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Abstract
Token embeddings play a crucial role in language modeling but, despite this practical relevance,
their theoretical understanding remains limited. Our paper addresses the gap by characterizing the
structure of embeddings obtained via gradient descent. Specifically, we consider a one-layer softmax
attention model with a linear head for binary classification, i.e., Softmax(p⊤E⊤

X)EXv, where
EX = [Ex1 , . . . , ExT

]⊤ contains the embeddings of the input sequence, p is the embedding of
the ⟨cls⟩ token and v the output vector. First, we show that, already after a single step of gradient
training with the logistic loss, the embeddings EX capture the importance of tokens in the dataset
by aligning with the output vector v proportionally to the frequency with which the corresponding
tokens appear in the dataset. Then, after training p via gradient flow until convergence, the softmax
selects the important tokens in the sentence (i.e., those that are predictive of the label), and the
resulting ⟨cls⟩ embedding maximizes the margin for such a selection. Experiments on real-world
datasets (IMDB, Yelp) exhibit a phenomenology close to that unveiled by our theory.

1. Introduction
The introduction of the attention mechanism [5, 41] marked a paradigm shift in the design of
frontier machine learning models, leading to significant advances such as ChatGPT [2], Claude
[3], AlphaFold [18], CLIP [30] and Dall-E [31]. This success prompted a surge of interest in
understanding the structure and function of attention layers, with their optimization dynamics and
inductive biases being object of extensive theoretical research [1, 7, 9, 24, 37, 42]. Embeddings
are a crucial component of the attention mechanism [45], especially for downstream adaptation
[13, 16, 19] with some works [20, 45] specifically highlighting their importance. However, despite
the importance of learning embeddings, the existing analyses of transformer-like architectures either
ignore the properties of embeddings by resorting to orthogonal structures [44], or omit embeddings
completely by considering unprocessed inputs [39]. Our paper fills this gap by studying directly the
embedding training dynamics. We aim to provide theoretical insight to the following questions:

What is the structure learnt by the embeddings during gradient descent training?
How is this structure related to the statistical properties of the data?

In Figure 1, we investigate these questions by analyzing the embeddings of a two-layer transformer
trained on a sentiment analysis task on IMDB. The plots reveal a remarkable simplicity in the
structure of the learned embeddings, which capture the frequency of appearance of tokens in the
dataset. Specifically, the predictive mechanism (overlap with the regression coefficient v) favors
the tokens which appear more frequently in the corresponding positive/negative context. A similar
pattern emerges at the selection stage of the attention mechanism (overlap with the ⟨cls⟩ embedding
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Figure 1: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of token-wise difference in posterior probabilities, for a two-layer
attention model trained on the IMBD dataset (see (32) in Appendix E for details).

p), i.e., more frequent tokens have a higher attention score. Analogous results for Yelp data are
reported in Figure 4 deferred to Appendix E.

For the theoretical study of this emergent structure, we focus on a one-layer softmax attention
model. Namely, for an input sequence X = [x1, · · · , xT ], the output of the model is given by

f(X; p,E) = Softmax(p⊤E⊤
X)EXv, (1)

where EX = [Ex1 , . . . , ExT ]
⊤ contains the embeddings of the input X , p is the embedding of the

⟨cls⟩ token and v is the final regression vector. Our main results are summarized below:
• We show that, already after a single step of gradient training with the standard logistic loss, the

embeddings EX capture the importance of tokens in the dataset by aligning with the output vector
v proportionally to the corresponding empirical frequencies (Lemma 2).

• In case, each sequence contains a single important token, the ⟨cls⟩ embedding obtained from
gradient flow must select all important tokens. We characterize all the possible directions that the
⟨cls⟩ embedding may converge to, which are the max-margin solutions associated to feasible token
selections (Theorem 5). While in general the ⟨cls⟩ embedding may select irrelevant tokens, we
identify sufficient conditions leading to the selection only of important tokens.

