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ABSTRACT

Recent large language models (LLMs) have excelled across a wide range of tasks,
but their use in high-stakes and compute-limited settings has intensified the de-
mand for interpretability and efficiency. We address this need by proposing
Induction-head ngram models (Induction-Gram), a method that builds an efficient,
interpretable LM by bolstering modern ngram models with a hand-engineered “in-
duction head”. This induction head uses a custom neural similarity metric to effi-
ciently search the model’s input context for potential next-word completions. This
process enables Induction-Gram to provide ngram-level grounding for each gen-
erated token. Moreover, experiments show that this simple method significantly
improves next-word prediction over baseline interpretable models (up to 26%p)
and can be used to speed up LLM inference for large models through speculative
decoding. We further study Induction-Gram in a natural-language neuroscience
setting, where the goal is to predict the next fMRI response in a sequence. It
again provides a significant improvement over interpretable models (20% rela-
tive increase in the correlation of predicted fMRI responses), potentially enabling
deeper scientific investigation of language selectivity in the brain.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable predictive performance across a
growing range of diverse tasks (Brown et al., 2020; OpenAl, 2023; Dubey et al., 2024). How-
ever, their proliferation has led to two burgeoning problems. First, LLMs have become increasingly
difficult to interpret, often leading to them being characterized as black boxes and debilitating their
use in high-stakes applications such as science, medicine, and policy-making (Birhane et al., 2023;
Thirunavukarasu et al., 2023; Singh et al., 2024). Moreover, the use of LLMs has come under in-
creasing scrutiny in settings where users require explanations or where models struggle with issues
such as fairness (Li et al., 2023) and regulatory pressure (Mesk6 & Topol, 2023). Second, LLMs
have grown to massive sizes, incurring enormous energy costs (Bommasani et al., 2023) and making
them costly and difficult to deploy, particularly in low-compute settings (e.g., edge devices).

As an alternative to LLMs, ngram models can maintain complete interpretability and are signifi-
cantly more computationally efficient. While interpretable models can perform as well as black-box
models in some domains (Rudin et al., 2021; Mignan & Broccardo, 2019; Ha et al., 2021), there is
a considerable gap between the performance of interpretable models and black-box LLMs in next-
token prediction.

To shrink this gap, we propose Induction-head ngram models (Induction-Gram), a method to build
interpretable and efficient LMs by bridging ngram LMs with neural LLMs. Specifically, Induction-
Gram starts with Infini-Gram, a state-of-the-art scalable ngram model (Liu et al., 2024). While
effective, Infini-Gram struggles with adapting to new contexts and with matching queries that can
not be found exactly within a reference dataset (e.g., typos or rephrasings). To remedy these is-
sues, Induction-Gram uses fuzzy matching within the model’s context to retrieve suggestions for a
next-token completion, similar to the role played by “induction heads” found in pre-trained trans-
former models (Olsson et al., 2022; Akyiirek et al., 2024). Similarly, Induction-Gram performs
matching by using a custom neural similarity metric that is trained to efficiently score two texts as
similar precisely if they lead to similar next-token completions. This extension allows Induction-
Gram to achieve state-of-the-art next-token prediction accuracy for an interpretable language model.
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Figure 1: Overview of Induction-Gram pipeline. Induction-Gram predicts the next token by inte-
grating an ngram model (Infini-Gram) with a constructed “induction head”, that efficiently searches
for potential next-token completions in the input context.

For example, when evaluating on the Pile dataset and using OpenWebText as the reference cor-
pus, Induction-Gram improve next-token prediction accuracy by 20%p over standard Infini-Gram,
shrinking the gap between interpretable models and the black-box GPT-2 model (see Table 1).

We further explore Induction-Gram in a natural-language fMRI context, where the goal is to pre-
dict the next fMRI response in a session rather than the next token in a sequence. In this setting,
Induction-Gram yields a 20% improvement over the baseline interpretable model and allows for au-
diting how models adapt to local context. Overall, Induction-Gram constitutes a major step towards
reverse-engineering mechanistically interpretable language models from modern LLMs.

2 RELATED WORK

ngram language models. Early language modeling techniques revolved around ngram mod-
els (Jurafsky & Martin, 2000; Katz, 1987), which generally stored next-token probabilities in large
tables learned from data (Brants et al., 2007). While neural LLMs have generally surpassed ngram
LMs, recent works have continued to improved ngram LMs, e.g., by scaling up the ngram reference
data (Allamanis & Sutton, 2013) and improving the ngram probability representations using suf-
fix arrays and suffix trees (Stehouwer & van Zaanen, 2010; Kennington et al., 2012; Shareghi et al.,
2015). This line of work culminated in Infini-Gram (Liu et al., 2024), which efficiently scales ngram
models to massive datasets and is the starting point for our work.

Bridging interpretable models and LLMs Some works have studied bridging ngram models and
LLMs. For example, Khandelwal et al. (2020) interpolate neural LMs with an ngram model and Li
et al. (2022) train a neural model to complement an ngram model. He et al. (2023) use ngram
models to speed up LLM inference via speculative decoding (He et al., 2023). Another approach
builds black-box nonparametric LMs using techniques such as k-nearest neighbor to improve LLM
predictions (Khandelwal et al., 2020; Borgeaud et al., 2022). Our Induction-Gram LM is also based
on a nonparametric LM, but unlike these other works, it maintains complete interpretability during
inference. In simplified settings such as text classification, some works have built fully interpretable
models that bridge LLMs and ngram models (Li et al., 2017; Singh et al., 2023a) or built partially
interpretable models based on approximating concepts with natural language (Yang et al., 2023a;
Sun et al., 2024; Morris et al., 2023; Feng et al., 2024).
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Figure 2: Performance on the BabyLM dataset with Infini-Gram built from various reference
datasets. (a) Next-token prediction accuracy for each effective n. The dashed line indicates the
average accuracy. (b) The histogram illustrates the count for each effective n.

In parallel, there has been a surge of recent interest in mechanistic interpretability, which seeks to
understand what mechanisms are learned by transformer-based LLMs (Rai et al., 2024). This line
of work identified induction heads in toy LLM models (Olsson et al., 2022) as well as large-scale
pre-trained LLMs (Wang et al., 2022; Akyiirek et al., 2024).

Natural language representations in fMRI In recent years, predicting brain responses to natural
language using LLM representations has become common in the field of language neuroscience (Jain
& Huth, 2018; Wehbe et al., 2014; Schrimpf et al., 2021; Goldstein et al., 2022). This paradigm
of using predictive “encoding models” to better understand how the brain processes language has
been applied in a wide literature to explore to what extent syntax, semantics, or discourse drives
brain activity (Wu et al., 2006; Caucheteux et al., 2021; Kauf et al., 2023; Reddy & Wehbe, 2020;
Kumar et al., 2022; Oota et al., 2022; Tuckute et al., 2023; Benara et al., 2024; Antonello et al.,
2024a) or to understand the cortical organization of language timescales (Jain et al., 2020; Chen
et al., 2023a). Separately, many works study the behavior of humans at recalling and processing
repeated text (Baddeley, 1992; Tzeng, 1973; Amlund et al., 1986; Miles et al., 2006) and relating
it to LLMs (Vaidya et al., 2023; Pink et al., 2024). Our work bridges these two areas, exploring
whether we can explicitly understand the cortical representations involved in recalling context by
predicting brain responses using Induction-Gram.

3 METHOD

We first introduce Infini-Gram, the ngram method we build on (Sec. 3.1), then introduce the efficient
induction head we develop (Sec. 3.2), before we combine them to yield Induction-Gram (Sec. 3.3).

