Generalist Robot Manipulation
beyond Action Labeled Data

Alexander Spiridonov':2*, Jan-Nico Zaech?, Nikolay Nikolov?,
Luc Van Gool?, Danda Pani Paudel?
LINSAIT, Sofia University “St. Kliment Ohridski”, Bulgaria
2ETH Zurich, Switzerland
*Corresponding author: alexander-marc.spiridonov@insait.ai

https://motovla.github.io/

1. Dynamic Point Cloud Training 2. Action Alignment 3. Out Of Action Domain

) ) Generalization
Non Action-Labeled Data Action Labeled Data

g
4

No«:, " "
8 137k Episodes

»

push the button

fold

pour water turn lever broccoli

push the button in pot get chocolate  ¢loth

MotoVLA

MotoVLA

Dynamic Point Cloud Action Chunk Action Chunk

Figure 1: Our method enables robot actions whose labels are not available during training. Such un-
labeled demonstrations may come from humans (e.g. “push the button”) or other robots performing
them. This out-of-action domain generalization is achieved using the proposed large-scale dynamic
point cloud-based training, followed by the action alignment on a smaller dataset with action labels.

Abstract: Recent advances in generalist robot manipulation leverage pre-trained
Vision-Language Models (VLMs) and large-scale robot demonstrations to tackle
diverse tasks in a zero-shot manner. A key challenge remains: scaling high-
quality, action-labeled robot demonstration data, which existing methods rely on
for robustness and generalization. To address this, we propose a method that ben-
efits from videos without action labels—featuring humans and/or robots in ac-
tion—enhancing open-vocabulary performance and enabling data-efficient learn-
ing of new tasks. Our method extracts dense, dynamic 3D point clouds at the
hand or gripper location and uses a proposed 3D dynamics predictor for self-
supervision. This predictor is then tuned to an action predictor using a smaller
labeled dataset for action alignment. We show that our method not only learns
from unlabeled human and robot demonstrations—improving downstream gener-
alist robot policies—but also enables robots to learn new tasks without action la-
bels (i.e., out-of-action generalization) in both real-world and simulated settings.
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1 Introduction

Robust zero-shot manipulation across diverse tasks and environments is one of the biggest bottle-
necks towards truly autonomous robots. Inspired by the open-world reasoning capabilities of Large-
Language (LLM) and Vision-Language Models (VLM), Vision-Language-Action (VLA) models
have emerged for generalist robot manipulation. Approaching this challenge, VL As extend the se-
mantic reasoning abilities of VLMs with embodied understanding and adapt them for robotic control
by training on large datasets of teleoperated robot demonstrations [1, 2, 3, 4, 5, 6, 7]. This has led
to impressive progress in learning robust manipulation policies. However, most success is centered
around in-domain settings, and performance quickly degrades as the tasks move outside the training
distribution. While collecting yet larger robot datasets seems straightforward, it remains unclear
what resources would be required to achieve generalist manipulation.

Multimodal training with videos of human demonstrations is a promising alternative to prohibitively
expensive robot demonstrations. Such videos contain valuable spatiotemporal information highly
relevant to learning robotic control, are readily available at internet scale, and provide diverse tasks
and environments. However, learning from human demonstration datasets comes with a range of
challenges; Videos provide no direct action labels supervision, exhibit human-to-robot domain gaps,
and include redundant or distracting features irrelevant to robotic control.

Being a fundamental challenge, learning motion priors from humans and unlabeled data has been
widely explored. Yet existing work remains confined to specialist, small-scale policies. Some focus
on visual representations [8, 9, 10, 11], not considering unseen motions. Others predict visual plans
that require a bespoke inverse-dynamics model for execution [12, 13, 14, 15, 16, 17]. Another line
retargets human hands to robot grippers [18, 19, 20, 21, 22], but suffers from a large domain gap.

In this work, we bridge this gap and present MotoVLA, a generalist robot manipulation policy that
enables new tasks from human and robot videos without action labels. To achieve this, we propose
a VLA model and two-stage training approach using a combination of large-scale labeled and un-
labeled ! human and robot videos. In the first training stage, a dynamic point cloud predictor is
trained on the unlabeled data, which establishes a common embodiment-agnostic action representa-
tion. Since the dynamic point cloud strongly correlates with the end-effector actions up to hand-eye
calibration, the second stage training of an action expert on action-labeled data is simplified. This
natural correspondence between dynamic point clouds and 3D robot actions makes our approach
particularly effective for learning from unlabeled data. An overview of our method is shown in
Figure 1. In summary, our contributions are:

e MotoVLA, the first end-to-end VLA model that allows the use of unlabeled data for learn-
ing motion priors required for the generalist robot manipulation.

