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Abstract

We present a simple yet effective prediction module for
a one-stage detector. The main process is conducted in a
coarse-to-fine manner. First, the module roughly adjusts
the default boxes to well capture the extent of target objects
in an image. Second, given the adjusted boxes, the module
aligns the receptive field of the convolution filters accord-
ingly, not requiring any embedding layers. Both steps build
a propose-and-attend mechanism, mimicking two-stage de-
tectors in a highly efficient manner. To verify its effective-
ness, we apply the proposed module to a basic one-stage
detector SSD. Our final model achieves an accuracy com-
parable to that of state-of-the-art detectors while using a
fraction of their model parameters and computational over-
heads. Moreover, we found that the proposed module has
two strong applications. 1) The module can be successfully
integrated into a lightweight backbone, further pushing the
efficiency of the one-stage detector. 2) The module also
allows train-from-scratch without relying on any sophisti-
cated base networks as previous methods do.

1. Introduction
Object detection has achieved significant advances with

the introduction of convolutional neural networks (CNN).
The recent detection frameworks can be divided into two
categories: (i) two-stage detectors [7, 24] and (ii) one-stage
detectors [19, 23, 16].

In two-stage detectors, the first stage proposes a sparse
set of candidate object regions. After a feature pool-
ing operation in the second stage, the proposed candi-
dates are further classified and regressed. Two-stage de-
tectors [7, 24, 3, 9] have achieved top performance on sev-
eral challenging benchmarks, such as PASCAL VOC [5] or
MS COCO [17]. On the other hand, one-stage detectors di-
rectly classify and regress from the initial predefined default
boxes. Recent one-stage detectors [19, 23] have achieved
promising results with faster speed and lower memory-
footprint. However, the accuracy of the one-stage detectors
usually lags behind that of two-stage detectors [12].

We argue that this performance gap can be mainly at-
tributed to an architectural limitation of the one-stage de-
tectors, i.e., the lack of the propose-and-attend mechanism
that is included in two-stage detectors. Due to the lack of
this mechanism, one-stage detectors struggle with two main
issues: 1) a heuristic box matching strategy, and 2) a mis-
match between the receptive field of the prediction module
and object-features.

During training, positive default boxes are selected only
when their intersection over union (IoU) with their ground-
truth box is above a certain threshold (e.g., 0.5). Thus,
carefully setting the initial sizes and locations of the de-
fault boxes is crucial for the detection performance. Oth-
erwise, an inferior initial default box configuration leads
to few or imbalanced training samples. In two-stage ap-
proaches [24, 3, 9], the issue is addressed by the region pro-
posal step [24] (i.e., propose mechanism). However, one-
stage detectors cannot handle this issue. Therefore, most
approaches [19, 23, 16] use a large number of initial default
boxes with varying scales and aspect ratios, which not only
requires more parameters and computation overheads but
also is heuristic. For this, we suggest a proposing process
for one-stage detectors; it adjusts the initial default boxes
to fit well with target objects in an adaptive manner. The
process effectively imitates the region proposal step [24] of
two-stage detectors without stage-discrimination, ensuring
high efficiency.

In addition to the adjustment of the default boxes, there is
another issue of mismatch between the receptive field of the
prediction module and the object-features proposed by the
adjusted default boxes. The two-stage approaches handle
the misalignment issue through a feature pooling operation
(e.g., RoI pooling [7]), by which the prediction module can
accurately attend to the object-features (i.e., attend mecha-
nism). However, one-stage detectors have no such operation
for the ’attend’ mechanism due to the fixed receptive field
of the prediction module regardless of the adjustment of the
default boxes. To address this issue, we suggest an attend-
ing process for one-stage detectors; it modulates the recep-
tive field of the prediction module according to the adjusted
default boxes to accurately capture object-features.
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By putting all together, we propose a novel prediction
module, called propose-and-attend (PA) prediction module,
for one-stage detectors. To demonstrate its effectiveness,
we apply the module to a basic SSD framework [19] with
a feature pyramid network backbone [15], leading to our fi-
nal detector called PASSD. The PASSD achieves a propose-
and-attend mechanism in the two-stage detector in an effi-
cient manner. We empirically validate that our approach is a
simple yet effective solution to significantly boost the detec-
tion performance of one-stage detectors with marginal pa-
rameters overhead. We also show that our prediction mod-
ule can be successfully applied to a light-weight backbone
and succeed in training from scratch.

