.8±0.2 27.8±0.1 1.87

H
10

0×
2

LLaMA2-13B 26.4±0.1 26.3±0.4
LLaMA2-7B LLaMA2-13B ✓ 78.9±0.0 24.7±0.0 1.07 78.6±0.0 25.1±0.3 1.05
TinyLLaMA-1.1B LLaMA2-13B ✓ 78.3±0.1 20.7±0.1 1.28 77.6±0.1 21.5±0.1 1.22
Induction-only (fuzzy) LLaMA2-13B ✓ 73.2±0.3 13.3±0.2 1.98 69.9±0.1 14.9±0.1 1.77

LLaMA2-70B 71.2±0.1 71.0±0.2
LLaMA2-7B LLaMA2-70B ✓ 77.2±0.2 38.3±0.5 1.86 77.8±0.2 37.4±0.3 1.90
TinyLLaMA-1.1B LLaMA2-70B ✓ 75.5±0.1 35.3±0.2 2.02 76.3±0.4 33.9±0.6 2.10
Induction-only (fuzzy) LLaMA2-70B ✓ 68.5±0.6 31.4±0.7 2.27 66.6±0.6 33.3±0.6 2.13

Specifically, when the effective n is less than 3, Induction-only (fuzzy) (yellow) demonstrates better
performance than Induction-only (exact) (orange). Since many cases fall into this range, the overall
accuracy of Induction-only (fuzzy) is higher.

The improvements achieved through the use of induction and fuzzy matching enable Induction-
Gram to outperform Infini-Gram built on 383B tokens improving performance by up to 16.0%p.
While expanding the reference corpus of Infini-Gram can lead to general performance gains, utiliz-
ing Induction-only (fuzzy) proves to be more efficient than increasing the data size from 10.3B to
383B tokens—a 38-fold increase. Moreover, Induction-only (fuzzy) is a complementary approach
that can be applied orthogonally to Infini-Gram, regardless of the size of the reference corpus.

4.3 SPECULATIVE DECODING

Experimental Details To evaluate the efficiency of Induction-only (fuzzy), we compare the in-
ference time for speculative decoding with TinyLLaMA5 and LLaMA2-7B (Touvron et al., 2023).
We evaluate speculative decoding by generating up to 1024 tokens, using a prefix of 1024 tokens.
The speed of decoding may vary depending on the computational environment. To ensure robust
evaluation across different setups, we conduct experiments in two environments: one with a single
NVIDIA A40 GPU and 128 CPU cores, and another with two NVIDIA H100 GPUs and 64 CPU
cores. Greedy sampling is used for token generation, and each experiment is repeated three times
with different random seeds.

Induction improves speculative decoding performance Table 2 demonstrates the speed-up ef-
fect of speculative decoding with Induction-only (fuzzy). Induction-only (fuzzy) relies solely on the
induction power derived from the input context to predict the next token, leading to lower acceptance NEW
rates compared to LLMs. Despite this, its inference speed is remarkably fast, and it often matches
the predictions of large models. As a result, the speed improvement can exceed 2× compared to
using LLaMA2-70B alone. In most cases, Induction-only (fuzzy) achieves even greater speed gains
than when using an LLM as a draft model for speculative decoding.

Additionally, we would like to note that speculative decoding with Induction-only (fuzzy) and a
pretrained LLM not only accelerates the inference speed of the pretrained model but also enables
explainable predictions based on the given input context. When accurate predictions can be made
through interpretable methods, we utilize this process for interpretability. In more challenging cases,
we rely on a larger model that, while less interpretable, delivers better performance for accurate
predictions. Thus, this approach provides a balanced method that addresses both interpretability and
accuracy, in addition to enhancing efficiency.

5
https://huggingface.co/TinyLLaMA/TinyLLaMA-1.1B-intermediate-step-1431k-3T
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5 FMRI RESULTS

5.1 EXPERIMENTAL SETUP

A central challenge in neuroscience is understanding how and where semantic concepts are repre-
sented in the brain. To meet this challenge, we follow a line of study that predicts the response of
different brain voxels (i.e. small brain regions) to natural language stimuli (Huth et al., 2016; Jain
& Huth, 2018). We analyze data6 from LeBel et al. (2022) and Tang et al. (2023), which consists
of fMRI responses for human subjects as they listen to 20+ hours of narrative stories from podcasts.
We fit modules to predict the fMRI response (95,556 voxels) from the text that a single subject was
hearing by extracting text embeddings7. We fit the encoding models on the training split (24 stories)
and evaluate them on the test split (2 stories) using bootstrapped ridge regression. Encoding model
features are extracted in various ways (described below) for each word in the input, and then inter-
polated to make predictions for the fMRI data that is recorded at 2-second time of repetition (TR)
intervals. To model temporal delays in the fMRI signal, we also add 4 time-lagged duplicates of the
input features. See extended fMRI details in Appendix A.4.