* A two-stage training approach enabling the use of dynamic point clouds as a common
embodiment-agnostic representation, which is both scalable and intuitive.

¢ Extensive real and simulated evaluations of our model for in-domain, out-of-domain, and
transfer learning tasks, demonstrating the effective use of unlabeled data by our model.

2 Related Work

Generalist Robot Manipulation relies on zero-shot capabilities, which have been demonstrated in
vision and language through internet-scale training. To enable this progress in robotics, two dom-
inant paradigms have formed: The first group follows a modular approach and utilizes pre-trained
models to generate high-level plans. In vision space, language-conditioned generative models are
used to create visual manipulation plans, executed by inverse dynamics policies [13, 12, 23, 24].
Similarly, the semantic reasoning capabilities of VLMs [25, 26, 27, 28, 29] are utilized for tasks
decomposition and high-level planning [30, 31, 32, 33] in language space. While this utilizes pre-
trained generative models, performance is limited by the need for accurate inverse models with
low-level zero-shot capabilities.

"Unlabeled refers to non-action-labeled, as action labels are the main challenge in acquiring manipulation data.



The second group is VLAs, end-to-end models [1, 2, 3, 4, 5, 6, 7] that implicitly perform planning,
state estimation, and subtask execution by extending VLM:s to robotic control. These models process
vision and language inputs and directly predict robot commands. As the first open-source model,
OpenVLA [1] builds on top of the Prismatic VLM [34]. my [2] introduces a flow-matching-based
action expert into VLAs and builds on top of Paligemma [26]. These VLAs demonstrate impres-
sive zero-shot language-conditioned capabilities for tasks and environments close to their training
distribution, while out-of-domain zero-shot performance quickly degrades. Recently, some works
have aimed to improve VLA generalization by including non-action-labeled video data during train-
ing [35, 4]. However, they are only capable of predicting goal states, thereby missing the motion
information present in the full video trajectories. To the best of our knowledge, our approach is the
first to learn fine-grained motion priors from large-scale unlabeled demonstrations directly with an
end-to-end generalist VLA architecture.

Transfer Learning of Robotic Manipulation from video offers a scalable alternative to tele-
operated robot data. Transfer is typically achieved by utilizing intermediate representations, ei-
ther implicitly or explicitly: Using implicit visual representations [36], downstream policy learn-
ing [8, 9, 10, 11] has demonstrated visual generalization; however it has yet to show generalization
to new actions. Direct transfer of motion has been achieved by explicit mapping of hand move-
ments from human demonstrations to robot actions through retargeting [18, 19, 20, 21, 22] with
key-points and estimated hand poses. Other explicit representations predict video or optical flow for
a given task [12, 13, 14, 15, 16, 17], but require subsequent imitation learning using action-paired
demonstrations and fall behind non-hierarchical models.

Closest to our work, recent non-hierarchical approaches [4, 37, 38] extract latent actions, 3D scene
flow, or sub-goal images from unlabeled demonstrations and use them as part of the training mix-
ture [4, 37, 38]. However, these policies have not been successfully scaled to generalist VLA poli-
cies, and all of these works investigate small sets of in-domain tasks.

In contrast, our work uses dense hand and gripper point cloud sequences as a representation, which
are interpretable, abstract the embodiment, and directly encode the spatial and temporal relationships
of the underlying motions. This enables the transfer of human demonstration in a generalist zero-
shot VLA setting, for both in-domain and out-of-domain tasks.

3 Method

In the following, Sec. 3.1 and Sec. 3.2 introduce the different data sources and the dynamic point
cloud representation. Sec. 3.3 details the VLA architecture, and Sec. 3.4 describes the two-stage
training approach to integrate labeled and unlabeled data.

3.1 Training Objectives and Data.

Learning from Unlabeled Videos. We denote the action-free stage one training dataset as 7, =
{(TC(,i), 1))} Yo, where 1() is the language description of the i*" episode and 7 = {I,(f)}tT:1 is
the corresponding sequence of camera RGB images. To encode the spatio-temporal information, we
propose dynamic point clouds, which, for episode ¢, is a temporal sequence of point clouds denoted
as P() = {pii)}thl. Each point cloud pti) € R, x3 contains n consistent points representing the
hand or robot gripper in the frame of the camera. This data is used for stage one self-supervised
video pre-training. The objective is the prediction of the future dynamic point cloud of a given
trajectory, conditioned on the past point cloud. Thus, our VLA learns the mapping

fgoints (Igl)’ l(z)’ pgi)ht) N p1(512+c (])
For better readability we denote Py = py.¢4-c.