3.1 PRELIMINARIES: INFINI-GRAM

Given an input text sequence, Infini-Gram (Liu et al., 2024) searches a reference corpus for the ex-
amples with the longest exact suffix match to the input, then calculates the next-token distribution
based on the token following each of the matches. This search is made extremely efficient by build-
ing large-scale suffix arrays that can scale to trillions of reference tokens. The length of the longest
match is referred to as the effective n, with the accuracy of the estimated probabilities increasing as
the effective n becomes larger.

One limitation of Infini-Gram is that finding exact matches in the reference corpus becomes chal-
lenging when there is a distribution shift between the input context and the reference corpus. For
instance, when evaluating on the BabyLM' test dataset, Infini-Gram built on larger corpora, such
as OpenWebText (Gokaslan & Cohen, 2019), shows lower performance and, on average, has fewer
instances of higher effective n compared to the model built on the BabyLM dataset (Fig. 2). With
far larger corpora like Pile-train (Gao et al., 2020), Infini-Gram is able to increase the number of
instances with a high effective n, resulting in improved performance. However, the Infini-Gram
built on BabyLM, which contains only 0.005% of the tokens found in Pile-train, still achieves the
highest performance. This highlights the difficulty Infini-Gram faces when there is a substantial gap
between the reference corpus and the input prompt, making it hard to find matching cases with a
large effective n. We propose to address this limitation with Induction-Gram.

lhttps ://babylm.github.io/
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Figure 3: (a) Overview of training Fuzzy Matching Model via knowledge distillation from pretrained
LLM. (b) Calculation of similarity between sequences within input prompt to predict the next token.

3.2 BUILDING AN EFFICIENT INDUCTION HEAD

LLMs are well-known for their ability to perform in-context learning, effectively capturing the dis-
tribution of input context. In pre-trained LLMs, the induction head has been found to play a crucial
role in in-context learning (Olsson et al., 2022; Akyiirek et al., 2024; Wang et al., 2022), which refers
to attention patterns in LLMs that identify recurring sequences in prior context and use them to pre-
dict the next token (e.g., [A][B] ... [A] — [B]). To replicate this behavior, we propose to construct
an induction head based on ngrams to aid in next-token prediction. Building this induction head is
similar to applying the Infini-Gram algorithm restricted only to the input context: it treats the end
of the context as the query and searches for the best match within the context. After finding the best
match, the induction head takes the token following the match as the next-token prediction.

What constitutes a ‘“good match” for our induction head? When finding an ngram-level match
within the context, exact matching can be overly restrictive, as minor rephrasings or typos may
derail an otherwise useful match. Consequently, we adopt fuzzy matching instead of exact matching
by assessing the similarity between sequences. While similarity can be defined in many ways,
in building an induction head we desire two texts to be similar if they yield similar next-token
distributions. To quantify this, we define the similarity between two sequences, x; and x2, for fuzzy
matching using Jensen—Shannon divergence (JSD), as follows:

S(xla $2) = exp (7JSD (Pnext(zl); Pnext(xQ))) ) (1)

where P (+) is the estimated next-token probability distribution for a given sequence.

Computing s efficiently One approach for computing s would be to use a pre-trained LLM to
obtain Px, but this can be computationally expensive. Instead, we develop a small Fuzzy Matching
Model, which consists of 3 or 4 transformer layers and is trained via knowledge distillation from
existing LLMs. This model is designed to output feature embeddings that facilitate the calculation
of next token probabilities for similarity assessments. With Fuzzy Matching Model, the similarity
between x; and x5, whose feature embeddings from the model are e; and eo, is obtained as follows:

sem(21, 22) = exp (— (1 — CosineSim (eq, e2)) /T) , 2)

where 7' is a temperature, which is set to 0.1. The Fuzzy Matching Model is trained using a combi-
nation of Cross Entropy (CE) loss and reverse Kullback-Leibler divergence (KLD) loss (Fig. 3(a)).
Within each training batch, we create similarity pairs from randomly sampled sequences with an
LLM. The CE loss aids in identifying the most similar pairs. The reverse KLD loss encourages the
model to align with the distribution of similarity, emphasizing the importance of accurately estimat-
ing the overall similarity while ensuring that the closest pairs receive high similarity scores and the
distant pairs receive lower similarity scores. Further details can be found in Appendix A.1.

Predicting the next token Given the similarity scoring function sgy, we can build an induction
head that yields the predicted next-token probability distribution Pjpgyciion giVen an input sequence
z. To do so, we find each match for the end of x, w.;_1, using a sliding window of size k (Fig. 3(b)).
We then count the occurrence of each token w;, among vocabulary set V, following each match in

FIX
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the input sequence, and then normalize to obtain the next-token probability:
cfuzzy (wifkflzif 1W; |.’E)

ijev cfuzzy(wifkfl:ifle |£L’)

(fuzzy)
induction

(w.i—1w;lx) = (3)
where iy (Wi—p—1:i—1w5|T) = Z Tw=w;sem (W) —p—1:5-1, Wi—p—1:i-1). (4
Wj—k—1:5Cx
This similarity score serves as a floating count for the next token. In cases where the sequences
x1 and x5 are exactly matched, as in the case of Infini-Gram, we have sgy(z1,22) = 1, which is
equivalent to increasing the count by one. The window size k specifies the number of tokens to be
considered in fuzzy matching.

3.3 INDUCTION-HEAD NGRAM MODELS: PUTTING IT ALL TOGETHER

To build our final Induction-Gram model (Eq. (5)), we integrate our induction head with the baseline
Infini-Gram model, which uses exact ngram matching:

PO (ylz)  nee > ng and ne, > T,

P(y|x) = Plrgtei)l‘l‘éflt())n<y|w) Ny Z Noo and Ng > T, (5)
f .
P (ylz)  Otherwise,

where n, and n, are the effective n when matching from a reference corpus or the input context,
respectively. When these values are low, fuzzy matching is employed to compensate for the limited
effective n. When the effective n values from both the input context and reference corpus are equal,
priority is given to the input context estimate. 7 is a hyperparameter that selects how often to use
exact matching rather than fuzzy matching; we set 7 to 8 and 9 for GPT-2 and LLaMa-2 tokenizers,
respectively, using cross-validation test (details in Appendix A.2).

While we describe Induction-Gram for text, it can be applied to predicting tokens in sequences more
generally; Sec. 5.1 describes how to use Induction-Gram in a natural-language fMRI setting.

4 LANGUAGE MODELING RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We use 4 text datasets for evaluation: BabyLM? (Warstadt et al., 2023), OpenWeb-
Text (Gokaslan & Cohen, 2019), Pile (Gao et al., 2020), and FineWeb ((Penedo et al., 2024);
sample—10BT subset), using some as the reference corpus and some as test datasets (Table 1).
When testing, we report performance on 100k sequences randomly sampled with a context length
of 1024 and a stride of 512 (Liu et al., 2024; Khandelwal et al., 2020).> In our speculative decoding
experiments, we utilize 1024 tokens from the beginning of each document as a prefix prompt. Six
prompts are employed with the BabyLLM dataset, while 100 randomly sampled prompts are used for
the FineWeb and Pile datasets.

Metrics We evaluate our method in terms of both the accuracy and efficiency of next-token predic-
tion. We measure accuracy as whether the top-predicted token was the correct token.* For efficiency,
we compare the inference time for speculative decoding (Leviathan et al., 2023; Chen et al., 2023b)
when using Induction-only (fuzzy) as the draft model.

4.2 IMPROVING NEXT-TOKEN PREDICTION ACCURACY WITH CONTEXTUALIZATION

Prediction improvements from in-context matching Induction-only (exact) relies solely on the
input context to predict the next token (limited to 1024 tokens in our evaluation). Table | shows

zht tps://babylm.github.io/

3The BabyLM test set results in less than 100k sequences, instead yielding about 32k and 34k cases for the
GPT-2 and LLaMA-2 tokenizers, respectively.