Related work. The implicit bias literature has been instrumental in understanding the behavior
of neural networks or overparameterized models optimized by gradient methods [4, 8, 26]. A key
phenomenon is that gradient descent on separable data with logistic loss directionally converges to
the max-margin separator [15, 35]. More recently, a series of works [17, 21, 22, 32, 34, 36, 37, 40]
has established an equivalence between the optimization geometry of self-attention and a hard-margin
SVM problem selecting a subset of tokens via linear constraints on the outer-products of token pairs.
Compared to these works that mostly focus on the training of single-layer attention weights, we
point out two differences. First, we study the role of embeddings and their joint training with the
⟨cls⟩ token. Second, under our data model, we establish benign properties of the solution reached at
convergence (which may not hold for arbitrary datasets [37]). Additional related work on the theory
of attention layers is discussed in Appendix A.

2. Preliminaries
Data and model. We focus on binary text classification problems. We consider a vocabulary set S
with size |S| and a ⟨cls⟩ token for classification. Let (Xi, yi)

n
i=1 be the dataset containing n context
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sequences, where yi ∈ {−1, 1} and each context sequence X ∈ Xn := {X1, . . . , Xn} contains T
tokens, i.e., X = [x1, . . . , xT ] with xi ∈ S. W.l.o.g., we let S be the set of tokens that appears in
Xn, as the embeddings of the remaining tokens are not trained and are not relevant for the problem at
hand. We consider a one-layer softmax attention model with a linear head for classification. First,
we append a ⟨cls⟩ token at the end of the sequence X , and then we embed each token into a vector of
dimension d. Namely, after the embedding layer, we have EX = [Ex1 , . . . , ExT ]

⊤ ∈ RT×d, where
Es ∈ Rd denotes the embedding of the token s. We let E ∈ R|S|×d be the embedding matrix of all
context tokens and p ∈ Rd the embedding of the ⟨cls⟩ token.

We focus on the architecture (1) where, given a ∈ RT , [Softmax(a)]i := exp(ai)∑T
j=1 exp(aj)

for

i ∈ {1, . . . , T}. The same model is also studied in [32, 37]. In practice, it is common to include the
WKQ matrix and consider a model with output f(X; p,WKQ,E) = Softmax(p⊤WKQE

⊤
X)EXv.

Since p⊤WKQ plays the same role as p and one can easily reconstruct WKQ from p in each gradient
update as discussed in [37], we use the model in (1) for simplicity. The output vector v is fixed and
all the embedding vectors p,E are trained to minimize with the standard logistic loss:

L(E, p) = 1
n

∑n
k=1 log(1 + exp(−ykf(Xk;E, p))) = Ê [log(1 + exp(−yf(X;E, p)))] , (2)

where the notation Ê is a shorthand for the average over the dataset D = {(Xk, yk)}nk=1.
Empirical statistics of each token in the dataset. The goal of the paper is to characterize the
structure of the embeddings E, p obtained by optimizing the objective (2) via gradient descent,
and we show that such structure is related to the empirical statistics of the tokens in the dataset.
Specifically, after training, the softmax attention learns to select tokens that are more correlated to
the labels based on the dataset. To quantify the correlation between a token s and the label y, we
define the average signed frequency of a token as:

αs :=
1
nT

∑
(X,y)∈D

(
y
∑T

i=1 1xi=s

)
= 1

T · Ê
[
y
∑T

i=1 1xi=s

]
. (3)

In words, αs is obtained by taking the number of occurrences of s in sequences with a positive label,
subtracting the number of occurrences of s in sequences with a negative label, and finally dividing by
the total number of tokens nT . As such, it provides an average of the signed frequency of s, where
the sign comes from the label of the sequences in which the token appears.

Definition 1 (Positive, negative and irrelevant tokens) We say that a token s is (i) positive if αs >
0, (ii) negative if αs < 0, and (iii) irrelevant if αs = 0. Moreover, a token s is completely positive
(completely negative) if it appears only in sequences with label 1 (−1).