Embedding baselines We use Eng1000 as our primary baseline, an interpretable model developed
in neuroscience literature for predicting fMRI responses from narrative stories (Huth et al., 2016).
Each element in an Eng1000 embedding corresponds to a co-occurence statistic with a different
word. We additionally compare to embeddings from LLaMA2-70B (Touvron et al., 2023), which
achieve state-of-the-art performance in this fMRI prediction task (Antonello et al., 2024b) but are
not interpretable. LLaMA embeddings are extracted using a 16-word sliding window and selecting
the final-layer embedding for the final token of the input.

fMRI induction head settings We construct our induction head for fMRI by searching over recent
text in an fMRI session and identifying previous changes in the recorded fMRI response. Specif-
ically, to predict the fMRI response for the TR t, we first find the TR t∗ for which the text input
yields the highest cosine similarity to the next-token distribution of the text input at TR t− 1. Next,
we isolate the change in fMRI responses following TR t∗: we take the difference in the top 100
principal components of the response Rt∗ −Rt∗−1 and use them as features. To deal with potential
time delays in the fMRI signal, we additionally concatenate these features with the top 100 principal
components of Rt∗ −Rt∗−2 and Rt∗ −Rt∗−3.

In all cases, the induction features are concatenated with the Eng1000 features before being used
to linearly predict the fMRI response. When constructing the induction head, we search over the
most recent 1024 words and their corresponding fMRI responses. To measure similarity between
two texts, we use the predicted next-word distributions yielded by exact ngram matching in the in-
put context (P (exact)

induction in Eq. (5)), which we call Induction matching. Alternatively, we can use the
predicted next-word distributions yielded by exact ngram matching in the 10B-token OpenWebText
reference corpus (P (exact)

∞ in Eq. (5)), which we call Infini-Gram matching. We additionally explore
fuzzy matching techniques in Table A4, but do not see an improvement. This is potentially be-
cause the noise and temporal smoothing present in the fMRI response mitigates the benefit of fuzzy
matching / matching across fMRI sessions.

Matching baselines We add two additional baselines that alter our proposed induction head model
only in how they calculate matches. First, Random matching selects a random preceding TR as a
match. Second, Naive ngram matching searches for an exact ngram match in the input context
(rather than using the predicted next-word distribution as our induction head does). Specifically,
naive ngram matching searches for a match to the most recent 4-word ngram.

5.2 INDUCTION MATCHING IMPROVES PREDICTIVE PERFORMANCE

Table 3 shows the fMRI prediction results. Eng1000, the primary interpretable baseline, achieved
a mean test correlation of 0.072. In contrast, our model (Induction matching) achieves a mean

6
https://github.com/OpenNeuroDatasets/ds003020

7We report results for subject UTS03 due to high fMRI data quality, including superior repeatability, mini-
mal motion, and strong encoding model performance (LeBel et al., 2022).
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Table 3: fMRI test prediction performance for different models. Induction matching significantly
outperforms other interpretable models. Error bars show 95% CI.

Feature Model Mean Correlation

All Voxels Top 10% Voxels

Eng1000 0.072± 0.0004 0.220± 0.0012

Random matching + Eng1000 0.069± 0.0003 0.197± 0.0012
Naive ngram matching + Eng1000 0.068± 0.0003 0.194± 0.0012
Infini-Gram matching + Eng1000 0.069± 0.0003 0.200± 0.0012
Induction matching + Eng1000 0.087± 0.0005 0.265± 0.0011

Black-box encodings (LLaMA-2) 0.096± 0.0005 0.268± 0.0013

Difference in Prediction Performance Between 
Induction Matching and Eng 1000 Baseline

Induction Matching
Prediction Performance 

Voxel Prediction Performance
(Correlation)

Figure 5: Difference in the correlation performance between the Induction matching and the
Eng1000 baseline, visualized across cortex. Performance improvement is scattered across the cor-
tex, but concentrates near some well-studied regions of the language network, e.g., Occipital face
area (OFA) and Intraparietal sulcus (IPS).

correlation of 0.087, a 20% improvement over Eng1000. When predicting the top-10% of voxels,
Induction Matching achieves a mean correlation of 0.265, again a 20% improvement over Eng1000,
and only 1% lower than the black-box LLaMA-2 model (mean correlation 0.268). In contrast, other
matching-based baselines are unable to improve over Eng1000. The Naive ngram matching baseline
achieves a correlation of 0.068, and the random matching baseline achieves a correlation of 0.069,
both of which perform worse than the Eng1000 baseline.