“We do not compute perplexity, as the sparse next-token predictions from ngram models can frequently
assign the top token a probability of zero, skewing the perplexity to extreme values.
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FIX


https://babylm.github.io/

Under review as a conference paper at ICLR 2025

Table 1: Next-token prediction accuracy (%) for Induction-Gram compared to baseline methods.
The gray shade represents the alignment between the reference corpus and the test dataset.

Reference Corpus Model Test Dataset
Type # of Tokens BabyLM-test FineWeb  Pile-val
Tokenizer: GPT-2
- - Induction-only (exact)  36.7 17.2 37.0
- - Induction-only (fuzzy) 41.1 25.2 38.7
Infini-Gram 37.6 14.7 16.0
BabyLM-dev 17.4M Induction-Gram 42.2 (+4.6) 25.3 +106  40.0 +24.0)
. Infini-Gram 16.6 20.1 -
Pile-val 383M Induction-Gram 41.5 (+24.9) 25.5 (+5.4) -
Infini-Gram 16.7 25.5 22.7
OpenWebText 9.04B Induction-Gram 41.8 2s.1) 272017 42.7 200
Unknown ~10B LLM (GPT-2) 46.9 39.0 52.3
Tokenizer: LLaMA-2
- - Induction-only (exact)  37.0 19.6 32.6
- - Induction-only (fuzzy) 42.7 28.3 38.5
Infini-Gram 39.0 17.1 13.2
BabyLM-dev 18.5M Induction-Gram 43.1 @41y 28.6 +11.5)  39.6 (+26.4)
. Infini-Gram 19.0 24.1 -
Pile-val 394M Induction-Gram 42.9 (239 28.4 +43) -
Infini-Gram 20.1 29.5 27.1
OpenWebText 10.3B Induction-Gram 43.2 (+23.1) 30.3 +0.8) 42.1 (+15.0)
. . Infini-Gram 335 39.3 49.2
Pile-train 3838 Induction-Gram 4949 380013 503 Ly
Unknown ~2T LLM (LLaMA2-7B) 62.2 57.1 64.4
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Figure 4: Comparison of next token prediction accuracy on BabyLM-test dataset, depending on
effective n from (b) Infini-Gram and (b) Induction-only (exact). LLaMA-2 tokenizer is used.

that, despite this, it outperforms Infini-Gram—which uses the 10B-token OpenWebText dataset as a
reference corpus—by a margin of 5.5%p to 20%p on the BabyLM and Pile datasets. When Infini-
Gram utilizes BabyLM-dev as the reference corpus, it achieves slightly better performance than
Induction-only (exact) on the BabyLM-test set, with improvements of 0.9%p and 2.0%p for the
GPT-2 and LLaMA-2 tokenizers, respectively, where the reference corpus and input context are
aligned. As shown in Fig. 4(a), Infini-Gram (green) performs better in cases with a high effective
n, even surpassing LLM (blue). However, there are significantly more cases with a low effective n
(histogram), where Induction-only (exact) (orange) demonstrates superior performance. This find-
ing underscores that in-context matching reflects the input query’s distribution, resulting in more
accurate next-token predictions than reference matching, especially when there is a distribution shift
between the reference corpus and the test input.

Prediction improvements from Induction-Gram Induction-only (fuzzy), using Fuzzy Match-
ing Model, consistently outperforms Induction-only (exact) with a margin of 1.7%p to 8.7%p (Ta-
ble 1). This improvement is particularly evident in cases with low effective n. As illustrated in
Figure 4(b), the majority of cases within the input context have low effective n (histogram), indicat-
ing that finding exactly matched long sequences within the limited amount of tokens is challenging.
Fuzzy matching helps to provide better estimations for next-token predictions in these scenarios.
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Table 2: Speed of speculative decoding (SP). Accept. denotes the acceptance rate (%). The mean
and standard deviation of 3 runs are reported.

Draft Model Large Model ~ SP BabyLM-test Pile-val
Accept. Speed Accept. Speed
ms/token (})  Up () ms/token ({) Up (1)
LLaMA2-7B 30.2+0.0 30.2+0.1
_ TinyLLaMA-1.1B LLaMA2-7B v 78.7+0.5 21.3£0.0 142 78.3£0.1 21.3+£0.6 1.42
é Induction-only (fuzzy) LLaMA2-7B v 74.9+1.1 17.7+£0.7 1.71  71.2+0.5 20.1+£0.4 1.50
:E LLaMA2-13B 52.4+0.0 52.0+0.2
TinyLLaMA-1.1B LLaMA2-13B v 78.2+0.0 26.7+0.5 1.96  77.6+0.1 26.3+£0.5 1.98
Induction-only (fuzzy) LLaMA2-13B v 73.5+0.1 24.8+0.1 2.11  69.8+0.2 27.8+0.1 1.87
LLaMA2-13B 26.4+0.1 26.3+0.4
LLaMA2-7B LLaMA2-13B v 78.9+0.0 24.7+0.0 1.07  78.6+0.0 25.1£0.3 1.05
«~ TinyLLaMA-1.1B LLaMA2-13B v 78.3%0.1 20.7+0.1 1.28  77.6+0.1 21.5+0.1 1.22
é Induction-only (fuzzy) LLaMA2-13B v 73.2+0.3 13.3+0.2 1.98  69.9+0.1 14.9+0.1 1.77
3
E LLaMA2-70B 71.2+0.1 71.0£0.2
LLaMA2-7B LLaMA2-70B v 77.2+0.2 38.3+0.5 1.86  77.8+0.2 37.4+0.3 1.90
TinyLLaMA-1.1B LLaMA2-70B v 75.5+0.1 35.3+0.2 2.02  76.3+0.4 33.9+0.6 2.10
Induction-only (fuzzy) LLaMA2-70B v 68.5+0.6 31.4+0.7 227  66.6£0.6 33.3+0.6 2.13

Specifically, when the effective n is less than 3, Induction-only (fuzzy) (yellow) demonstrates better
performance than Induction-only (exact) (orange). Since many cases fall into this range, the overall
accuracy of Induction-only (fuzzy) is higher.

The improvements achieved through the use of induction and fuzzy matching enable Induction-
Gram to outperform Infini-Gram built on 383B tokens improving performance by up to 16.0%p.
While expanding the reference corpus of Infini-Gram can lead to general performance gains, utiliz-
ing Induction-only (fuzzy) proves to be more efficient than increasing the data size from 10.3B to
383B tokens—a 38-fold increase. Moreover, Induction-only (fuzzy) is a complementary approach
that can be applied orthogonally to Infini-Gram, regardless of the size of the reference corpus.

4.3 SPECULATIVE DECODING

Experimental Details To evaluate the efficiency of Induction-only (fuzzy), we compare the in-
ference time for speculative decoding with TinyLLaMA® and LLaMA2-7B (Touvron et al., 2023).
We evaluate speculative decoding by generating up to 1024 tokens, using a prefix of 1024 tokens.
The speed of decoding may vary depending on the computational environment. To ensure robust
evaluation across different setups, we conduct experiments in two environments: one with a single
NVIDIA A40 GPU and 128 CPU cores, and another with two NVIDIA H100 GPUs and 64 CPU
cores. Greedy sampling is used for token generation, and each experiment is repeated three times
with different random seeds.

Induction improves speculative decoding performance Table 2 demonstrates the speed-up ef-
fect of speculative decoding with Induction-only (fuzzy). Induction-only (fuzzy) relies solely on the
induction power derived from the input context to predict the next token, leading to lower acceptance
rates compared to LLMs. Despite this, its inference speed is remarkably fast, and it often matches
the predictions of large models. As a result, the speed improvement can exceed 2x compared to
using LLaMA2-70B alone. In most cases, Induction-only (fuzzy) achieves even greater speed gains
than when using an LLM as a draft model for speculative decoding.