3. Main results
One step of gradient descent learns the importance of the tokens. We initialize v with any
unit-norm vector and E0

s , p
0 i.i.d.∼ N (0, d−1I) for all s ∈ S. Then, we perform one step of gradient

descent with step size η0 on all trainable embeddings:

p1 = p0 − η0∇pL(E0, p0), E1
s = E0

s − η0∇EsL(E0, p0), for all s ∈ S. (4)

Lemma 2 For any δ > 0, let d ≥ polylog(|S|, δ−1). Then, after the first step of gradient descent
in (4) for any s ∈ S, the following holds

E1
s = E0

s + η0/2 · αsv + errs, p1 = p0 + errp, (5)
where the error terms errs, errp are bounded with probability at least 1− δ as

max{maxs∈S ∥errs∥2, ∥errp∥2} ≤ 11η0d
− 1

4 . (6)
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Lemma 2 implies that after one step of training, the embedding vector Es of each token s learns the
empirical importance of the tokens by adding a vector in the direction of the output vector v with
magnitude proportional to αs. The proof is deferred to Appendix D.1.

The decomposition in (5) also implies that the overlap between the ⟨cls⟩ embedding vector p and
Es does not improve after the first step. Thus, we study the training dynamics of p, characterizing its
implicit bias. Specifically, we fix the context embedding matrix to E1 (after the first gradient step)
and train the ⟨cls⟩ embedding vector p with gradient flow initialized at p1 (obtained after the first
step):

d

dt
pt = −∇pL(E1, pt). (7)

We consider gradient flow for technical convenience, and all results in this section can be readily
extended to gradient descent with small enough step size. We will refer to the embeddings in E1 as
Es and not E1

s , omitting the superscript to favor readability.
Max-margin token selection. We denote the set of tokens in X selected by p as

SX(p) = {ŝ : ŝ = argmaxs∈X p⊤Es}, (8)

and we define SX(p) = X \ SX(p). Intuitively, given a sequence X, the selected tokens in X have
the largest softmax weight (proportional to exp

(
p⊤Exi

)
). Note that, for p′ ̸= p, we may have that

SX(p′) = SX(p) for all X . Thus, we define the equivalence relation: p ≊ p′ ⇐⇒ SX(p) = SX(p′),
for all X ∈ Xn. Intuitively, two vectors p, p′ are equivalent under the above relation if they select the
same tokens for all the sequences. Given a vector p◦, we denote by Pp◦ its equivalence class, and we
define the set of max-margin directions among all vectors in Pp◦ as

P∗(p◦) =

{
p̂

∥p̂∥2
: p̂ = argmin

p∈Pp◦

∥p∥2

s.t. p⊤(Es − Es′) ≥ 1, ∀s ∈ SX(Pp◦), ∀s′ ∈ SX(Pp◦), ∀X ∈ Xn

}
.

(9)

We first show in the lemma below that the max-margin problem in (9) always has a unique solution,
which means that P∗(p◦) is always a singleton. Thus, later on, we will use p̂(p◦) as the solution to
(9), and p∗(p◦) =

p̂(p◦)
∥p̂(p◦)∥2 . We drop the dependency on p◦ when there is no confusion.

Lemma 3 For any p◦ ̸= 0, the max margin problem in (9) has a unique solution denoted as p̂.
Furthermore, for any δ > 0, pick d ≥ max{polylog(|S|, δ−1), poly(|S|, η0)}. Let N be the number
of constraints in (9) and let the i-th constraint be p⊤(Esi −Es′i

) ≥ 1. Then, with probability at least
1 − δ, we have: p̂ = M †1N , M = [Es1 − Es′1

, . . . , EsN − Es′N
]⊤ ∈ RN×d, where M † denotes

the pseudo-inverse of M and 1N a vector of N ones.
Lemma 3 (proved in Appendix D.2) implies that with high probability, the solution p̂ of the max-
margin problem in (9) makes all the constraints tight.

Implicit bias of gradient flow. While Lemma 2 holds for any data, we need an extra assumption
to analyze the gradient flow, due to the complex loss landscape caused by softmax attention.
Assumption 4 Each sequence in Xn contains either a single completely positive token or a single
completely negative token, and all remaining tokens are irrelevant.
Assumption 4 implies that all sequences in the dataset contain precisely one relevant token, and the
relevant token also aligns with the label. We remark that datasets containing only one relevant token
have been also considered in prior work, see [36, Theorem 1] and [25]. We further denote by Sc the
set containing all completely positive and all completely negative tokens.