Fig. 5 visualizes the difference in the test correlation performance between the Induction matching
and the Eng1000 baseline. The performance improvement (red) is scattered across the cortex, but
concentrates near some well-studied regions of the language network, e.g., Occipital face area and
Intraparietal sulcus.

Describing improvements from Induction-Gram To qualitatively understand the improvements
provided by matching, we summarize the text for inputs where different matching procedures (Infini-
Gram and Induction) perform well. We use an LLM to do the summarization, following recent works
in LLM interpretability (Zhong et al., 2022; Dunlap et al., 2024). We first identify phrases in the
input story where a model’s performance (average absolute error across voxels) exceeds the baseline
performance by more than one standard deviation; see a short example in Fig. 6. Then, we prompt
GPT-4 (OpenAI (2023); gpt-4-0613) to generate descriptions for these phrases.

Fig. 6 gives the unedited LLM descriptions8. Induction matching is described as capturing Emo-
tionally or Narratively Critical Phrases, which aligns with the intuition that Induction improves
performance by keeping track of local context in a story, e.g., phrases that “are critical to the plot
and character development”. In contrast, Infini-Gram matching is described as capturing Brief,
Stand-Alone Phrases, matching the intuition that Infini-Gram excels in capturing context that is not
specific to a particular story, but rather “can stand alone with minimal context”. To evaluate the

8Irrelevant preceding text such as “Sure here is the answer” is removed from the response.
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(a)

(b)

(c)

Figure 6: Qualitatively describing where Induction matching / Infini-Gram matching provide im-
provements. (a) Words in the input story where a model’s performance exceeds the baseline per-
formance are highlighted. (b) An LLM summarizes these phrases to yield descriptions for each
matching procedure. (c) To check whether these descriptions are faithful, we test whether an LLM
can use them to classify the highlighted phrases in the test stories.

accuracy of these descriptions, we prompt GPT-4 to classify the identified phrases in the two test
stories using only the descriptions. This yields 61% classification accuracy, a significant (but mod-
erate) improvement over chance (binomial test p = 0.032). See all identified phrases and prompts
in Appendix A.4.

6 DISCUSSION

Induction-Gram constitutes a significant step towards reverse-engineering mechanistically inter-
pretable language models from pre-trained LLMs. Here, we leverage the induction head, which
is only one component found to be important in LLMs; future works could integrate new compo-
nents from mechanistic interpretations, such as indirect object identifiers (Wang et al., 2022), nu-
merical representations (Engels et al., 2024), retrieval heads (Wu et al., 2024), instruction-following
heads (Zhang et al., 2023), natural-language explanations of attention heads (Bills et al., 2023) or
interpretable submodules within an LLM (Singh et al., 2023b; Bricken et al., 2023). It may be pos-
sible to implement these components in a hand-engineered manner, e.g., using python code, regexes,
or rule-based models, potentially yielding efficiency in addition to interpretability.

A major limitation of Induction-Gram is that the added induction head provides little improvement
when the given input context is short or uninformative. This may be partially mitigated by exploring
Induction-Gram in conjunction with techniques such as retrieval-augmented-generation (Wu et al.,
2024), that can fetch relevant documents to be incorporated as part of the local context. More
generally, while Induction-Gram boasts a very large memory capacity, Induction-Gram relies on
ngram-level reasoning and thus continues to struggle with tasks that require significant reasoning
capabilities (similar to kNN-LMs (Geng et al., 2024)). Future work may explore the best way to
build hybrid models using Induction-Gram and black-box LLMs to achieve effective tradeoffs.

The fMRI analyses conducted here are a suggestive starting point for understanding how context is
stored and recalled in the human cortex. Improvements from Induction Matching may help build
encoding models that can more rapidly adapt to local context, which can be used in downstream
applications such as brain decoding (Tang et al., 2023) or brain-computer interfaces (Nicolas-Alonso
& Gomez-Gil, 2012). More generally, the full transparency of Induction-Gram may enable its use
in language modeling scenarios that require complete auditing, such as in analyzing scientific text
or medical notes (Yang et al., 2023b).
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REPRODUCIBILITY STATEMENT

We include all experimental details necessary for reproduction in the main text and the appendix.
For language modeling, explanations of the datasets are provided in Sec. 4.1, and the training details
for Fuzzy Matching Model are in Appendix A.1. The inference setup of all models is described in
Appendix A.3. For the natural-language fMRI experiment, details about the constructing induction-
based input features are described in Sec. 5.1. Details about the publicly available data set, data
collection methods, and the procedures used to map embedded stimuli to BOLD responses are pro-
vided in Appendix A.4.
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Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra,
Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at scale. arXiv preprint
arXiv:2406.17557, 2024.