Learning from Robot Demonstrations. Although the dynamic point clouds capture the mo-
tion dynamics of the hand and robot gripper, a direct or model-based conversion to robot com-
mands is not possible in a generalizable manner. Instead, we assume that there is a potentially
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Figure 2: We utilize the 3D Dynamics Predictor to learn an embodiment agnostic representation
from unlabeled videos (left), followed by the Action Predictor for generalist manipulation (right).
Na
7 = {Igl), q,(f)}f:l is a sequence of RGB images and robot proprioceptive observations. We
then use this dataset to further train the VLA to directly predict robot actions in the corresponding
coordinate frame, corresponding to the mapping

considerably smaller action-labeled dataset, which we denote as 7, = {(Téi), 1)} where

£, 0, = A, 2)
with the predicted future proprioception qg .. being executable on the robot. This adaptation is pos-
sible with little training data, since it primarily aligns the dynamic point clouds to robot commands
by performing implicit hand-eye calibration. For better readability we denote A; = Q¢.¢4.

3.2 Dynamic Point Clouds from Unlabeled Videos

Dynamic hand and gripper point clouds provide a physically grounded supervision signal from un-
labeled videos of humans or robots. To extract the dynamic point clouds from video data, we first
sample a frame index ¢ ~ A (T/2,0.4 - T') from the video. The hand or gripper is detected using
Grounding DINO [39] by obtaining a bounding box, which is then passed to Segment Anything
V2 [40] to generate a segmentation mask. We uniformly sample pixel positions from this mask and
track them forward and backward in time using BootsTAPIR [41]. We lift the resulting 2D tracks
into 3D using the affine invariant monocular depth estimator MoGE [42], leveraging its predicted
depth and camera intrinsics to produce a sequence of hand and gripper point clouds.

3.3 VLA Architecture

We use a Mixture of Transformers architecture [43] during both the dynamic point cloud training
and action alignment stages. The backbone of our VLA is a pre-trained VLM, enabling vision-
language reasoning. A second smaller Transformer [44] is used as Predictor and attends to the
VLM backbone. This Predictor is trained as 3D Dynamics Predictor during the first training stage
and subsequently tuned as Action Predictor during action alignment in the second training stage.
The Predictor is conditioned on the VLM hidden features via self-attention over the concatenated
keys and values and performs prediction using flow matching [45]. For a complete forward pass,
the VLM processes the image and text inputs and returns its key-value cache to the Predictor, where
it is reused for each iteration of denoising. This decoupling allows the individual sets of weights to
specialize in semantic and embodied reasoning in the VLM and Predictor, respectively, and speeds
up inference.

VLM Backbone. Our VLA uses Paligemma [26] as the pretrained vison-language backbone.
Paligemma is a 3 billion parameter model using the SigL.IP [28] vision encoder and the Gemma [46]
language model. The model is pre-trained on a diverse corpus of multimodal data for tasks such
as vision question answering, captioning, and multi-object instance segmentation [26]. We chose
Paligemma since it offers a trade-off between inference speed and semantic reasoning performance



suitable for real-time robotic control tasks. During inference and training, the VLM Backbone pro-
cesses the current image and text: I, [; and returns the key-value cache hy to the Predictor.

3D Dynamics Predictor. During the first training stage, the Predictor serves as a 3D Dynamics
Predictor. Input to the model is the current hand or robot gripper point cloud p;_;, the noisy
sample, and the key-value cache hy as conditioning. By using flow matching, it predicts the future
dynamic point cloud as a sequence of future point maps P;.

The 3D Dynamics Predictor utilizes conditional flow matching [45] to sample from the continous
distribution of future point maps py.¢t1c ~ P (DPt:t+c|0¢), where o, = [h¢, pr—1]. Accordingly, the
dynamic point cloud prediction loss is

‘cpoints = Ep(Pt|ot),e,THV10)Oints (PtT»Ot) - (Pt - (1 - Umin) 6) ||27 (3)

where P = (1 — (1 — oynin) 7) €+ 7P is a noisy sample of P; and € ~ A/ (0,I). We use the time
sampling, as introduced by 7o [2], namely 7 = (1 — 0pin) (1 — 2), with z ~ Beta(1.5, 1).

The 3D Dynamics Predictor model v/ (P7, 0,) is implemented as a 300 million parameter

model, following the Gemma language model architecture. It projects the current point map p:_1
and noisy future dynamic point cloud P7 to the language model feature dimension via two separate
linear projectors. The model outputs are decoded to dynamic point clouds via a linear projector.
More details about the model architecture are provided in the Appendix C.