4



ATTENTION WITH TRAINED EMBEDDINGS PROVABLY SELECTS IMPORTANT TOKENS

Theorem 5 Under Assumption 4, for any δ > 0, let η0 ≥ 4n2T 2, d ≥ poly(|S|, log δ−1, η0).
Let pt be the solution of the gradient flow (7). Then, with probability at least 1 − δ, we have that
∥pt∥2 → ∞. Furthermore, assuming that p∞ := limt→+∞ pt/∥pt∥2 exists, the limiting direction
p∞ satisfies the following properties with probability at least 1− δ:
1. p∞ selects all completely positive and completely negative tokens, i.e., Sc ⊆

⋃
X SX(p∞).

2. p∞ is the max-margin direction for such a selection, i.e., p∞ = p∗(p∞).
Theorem 5 (proved in Appendix D.3) shows that, if pt converges in direction, it must converge to the
max-margin direction that selects all the completely positive/negative token. We now highlight some
differences w.r.t. [37]. Theorem 3 in [37] shows that gradient descent on p converges to a locally
optimal max-margin solution when initialized close enough to such solution, and Theorem 4 in [37]
shows that the regularization path can only converge to locally max-margin solutions. However, these
results do not exclude the possibility of the gradient flow converging to directions that are not locally
optimal and not the max-margin direction. In contrast, we characterize all possible directions the
gradient flow converges to, showing that these are max-margin directions that select all completely
positive/negative tokens. Furthermore, we do so without starting from an initialization that is close
enough to such solution. This requires a different proof strategy as compared to [37].
Characterization of the max-margin solution. Theorem 5 still does not exclude the possibility that
gradient flow also selects some irrelevant tokens. We address this point with the result below.
Lemma 6 Suppose p̂ selects all the tokens, i.e., SX(p̂) = S. Then, p∞ ̸= p̂.

Lemma 6 (proved in Appendix D.4) shows that the directional limit p∞ (when it exists) cannot
select all tokens and, as it selects all important ones, it must be biased towards them. As an application,
consider the case where there is only one irrelevant token in the vocabulary. Then, the combination
of Theorem 5 and Lemma 6 gives that only the completely positive/negative tokens are selected by
gradient flow. Going beyond the case where there is a single irrelevant token, Lemma 19 in Appendix
D.5 provides a sufficient condition for gradient flow to select only important tokens. This sufficient
condition requires the max-margin direction that does not select irrelevant tokens to have a larger
margin than any other max-margin solution associated to a different token selection. We expect this
to be the case e.g. for datasets where all the completely positive/negative tokens have the same αs.

Concluding remarks. We have studied how the embedding vectors trained via gradient methods
capture the importance of different tokens in the dataset. Specifically, we have characterized (i) the
context embedding Es after one gradient step, and (ii) the implicit bias of the ⟨cls⟩ embedding p
after training with gradient flow until convergence. Experiments on synthetic and realistic datasets
demonstrate the generality of our findings: Figure 1 considers a two-layer attention model trained
on the IMBD datasets, and Figures 2, 3 in Appendix E show a similar behavior for the model (1)
considered in the theoretical analysis trained on IMBD, Yelp and synthetic data.

The characterization we put forward is only in terms of the first-order statistics of the tokens (i.e.,
the frequencies with which they occur in the dataset), and it does not describe how the model learns
the causal structure between tokens. In practice, both first-order statistics and causal structure are
expected to be crucial for the model to “understand” a text. While our theory assumes a one-layer
attention model, the numerical results of Figure 1 suggests that a similar qualitative picture holds
more generally. This prompts us to conjecture that in deeper attention models with multiple heads,
the earlier layers form induction heads [28] which learn the causal structure between tokens, and later
layers perform classification based on the empirical statistics of the resulting k-tuples. We regard
this investigation as an exciting future direction.
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Additional notation. Throughout the appendices, to simplify the notation, we write

ai(X) := p⊤Exi , qi(X) :=
exp(ai(X))∑T
j=1 exp(aj(X))