Mathis Pink, Vy A Vo, Qinyuan Wu, Jianing Mu, Javier S Turek, Uri Hasson, Kenneth A Norman, Sebastian
Michelmann, Alexander Huth, and Mariya Toneva. Assessing episodic memory in llms with sequence order
recall tasks. arXiv preprint arXiv:2410.08133, 2024.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic inter-
pretability for transformer-based language models. arXiv preprint arXiv:2407.02646, 2024.

Aniketh Janardhan Reddy and Leila Wehbe. Can fMRI reveal the representation of syntactic structure in the
brain? preprint, Neuroscience, June 2020. URL http://biorxiv.org/lookup/doi/10.1101/
2020.06.16.155499.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong. Interpretable
machine learning: Fundamental principles and 10 grand challenges. arXiv preprint arXiv:2103.11251, 2021.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative mod-
eling converges on predictive processing. Proceedings of the National Academy of Sciences, 118(45):
e2105646118, 2021.

Ehsan Shareghi, Matthias Petri, Gholamreza Haffari, and Trevor Cohn. Compact, efficient and unlimited ca-
pacity: Language modeling with compressed suffix trees. In Conference on Empirical Methods in Natural
Language Processing, 2015. URL https://api.semanticscholar.org/CorpusID:225428.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. arXiv
preprint arXiv:1803.02155, 2018.

Chandan Singh, Armin Askari, Rich Caruana, and Jianfeng Gao. Augmenting interpretable models with large
language models during training. Nature Communications, 14(1):7913, 2023a.

Chandan Singh, Aliyah R Hsu, Richard Antonello, Shailee Jain, Alexander G Huth, Bin Yu, and Jianfeng
Gao. Explaining black box text modules in natural language with language models. arXiv preprint
arXiv:2305.09863, 2023b.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking interpretabil-
ity in the era of large language models. arXiv preprint arXiv:2402.01761, 2024.

Herman Stehouwer and Menno van Zaanen. Using suffix arrays as language models: Scaling the n-gram. 2010.
URL https://api.semanticscholar.org/CorpusID:18379946.

Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Crafting large language models for enhanced inter-
pretability. arXiv preprint arXiv:2407.04307, 2024.

Jerry Tang, Amanda LeBel, Shailee Jain, and Alexander G Huth. Semantic reconstruction of continuous lan-
guage from non-invasive brain recordings. Nature Neuroscience, pp. 1–9, 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan, and
Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):1930–1940, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Greta Tuckute, Aalok Sathe, Shashank Srikant, Maya Taliaferro, Mingye Wang, Martin Schrimpf, Kendrick
Kay, and Evelina Fedorenko. Driving and suppressing the human language network using large language
models. bioRxiv, 2023.

Ovid JL Tzeng. Positive recency effect in a delayed free recall. Journal of Verbal Learning and Verbal Behavior,
12(4):436–439, 1973.

14

http://arxiv.org/abs/2212.08094
http://biorxiv.org/lookup/doi/10.1101/2020.06.16.155499
http://biorxiv.org/lookup/doi/10.1101/2020.06.16.155499
https://api.semanticscholar.org/CorpusID:225428
https://api.semanticscholar.org/CorpusID:18379946


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Aditya R Vaidya, Javier Turek, and Alexander G Huth. Humans and language models diverge when predicting
repeating text. arXiv preprint arXiv:2310.06408, 2023.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in
the wild: a circuit for indirect object identification in GPT-2 small. arXiv preprint arXiv:2211.00593, 2022.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera,
Bhargavi Paranjabe, Adina Williams, Tal Linzen, et al. Findings of the babylm challenge: Sample-efficient
pretraining on developmentally plausible corpora. In Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language Learning, 2023.

Leila Wehbe, Ashish Vaswani, Kevin Knight, and Tom Mitchell. Aligning context-based statistical models of
language with brain activity during reading. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 233–243, Doha, Qatar, October 2014. Association for Com-
putational Linguistics. doi: 10.3115/v1/D14-1030. URL https://aclanthology.org/D14-1030.

Michael C.-K. Wu, Stephen V. David, and Jack L. Gallant. Complete functional characterization of sensory
neurons by system identification. Annual Review of Neuroscience, 29:477–505, 2006. ISSN 0147-006X.
doi: 10.1146/annurev.neuro.29.051605.113024.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically explains
long-context factuality, 2024.

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark Yatskar. Lan-
guage in a bottle: Language model guided concept bottlenecks for interpretable image classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19187–19197,
2023a.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large language models
for automated open-domain scientific hypotheses discovery. arXiv preprint arXiv:2309.02726, 2023b.

Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, and Tuo Zhao. Tell your
model where to attend: Post-hoc attention steering for LLMs. arXiv preprint arXiv:2311.02262, 2023.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob Steinhardt. Describing differences between text distributions
with natural language. In International Conference on Machine Learning, pp. 27099–27116. PMLR, 2022.