2. Related Work
Object Detection. Sliding-window approaches, in which
a classifier is applied to a dense image grid, have domi-
nated the pre-deep-learning era. However, since the arrival
of deep learning, the conventional approaches have been re-
placed by convolutional neural network (CNN) based de-
tectors. In particular, they can be divided into two main
streams: two-stage and one-stage.
Two-Stage Detectors. Two-stage detectors [24, 3] are com-
posed of two parts. The first part generates a sparse set of
region proposals, and the second part further classifies and
regresses the proposals. These two-stage detectors have oc-
cupied top entries of challenging benchmarks [3, 15, 9].
One-Stage Detectors. OverFeat [26] is one of the earli-
est one-stage detectors based on deep learning. Afterward,
YOLO [22] and SSD [19] were proposed with promising
accuracy and real-time speed. RetinaNet [16] further im-
proves the accuracy by modifying the standard loss func-
tion, addressing the extreme class imbalance problem dur-
ing training. However, we argue that they all suffer from the
issues caused by the lack of the propose-and-attend mech-
anism, as mentioned in Sec.1. Recently, the RefineDet
framework [32] suggests exploiting the default box refine-
ment module to mimic the propose mechanism of the two-
stage detectors. However, the RefineDet framework does
not consider the way to provide diverse training samples
during training phase, and it further misses the attend mech-
anism in its design; however, both are crucial for achieving
high detection accuracy, as will be shown.
Receptive Field. A previous study on the receptive
field [20] shows that the size of the effective receptive field
is much smaller than the theoretical one (i.e., resembling
a 2D Gaussian shape). This implies that the mismatch be-
tween the receptive field of the prediction module and real
object-features can lead to severe performance degradation.
While two-stage detectors mitigate the problem via feature
pooling operation [7], one-stage detectors are prone to miss
exact object-features. In this work, we resolve the issue
with the efficient and effective attending process that en-

ables the accurate extraction of object-features in the pre-
diction module of one-stage detectors.

3. Method
PASSD is a one-stage detection framework composed of

an FPN [15] backbone network and the proposed propose-
and-attend (PA) prediction module. The overall pipeline
is shown in Figure. 1. The backbone network generates
multi-scale convolutional feature maps and is an off-the-
shelf CNN. The PA prediction module produces final detec-
tion results based on the output of the backbone network.
The final model features a simple yet effective design. We
describe the details of the model in the following.

4. Backbone Network
To improve the scale-invariance of the model, we adopt

the feature pyramid network (FPN) [15] as our backbone
network. We apply the FPN on top of three base networks,
VGG-16 [29], ResNet-101 [10], and MobileNet [11]. In or-
der to capture large objects, we add two extra convolution
blocks (i.e., conv8; stride=2, conv9; stride=2) to the end of
the truncated VGG-16 [29], one extra bottleneck residual
block (i.e., res6; stride=2, channel=512) to the end of the
truncated ResNet-101 [10], and one extra depthwise convo-
lution (i.e., stride=2, channel=512) to the end of the trun-
cated MobileNet [11], respectively. For the VGG-16 base
network and its extra layers, we follow same configuration
in SSD [19]. We also use the same L2 normalization tech-
nique to scale the feature norm of the VGG-16 following
SSD [19]. To build the FPN, we use four 1 feature maps
with the stride sizes of {8, 16, 32, 64} pixels from the base
networks and their extra layers. Each feature map is se-
lected right after the last layer that holds the corresponding
stride size. We follow Lin et al. [15] for the details of the
pyramid with a few minor modifications2. As in [15], we
use 256 channels for all pyramid levels.

5. Default Boxes and Matching
For each feature map from the backbone, we assign one

default scale for the default boxes (i.e., 4 times the stride
size of the corresponding feature map). For scale-variation
of the objects, we associate each feature map cell with the
default boxes with three scales {20, 21/3, 22/3}3 of the de-
fault scale, and their aspect ratios are set to {1:1}. In to-
tal, we assign A=3 default boxes for each feature map cell.
Each default box is responsible for detecting the object in

1For a model with an input size of 768, we use an additional feature
map with a stride size of {128} pixels.

2We build a top-down pathway from the top extra layer added to the
base networks, not from the top layer of base networks, for simplicity while
maintaining accuracy.

3For the MS COCO benchmark, we use {2−1/3, 20, 21/3}.
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Figure 1: Overall architecture of PASSD. The model uses a feature pyramid network as a backbone network to generate
a multi-scale feature pyramid. We then apply the propose-and-attend (PA) prediction module to each feature map to predict
the final detection. The PA module adjusts the initial default boxes to capture the extent of the target objects and modulates
the sampling locations of convolution filters accordingly to align the receptive field of the prediction module to the object-
features. The whole pipeline is achieved in an end-to-end manner.

it by predicting a length C vector for multi-class classifi-
cation, where C is the number of object classes, including
the background class, and four offsets for box regression,
where offsets are encoded following the standard box pa-
rameterization [8]. During training, we assign the default
box as positive if it has a Jaccard overlap score higher than
0.5 with the ground-truth box.