, (10)

so that f(X; p,E) =
∑T

i=1 qi(X)E⊤
xi
v. We will drop the dependence on X in ai(X), qi(X) when

there is no confusion. We also denote

γi(X, y) := yE⊤
xi
v, (11)

dropping again the dependency on X, y when there is no confusion. Finally, we define

g(X, y) :=
1

1 + exp(yf(X; p,E))
. (12)

Properties of initialization. By standard concentration inequalities, with probability at least 1− δ,
at initialization we have

max

{
max
s∈S

|E⊤
s v|,max

s∈S
|E⊤

s p|, |p⊤v|
}

≤ 1√
d

√
2 log

|S|2
δ

,

max

{
max
s∈S

∥Es∥2, ∥p∥2
}

≤ 2.

(13)

For all results of the paper holding with probability at least 1− δ, we will be implicitly conditioning
on (13).

Appendix A. Additional related work

A line of work [23, 24, 27] has explored whether attention-based architectures can extract causal
structure from Markovian inputs. The mechanics of next-token prediction when training a single
self-attention layer is characterized in [21]. Towards understanding how to utilize structural properties
of the data, the behavior of transformers on sparse token selection tasks is considered in [33, 43]. The
study [14] provides a theoretical justification to the tendency of modern language models to generate
repetitive text by showing that the underlying self-attention mechanism collapses into sampling
only a limited subset of tokens. This stands in contrast to the slightly different setup of [38] where
the transformer model does not degrade to a “winner-takes-all” strategy. The works [9–11] take a
mean-field view to analyze the clustering behavior in transformer representations that emerges after
successive applications of the attention block. Under a random feature design, it is shown in [6] that
softmax attention exhibits a sensitivity property which allows for a sharp change in attention scores
given the perturbation of a single token. The role of the attention mechanism is also studied in [29]
for prompt-tuning and in [12] for test-time-training.

10
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Appendix B. Technical lemmas

Lemma 7 The gradients of the empirical loss are given by

∇EsL(E, p) = −Ê

yg(X, y)

 T∑
i=1

(
∑
j ̸=i

(1xi=s − 1xj=s)qiqj)E
⊤
xi
vp+

T∑
i=1

1xi=sqiv

 ,

∇pL(E, p) = −Ê

yg(X, y)

 T∑
i=1

(
∑
j ̸=i

qiqj(Exi − Exj ))E
⊤
xi
v

 ,

where we have defined g(X, y) = 1
1+exp(yf(X)) .

Proof We start by taking the gradient of qi as

∇Esqi(X) =
1xi=s exp

(
E⊤

xi
p
)
p
(∑T

j=1 exp
(
E⊤

xj
p
))

−
(∑T

j=1 1xj=s exp
(
E⊤

xj
p
)
p
)
exp
(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

=
p
∑T

j=1(1xi=s − 1xj=s) exp
(
E⊤

xj
p
)
exp

(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

= p

 T∑
j=1

(1xi=s − 1xj=s)qiqj


= p

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

 ,

∇pqi(X) =

(
exp
(
E⊤

xi
p
)
Exi

) (∑T
j=1 exp

(
E⊤

xj
p
))

−
∑T

j=1 exp
(
E⊤

xj
p
)
Exj exp

(
E⊤

xi
p
)

(∑T
j=1 exp

(
E⊤

xj
p
))2

=

∑T
j=1 exp

(
E⊤

xj
p
)
exp
(
E⊤

xi
p
)
(Exi − Exj )(∑T

j=1 exp
(
E⊤

xj
p
))2

=

T∑
j=1

qiqj(Exi − Exj )

=
∑
j ̸=i

qiqj(Exi − Exj ).

11
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Next, we look at the gradient of f(X; p,E):

∇Esf(X; p,E) =
T∑
i=1

(∇Esqi)E
⊤
xi
v +

T∑
i=1

1xi=s · qiv

=
T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp+

T∑
i=1

1xi=s · qiv,

∇pf(X; p,E) =

T∑
i=1

∑
j ̸=i

qiqj(Exi − Exj )

E⊤
xi
v.