Additionally, we would like to note that speculative decoding with Induction-only (fuzzy) and a
pretrained LLM not only accelerates the inference speed of the pretrained model but also enables
explainable predictions based on the given input context. When accurate predictions can be made
through interpretable methods, we utilize this process for interpretability. In more challenging cases,
we rely on a larger model that, while less interpretable, delivers better performance for accurate
predictions. Thus, this approach provides a balanced method that addresses both interpretability and
accuracy, in addition to enhancing efficiency.

5 , . - e . . . P o
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5 FMRI RESULTS

5.1 EXPERIMENTAL SETUP

A central challenge in neuroscience is understanding how and where semantic concepts are repre-
sented in the brain. To meet this challenge, we follow a line of study that predicts the response of
different brain voxels (i.e. small brain regions) to natural language stimuli (Huth et al., 2016; Jain
& Huth, 2018). We analyze data® from LeBel et al. (2022) and Tang et al. (2023), which consists
of fMRI responses for human subjects as they listen to 20+ hours of narrative stories from podcasts.
We fit modules to predict the fMRI response (95,556 voxels) from the text that a single subject was
hearing by extracting text embeddings’. We fit the encoding models on the training split (24 stories)
and evaluate them on the test split (2 stories) using bootstrapped ridge regression. Encoding model
features are extracted in various ways (described below) for each word in the input, and then inter-
polated to make predictions for the fMRI data that is recorded at 2-second time of repetition (TR)
intervals. To model temporal delays in the fMRI signal, we also add 4 time-lagged duplicates of the
input features. See extended fMRI details in Appendix A.4.

Embedding baselines We use Eng1000 as our primary baseline, an interpretable model developed
in neuroscience literature for predicting fMRI responses from narrative stories (Huth et al., 2016).
Each element in an Engl1000 embedding corresponds to a co-occurence statistic with a different
word. We additionally compare to embeddings from LLaMA2-70B (Touvron et al., 2023), which
achieve state-of-the-art performance in this fMRI prediction task (Antonello et al., 2024b) but are
not interpretable. LLaMA embeddings are extracted using a 16-word sliding window and selecting
the final-layer embedding for the final token of the input.

fMRI induction head settings We construct our induction head for fMRI by searching over recent
text in an fMRI session and identifying previous changes in the recorded fMRI response. Specif-
ically, to predict the fMRI response for the TR ¢, we first find the TR ¢* for which the text input
yields the highest cosine similarity to the next-token distribution of the text input at TR ¢ — 1. Next,
we isolate the change in fMRI responses following TR ¢*: we take the difference in the top 100
principal components of the response s~ — R;~_1 and use them as features. To deal with potential
time delays in the fMRI signal, we additionally concatenate these features with the top 100 principal
components of Ry« — Ry« _o and Ryx — Ry« _3.

In all cases, the induction features are concatenated with the Eng1000 features before being used
to linearly predict the fMRI response. When constructing the induction head, we search over the
most recent 1024 words and their corresponding fMRI responses. To measure similarity between

two texts, we use the predicted next-word distributions yielded by exact ngram matching in the in-
put context (P, in Eq. (5)), which we call Induction matching. Alternatively, we can use the
predicted next-word distributions yielded by exact ngram matching in the 10B-token OpenWebText
reference corpus (P in Eq. (5)), which we call Infini-Gram matching. We additionally explore
fuzzy matching techniques in Table A4, but do not see an improvement. This is potentially be-
cause the noise and temporal smoothing present in the fMRI response mitigates the benefit of fuzzy

matching / matching across fMRI sessions.

Matching baselines We add two additional baselines that alter our proposed induction head model
only in how they calculate matches. First, Random matching selects a random preceding TR as a
match. Second, Naive ngram matching searches for an exact ngram match in the input context
(rather than using the predicted next-word distribution as our induction head does). Specifically,
naive ngram matching searches for a match to the most recent 4-word ngram.

5.2 INDUCTION MATCHING IMPROVES PREDICTIVE PERFORMANCE

Table 3 shows the fMRI prediction results. Eng1000, the primary interpretable baseline, achieved
a mean test correlation of 0.072. In contrast, our model (Induction matching) achieves a mean

6htips ://github.com/OpenNeuroDatasets/ds003020
"We report results for subject UTS03 due to high fMRI data quality, including superior repeatability, mini-
mal motion, and strong encoding model performance (LeBel et al., 2022).
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Table 3: fMRI test prediction performance for different models. Induction matching significantly
outperforms other interpretable models. Error bars show 95% CI.

Mean Correlation

Feature Model

All Voxels

Top 10% Voxels

Eng1000

0.072 £ 0.0004

0.220 £ 0.0012

Random matching + Eng1000
Naive ngram matching + Eng1000
Infini-Gram matching + Eng1000
Induction matching + Eng1000

0.069 + 0.0003
0.068 £ 0.0003
0.069 £ 0.0003
0.087 £ 0.0005

0.197 £+ 0.0012
0.194 £ 0.0012
0.200 £ 0.0012
0.265 £ 0.0011

Black-box encodings (LLaMA-2)

0.096 £ 0.0005

0.268 £ 0.0013

Difference in Prediction Performance Between
Induction Matching and Eng 1000 Baseline

s

Induction Matching
Prediction Performance

Voxel Prediction Performance
(Correlation)

i TR

Figure 5: Difference in the correlation performance between the Induction matching and the
Eng1000 baseline, visualized across cortex. Performance improvement is scattered across the cor-
tex, but concentrates near some well-studied regions of the language network, e.g., Occipital face
area (OFA) and Intraparietal sulcus (IPS).

correlation of 0.087, a 20% improvement over Eng1000. When predicting the top-10% of voxels,
Induction Matching achieves a mean correlation of 0.265, again a 20% improvement over Eng1000,
and only 1% lower than the black-box LLaMA-2 model (mean correlation 0.268). In contrast, other
matching-based baselines are unable to improve over Eng1000. The Naive ngram matching baseline
achieves a correlation of 0.068, and the random matching baseline achieves a correlation of 0.069,
both of which perform worse than the Eng1000 baseline.

Fig. 5 visualizes the difference in the test correlation performance between the Induction matching
and the Eng1000 baseline. The performance improvement (red) is scattered across the cortex, but
concentrates near some well-studied regions of the language network, e.g., Occipital face area and
Intraparietal sulcus.

Describing improvements from Induction-Gram To qualitatively understand the improvements
provided by matching, we summarize the text for inputs where different matching procedures (Infini-
Gram and Induction) perform well. We use an LLLM to do the summarization, following recent works
in LLM interpretability (Zhong et al., 2022; Dunlap et al., 2024). We first identify phrases in the
input story where a model’s performance (average absolute error across voxels) exceeds the baseline
performance by more than one standard deviation; see a short example in Fig. 6. Then, we prompt
GPT-4 (OpenAl (2023); gpt-4-0613) to generate descriptions for these phrases.