Action Predictor. The Action Predictor mirrors the 3D Dynamics Predictor. The model input is
the current proprioception q;_1, the noisy sample, and the key-value cache hy as conditioning. It
predicts the next action chunk A, using the same conditional flow-matching formulation. For the
Action Predictor, the observations is o, = [ht, q;—1] and the loss is defined as

£action = Ep(At|ot),e,T||VgCt (Az—aot) - (At - (1 - Umin) 6) ||27 (4)

where AT = (1 — (1 — oynin) 7) € + TA; is a noisy sample of A; and € ~ A (0,I). The time 7
distribution remains unchanged. The model is identical and initialized with the weights from the 3D

Dynamics Predictor vi*""®, while linear encoders and decoders are initialized randomly.

3.4 Training

We train MotoVLA in two phases. During the first phase, the 3D Dynamics Predictor is trained
to generate the future dynamic point cloud given the current hand or gripper point cloud. This
objective enables the model to jointly capture the underlying dynamics of both human and robot
manipulation sequences. The subsequent second stage aligns the VLA to predict executable robot
actions by training the initialized Action Predictor on a subset of action-labeled demonstrations. A
full overview of our two-stage training approach can be found in Figure 2.

Dynamic Point Cloud Training Stage. During the dynamic point cloud training, we use both
human and robot demonstrations. For human demonstrations, we use the RH20T [47] dataset, and
for robot demonstrations BridgeData V2 [48] and Rt-1 [49]. Although the robot demonstration
datasets contain action labels, they are not utilized and discarded in the first stage. By predicting
dynamic point clouds from both human and robot samples, the model is encouraged to learn a
shared representation across the two domains. The VLM is initialized from a pre-trained checkpoint
while the 3D Dynamics Predictor is randomly initialized. We train the VLM and 3D Dynamics
Predictor on the L,ints oObjective, but freeze the vision encoder to preserve the open-vocabulary
visual capabilities of the VLM.

Action Alignment Stage. In the second training stage, the goal is to align the representations
learned from dynamic point cloud training with robot action prediction. Since we evaluate on the
WidowX robot, actions from the BridgeData V2 [48] are utilized. The VLM and Action Predictor
are initialized with weights from the first training stage, while the linear layers of the action encoder
and decoder are initialized randomly. In the second training stage, the vision encoders are trainable,
as this can improve action accuracy [1], and general vision capabilities are less influenced due to the
shorter training. The entire model is trained using the action prediction objective L, ction-



4 Experimental Results

The following section presents experiments to validate and investigate the effectiveness of the pro-
posed method. Specifically, we aim to answer the following questions:

1. Does our method lead to better overall performance for in-domain tasks and environments?

2. Does dynamic point cloud training transfer capabilities from unlabeled cross-embodiment
demonstrations to new robot actions?

3. How do different design choices surrounding the model architecture, training recipe, and
action-less data labeling influence model performance?

4.1 Implementation Details

We train our model on a TPUv5e-256 pod, for 15 and 4 hours in the first and second stages, respec-
tively. We align the dynamic point cloud sequence length with the robot’s action chunk at length
four, sample 200 points on the hand and gripper during dynamic point cloud training, and predict
changes in point cloud positions. In simulation and on the real robot, we use end-effector control,
consisting of delta end-effector cartesian positions, delta euler rotations, and a gripper closedness
command. During inference, we use Euler integration with At = 0.1 to compute the predicted
targets. When running the model on the WidowX robot, we execute the whole action chunk.

4.2 Baselines

We refer to our model, pre-trained on unlabeled data from BridgeData V2 [48], Rt-1 [49], and
RH20T [47], as MotoVLA (R + H) and compare against the following state-of-the-art methods.

OpenVLA (OXE) [1] is a state-of-the-art open-source VLA and serves as our comparison to gen-
eralist VLAs trained on the full large-scale Open X-Embodiment dataset [3]. We only compare to
OpenVLA on the real robot, since we find the model does not work well in the SIMPLER Bridge
setting.

LAPA (OXE) [38] also utilizes a two-stage training approach, but in a specialist policy setting.
LAPA pretrains on latent actions from Open X-Embodiment [3], and finetunes for specific tasks
with robot actions. Since the model is only available for finetuning on specific tasks, we compare it
to LAPA finetuned on 100 episodes, identical to the test setting, from the SIMPLER simulator.

mo (B) [2] is a state-of-the-art generalist VLA with a similar architecture to our model. It serves as
the baseline for validating the efficacy of the dynamic point cloud training for skill transfer. In order
to facilitate a fair comparison, we train the 9 model from scratch on BridgeData V2 [48].

ATM (B) [16] is a hierarchical approach that first learns a 2D pixel track prediction model from
video and then computes actions with a track conditioned policy. Since ATM is intended for small-
scale imitation learning, we adapt the model for the zero-shot setting by replacing the track trans-
former with Paligemma and using flow-matching for track and action generation. We denote this
modified ATM model as ATM (B). More details can be found in the Appendix E.1.1.