5.1. Propose-and-Attend Mechanism

5.1.1 Proposing Process

For the one-stage detectors, the initial configuration of the
default boxes is crucial for the performance since they
mostly rely on overlap-based training sample mining. How-
ever, the initial configuration is typically fixed [19, 6, 16];
thus, most one-stage detectors suffer from enumerating a
considerable number of default boxes over the image space.
This results in consuming exhaustive parameters and com-
putations. On the other hand, two-stage detectors employ a
region proposal step [24], which provides the model more
abundant training samples by dynamically offsetting the
default boxes. However, its internal dependency on the
proposal-wise computation significantly slows down the de-
tection speed.

To overcome this issue, we design a proposing pro-

cess that can function as the region proposal step [24] of
two-stage detectors without any proposal-wise computation
(e.g., non-maximum suppression followed by top-k sort-
ing). Specifically, the process adjusts the location and size
of the default boxes to fit well with the target objects. To
do this, we predict a binary objectness score that indicates
the existence of a foreground object and four relative box
offsets between the initial default box and the ground-truth
following standard box parameterization [8] as follows:

δx = (gx − bx)/bw, δy = (gy − by)/bh

δw = log (gw/bw), δh = log (gh/bh).
(1)

Here, the default box is represented with its location (i.e.,
center) and size as b = (bx, by, bw, bh), and the target
ground-truth box as g = (gx, gy, gw, gh). The proposing
process consists of one 3×3 convolution layer with 2A fil-
ters for binary objectness classification and the other one
3×3 convolution layer with 4A filters for box offsets regres-
sion (A=3 in this work). The parameters for the proposing
process are shared across all the pyramid levels.

Moreover, we regularize the proposing process by clip-
ping the offset regression as follows:

δ′x = tanh (δx) · cx
2bw

, δ′y = tanh (δy) · cy
2bh

(2)



Here, cx and cy are the stride sizes of each feature map
cell. We observe that clipping operation induces discrimi-
native feature learning during training. For example, with-
out clipping, the positive training samples tend to focus
on objects as a whole with high overlap between boxes,
whereas clipping helps diversify the positive training sam-
ples to contain different parts of the objects. The result is
similar with the application of non-maximum suppression
in the region proposal step [24] of two-stage detectors. We
empirically confirm that this is important for improving the
performance (refer to Table 1).

5.1.2 Attending Process

After the proposing process, the prediction module also ne-
cessitates attending on the adjusted default boxes (see Fig-
ure. 1). In other words, the receptive field of the predic-
tion module should be appropriately coordinated with the
modified boxes to pick up object-features accurately. In
two-stage detectors, a feature pooling operation (e.g., RoI
pooling) is adopted to deal with this problem. However,
the standard convolutional prediction module used in most
one-stage detectors [19, 16, 32] lacks this crucial attending
operation in their design. Thus, valuable information for
accurate classification and bounding box regression is lost.

To resolve the problem, we propose an efficient attending
process. The main idea is to transform the sampling points
of the convolution filter according to the modified default
box. Before describing the details of the method, we first
review the operation of the standard convolutional predic-
tion module. For simplicity, we only describe the operation
in 2D space without consideration of the channel axis, while
extension to 3D is straightforward.

The classification or box regression for the i-th (i ∈
{1, . . . , A}) default box at the feature map location of po

is computed by the weighted sum of the convolution filter
(w) and the input features (x) on the sampling locations de-
fined by sampling grid (R) and po, where |R| = k2(K)
and k denotes the filter size of k × k convolution. An ex-
ample case with a 3×3 convolution filter and dilation of 1
is shown below, where ps enumerates the elements inR:

R = {(−1,−1), (−1, 0), . . . , (1, 0), (1, 1)}

yi(po) =
∑
ps∈R

w(ps) · x(po + ps) (3)

We can clearly observe that the sampling locations of
the convolution filter are fixed over the entire input feature
map by the sampling grid (R). This works fine under fixed
initial default boxes. However, with dynamically adjusted
default boxes, it becomes problematic. It misses the accu-
rate object-features proposed by the adjusted default boxes,
which are valuable for accurate classification and box re-
gression. Moreover, it cannot explicitly take account of the

adjusted default box in the final box regression. In other
words, the box regressor is not aware of the target box it has
to regress.