Fig. 6 gives the unedited LLM descriptions®. Induction matching is described as capturing Emo-
tionally or Narratively Critical Phrases, which aligns with the intuition that Induction improves
performance by keeping track of local context in a story, e.g., phrases that “are critical to the plot
and character development”. In contrast, Infini-Gram matching is described as capturing Brief,
Stand-Alone Phrases, matching the intuition that Infini-Gram excels in capturing context that is not
specific to a particular story, but rather “can stand alone with minimal context”. To evaluate the

8Irrelevant preceding text such as “Sure here is the answer” is removed from the response.
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(a)
S=z|amongst the coarette butts  and  smoke  and i say  wow thats your Ittle boy  and  she  says  yeah  isnt he  beautiful
z say  yeah he is he B peauttl  he's my Tight he  keeps me  going  she says we finish  our
she  finishes  her beer i don't  have a beer  cause i @nt g home  with beer on my  breath  and
S she goes  inside to et the  keys  she  takes  too  long in there getting the  keys  and i think something must
z be wrong  and she  comes  out and she says look i'm really  sorry but um like we don't have any gas
om the car its  aready  on e and he  mneeds to get w© work in the moming  and um i you
I know i im  gonne  be  walk w work & it is 50 what i aid wes  though here  look i arew
out this map for you and youre really  you're like a mile and a half from  home and um it you
valk  three streets over  youll  be back  on that  pretty street  and you  just  take  that  and  youll  be fine  and
SIZ| sie  aso has  wiapped  up in tollet  paper seven cigarettes for me ] third o her  pack i note  and &
3 new  pack of (matches @nd  she  tels  me  good  bye  and  that  was  oreat to meet  you and  how  lucky  and
that  was fun ana you  know lefs  Be  fiends  and i sy yean ok and i walk  away  but i kind
= ETEaa =T 2522222 Legend
= - 3 Tii @ LLM Summarization Infini-Gram matching \r\du[[:’\ matching No significant difference
Model Category Description

or Narratively Critical Phrases: These phrases are crit-
ical to the plot and character development, often involving pivotal deci-
sions or i They are deeply into the narrative context
and central to the story’s resolution.

Infini-Gram matching Brief, Stand-Alone Phrases: These are short phrases, often less than
a sentence, that can stand alone with minimal context. They typically
contain common, everyday words and are contextually independent.

@ LLM Classification

Figure 6: Qualitatively describing where Induction matching / Infini-Gram matching provide im-
provements. (a) Words in the input story where a model’s performance exceeds the baseline per-
formance are highlighted. (b) An LLM summarizes these phrases to yield descriptions for each
matching procedure. (c) To check whether these descriptions are faithful, we test whether an LLM
can use them to classify the highlighted phrases in the test stories.

accuracy of these descriptions, we prompt GPT-4 to classify the identified phrases in the two test
stories using only the descriptions. This yields 61% classification accuracy, a significant (but mod-
erate) improvement over chance (binomial test p = 0.032). See all identified phrases and prompts
in Appendix A.4.

6 DISCUSSION

Induction-Gram constitutes a significant step towards reverse-engineering mechanistically inter-
pretable language models from pre-trained LLMs. Here, we leverage the induction head, which
is only one component found to be important in LLMs; future works could integrate new compo-
nents from mechanistic interpretations, such as indirect object identifiers (Wang et al., 2022), nu-
merical representations (Engels et al., 2024), retrieval heads (Wu et al., 2024), instruction-following
heads (Zhang et al., 2023), natural-language explanations of attention heads (Bills et al., 2023) or
interpretable submodules within an LLM (Singh et al., 2023b; Bricken et al., 2023). It may be pos-
sible to implement these components in a hand-engineered manner, e.g., using python code, regexes,
or rule-based models, potentially yielding efficiency in addition to interpretability.

A major limitation of Induction-Gram is that the added induction head provides little improvement
when the given input context is short or uninformative. This may be partially mitigated by exploring
Induction-Gram in conjunction with techniques such as retrieval-augmented-generation (Wu et al.,
2024), that can fetch relevant documents to be incorporated as part of the local context. More
generally, while Induction-Gram boasts a very large memory capacity, Induction-Gram relies on
ngram-level reasoning and thus continues to struggle with tasks that require significant reasoning
capabilities (similar to KNN-LMs (Geng et al., 2024)). Future work may explore the best way to
build hybrid models using Induction-Gram and black-box LLMs to achieve effective tradeoffs.

The fMRI analyses conducted here are a suggestive starting point for understanding how context is
stored and recalled in the human cortex. Improvements from Induction Matching may help build
encoding models that can more rapidly adapt to local context, which can be used in downstream
applications such as brain decoding (Tang et al., 2023) or brain-computer interfaces (Nicolas-Alonso
& Gomez-Gil, 2012). More generally, the full transparency of Induction-Gram may enable its use
in language modeling scenarios that require complete auditing, such as in analyzing scientific text
or medical notes (Yang et al., 2023b).
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REPRODUCIBILITY STATEMENT

We include all experimental details necessary for reproduction in the main text and the appendix.
For language modeling, explanations of the datasets are provided in Sec. 4.1, and the training details
for Fuzzy Matching Model are in Appendix A.1. The inference setup of all models is described in
Appendix A.3. For the natural-language fMRI experiment, details about the constructing induction-
based input features are described in Sec. 5.1. Details about the publicly available data set, data
collection methods, and the procedures used to map embedded stimuli to BOLD responses are pro-
vided in Appendix A.4.
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A APPENDIX

A.1 TRAINING OF FUZZY MATCHING MODEL

Architecture of Fuzzy Matching Model We train two Fuzzy Matching Models, one using the
GPT-2 tokenizer and the other using the LLaMA-2 tokenizer. With GPT-2 tokenizer, Fuzzy Match-
ing Model consists of four transformer layers, whereas it comprises three transformer layers when
using LLaMA-2 tokenzer. Since relative position is crucial for calculating similarity, we incorporate
Relative Positional Encoding (Shaw et al., 2018), with a maximum relative position of 32 for the
GPT-2 tokenizer and 64 for the LLaMA-2 tokenizer. The vocabulary embeddings are initialized with
those from GPT-2 and LLaMA2-7B, ensuring that the number of heads and embedding dimensions
align with the specifications of GPT-2 and LLaMA2-7B.

Creating Similarity pair with LLMs For both Fuzzy Matching Model, we use LLaMA2-7B as a
teacher model. OpenWebText and Pile-train’ datasets for training each Fuzzy Matching Model thats
use GPT-2 or LLaMA-2 tokenizer. During training, we randomly sample sequences of 32 or 64
tokens with batch size of 128 or 256, resulting in 4,096 or 16,384 next-token prediction probabilities
per batch. From these, we sample distant 3,584 or 4,096 queries and 512 keys and create similarity
pairs (3,584 x 512 or 4,096 x 512) by calculating similarity based on Equation (5). The models
are trained using a combination of CE loss and reverse KLD loss, with equal weights (1.0). We
adopt most of the training settings from the codebase'” for training. Gradients are accumulated over
16 iterations, and we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate
of 0.0001 and a weight decay of 0.1. The learning rate follows a cosine schedule with a warmup
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Table Al: Ablation study on training of Fuzzy Matching Model. Next-token accuracy (%) of
Induction-only (fuzzy) on the BabyLM-test is reported. LLaMA-2 tokenizer is used.

Positional Encoding Reverse KLD loss Forward KLD loss CE loss  Accuracy

Relative v v 43.2
Relative v v 42.8
Relative v 42.7
Relative v 419
Sinusoidal v v 37.0

over the first 1,000 iterations, and training continues for 15,000 or 20,000 iterations. Training is
conducted on four NVIDIA A100 GPUs.

Ablation Study on Fuzzy Matching Model Training We conduct an ablation study on the po-
sitional encoding strategy and training process of Fuzzy Matching Model using the OpenWebText
dataset to distill it from LLaMA-2-7B. The study evaluates the contributions of Relative Positional
Encoding, reverse KLD loss, and CE loss to the model’s effectiveness. As shown in Table Al,
next-token prediction accuracy improves significantly when both reverse KLLD and CE losses are
included, demonstrating their complementary roles in optimizing the Fuzzy Matching Model. With
CE loss, Forward KLD loss is less effective than reverse KLD loss. Furthermore, using Relative
Positional Encoding instead of Sinusoidal Positional Encoding leads to better performance, high-
lighting the advantages of incorporating relative positional information for enhanced fuzzy matching
capabilities.