A APPENDIX

A.1 TRAINING OF FUZZY MATCHING MODEL

Architecture of Fuzzy Matching Model We train two Fuzzy Matching Models, one using the
GPT-2 tokenizer and the other using the LLaMA-2 tokenizer. With GPT-2 tokenizer, Fuzzy Match-
ing Model consists of four transformer layers, whereas it comprises three transformer layers when
using LLaMA-2 tokenzer. Since relative position is crucial for calculating similarity, we incorporate
Relative Positional Encoding (Shaw et al., 2018), with a maximum relative position of 32 for the
GPT-2 tokenizer and 64 for the LLaMA-2 tokenizer. The vocabulary embeddings are initialized with
those from GPT-2 and LLaMA2-7B, ensuring that the number of heads and embedding dimensions
align with the specifications of GPT-2 and LLaMA2-7B.

Creating Similarity pair with LLMs For both Fuzzy Matching Model, we use LLaMA2-7B as a
teacher model. OpenWebText and Pile-train9 datasets for training each Fuzzy Matching Model thats
use GPT-2 or LLaMA-2 tokenizer. During training, we randomly sample sequences of 32 or 64
tokens with batch size of 128 or 256, resulting in 4,096 or 16,384 next-token prediction probabilities
per batch. From these, we sample distant 3,584 or 4,096 queries and 512 keys and create similarity
pairs (3, 584 × 512 or 4, 096 × 512) by calculating similarity based on Equation (5). The models
are trained using a combination of CE loss and reverse KLD loss, with equal weights (1.0). We
adopt most of the training settings from the codebase10 for training. Gradients are accumulated over
16 iterations, and we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate
of 0.0001 and a weight decay of 0.1. The learning rate follows a cosine schedule with a warmup
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Table A1: Ablation study on training of Fuzzy Matching Model. Next-token accuracy (%) of
Induction-only (fuzzy) on the BabyLM-test is reported. LLaMA-2 tokenizer is used.

Positional Encoding Reverse KLD loss Forward KLD loss CE loss Accuracy

Relative ✓ ✓ 43.2
Relative ✓ ✓ 42.8
Relative ✓ 42.7
Relative ✓ 41.9

Sinusoidal ✓ ✓ 37.0

over the first 1,000 iterations, and training continues for 15,000 or 20,000 iterations. Training is
conducted on four NVIDIA A100 GPUs. NEW

Ablation Study on Fuzzy Matching Model Training We conduct an ablation study on the po-
sitional encoding strategy and training process of Fuzzy Matching Model using the OpenWebText
dataset to distill it from LLaMA-2-7B. The study evaluates the contributions of Relative Positional
Encoding, reverse KLD loss, and CE loss to the model’s effectiveness. As shown in Table A1,
next-token prediction accuracy improves significantly when both reverse KLD and CE losses are
included, demonstrating their complementary roles in optimizing the Fuzzy Matching Model. With
CE loss, Forward KLD loss is less effective than reverse KLD loss. Furthermore, using Relative
Positional Encoding instead of Sinusoidal Positional Encoding leads to better performance, high-
lighting the advantages of incorporating relative positional information for enhanced fuzzy matching
capabilities.

A.2 DETERMINATION OF τ

To build Induction-Gram by integrating the three types of estimations, we first need to deter-
mine the threshold for effective n, denoted as τ . To identify the optimal value of τ , we con-
ducted cross-validation using the BabyLM training set (100M tokens). BabyLM consists of
six datasets: open subtitles, bnc spoken, gutenberg, childes, simple wiki, and
switchboard. Since switchboard contains only 2M tokens, we exclude it from the exper-
iment. For the remaining datasets, we use each dataset as a validation set, while the other four
are used as the reference corpus to build Infini-Gram. We then compare the performance changes
of Infini-Gram, Induction-only (exact), and Induction-only (fuzzy) depending on effective n. 10k
samples are used for evaluating on each dataset.

As shown in Figure A1, Infini-Gram outperforms Induction-only (exact) when the effective n ex-
ceeds 8 for the GPT-2 tokenizer and 9 for the LLaMA-2 tokenizer. Therefore, we set τ to 8 and 9
for the respective tokenizers.