To address this problem, we instead augment the fixed
grid sampling locations of the convolution filter with offsets
that cover the adjusted default box in an adaptive manner.
Specifically, the offsets (Oi

o) for the i-th (i ∈ {1, . . . , A})
adjusted default box at the feature map location of po are
obtained as:

Oi
o = [R� (b̂ih/k, b̂

i
w/k)]⊕ (∆yi,∆xi)−R

∆yi = bih · δiy, ∆xi = biw · δix (4)

Here, (b̂ih, b̂
i
w) and (∆yi,∆xi) denote the size and cen-

ter displacement of the adjusted default box, which are ob-
tained by decoding the box parameterization (Eqn. (1)) and
from Eqn. (4), respectively. Here, � and ⊕ are element-
wise multiplication and summation, respectively.

The given offsets (Oi
o) allow the convolution filter to ac-

curately capture the object-features in the adjusted default
box (refer to Figure. 1 for visual description where the off-
sets are denoted as ’Conv offset’):

yi(po) =
∑

ps∈R,∆ps∈Oi
o

w(ps) · x(po + ps + ∆ps) (5)

Since standard convolution does not provide fractional
sampling points, we implement offseted convolution fol-
lowing Dai et al. [4]. Unlike [4], we enable multiple offsets
for the output prediction to accommodate multiple default
boxes at each feature map cell.

The attending process consists of one 3×3 offseted con-
volution layer with CA filters for multi-class classification
including background (i.e., C is 21 or 81 for PASCAL
VOC [5] and MS COCO [17]) and the the other one 3×3
offseted convolution layer with 4A filters for the final box
regression. The final box regression predicts the relative
offsets between the adjusted default boxes and ground-truth
boxes.

By putting all together, we build a novel prediction mod-
ule for one-stage detectors, called propose-and-attend (PA)
prediction module. The whole pipeline of the module is
presented in Figure. 1. The PA prediction module signif-
icantly boosts one-stage detectors in efficient manner with
marginal parameter overheads to the backbone network.

6. Training and Inference
6.1. Training

Data Augmentation. We follow several data augmentation
strategies from SSD [19]. In brief, we use random pho-
tometric distortion, image flipping, and both zoom-in and
zoom-out operations.



Hard Negative Mining. After the default box matching
step, most of the default boxes are determined as negatives.
To mitigate class imbalance, we use hard-negative mining
following SSD [19]. We select hard-negative samples based
on the loss values and constrain the ratio between positive
and negative default boxes to be at most 1:3. We adopt this
strategy for both the proposing and attending processes.

Loss Function. We define the total loss function as a sum of
the two losses from the proposing and attending processes,
respectively. Each loss term is formulated as follows:
L = 1

Npos
(
∑

i Lcls(pi, c
∗
i ) +

∑
i[x
∗
i ≥ 1]Lreg(ti, g

∗
i ))

Here, i is the index of the default box in a mini-batch; c∗i is
the ground truth class label of the default box i; g∗i are the
ground truth default box offsets; pi and ti are the predicted
class probability and box offsets of the default box i in each
process. Npos is the number of positive samples within the
process in a mini-batch. If Npos=0, we set the loss of the
process to 0. The classification loss Lcls is cross-entropy
loss, and we use Smooth-L1 loss [7] as the regression loss
Lreg . The Iverson bracket [x∗i ≥ 1] outputs 1 when its con-
dition is fulfilled, i.e., only the positive samples are included
in the regression loss.

Optimization. For the initialization, we take the base
networks (i.e., VGG-16, ResNet-101 and MobileNet) pre-
trained on ImageNet. All new convolution layers are initial-
ized using Gaussian weight with σ = 0.01 and bias b = 0.
We set the batch size to 32 4 during training. The entire
network is trained using stochastic gradient descent (SGD)
with a momentum of 0.9 and a weight decay of 0.0005. To
stabilize the training process, we use a warmup strategy that
gradually increases the learning rate from 10−6 to the initial
learning rate of each dataset during the first 5 epochs. We
use an initial learning rate of 4×10−3 for PASCAL VOC [5]
and 2×10−3 for MS COCO [17].

6.2. Inference

PASSD predicts the final detection results in a fully con-
volutional manner. To ensure efficient inference, boxes
with a score threshold lower than 0.01 are discarded and
only the 200 top-scoring predictions per image are selected.
Then, non-maximum suppression (nms) is applied to the
top-scoring predictions with a threshold of 0.45 for duplica-
tion removal. For MS COCO, we use soft-nms [1] to filter
out the boxes.

7. Experiments
We evaluate PASSD on two generic object detection

benchmarks: PASCAL VOC 2007 and MS COCO. PAS-
CAL VOC and MS COCO include 20 and 80 object classes,

4For a model with an input size of 768, we use a 24 batch size due to
the limited GPU.

respectively. For benchmarks, we compare our model with
other single-model entries under a single-scale evaluation
for fair comparison.