MotoVLA (R) is our model trained without the human demonstration data in RH20T [47]. It serves
to quantify the effect of adding human demonstrations to the point cloud sequence pre-training stage.

4.3 In-domain experiments

Experimental Setup. This experiment evaluates the effect of dynamic point cloud pre-training on
tasks and environments that are included in the action-labeled dataset. Thus, these tasks are in-
domain for all models. In particular, we investigate whether the second training stage can retain and
leverage the self-supervised representations learned during the first stage, or whether these repre-
sentations are lost due to the direct action supervision. In order to facilitate reproducibility and fair
comparison, we evaluate inside the SIMPLER [50] BridgeData V2 [48] simulation environment.
The environment contains four tasks from the BridgeData V2 dataset [48] that are recreated via vi-



SIMPLER Tasks

Policy

Put carrot Put eggplant  Put spoon Put green on

on plate in basket on towel yellow Block Average
ATM (B) 16.6 £8.3 43.8£6.2 18.8 £ 2.0 4.1+4.1 20.8 +£2.0
LAPA (OXE) 37513 50.0 £ 2.7 70.8 4.1 583+13 541+23
o (B) 39.6 £6.2 83.3£0.0 72.9+6.2 31.2+£2.0 56.8 £ 0.5
MotoVLA (R) 75.0£4.1 1000+00 75.0+4.1 125+4.1 65.6 + 3.1

MotoVLA (R+H) 54.1+£1.3 97.9+1.3 729+ 3.6 479+24 68.2+0.9

Table 1: Mean success rate (£ standard error) of in-domain tasks in SIMPLER.

sual matching and system identification of the WidowX 250S robot. We evaluate every task for 24
random object configurations.

Results. Results for this experimental setting are presented in Table 1, our model MotoVLA (R + H)
achieves the highest average score of 68.2% in the SIMPLER simulator. It outperforms LAPA [38]
by 14.1%, even though LAPA is pre-trained on the whole Open X-Embodiment dataset and specif-
ically finetuned with 100 episodes from the exact target task in simulation. Our method also out-
performs 7o (B) as a baseline model by 11.4%, showcasing that learning cross-domain and cross-
embodiment motion priors via dynamic point cloud prediction translates to improved downstream
performance even for tasks with action supervision in the second training stage. It also becomes
evident from ATM (B), that using a hierarchical manipulation policy leads to significantly worse
results in the generalist setting.

Finally, we observe that MotoVLA (R + H) is marginally better than MotoVLA (R), mainly due
to a large increase in cube stacking performance. Unlike the other tasks, cube stacking is well
represented in the human demonstration data. However, to more explicitly study the effect of human
data, we next examine the out-of-domain experiments.

4.4 Out-of-domain experiments

Experiment Setup. The out-of-domain setting aims to validate our model on tasks and in envi-
ronments that the model has not seen during the action training stage. We differentiate between
completely unseen tasks, which are neither contained in the dynamic point cloud pre-training nor
the action training stage, and tasks that are out-of-domain for the action dataset, but in-domain for
the unlabeled stage 1 dynamic point cloud training. Therefore, the first scenario tests for an overall
improvement in generalization, while the second explicitly tests for an unsupervised skill transfer
from unlabeled data to robot actions. In both cases, the tasks require visual generalization (to unseen
backgrounds) and physical generalization (to unseen target object sizes and shapes), since it’s not
possible to exactly recreate the same environment and target objects as in the training data.

We evaluate each method for eight tasks with ten environment configurations and three trials each.
More information about each task can be found in the Appendix E.2.1. We again use the WidowX
250S robot as an embodiment, but perform experiments on the real robot.

Results. We summarize the results in Figure 3. Our MotoVLA (R + H) model achieves the best
average success rate over all out-of-domain tasks. Notably, the biggest gains in performance come
from the tasks Push Button, Cube on Scale, Cable in Basket, and Clamp in Cup, which are present
in the human demonstration dataset during dynamic point cloud training. This demonstrates that our
approach can directly transfer knowledge on unseen objects and tasks from unlabeled data across
embodiments.

In these tasks, we furthermore observe that the model pre-trained on corresponding human demon-
strations exhibits faster and more precise trajectories, compared to MotoVLA (R) and the my-B base-
lines, which have never encountered these tasks. In these settings, the 7-B baseline and MotoVLA
(R) models have a higher tendency to encounter stuck states or move in an erratic direction. Open-
VLA’s 9.8% inferior performance, even with more robot data, highlights the value of task-specific
human demonstrations, which are more scalable to collect than equivalent robot data.