This allows us to conclude that

∇EsL(E, p) = Ê
[

−y

1 + exp(yf(X; p,E))
∇Esf(X; p,E)

]

= Ê

 −y

1 + exp(yf(X; p,E))

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp+

T∑
i=1

1xi=sqiv

 ,

∇pL(E, p) = Ê
[

−y

1 + exp(yf(X; p,E))
∇pf(X; p,E)

]

= Ê

 −y

1 + exp(yf(X; p,E))

 T∑
i=1

∑
j ̸=i

qiqj(Exi − Exj )

E⊤
xi
v

 ,

thus concluding the proof.

Lemma 8 For any vector p̂, we have

−p̂⊤∇pL(E, p) = Ê

g(X, y)

 T∑
i=1

∑
j>i

(âi(X)− âj(X))qi(X)qj(X)(γi(X, y)− γj(X, y))

 ,

where âi = p̂⊤Exi for all i ∈ {1, . . . , T}.

Proof From Lemma 7, we have

∇pL(E, p) = −Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

qi(X)qj(X)(Exi − Exj )

E⊤
xi
v


= −Ê

g(X, y)

 T∑
i=1

∑
j ̸=i

qi(X)qj(X)(Exi − Exj )

 γi(X, y)


= −Ê

[
g(X, y)E⊤

X

(
Diag(qX)− qXq⊤X

)
γ(X, y)

]
,

where qX = [q1(X), . . . , qT (X)]⊤, γ(X, y) = [γ1(X, y), . . . γT (X, y)]⊤ and Diag(qX) denotes the
diagonal matrix with [Diag(qX)]i,i = qi(X).

12
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Thus, letting â = [â1, . . . , âT ] ∈ RT with âi = p̂⊤Exi , we have

−p̂⊤∇pL(E, p) = Ê
[
g(X, y)p̂⊤E⊤

X(Diag(qX)− qXq⊤X)γ(X, y)
]

= Ê
[
g(X, y)â⊤(Diag(qX)− qXq⊤X)γ(X, y)

]
= Ê

g(X, y)

 T∑
i=1

âiqi(1− qi)γi −
T∑
i=1

∑
j ̸=i

âiqiqjγj


= Ê

g(X, y)

 T∑
i=1

∑
j ̸=i

âiqiqj(γi − γj)

 (use 1− qi =
∑
j ̸=i

qj)

= Ê

g(X, y)

1

2

T∑
i=1

∑
j ̸=i

âiqiqj(γi − γj) +
1

2

T∑
j=1

∑
i ̸=j

âjqiqj(γj − γi)


= Ê

g(X, y)

1

2

T∑
i=1

∑
j ̸=i

(âi − âj)qiqj(γi − γj)


= Ê

g(X, y)

 T∑
i=1

∑
j>i

(âi − âj)qiqj(γi − γj)

 .

Lemma 9 (Convergence lemma) Let ∥pt∥2 → ∞ and suppose there exists p̂ such that, for any
ϵ > 0, there is a t̄(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E, pt), for all t ≥ t̄(ϵ). (14)

Then, if limt→∞
pt

∥pt∥2 exists, we have

lim
t→∞

pt
∥pt∥2

=
p̂

∥p̂∥2
.

Proof By the definition of the gradient flow, (14) is equivalent to

p̂⊤

∥p̂∥2
dpt
dt

≥ (1− ϵ)
p⊤t

∥pt∥2
dpt
dt

.

We note that
p⊤t

∥pt∥2
dpt
dt

=
d

dt
∥pt∥2.

Thus, by integrating both sides from [t̄(ϵ), t], we have:

p̂⊤

∥p̂∥2
(pt − pt̄(ϵ)) ≥ (1− ϵ)(∥pt∥2 − ∥pt̄(ϵ)∥2),

13
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which gives
p̂⊤pt

∥p̂∥2∥pt∥2
≥ (1− ϵ)− (1− ϵ)

∥pt̄(ϵ)∥2
∥pt∥2

+
p̂⊤pt̄(ϵ)

∥p̂∥2∥pt∥2
.

Since pt̄(ϵ), p̂ have finite norm for fixed ϵ, by taking the limit on both sides, we have

lim inf
t→∞

p̂⊤pt
∥p̂∥2∥pt∥2

≥ 1− ϵ.