7.1. PASCAL VOC dataset

We train our model on the union of the VOC 2007
trainval set and the VOC 2012 trainval set, and
evaluate it on the VOC 2007 test set. The initial learning
rate is 4×10−3 and divided by 10 at 150 and 200 epochs.
The total number of training epochs is 250.

7.1.1 Ablation Study

In order to evaluate the effectiveness of our model, we con-
duct extensive ablation experiments. Moreover, to analyze
the detection performance across the several sizes of ob-
jects, we evaluate the models using scale criteria of: small
(area < 642), medium (642 < area < 1922), and large (area
> 1922).

Proposing Process. To analyze the effectiveness of the
proposing process, we add the process to the standard con-
volutional prediction module as shown in exp2 of Table 1.
Adding the proposing process significantly improves the ac-
curacy by a large margin of 3.5 points. In addition, clipping
the box offset regression further pushes the accuracy as in
exp3 of Table 1, demonstrating that diversifying the training
samples is important. The results indicate that the propos-
ing process is the key part for one-stage detectors.

We also visualize the impact of the proposing process
in Figure. 2. We can clearly observe that the number of
matched default boxes (i.e., positive training samples) sig-
nificantly increased compared to the initial default box set-
ting (Figure. 2 (left)). Moreover, the normalized version
(Figure. 2 (right)) demonstrates that the proposing process
distributes the positive training samples somewhat evenly
across the object scales, effectively reducing the imbalance
between them. To sum up, the proposing process provides
a large number of well-balanced positive training samples
during the training phase, which is especially effective for
small and medium-sized objects.

Attending Process. For the attending process, we compare
our approach with two different methods that can also adjust
the sampling points of the convolution filter: dilated convo-
lution [31] and deformable convolution [4]. Dilated con-
volution increases its sampling points with a fixed discrete
dilation value, whereas deformable convolution adjusts its
sampling points in an adaptive manner using an additional
dedicated offset prediction layer, where the supervision sig-
nal for the offset prediction is given from the target task im-
plicitly. The results are shown from exp4 to exp7 in Table 1.
We observe that both dilated and deformable convolution
have little impact on the accuracy in comparison to standard



exp

prediction module

params mAP mAPS mAPM mAPLproposing process attending process
* (convolution sampling locations)

w/o box offset clip w/ box offset clip fixed adaptive
1 Conv(dilation=1) 24.82M 75.5 48.8 72.6 85.5
2 X Conv(dilation=1) 24.87M 79.0 51.8 77.1 86.2
3 X Conv(dilation=1) 24.87M 79.8 54.6 78.2 86.0
4 X Conv(dilation=2) 24.87M 79.7 53.4 78.0 86.7
5 X Conv(dilation=3) 24.87M 79.9 53.7 78.0 87.4
6 X Deform Conv 24.91M 80.2 55.0 78.4 86.9

7(Ours) X Ours 24.87M 81.0 56.5 79.4 87.5

Table 1: Ablation experiments for propose-and-attend (PA) prediction module. We train all models on the union of VOC2007
trainval set and VOC2012 trainval set, and evaluate them on the VOC 2007 test set.

attending process params mAP.5 mAP.6 mAP.7 mAP.8

Conv(dilation=1) 24.87M 79.8 74.3 63.8 44.0
Conv(dilation=2) 24.87M 79.7 74.5 63.1 42.9
Conv(dilation=3) 24.87M 79.9 74.1 62.9 42.6

Deform Conv 24.91M 80.2 75.9 64.8 46.6
Ours 24.87M 81.0 75.9 65.6 47.3

Table 2: Box regression capability of different attending
processes over several IoU threshold.

prediction module params mAP mAPS mAPM mAPL

Conv 24.82M 75.5 48.8 72.6 85.5
Conv(1)-Conv 26.00M 75.3 48.9 72.4 84.8
Conv(2)-Conv 27.19M 75.0 48.7 71.6 85.0

ResBlock(1)-Conv 27.19M 75.2 50.6 71.1 84.5
ResBlock(2)-Conv 29.55M 75.3 48.7 71.4 85.5

PA 24.87M 81.0 56.5 79.4 87.5

Table 3: Impact of increasing the depth of the standard con-
volutional prediction module. The number in parentheses
denotes the number of intermediate layers of each type.

convolution (exp3 Table 1). Whereas, our attending pro-
cess brings a significant accuracy improvement over a wide
range of object scales. Note that the accuracy gain does
not come from the additional model capacity compared to
standard convolution (exp3 in Table 1), demonstrating its
effectiveness.

Propose-and-Attend Mechanism. Putting all together, our
final model significantly improves the standard convolu-
tional prediction module by a large margin of 5.5 points
with marginal parameter overheads (0.05M), demonstrat-
ing that building the propose-and-attend mechanism itself,
which is missed in most one-stage detectors, is indeed cru-
cial for achieving a high detection accuracy. Note that the
whole process is achieved in a single feed-forward manner
without stage-discrimination as in two-stage detectors [24],
ensuring high efficiency.