Finally, for tasks that are completely out-of-domain, during stage 1 as well as stage 2 straining, the
MotoVLA (R) model achieves the best results, with the 7m-B baseline following closely, showing
that such fully out-of-domain tasks remain challenging. Overall, these results strongly support that
including tasks as unlabeled human or robot demonstrations in the first training stage, improves
downstream performance of VLAs on similar tasks, even if they are not included in the action-
labeled dataset of the second stage training. hh
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Figure 3: Complete overview of our results during the out-of-action domain evaluation on the real
WidowX robot. We differentiate between completely out-of-domain tasks and tasks that are part of
the Rt-1 actionless dataset or the RH20T human demonstration dataset. We report the mean success
rate for all tasks and additionally the standard error for the average performance.

4.5 Ablations Method Average
We evaluate the different design choices made MotoVLA Separation 46.9
during the development of our method by ablat- MotoVLA Co-Training 479
. . . MotoVLA Grid 54.7
ing the model on the same data mixture in the MotoVLA 32 Points 60.9
SIMPLER in-domain test setting. For the 2D MotoVLA (R + H) 2D 64.2
ablation, we additionally evaluate in the real- MotoVLA (R + H) 68.2

world out-of-domain experiment. A full com- 1 5. A paiion study depicting the success rate

parison of our ablation results in SIMPLER is of robotics foundation models in SIMPLER
depicted in Table 2, where we test the following:

Two Dimensional Tracks are evaluated with first-stage training to predict two-dimensional pixel
positions instead of the three-dimensional dynamic point clouds. Using 2D tracks reduces perfor-
mance by 4.0% in SIMPLER and 12.5% when evaluated on the real robot (see Figure 3). These
results show the benefit of using 3D point clouds, which have a smaller domain gap when compared
to robot end-effector actions.

Track Points Selection is evaluated by 1) using 32 instead of 200 points, and 2) sampling uniformly
instead of on the gripper, which both show a strong performance drop.

Predictor Co-Training with dynamic point cloud prediction during the second stage is evaluated
by training a predictor that jointly performs both tasks. While this approach indeed helps preserve
the first-stage track features, it comes at the cost of degraded action prediction performance.
Predictor Separation is an alternative where two separate models for dynamic point cloud and
action prediction are trained. While this approach is a natural modularization, it is ineffective in
gaining knowledge from the unlabeled data. More architectural details are available in the Ap-
pendix D.2.

5 Conclusion

In this work, we approached the challenge of learning a generalist manipulation policy from a mix
of labeled and unlabeled video and proposed MotoVLA together with a two-stage training proce-
dure. By establishing dynamic point clouds as an embodiment agnostic representation, our approach
successfully transfers knowledge from video to manipulation motion priors. Using simulation and
real-world experiments, we demonstrate a consistently improved model performance in in- and out-
of-domain settings and showcase the direct transfer from human demonstration to robot actions.



6 Limitations

In this work, we presented MotoVLA, a generalist manipulation policy trained on both labeled
and unlabeled human and robot demonstrations. We showed that training for point cloud sequence
prediction on this unlabeled data mixture allows the model to generalize to tasks unseen during the
action training phase.

However, the current approach also comes with its limitations. First, the human demonstrations
in RH20T are fairly close to the robotics domain, with a static third-person camera and back-
ground. Most open-world human demonstration datasets [51, 52] are egocentric with non-static
head-mounted cameras. In order to extract the point cloud sequence with respect to a static camera
frame, one needs to additionally estimate the camera extrinsics using methods like MonST3R [53].
Another problem occurs when hand movement during human demonstrations is very rapid, caus-
ing the TAP model to lose track of its query points. With ever-improving TAP models, this issue
will likely be reduced. Nevertheless, careful data curation will remain important for maximizing
downstream performance. Moreover, while current monocular depth estimators provide impressive
results, achieving consistency and geometric accuracy, especially for diverse backgrounds, is still
challenging. Future improvements in these areas would likely also yield better results with our
method. Overall, while we show significant performance gains over baseline methods for both in-
domain and out-of-domain settings, the further improvement also relies on the improvements in the
domains beyond the scope of this paper, such as egocentric video understanding and recording of
fast motions with ease. We hope that our work will enable the community to make further progress
towards achieving robust and generalizable robot manipulation.
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A Training Data

Training Data Mixture. We use the following datasets and mixture weights during Dynamic Point

Cloud Training:

Dataset

Weight

Rt-1 [49]

BridgeData V2 [48]
RH20T (Human) [47]

1.0
1.0
1.0

Table 3: The datasets used during Dynamic Point Cloud Training and their corresponding mixture

weight.

We filter out episodes with missing language annotation or an insufficient number of unique points
in the point cloud. During Action Alignment, we only train on actions from BridgeData V2 [48].