A.3 LANGUAGE MODELING RESULTS EXTENDED

Experimental Details We use diverse datasets as reference corpus for Infini-Gram. We use Infini-
Gram that is released by authors11 for Pile-train12 and Pile-val13. For BabyLM-dev and OpenWeb-
Text, we build our own Infini-Gram. We use public code to build and inference Infini-Gram14 and
Induction-only (exact)15. During inference, the maximum length for exact matching with Infini-
Gram is 500, and we use window size k for fuzzy matching as 32 and 64 for GPT-2 and LLaMA-2
tokenizers, respectively. NEW

9
https://huggingface.co/datasets/monology/pile-uncopyrighted

10
https://github.com/karpathy/minGPT

11
https://infini-gram.io/api_doc.html

12v4 piletrain llama
13v4 pileval llama and v4 piletrain gpt2
14
https://infini-gram.io/pkg_doc.html

15
https://github.com/AlexWan0/infini-gram/tree/main
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Tokenizer: GPT-2 Tokenizer: Llama-2

Model

Figure A1: Comparison of next-token accuracy.

Table A2: Ablation study on components of Induction-Gram. Next-token accuracy (%) on
BabyLM-test is reported.

Reference Corpus BabyLM-dev Pile-val OpenWebText Pile-train

Induction-Gram 43.1 42.9 43.2 49.4

w/o Induction-only (fuzzy) 42.2 36.9 38.3 46.6
w/o Induction-only (exact) 43.0 42.8 43.1 49.3
w/o Infini-Gram 42.9

Infini-Gram 39.0 19.0 20.1 33.5

Ablation Study on Induction-Gram We conduct an ablation study to assess the impact of each
component in Induction-Gram. Table A2 reports next-token accuracy when individual components
are omitted. Excluding Induction-only (fuzzy) results in a more significant performance drop than
removing Induction-only (exact). This underscores the importance of fuzzy matching in handling
diverse contexts and improving adaptability, as reflected in Table 1, where Induction-only (fuzzy)
outperforms Induction-only (exact). Since both components act as induction heads, they exhibit
complementary roles—when one is removed, the other partially compensates for its absence. Only
when using Pile-train as a reference corpus, omitting Infini-Gram leads to the most substantial per-
formance decline. It is worth noting that when the reference corpus lacks similarity to the test
dataset’s distribution (e.g., Pile-val, OpenWebText, and Pile-train), the performance of Infini-Gram
falls significantly below the scenario where it is not utilized at all. This highlights the sensitivity of
Infini-Gram to the quality and relevance of the reference corpus.

Speculative Decoding Results Extended Table A3 reports the inference times for Induction-only
(fuzzy) and Induction-Gram using speculative decoding, with the OpenWebText dataset serving as
the reference corpus for Infini-Gram. We find matches with a maximum of 64 tokens for both exact
and fuzzy matching. The experiments are conducted on two NVIDIA H100 GPUs and 64 CPU
cores. Although Induction-Gram requires more time for generation on average than Induction-only
(fuzzy), it still significantly reduces inference time compared to relying solely on a large model for
inference. NEW

Explanation Figure A2 presents several examples of explanations provided by Induction-Gram.
Even if an exact match fails to yield a good match, when the probability of subsequent tokens
is similar, the fuzzy matching model can predict with high similarity, enabling successful fuzzy
matching, enabling successful fuzzy matching, and improving next-token prediction.
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Exact Matching within Context

Fuzzy Matching within Context

“... PG70358 = = = \nBUNNY BROWN AND HIS SIST”

“ER”(a) Input Prompt: “... _Frontispiece_--(_Page 61_)] \nBUNNY BROWN AND HIS 

Sequence from Context

ER

Next Token

13

Effective n

“t”

“... out in a friendly voice:\n"Will you, won't you, will you, won'”

(b) Input Prompt: “... Then the chorus: "Will you, won't you, will you, won'”

Sequence from Context
t

Next Token
13

Effective n

“Bas”

“... Elsenheim is a commune. It is in Grand Est in the”
“... Ohnenheim is a commune. It is in Grand Est in the”
“... Bourgheim is a commune. It is in Grand Est in the”

(c) Input Prompt: “... Breuschwickersheim is a commune. It is in Grand Est in the”

Sequence from Context
Bas
Bas
Bas

Next Token

12

Effective n

“... a great breakaway down the left, the cross coming”

“in”

“... Three minutes later Simpson ran”
“... but he grabbed it again at the second attempt before it went”
“... but he was forced just a little bit wide. \nHe ran”
“... to blow it for half time, United skipper,  Steve Foster drove”

(d) Input Prompt: “... Simpson still delays taking the kick, now it comes”

Sequence from Context
in
on

over
into

forward

Next Token
0.160
0.083
0.075
0.075
0.072

Similarity

“it”

“... What's Lincolnshire gotta do with it? \nBecause he says”
“... God that wind's gone cold! \nI say”
“... Well he don't know anything about gardening, you see! \nBut”
“... What's Lincolnshire gotta do with it? \nBecause”
“... I don't know why”

(e) Input Prompt: “... Because he says it's Lincolnshire ! \nNo, he didn't! \nHe said”

Sequence from Context
it

that
I
he
!