Box Regression Capability. To analyze the impact of the
proposed attending process in final box regression, we com-
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Figure 2: Impact of the proposing process. The left figure
shows matched default boxes in terms of scale of ground-
truth boxes. The right figure is a normalized version of the
left figure. The average is represented by the dashed line.

pare our approach with other methods under different IoU
thresholds. As shown in Table 2, our approach achieves bet-
ter accuracy than all other methods over all IoU thresholds,
demonstrating its higher box regression capability. Note
that the accuracy gap between methods with fixed sam-
pling points and methods with adaptive sampling points
becomes larger as the IoU threshold increases, showing
that dynamic attend-mechanism, which is missed in most
one-stage detectors, is essential for accurate box regression.
Our approach successfully performs this mechanism with-
out adding any parameter overheads to the standard con-
volution (first row in Table 2), revealing both the signifi-
cance of the mechanism itself and the effectiveness of our
approach.

Deeper Prediction Module. Here, we explore another di-
rection in improving the standard convolutional prediction
module, i.e., increasing the depth of the prediction mod-
ule. Specifically, we add two types of intermediate layers
into the standard convolutional prediction module: 1) con-
volution and 2) residual block [10], where the convolution
intermediate layer is followed by ReLU activation. Both
intermediate layers use 3×3 filter and preserve the output
channels to be same as the input feature (i.e., 256 in this
work). Also, their parameters are independent for classifi-



model backbone input size # boxes fps params mAP
Two-stage:

Faster R-CNN [24] VGG-16 ∼ 1000×600 300 7 135M 73.2
OHEM [28] VGG-16 ∼ 1000×600 300 7 - 74.6

Faster R-CNN [24] ResNet-101 ∼ 1000×600 300 2.4 - 76.4
R-FCN [3] ResNet-101 ∼ 1000×600 300 9 51M 80.5

Deep Regionlets [30] ResNet-101 ∼ 1000×600 300 - - 82.0
CoupleNet [36] ResNet-101 ∼ 1000×600 300 8.2 - 82.7

One-stage:
SSD300 [19] VGG-16 300×300 8732 46 27M 77.2
YOLOv2 [23] Darknet-19 544×544 845 40 67M 78.6
DSSD321 [6] ResNet-101 321×321 17080 9.5 - 78.6
SSD512 [19] VGG-16 512×512 24564 19 27M 79.8

RefineDet320 [32] VGG-16 320×320 6375 40.3 - 80.0
RFBNet300 [18] VGG-16 300×300 11620 83 37M 80.5

SSD513 [6] ResNet-101 513×513 43688 6.8 - 80.6
DSSD513 [6] ResNet-101 513×513 43688 5.5 - 81.5

RefineDet512 [32] VGG-16 512×512 16320 24.1 - 81.8
RFBNet512 [18] VGG-16 512×512 32756 38 37M 82.2

PASSD-320 VGG-16 320×320 6375 50 25M 81.0
PASSD-512 VGG-16 512×512 16320 31.3 25M 82.4

Table 4: Object detection results on PASCAL VOC 2007
test set.

cation and box regression branch, respectively. As shown
in Table 3, merely increasing the network depth has lit-
tle improvement compared to the prediction module with
a single convolution layer (first row of Table 3). Whereas,
our PA prediction module shows significantly higher accu-
racy with marginal parameter overheads, demonstrating that
building the propose-and-attend mechanism into the one-
stage detector is indeed crucial.

7.1.2 Comparison to State of the Art

We compare our final model with the state-of-the-art de-
tection models in Table 4. PASSD with low resolution in-
put (i.e., 320×320) achieves 81.0 mAP. This result is much
better than those of several two-stage methods, such as R-
FCN [3], which uses a larger input size and a deeper back-
bone (i.e., ResNet-101). With a larger input (i.e., 512×512),
PASSD produces 82.4 mAP, surpassing all detection mod-
els, including both one-stage and two-stage, except Cou-
pleNet [36] with a marginal gap (0.3 mAP). Note that Cou-
pleNet uses a larger input size (∼1000×600) and adopts
a deeper backbone ( i.e., ResNet-101) than PASSD-512.
Compared to other one-stage detectors, such as SSD or
DSSD, our model achieves better accuracy with fewer de-
fault boxes (e.g., 43,688 default boxes in DSSD513 vs.
16,320 default boxes in PASSD-512). This implies that
PASSD can handle various object scales effectively. Fi-
nally, our model uses fewer parameters than almost any
other models, showing that the superiority of our model
does not come from the mere high model capacity, but from
the effective architecture design.