A.2 DETERMINATION OF T

To build Induction-Gram by integrating the three types of estimations, we first need to deter-
mine the threshold for effective n, denoted as 7. To identify the optimal value of 7, we con-
ducted cross-validation using the BabyLM training set (100M tokens). BabyLM consists of
six datasets: open_subtitles, bnc_spoken, gutenberg, childes, simple_wiki, and
switchboard. Since switchboard contains only 2M tokens, we exclude it from the exper-
iment. For the remaining datasets, we use each dataset as a validation set, while the other four
are used as the reference corpus to build Infini-Gram. We then compare the performance changes
of Infini-Gram, Induction-only (exact), and Induction-only (fuzzy) depending on effective n. 10k
samples are used for evaluating on each dataset.

As shown in Figure Al, Infini-Gram outperforms Induction-only (exact) when the effective n ex-
ceeds 8 for the GPT-2 tokenizer and 9 for the LLaMA-2 tokenizer. Therefore, we set 7 to 8 and 9
for the respective tokenizers.

A.3 LANGUAGE MODELING RESULTS EXTENDED

Experimental Details We use diverse datasets as reference corpus for Infini-Gram. We use Infini-
Gram that is released by authors'' for Pile-train'” and Pile-val'’. For BabyLM-dev and OpenWeb-
Text, we build our own Infini-Gram. We use public code to build and inference Infini-Gram'* and
Induction-only (exact)'>. During inference, the maximum length for exact matching with Infini-
Gram is 500, and we use window size k for fuzzy matching as 32 and 64 for GPT-2 and LLaMA-2
tokenizers, respectively.

ghttpsz//huqqianace.co/datasets/wonoloqy/pilefuncopyriqhted
lohttps://qithub.:om/karpathy/minGPT
llhttps://infini*gran.io/apiidoc.h:ml
12v4,pj_letrau'_n,llama

13\74,pileval,llama and v4_piletrain_gpt2
I4https://infini—qrar.io/pkqfdoc.h:ml

Ishttps://github.:om/AlexWanO/infini gram/tree/main
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Table A2: Ablation study on components of Induction-Gram. Next-token accuracy (%) on

BabyLM-test is reported.

Reference Corpus BabyLM-dev Pile-val OpenWebText Pile-train
Induction-Gram 43.1 42.9 43.2 49.4
w/o Induction-only (fuzzy) 42.2 36.9 38.3 46.6
w/o Induction-only (exact) 43.0 42.8 43.1 49.3
w/o Infini-Gram 42.9

Infini-Gram 39.0 19.0 20.1 335

Ablation Study on Induction-Gram We conduct an ablation study to assess the impact of each
component in Induction-Gram. Table A2 reports next-token accuracy when individual components
are omitted. Excluding Induction-only (fuzzy) results in a more significant performance drop than
removing Induction-only (exact). This underscores the importance of fuzzy matching in handling
diverse contexts and improving adaptability, as reflected in Table 1, where Induction-only (fuzzy)
outperforms Induction-only (exact). Since both components act as induction heads, they exhibit
complementary roles—when one is removed, the other partially compensates for its absence. Only
when using Pile-train as a reference corpus, omitting Infini-Gram leads to the most substantial per-
formance decline. It is worth noting that when the reference corpus lacks similarity to the test
dataset’s distribution (e.g., Pile-val, OpenWebText, and Pile-train), the performance of Infini-Gram
falls significantly below the scenario where it is not utilized at all. This highlights the sensitivity of
Infini-Gram to the quality and relevance of the reference corpus.

Speculative Decoding Results Extended Table A3 reports the inference times for Induction-only
(fuzzy) and Induction-Gram using speculative decoding, with the OpenWebText dataset serving as
the reference corpus for Infini-Gram. We find matches with a maximum of 64 tokens for both exact
and fuzzy matching. The experiments are conducted on two NVIDIA H100 GPUs and 64 CPU
cores. Although Induction-Gram requires more time for generation on average than Induction-only
(fuzzy), it still significantly reduces inference time compared to relying solely on a large model for
inference.

Explanation Figure A2 presents several examples of explanations provided by Induction-Gram.
Even if an exact match fails to yield a good match, when the probability of subsequent tokens
is similar, the fuzzy matching model can predict with high similarity, enabling successful fuzzy
matching, enabling successful fuzzy matching, and improving next-token prediction.
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Exact Matching within Context

(a) Input Prompt: “... Frontispiece --(_Page 61 )] \nBUNNY BROWN AND HIS
Sequence from Context Effective n
“... PG70358 = = = \nBUNNY BROWN AND HIS SIST” 13
(b) Input Prompt: “... Then the chorus: "Will you, won't you, will you, won'”
Sequence from Context Effective n
“... out in a friendly voice:\n"Will you, won't you, will you, won'” 13
(c) Input Prompt: “... Breuschwickersheim is a commune. It is in Grand Est in the”
Sequence from Context Effective n
“... Elsenheim is a commune. It is in Grand Est in the”
“... Ohnenheim is a commune. It is in Grand Est in the” 12
“... Bourgheim is a commune. It is in Grand Est in the”
Fuzzy Matching within Context
(d) Input Prompt: “... Simpson still delays taking the kick, now it comes”
Sequence from Context Similarity
“... a great breakaway down the left, the cross coming” 0.160
“... Three minutes later Simpson ran” 0.083
“... but he grabbed it again at the second attempt before it went” 0.075
“... but he was forced just a little bit wide. \nHe ran” 0.075
“... to blow it for half time, United skipper, Steve Foster drove” 0.072

(e) Input Prompt: “... Because he says it's Lincolnshire ! \nNo, he didn't!

Sequence from Context

What's Lincolnshire gotta do with it? \nBecause he says”
God that wind's gone cold! \nI say”

Well he don't know anything about gardening, you see! \nBut”
What's Lincolnshire gotta do with it? \nBecause”

I don't know why"”

(f) Input Prompt: “... So I taught him that the first week, and the second”

Sequence from Context

And I was running it and the first”

who's erm sixty odd and he comes in here every”

And I was running it and the first week I got there, and one”
So I taught him that the first”

we had to cancel because nobody turned up.\nEr one”

\nHe said”
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Figure A2: Examples of explanation of Induction-Gram from BabyLM-test. (a), (b), and (c) show
examples of exact matching while (d), (e), and (f) show examples of fuzzy matching.
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Table A3: Speed of speculative decoding (SP). The mean and standard deviation of 3 runs are
reported.

Draft Model Large Model ~ SP BabyLM-test Pile-val FineWeb
ms/token () Speed Up (1) ms/token (}) Speed Up (1) ms/token (}) Speed Up (1)
LLaMA2-13B 26.4+0.1 26.3+0.4
Induction-only (fuzzy) LLaMA2-13B 13.3+0.2 1.98 14.9+0.1 1.77 14.9+0.3
Induction-Gram LLaMA2-13B v 23.1+0.4 1.14 22.8+0.3 1.15 23.0+0.7
LLaMA2-70B 71.2+0.1 71.0+0.2 71.1+0.2
Induction-only (fuzzy) LLaMA2-70B v 31.4+0.7 227 33.3+0.6 2.13 33.2+1.0 2.15
Induction-Gram LLaMA2-70B v 42.0+0.7 1.70 41.6£1.0 1.71 40.4£1.2 1.76

A.4 FMRI RESULTS EXTENDED

Data details This section gives more details on the fMRI experiment we analyze. These MRI data
are available publicly (LeBel et al., 2022; Tang et al., 2023), but the methods are summarized here.
Functional magnetic resonance imaging (fMRI) data were collected from 3 human subjects as they
listened to English language podcast stories over Sensimetrics S14 headphones. Subjects were not
asked to make any responses, but simply to listen attentively to the stories. For encoding model train-
ing, each subject listened to at approximately 20 hours of unique stories across 20 scanning sessions,
yielding a total of ~33,000 datapoints for each voxel across the whole brain. For model testing, the
subjects listened to two test stories 5 times each, and one test story 10 times, at a rate of 1 test story
per session. These test responses were averaged across repetitions. Functional signal-to-noise ratios
in each voxel were computed using the mean-explainable variance method from (Nishimoto et al.,
2017) on the repeated test data. Only voxels within 8 mm of the mid-cortical surface were analyzed,
yielding roughly 90,000 voxels per subject.