Next Token
0.680
0.210
0.203
0.186
0.179

Similarity

“week”

“... And I was running it and the first”
“... who's erm sixty odd and he comes in here every”
“... And I was running it and the first week I got there, and one”
“... So I taught him that the first”
“... we had to cancel because nobody turned up.\nEr one”

(f) Input Prompt: “... So I taught him that the first week, and the second”

Sequence from Context
week
day
gu

week
of

Next Token
0.098
0.087
0.053
0.042
0.035

Similarity

Figure A2: Examples of explanation of Induction-Gram from BabyLM-test. (a), (b), and (c) show
examples of exact matching while (d), (e), and (f) show examples of fuzzy matching.
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Table A3: Speed of speculative decoding (SP). The mean and standard deviation of 3 runs are
reported.

Draft Model Large Model SP BabyLM-test Pile-val FineWeb

ms/token (↓) Speed Up (↑) ms/token (↓) Speed Up (↑) ms/token (↓) Speed Up (↑)

LLaMA2-13B 26.4±0.1 26.3±0.4
Induction-only (fuzzy) LLaMA2-13B ✓ 13.3±0.2 1.98 14.9±0.1 1.77 14.9±0.3 1.76
Induction-Gram LLaMA2-13B ✓ 23.1±0.4 1.14 22.8±0.3 1.15 23.0±0.7 1.14

LLaMA2-70B 71.2±0.1 71.0±0.2 71.1±0.2
Induction-only (fuzzy) LLaMA2-70B ✓ 31.4±0.7 2.27 33.3±0.6 2.13 33.2±1.0 2.15
Induction-Gram LLaMA2-70B ✓ 42.0±0.7 1.70 41.6±1.0 1.71 40.4±1.2 1.76

A.4 FMRI RESULTS EXTENDED

Data details This section gives more details on the fMRI experiment we analyze. These MRI data
are available publicly (LeBel et al., 2022; Tang et al., 2023), but the methods are summarized here.
Functional magnetic resonance imaging (fMRI) data were collected from 3 human subjects as they
listened to English language podcast stories over Sensimetrics S14 headphones. Subjects were not
asked to make any responses, but simply to listen attentively to the stories. For encoding model train-
ing, each subject listened to at approximately 20 hours of unique stories across 20 scanning sessions,
yielding a total of ∼33,000 datapoints for each voxel across the whole brain. For model testing, the
subjects listened to two test stories 5 times each, and one test story 10 times, at a rate of 1 test story
per session. These test responses were averaged across repetitions. Functional signal-to-noise ratios
in each voxel were computed using the mean-explainable variance method from (Nishimoto et al.,
2017) on the repeated test data. Only voxels within 8 mm of the mid-cortical surface were analyzed,
yielding roughly 90,000 voxels per subject.

MRI data were collected on a 3T Siemens Skyra scanner at University of Texas at Austin using a 64-
channel Siemens volume coil. Functional scans were collected using a gradient echo EPI sequence
with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip angle = 71°, multi-band factor
(simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 2.6mm (slice thickness = 2.6mm),
matrix size = 84x84, and field of view = 220 mm. Anatomical data were collected using a T1-
weighted multi-echo MP-RAGE sequence with voxel size = 1mm x 1mm x 1mm following the
Freesurfer morphometry protocol (Fischl, 2012).

All subjects were healthy and had normal hearing. The experimental protocol was approved by
the Institutional Review Board at the University of Texas at Austin. Written informed consent was
obtained from all subjects.

All functional data were motion corrected using the FMRIB Linear Image Registration Tool (FLIRT)
from FSL 5.0. FLIRT was used to align all data to a template that was made from the average across
the first functional run in the first story session for each subject. These automatic alignments were
manually checked for accuracy.

Low frequency voxel response drift was identified using a 2nd order Savitzky-Golay filter with a
120 second window and then subtracted from the signal. To avoid onset artifacts and poor detrend-
ing performance near each end of the scan, responses were trimmed by removing 20 seconds (10
volumes) at the beginning and end of each scan, which removed the 10-second silent period and the
first and last 10 seconds of each story. The mean response for each voxel was subtracted and the
remaining response was scaled to have unit variance.

We used the fMRI data to generate a voxelwise brain encoding model for natural language using
different encoding models. In order to temporally align word times with TR times, Lanczos interpo-
lation was applied with a window size of 3. The hemodyanmic response function was approximated
with a finite impulse response model using 4 delays at -8,-6,-4 and -2 seconds (Huth et al., 2016).
For each subject x, voxel v, we fit a separate encoding model g(x,v) to predict the BOLD response
B̂ from our embedded stimulus, i.e. B̂(x,v) = g(x,v)(Hi(S)). To evaluate the voxelwise encoding
models, we used the learned g(x,v) to generate and evaluate predictions on a held-out test set.
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Table A4: fMRI Prediction Performance when using fuzzy matching. Error bars show 95% CI.