B Training Details

Dynamic Point Cloud Training uses the following hyperparameters:

Hyperparameteres 3D Dynamics Predictor
epochs 20
batch size 2048
optimizer Adam
learning rate Se-5
weight decay 0.0

Ir scheduler const
Ir warmup steps 16000
clip grad 1.0
number of points 200
point cloud sequence length 4

image augmentations

ColorJitter, RandomCrop

Table 4: The training hyperparameters used during Dynamic Point Cloud Training.

Action Alignment training uses the following differing hyperparameters:

Hyperparameteres Action Predictor
batch size 1024

Ir warmup steps 200

action chunk length 4.0

Table 5: The training hyperparameters used during Action Alignment.
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Figure 4: The architecture used during our Predictor Co-Training experiment. The Action Predictor
predicts the dynamic point cloud P; and robot actions in parallel.

C Architecture Details

Our 3D Dynamics Predictor and Action Predictor are based on the Gemma 2B language model archi-
tecture, with several modifications to reduce the overall parameter count. Specifically, we reduce the
feature dimensionality to 1024 and set the MLP dimensionality within the attention blocks to 4096.
To encode the flow-matching timestep, we use sinusoidal embeddings, which are concatenated with
the noise embeddings. This combined representation is then projected to the Transformer feature
dimension through two linear layers, separated by a Swish activation function. We adopt the follow-
ing attention pattern: Paligemma tokens use bidirectional attention among themselves but cannot
attend to the tokens from the 3D Dynamics Predictor or the Action Predictor. In contrast, the 3D
Dynamics Predictor and Action Predictor tokens have full attention over all other tokens, with one
exception—tokens corresponding to the current point cloud and proprioception are restricted from
attending to the noise tokens.

D Ablations

D.1 Predictor Co-Training

During Predictor Co-Training, we train the 3D Dynamics predictor in the same manner as introduced
in Section 3.3, but modify the action alignment training stage and inference procedure. During action
alignment, we predict both the dynamic point cloud and the robot action denoising vector field in
parallel. We do this, by conditioning on both the current point cloud and current proprioception, as
well as the respective noisy samples. The linear encoders and decoders of the proprioception and
action noise get initialized from scratch, while the ones for the dynamic point clouds are reused
from the dynamic point cloud training stage. The training loss is the combination of the previously
introduced losses: L1 = Lpoints + Lact- During inference, we estimate the gripper point cloud
in real-time by first computing a segmentation mask of the gripper using Grounding Dino [39]
and Segment Anything 2 [40], sampling 200 points on the mask, and lifting them to 3D using
MoGE [42]. We then perform flow-matching [45] inference by Euler integrating both the dynamic
point cloud and action denoising vectors with At = 0.1. An overview of the predictor co-training
action alignment architecture can be found in Figure 4.

D.2 Predictor Separation

During the Predictor Separation, we do not modify the dynamic point cloud training stage, but make
the following modifications in the action alignment stage. Instead of initializing the Action Predictor
from the 3D Dynamics Predictor, we introduce a randomly initialized Action Predictor while keep-
ing the 3D Dynamics Predictor unchanged. The resulting model is a Mixture of Transformers [43]
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with three separate components, the VLM, the 3D Dynamics Predictor, and the Action Predictor.
The Action Predictor attends to the 3D Dynamics Predictor and the Vision-Language Model (VLM)
key-value cache. Additionally, the 3D Dynamics Predictor is conditioned on the current point cloud
and noisy future point cloud sample, while the Action Predictor is conditioned on the proprioception
and noisy action sample. During flow-matching, the 3D Dynamics Predictor and Action Predictor
predict the denoising vector for their respective features in parallel. The total training loss is com-
puted as: Liot = Lpoints + Lact. During inference, the current point cloud is computed in real-time
by using the same approach as introduced in Subsection D.1 Figure 5 provides an overview of the
architecture.
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Figure 5: The architecture used during our Predictor Expert Separation ablation experiment. The 3D
Dynamics- and Action Predictor predict the dynamic point cloud P, and robot actions in parallel.

E Experimental Results

E.1 Baselines
E.1.1 ATM (B)

The original ATM [16] model utilizes a bidirectional track transformer to predict 2D pixel tracks
from a padded sequence of current 2D pixel positions during its initial training phase. In the second
phase, the Track Transformer is frozen, and a policy network is trained conditioned on the predicted
tracks. Tailored for small-scale imitation learning, the original ATM model comprises a 20-million-
parameter Track Transformer and vision encoder, trained from scratch during the first stage.