MRI data were collected on a 3T Siemens Skyra scanner at University of Texas at Austin using a 64-
channel Siemens volume coil. Functional scans were collected using a gradient echo EPI sequence
with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip angle = 71°, multi-band factor
(simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 2.6mm (slice thickness = 2.6mm),
matrix size = 84x84, and field of view = 220 mm. Anatomical data were collected using a T1-
weighted multi-echo MP-RAGE sequence with voxel size = Imm x Imm x Imm following the
Freesurfer morphometry protocol (Fischl, 2012).

All subjects were healthy and had normal hearing. The experimental protocol was approved by
the Institutional Review Board at the University of Texas at Austin. Written informed consent was
obtained from all subjects.

All functional data were motion corrected using the FMRIB Linear Image Registration Tool (FLIRT)
from FSL 5.0. FLIRT was used to align all data to a template that was made from the average across
the first functional run in the first story session for each subject. These automatic alignments were
manually checked for accuracy.

Low frequency voxel response drift was identified using a 2nd order Savitzky-Golay filter with a
120 second window and then subtracted from the signal. To avoid onset artifacts and poor detrend-
ing performance near each end of the scan, responses were trimmed by removing 20 seconds (10
volumes) at the beginning and end of each scan, which removed the 10-second silent period and the
first and last 10 seconds of each story. The mean response for each voxel was subtracted and the
remaining response was scaled to have unit variance.

We used the fMRI data to generate a voxelwise brain encoding model for natural language using
different encoding models. In order to temporally align word times with TR times, Lanczos interpo-
lation was applied with a window size of 3. The hemodyanmic response function was approximated
with a finite impulse response model using 4 delays at -8,-6,-4 and -2 seconds (Huth et al., 2016).
For each subject z, voxel v, we fit a separate encoding model g(, ) to predict the BOLD response

B from our embedded stimulus, i.e. B(m) = G(z,v)(Hi(S)). To evaluate the voxelwise encoding
models, we used the learned g, to generate and evaluate predictions on a held-out test set.
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Table A4: fMRI Prediction Performance when using fuzzy matching. Error bars show 95% CI.

Mean Correlation

Feature Model Tokenizer Matching Model

All Voxels Top 10% Voxels
Eng1000 - - 0.072 £0.0004  0.220 £ 0.0012
Infini-Gram + Eng1000 GPT-2 - 0.069 £ 0.0003  0.200 £ 0.0012
Induction Matching + Eng1000 GPT-2 - 0.087 £ 0.0005  0.265 + 0.0011
Fuzzy Induction Matching + Eng1000 GPT-2 GPT-2 0.076 £ 0.0004 0.222 4+ 0.0011
Fuzzy Induction Matching + Eng1000 LLaMA-2 LLaMA2-70B 0.076 £ 0.0004  0.225 4+ 0.0012

Fuzzy Induction Matching + Eng1000 GPT-2 Fuzzy Matching Model 0.076 +0.0004 0.216 + 0.0011
Fuzzy Induction Matching + Engl000 LLaMA-2 Fuzzy Matching Model 0.077 £ 0.0004  0.223 £ 0.0012

fMRI fuzzy induction head settings Similar to the Exact Induction Matching technique described
in Sec. 5.1, we construct an induction head for fuzzy matching. In the fuzzy setting, we leverage
the predicted next-word distributions obtained through fuzzy n-gram matching in the input context

(P& in Equation (3)), which we refer to as Fuzzy Induction Matching. Specifically, we calculate
the cosine similarity between the next-word distributions of the current word and all prior candidate

words.

To account for the temporal resolution of fMRI, we apply Lanczos smoothing to the word-level
similarity values, aligning these values with the fMRI time scale. This allows us to identify the time
point (TR) ¢* that maximally corresponds to the current time point ¢ based on the highest similarity.

We evaluate several configurations for deriving the next-word distributions, including GPT-2,
LLaMa-2, the Fuzzy Matching model with the GPT-2 tokenizer, and the Fuzzy Matching Model
with the LLaMA-2 tokenizer. See more details on Fuzzy Matching models in Sec. 3.2.

Extended prediction performance results The prediction performance of Fuzzy Induction
Matching Models is compared to the performance of the Exact Induction Matching Models and
the Eng1000 baseline in Table A4. The Fuzzy Induction Model, in its highest-performing configu-
ration (using the Fuzzy Matching Model with the LLaMa2-70B tokenizer), achieves only a 6.94%
improvement in prediction performance compared to the Eng1000 baseline. The lower relative per-
formance of Fuzzy Induction Matching compared to Exact Induction Matching may be due to the
inherent noise and lower spatial and temporal resolution of fMRI data, which makes it challenging
to detect subtle differences in neural activations associated with similar but non-identical stimuli.
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Title

Prompt

GPT-4 Prompt for Generating Category De-
scriptions

I have provided two test stories below. Specific phrases from
each story have been picked out based on the performance of
different encoding models. Can you describe the characteris-
tics of the words and phrases that each category contains? Be
specific about the type of words, their context in the story, and
any other relevant commonalities. Write succinct descriptions
for each category that would allow one to categorize phrases in
other such stories accurately.

Category A: [’sh first she digs into her cutoffs in the’, *both need
this right now i’, ... ]

Category B: ['to everything or you make yourself scarce’, ‘'my
cigarettes and uh’, ...]

Full Story: [[’i reached over and secretly’], ['undid my seat-
belt’], ...]

GPT-4 Prompt for Classifying Stages Based on
Descriptions

I have attached category descriptions below. Based on the de-
scriptions, in order, go through each short list of words (short
phrase) in the story at the end and classify the segments into one
of the categories. Rather than listing all the phrases in a cate-
gory at a time, list each phrase in order and label it as belonging
to category A or B.

Category A: Emotionally, or Narratively Critical ...

Category B: Brief, Stand-Alone Phrases ...

Full Story: [[’i reached over and secretly’], ['undid my seat-
belt’], ...]

Table A5: GPT-4 Prompts for Generating and Classifying Categories of Text. Ellipses (...) indicate

omitted portions of the full prompts.