We also report the inference time of our model in the fifth
column of Table 4. The inference time is evaluated with a
batch size of 1 on NVIDIA Titan X GPU, CUDA 8.0, and
cuDNN v7. PASSD can process an image in 20 ms (50
fps) and 32 ms (31.3 fps) with input sizes of 320×320 and

512×512, respectively. While it is hard to perform apple-to-
apple comparisons due to inconsistent environments ( i.e.,
different hardware and software libraries), PASSD shows
real-time capability.

7.2. MS COCO dataset

To further validate the proposed PASSD in a large-scale
setting, we evaluate our model on MS COCO. We also re-
port the results of the model using the ResNet-101 back-
bone to see the effect of adopting a deeper backbone. We
train our model on trainval35k and report the main re-
sults on test-dev. The initial learning rate is 2×10−3

and divided by 10 at 80 and 100 epochs. The total number
of training epochs is 120.

7.2.1 Comparison to State of the Art

The results are shown in Table 5. PASSD achieves 31.4 AP
with an input size of 320×320 and VGG-16 backbone. The
accuracy of PASSD is further improved by 35.3 AP when a
larger input size (i.e., 512×512) is used. Meanwhile, adopt-
ing a deeper backbone (i.e., ResNet-101) further pushes the
accuracy of PASSD; it results in 32.7 AP, 37.8 AP, and 40.3
AP for 320×320, 512×512, and 768×768 input sizes re-
spectively. The PASSD-768 achieves results competitive
to state-of-the-art models by adding only marginal parame-
ter overheads to the backbone network, resulting in a much
lighter model than competitive approaches. This shows that
the superiority of our model does not come from the mere
high model capacity, but from the effective architecture de-
sign. In particular, our best model shows state-of-the-art
accuracy on AP50 and APS , and it occupies top-entries
on AP75. It also runs faster than most competitive meth-
ods. The results indeed demonstrate the effectiveness of
the proposed method. In addition, recent ideas of designing
a better backbone (M2Det [33]), applying a better training
procedure (Libra R-CNN [21]), and applying the prediction
module in a cascade manner (Cascade R-CNN [2]) are or-
thogonal to our approach of designing an effective predic-
tion module, having potential to be used in a complemen-
tary manner.

7.3. Discussion

7.3.1 Lightweight Backbone

Our final model features a simple design with marginal pa-
rameter overheads to the backbone network. Therefore, we
apply our propose-and-attend (PA) prediction module to a
lightweight backbone to further improve efficiency. We
train our PASSD with MobileNet [11] as the backbone on
MS COCO with the same training setting. As shown in Ta-
ble 6, PASSD significantly outperforms other lightweight
detectors, even surpassing the models with advanced back-



model data backbone input size fps params size AP50 AP75 AP APS APM APL

Two-stage:
R-FCN [3] trainval ResNet-101 ∼ 1000× 600 9 - 206MB 51.9 - 29.9 10.8 32.8 45.0

CoupleNet [36] trainval ResNet-101 ∼ 1000× 600 8.2 - - 54.8 37.2 34.4 13.4 38.1 50.8
Deformable R-FCN [4] trainval Aligned-Inception-ResNet ∼ 1000× 600 - - - 58.0 40.8 37.5 19.4 40.1 52.5

Faster R-CNN w FPN [15] trainval35k ResNet-101 ∼ 1000× 600 5.8 61M 232MB 59.1 39.0 36.2 18.2 39.0 48.2
Deep Regionlets [30] trainval ResNet-101 ∼ 1000× 600 - - - 59.8 - 39.3 21.7 43.7 50.9

Mask R-CNN [9] trainval35k† ResNet-101 ∼ 1280× 800 4.8 63M 242MB 60.3 41.7 38.2 20.1 41.1 50.2
Libra R-CNN [21] trainval35k ResNet-101 ∼ 1280× 800 - 61M 233MB 62.1 44.7 41.1 23.4 43.7 52.5

Cascade R-CNN [2] trainval35k ResNet-101 ∼ 1280× 800 7.1 88M 337MB 62.1 46.3 42.8 23.7 45.5 55.2
One-stage:

YOLOv2 [23] trainval35k Darknet-19 416× 416 40 67M - 44.0 19.2 21.6 5.0 22.4 35.5
SSD512 [19] trainval35k VGG-16 512× 512 22 36M 137MB 48.5 30.3 28.8 10.9 31.8 43.5