Feature Model Tokenizer Matching Model Mean Correlation

All Voxels Top 10% Voxels

Eng1000 - - 0.072± 0.0004 0.220± 0.0012
Infini-Gram + Eng1000 GPT-2 - 0.069± 0.0003 0.200± 0.0012
Induction Matching + Eng1000 GPT-2 - 0.087± 0.0005 0.265± 0.0011

Fuzzy Induction Matching + Eng1000 GPT-2 GPT-2 0.076± 0.0004 0.222± 0.0011
Fuzzy Induction Matching + Eng1000 LLaMA-2 LLaMA2-70B 0.076± 0.0004 0.225± 0.0012
Fuzzy Induction Matching + Eng1000 GPT-2 Fuzzy Matching Model 0.076± 0.0004 0.216± 0.0011
Fuzzy Induction Matching + Eng1000 LLaMA-2 Fuzzy Matching Model 0.077± 0.0004 0.223± 0.0012

fMRI fuzzy induction head settings Similar to the Exact Induction Matching technique described
in Sec. 5.1, we construct an induction head for fuzzy matching. In the fuzzy setting, we leverage
the predicted next-word distributions obtained through fuzzy n-gram matching in the input context
(P (fuzzy)

induction in Equation (3)), which we refer to as Fuzzy Induction Matching. Specifically, we calculate
the cosine similarity between the next-word distributions of the current word and all prior candidate
words.

To account for the temporal resolution of fMRI, we apply Lanczos smoothing to the word-level
similarity values, aligning these values with the fMRI time scale. This allows us to identify the time
point (TR) t∗ that maximally corresponds to the current time point t based on the highest similarity.

We evaluate several configurations for deriving the next-word distributions, including GPT-2,
LLaMa-2, the Fuzzy Matching model with the GPT-2 tokenizer, and the Fuzzy Matching Model
with the LLaMA-2 tokenizer. See more details on Fuzzy Matching models in Sec. 3.2.

Extended prediction performance results The prediction performance of Fuzzy Induction
Matching Models is compared to the performance of the Exact Induction Matching Models and
the Eng1000 baseline in Table A4. The Fuzzy Induction Model, in its highest-performing configu-
ration (using the Fuzzy Matching Model with the LLaMa2-70B tokenizer), achieves only a 6.94%
improvement in prediction performance compared to the Eng1000 baseline. The lower relative per-
formance of Fuzzy Induction Matching compared to Exact Induction Matching may be due to the
inherent noise and lower spatial and temporal resolution of fMRI data, which makes it challenging
to detect subtle differences in neural activations associated with similar but non-identical stimuli.
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Title Prompt

GPT-4 Prompt for Generating Category De-
scriptions

I have provided two test stories below. Specific phrases from
each story have been picked out based on the performance of
different encoding models. Can you describe the characteris-
tics of the words and phrases that each category contains? Be
specific about the type of words, their context in the story, and
any other relevant commonalities. Write succinct descriptions
for each category that would allow one to categorize phrases in
other such stories accurately.
Category A: [’sh first she digs into her cutoffs in the’, ’both need
this right now i’, ... ]
Category B: [’to everything or you make yourself scarce’, ’my
cigarettes and uh’, ...]
Full Story: [[’i reached over and secretly’], [’undid my seat-
belt’], ...]

GPT-4 Prompt for Classifying Stages Based on
Descriptions

I have attached category descriptions below. Based on the de-
scriptions, in order, go through each short list of words (short
phrase) in the story at the end and classify the segments into one
of the categories. Rather than listing all the phrases in a cate-
gory at a time, list each phrase in order and label it as belonging
to category A or B.
Category A: Emotionally, or Narratively Critical ...
Category B: Brief, Stand-Alone Phrases ...
Full Story: [[’i reached over and secretly’], [’undid my seat-
belt’], ...]

Table A5: GPT-4 Prompts for Generating and Classifying Categories of Text. Ellipses (...) indicate
omitted portions of the full prompts.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure A3: Test story 1 (Where’s There’s Smoke), highlighted in regions where the Infini-Gram
matching and Induction matching models exceed baseline performance, measured by the average
absolute error across voxels, by more than one standard deviation.
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Figure A4: The first section of test story 2 (Have You Met Him Yet), highlighted in regions where
the Infini-Gram and Induction matching models exceed baseline performance.
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Figure A5: The second section of test story 2 (Have You Met Him Yet), highlighted in regions where
the Infini-Gram and Induction matching models exceed baseline performance.
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