21



Under review as a conference paper at ICLR 2025

'Where's The Smoke Story' Segmented by Highest Performing Model

i reached  over and  secretly undid my  seatbelt  and when his foot hit the brake at the red light i flung
open the door and i ran i had no shoes on i was  crying i had no wallet  but i was
ok  because i had my cigarettes  and i didn't  want any part of  freedom if i didn't  have my  cigarettes when
you live with  someone  who has a temper a very bad  temper a very very bad  temper  you learn to play
around that you learn this time il play possum and next time il just be real nice or il say yes
to everything or you make  yourself scarce or you run and this was one of the times  when you just run
and as i was  running i thought  this was a great  place to jump out  because there  were big lawns  and
there  were cul de sacs and  sometimes  he would  come after me and drive and yell stuff at me to get
back in get back in and i was like no i'm out of here this is great and i went and
hid behind a cabana and he left and i had my cigarettes and uh i started to walk in this  beautiful
neighborhood it was ten thirty at night and it was silent and lovely and there was no sound  except for  sprinklers
ch ch ch ch {ig} ch ch ch ch {ig} and i was  enjoying myself and enjoying the absence  of anger
and  enjoying these  few  hours i knew id have of  freedom  and just to perfect it i thought il have a
smoke  and then it occurred  to me with  horrifying  speed i don't  have a light just then as if in answer
i see a figure up ahead  who is that it's not him ok they  don't  have a dog who is that
what uh what are they  doing out on this  suburban street  and the  person comes closer  and i could see it's
a woman and then i can see she has her hands in her face oh she's crying and then she sees
me and she composes herself  and she gets  closer  and i see she has no shoes on she has no shoes
on and she’s  crying  and she's out on the street  street i recognize her  though  ive never  met her and just
as she  passes  me she says you got a  cigarette  f@nd i say you got a light and she says  damn
i hope s0 and then sh first she digs into her  cutoffs in the front  nothing  and then digs in the
back and then she has this vest on that has fity  million  little  pockets  on it and she's checking @hd [checKing
and its  looking  bad its  looking  very bad she digs back in the front  again  deep  deep and she pulls out
a pack of  matches that had been laundered  at least  once  [ukgh we open it up and there is one  match
inside ok oh my god this  takes on it's like nasa now we got to like oh how are we  gonna
do it ok and we we  hunker  down we  crouch  on the  ground  and  where's  the wind  coming from  we're stopping
i take out my  cigarettes let's get the cigarettes ready oh my brand  she says not surprising and we both  have
our cigarettes  at the feady  she  [@tfikes [©Once hothing She  strikes  again ves fire puff  inhale  mm  sweet  kiss of that
cigarette  and we sit there  and we're  loving  the  nicotine  and we both  need this right  now i can tell the
night's  been  tough immediately we start to  reminisce about  our thirty  second relationship i didn't  think  that was  gonna happen  me
neither  oh man that was  close oh i'm so lucky i saw you yeah  then she surprises  me by  saying  what
was the fight ~ about  and i say wha what are they all about  and she said i know  what you  mean
she said was it a bad one and and i said you know like  medium  she said oh and we start
to trade  Stofies @bout  ouR lives  we're  both  from up forth  we're  both kind of  newish to the neighborhood  this is
in florida we both went to college not great  [colleges but man we graduated and i'm actually finding ~ myself a little
jealous  of her  because  she has this really  cool job  washing  dogs she had  horses back  home  and she really  loves
animals  and she  wants to be a vet and i'm like man  you're halfway there i'm a  waitress  at an ice
cream  parlor so um that's not i don't  know  where i want to be but i know it's not that and
then it gets a little  deeper  {cg} and we shafe  some  Ofher  SEUf  about  what our lives are like  things that
i can't  ever tell  people at home this girl i can tell her the really  ugly stuff and she still - understands
how it can still be pretty  she understands like how nice he's  gonna be when i get home  and how  sweet
that'll be we are chain  smoking off each other oh that's  almost out come on and we we g0 through this
entire  pack until it's gone and then i say you know  what uh this is a little  funny but  you're gonna
have to show me the way to get home because although m  twenty three  years old i don't  have my  driver's
license et and i just  jumped  out right  when i needed  to and she says well why  don't you  come  back
to my  house  and [l give you a ride i say ok great  and we start  walking  and uh we get
to this um lots of uh lights and uh the roads are getting  wider and wider and there's more cars and
i see um lots of stores  you know laundromats @hd  Gollar  stores  (and emergecenters and then we cross  over us one
and uh she leads. me to some  place  and i think no but yes carl's efficiencyapartments this girl lives  there
and i's  horrible  and it's lit up so bright  just to illuminate the horribleness of it it's the kind of place
where  you drive  your car right up and the  door's  right  there  and  there's  fifty  million cigarette butts outside and there's
like  doors  one through seven  and you know behind  every  single  door  there's some horrible misery  going on there's someone  crying
or drunk or lonely or cruel and i think oh god she lives  here how  awful we g0 to the door
door  number  four and she very very  quietly  keys in as soon as the door  opens i hear the blare of
television come out and on the blue light of the television the  smoke of a  hundred cigarettes  in that little  crack
of light and i hear the man and he says  where  were you and she says  never  mind i'm back and
he says you  alright  and she says  yeah i'm  alright  and then she turns to me and says you want a
beer and he says who the fuck is that and she pulls me over and he sees me and he says
oh hey i'm not a threat  just then he takes a drag of his  cigarette  a very hard hard  drag you
know the kind that makes the end of it really heat up hot hot hot and long and it's. a little
scary  and i follow, e Gigarette down because  i'm afraid of that  head falling off and i'm  surprised when i see
in the crook of his arm a little boy sleeping @ toddler  and i think and just then the girl  reaches
underneath  the bed and takes out a carton  and she taps out the last s pack of  cigarettes in there and
on the way up she  kisses  the little boy and then she  kisses  the man and the man says  again you
alright  and she says  yeah i'm just  gonna g0 out and  smoke  with her and s0 we go  outside  and sit
amongst  the  cigarette butts and  smoke  and i say wow  that's  your little boy and she says  yeah isn't he  beautiful
and i say yeah he is he is  beautiful he's my light he keeps me going she says we finish our
cigarettes she finishes  her beer i don't  have a beer  cause i can't g0 home  with beer on my  breath  and
she goes inside to get the keys she takes too long in there  getting  the keys and i think  something must
be wrong  and she  comes  out and she says look i'm really  sorry but um like we don't  have any gas
in the car its  already  on & and he needs to get to work in the  morning  and um i you
know i i'm gonna be walk to work as it is so what i did was though here look i drew
out this map for you and  youre really you're like a mile and a half  from  home  and um it you
walk  three  streets  over  you'l be back on that  pretty  street  and you just take that and you'll be fine and
she also has  wrapped  up in toilet  paper  seven cigarettes for me a third of her pack i note and a
new pack of  matches and she tells me good bye and that was  great to meet you and how lucky and
that was fun and you know  let's be  friends  and i say yeah ok and i walk  away but i kind
of know  we're not  gonna be  friends i might not ever see her  again  and i kind of know i don't
think  she's  ever  going to be a vet and i cross and i walk  away  and  maybe  this  wouldve seemed like
a visit  from my  possible future  and scary but it kind of does the  opposite  on the walk  home i'm like
man that was  really  grim over  there and i'm going  home  now to my nice boyfriend and he is gonna be
s0 extra  happy to see me and we have a one  bedroomapartment and we have two trees and  there's a
yard and we have this jar in the  kitchen where there's like loose money  that we can use for  anything like
we would never ever run out of gas and um i don't have a baby you know so i can leave
whenever i want i smoked  all Seven cigarettes  on the way  home  and  people  who have  never smoked cigarettes just think
ick disgusting and poison but unless  you've had them and held them dear you don't know how great they can be
and what  friends and  comfort and  kinship  they can bring it took me a long time to quit that  boyfriend  and
then to quit  smoking  and uh  sometimes i still miss the  smoking
Legend
Infini-Gram matching Induction matching No significant difference

Figure A3: Test story 1 (Where’s There’s Smoke), highlighted in regions where the Infini-Gram
matching and Induction matching models exceed baseline performance, measured by the average
absolute error across voxels, by more than one standard deviation.
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'Have You Met Him Yet' Story Segmented by Highest Performing Model
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Figure A4: The first section of test story 2 (Have You Met Him Yet), highlighted in regions where
the Infini-Gram and Induction matching models exceed baseline performance.
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the Infini-Gram and Induction matching models exceed baseline performance.
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