We introduce several key modifications to adapt this approach to the zero-shot setting and estab-
lish a fair baseline. First, we condition the track transformer on the key-value cache of a pre-
trained Paligemma model via a Mixture of Transformers architecture [43]. Additionally, we use
flow-matching to generate tracks and actions in the track transformer and track-conditioned policy
respectively. In the second training stage, we freeze the Paligemma VLM and track transformer and
run full flow-matching inference of the track transformer with Euler integration and At = 0.1. We
then condition the policy on the generated 2D-pixel tracks, text embeddings, and SigLip features.
The track transformer and track-conditioned policy are the same downscaled Gemma [46] architec-
ture used for the 3D Dynamics Predictor and Action Predictor. We encode the 2D-pixel tracks via a
linear layer and use the same data mixture throughout both training stages as for our MotoVLA (R
+ H) model. A full overview of the ATM (B) architecture can be found in Figure 6.
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Figure 6: The architecture of our ATM (B) Baseline. First, the Track Transformer predicts 2D pixel
tracks and then the track conditioned policy predicts robot actions.

E.2 Out-of-domain experiments
E.2.1 Tasks

We roll out all our tasks in the same environment, with a white work surface and background
containing white or colored images. None of the exact target objects were part of the training
mixture. Accordingly, all tasks need some level of visual (unseen backgrounds, distractor objects,
colors/appearances of objects) generalization. Figure 7 shows an overview of the tasks and their
environments.

1. Put USB Stick in Pot. This task aims to pick up a USB stick and place it in the pot. Addi-
tionally, there are some distractor objects from the BridgeData V2 [48] dataset, namely an
eggplant and a carrot. Since this task is not part of any pre-training dataset, we consider it
fully out-of-domain. It requires physical (unseen object sizes/shapes), motion (unseen ob-
ject positions/orientations), and semantic (unseen target objects, instructions, and concepts
from the Internet) generalization, as well as robustness towards overfitting to the Bridge-
Data V2 [48] objects.

2. Knock over Yellow Can. This task aims to move the gripper to the yellow can and knock
it over. The Rt-1 dataset [49] contains very similar tasks, with different types of cans.
Accordingly, the task tests physical, motion, and semantic transfer from actionless cross-
embodiment robot demonstrations.

3. Push Button. This task aims to position the gripper over a red button and press it. Very
similar tasks exist in the RH20T [47] dataset. Accordingly, the task tests physical, motion,
and semantic transfer from actionless cross-embodiment human demonstrations.

4. Put Garbage in Cup. The goal here is to grasp a crumpled piece of paper and place it in
the cup. Again, similar tasks exist in the RH20T [47] dataset. Accordingly, the task tests
physical, motion and semantic transfer from actionless cross-embodiment

5. Cable in Basket. In this task the robot needs to grasp a cable roll and place it in a basket.
RH20T [47] contains similar cable manipulation tasks, however, our cable differs in shape
and size from the dataset. Accordingly, the task tests physical generalization and both
motion and semantic transfer from the unlabeled human demonstrations.
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Figure 7: The different tasks with the start, end frame, and category.

6. Piece on Chessboard. Here, the robot needs to place a chess piece on the empty chessboard
next to it. Again we adapt this task from RH20T [47]. We always use the same chess piece
and give partial success (0.5), if the model grasps the piece, and full success (1.0), if the
model releases it on the chessboard without it falling over. The task tests physical, motion,
and semantic transfer from unlabeled human demonstrations.

7. Clamp in Cup. This task, again from RH20T [47], demands the robot to grasp a laun-
dry clamp and put it in a cup. It tests physical and motion transfer from the unlabeled
demonstrations.

8. Cube on Scale. Again adapted from RH20T [47], the goal of this task is to pick up a cube
and place it on the scale next to it. The task again tests physical, motion, and semantic
transfer from unlabeled human demonstrations.
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E.2.2 Rollouts:

In the following Figure 8, we present image sequences from full rollouts of our MotoVLA (R+H)
model and the 7o (B) baseline in all eight real-world out-of-action-domain tasks.

Put Garbage in Cup

MotoVLA
(R+H)

7o(B)

MotoVLA
(R+H)

MotoVLA
(R+H)

7o(B)

MotoVLA
(R+H)

7o(B)

20



Put the clamp in the Cup
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Figure 8: The image sequences show full rollouts of our MotoVLA (R+H) model and the 7o (B)
baseline for eight of the out-of-domain tasks. The 7y(B) baseline struggles with grasping precision
and displays more incoherent behavior.

E.3 In-domain Rollouts

In the following Figure 9, we show image sequences from full rollouts of the four BridgeData
V2 [48] tasks inside the SIMPLER [50] simulator.
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Figure 9: The image sequences show full rollouts of our MotoVLA (R+H) model and the o (B)
baseline for out-of-domain tasks. The 7o (B) baseline has worse grasping precision.
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