RFBNet300 [18] trainval35k VGG-16 300× 300 - - - 49.3 31.8 30.3 11.8 31.9 45.9
RetinaNet500 [16] trainval35k ResNet-101 ∼ 832× 500 11.1 57M 217MB 53.1 36.8 34.4 14.7 38.5 49.1
RFBNet512 [18] trainval35k VGG-16 512× 512 - 47M - 54.2 35.9 33.8 16.2 37.1 47.4

RefineDet512 [32] trainval35k VGG-16 512× 512 22.3 - 137MB 54.5 35.5 33.0 16.3 36.3 44.3
ExtremeNet [34] (flip) trainval35k Hourglass-104 511× 511 3.1 - 758MB 55.5 43.2 40.2 20.4 43.2 53.1

RFBNet512-E [18] trainval35k VGG-16 512× 512 - 59M 191MB 55.7 36.4 34.4 17.6 37.0 47.6
CornerNet [14] (flip) trainval35k Hourglass-104 511× 511 4.1 201M 768MB 56.5 43.1 40.5 19.4 42.7 53.9
RefineDet512 [32] trainval35k ResNet-101 512× 512 - - 315MB 57.5 39.5 36.4 16.6 39.9 51.4
RetinaNet800 [16] trainval35k ResNet-101 ∼ 1280× 800 5.1 57M 217MB 59.1 42.3 39.1 21.8 42.7 50.2

M2Det [33] trainval35k VGG-16 800× 800 11.8 147M 506MB 59.7 45.0 41.0 22.1 46.5 53.8
PASSD-320 trainval35k VGG-16 320× 320 40 25M 96MB 51.6 33.6 31.4 12.0 35.1 45.8
PASSD-512 trainval35k VGG-16 512× 512 22.2 25M 96MB 56.9 38.4 35.3 19.2 39.0 45.5
PASSD-320 trainval35k ResNet-101 320× 320 34.5 47M 181MB 52.1 35.3 32.7 10.8 36.5 50.2
PASSD-512 trainval35k ResNet-101 512× 512 22.2 47M 181MB 59.1 41.4 37.8 19.3 42.6 51.0
PASSD-768 trainval35k ResNet-101 768× 768 11.9 48M 184MB 62.1 44.7 40.3 24.2 44.8 50.3

Table 5: Object detection results on MS COCO test-dev set. ”†” denotes the use of additional pixel-level supervision.
”flip” indicates that the model is evaluated on both original and flipped input image.

model backbone fps params AP AP50 AP75

YOLOv2-416 [23] DarkNet-19 40 67.4M 21.6 44.0 19.2
SSD-300 [19] VGG-16 43 34.3M 25.1 43.1 25.8
SSD-300 [19] MobileNet 80 6.8M 18.8 - -

SSDlite-300 [25] MobileNet v2 61 4.3M 22 - -
PASSD-320 MobileNet 63 6.7M 25.3 43.6 26.3

Table 6: Object detection results with lightweight backbone
on MS COCO test-dev.

model backbone prediction module mAP
DSOD-300 [27] DS/64-192-48-1 Conv 77.7

ScratchDet-300 [35] Root-ResNet-18 Conv 78.5
PASSD-320 VGG-16-BN Conv 73.2
PASSD-320 VGG-16-BN PA 79.1

Table 7: Comparison to other train-from-scratch models on
VOC 2007 test set.

bone such as DarkNet-19 [23] and VGG-16 [29]. More-
over, recent works on designing a better lightweight back-
bone (e.g., MobileNet v2 [25]) are complementary to our
approach of designing the better prediction module. The
result demonstrates its great potential for low-end devices.

7.3.2 Training from Scratch

We also observe that a model integrated with the proposed
PA prediction module can be trained from scratch (i.e. w/o
ImageNet pretraining). Recently, Shen et al. [27] showed

that training one-stage detectors without a pretrained back-
bone network is hard. To address this, recent approaches
have attempted to carefully design a backbone network
that is suitable for this setting. Apart from recent ap-
proaches [27, 35], we found that simply integrating our
proposed PA prediction module into the network enables
successful training. As seen in Table 7, we achieved fa-
vorable results by only inserting batch normalization [13]
in the backbone network without using any sophisticated
backbone design. Note that without the PA prediction mod-
ule, the performance significantly drops, implying that the
PA prediction module indeed provides a rich supervisory
signal during training.

8. Conclusion
We present PASSD, a novel one-stage detector that func-

tions with the propose-and-attend mechanism efficiently.
We conduct extensive ablation studies to validate the ef-
ficacy of the proposed method. We evaluate our model
on several benchmarks and show results competitive to
state-of-the-art models while using much fewer parame-
ters thanks to our efficient design. Moreover, we demon-
strate that our method can be successfully applied to
the lightweight backbone network and train-from-scratch
scheme. We believe the experimental results and analysis
provided in this paper would benefit the community and the
practitioners.
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