As we assume that limt→∞
pt

∥pt∥2 exist and the above argument holds for any ϵ, we conclude

lim
t→∞

pt
∥pt∥2

=
p̂

∥p̂∥2
.

Lemma 10 Given a sequence X , model parameters E, p, v, and indices i∗, j s.t. xi∗ ∈ SX(p), xj ∈
X \ SX(p), the following results hold.

1. We have
1

T
≤ qi∗ ≤ 1.

2. If there exist τ > 0 such that p⊤(Exi∗ − Exj ) ≥ τ for all xi∗ ∈ SX(p), then we have

qj ≤
1

1 + exp(τ)
.

3. If there exist τ > 0 such that p⊤(Exi∗ − Exj ) ≤ τ for all xi∗ ∈ SX(p), then we have

qj ≥
1

T exp(τ)
.

Proof The upper bound on qi∗ is trivial. For the lower bound:

qi∗ =
exp
(
p⊤Exi∗

)
exp
(
p⊤Exi∗

)
+
∑

j ̸=i∗
exp
(
p⊤Exj

)
≥

exp
(
p⊤Exi∗

)
T exp

(
p⊤Exi∗

) =
1

T
.

If there exists τ > 0 such that p⊤(Exi∗ − Exj ) ≥ τ for all xi ∈ SX(p), then we have

qj =
1

1 +
∑

i ̸=j exp
(
p⊤(Exi − Exj )

)
≤ 1

1 + exp
(
p⊤(Exi∗ − Exj )

)
≤ 1

1 + exp(τ)
.

14
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If there exists τ > 0 such that p⊤(Exi∗ − Exj ) ≤ τ for all xi∗ ∈ SX(p), then we have

qi∗ =
1

1 +
∑

i ̸=j exp
(
p⊤(Exi − Exj )

)
≥ 1

1 + (T − 1) exp
(
p⊤(Exi∗ − Exj )

) (by definition of SX(p))

≥ 1

T exp(τ)
.

Appendix C. Properties after the first gradient step

Lemma 11 (Boundedness of the embeddings) For any δ > 0, let

d ≥ max

{
256,

(
2 log

|S|2

δ

)2
}
,

then with probability at least 1− δ,

max
s∈S

∥E1
s∥2 ≤ 2(1 + 2η0), ∥p1∥2 ≤ 2 + 11η0d

− 1
4 .

Proof By using (13), we have that

max
s∈S

∥E1
s∥2 ≤ max

s

(
∥E0

s∥2 +
η0
2
∥v∥2 + ∥errs∥2

)
≤ max

s∈S

(
2 +

η0
2

+ 11η0d
− 1

4

)
≤ 2 + 4η0,

and that
∥p1∥2 ≤ ∥p0∥2 + ∥errp∥2 ≤ 2 + 11η0d

− 1
4 . (15)

Lemma 12 (Upper bound on the loss) For any δ > 0, let

d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

then with probability at least 1− δ,

L(E1, p1) ≤ Ê

[
log

(
1 + exp

(
− 1

T

T∑
i=1

η0
2
yαxi +

1

22η0

))]
.

15
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Proof We first lower bound yf(X; p,E) for each pair X, y. After the first step, we have

max
s,s′

|(p1)⊤(E1
s − E1

s′)| = max
s,s′

∣∣(p0)⊤(E0
s − E0

s′) +
η0
2
(αs − αs′)(p

0)⊤v

+ err⊤p (E
1
s − E1

s′) + (errs − errs′)⊤p1
∣∣.

We bound each term separately:

max
s,s′

|(p0)⊤(E0
s − E0

s′)| ≤ 2max
s

|(p0)⊤E0
s | ≤ 2d−

1
4 ,

η0
2
(αs − αs′)|(p0)⊤v| ≤ η0|(p0)⊤v| ≤ η0d

− 1
4 ,

|err⊤p (E
1
s − E1

s′)| ≤ ∥err⊤p ∥2∥E1
s − E1

s′∥2 ≤ 44η0d
− 1

4 (1 + 2η0),

|(errs − errs′)⊤p1| ≤ 2∥p1∥2max
s

∥errs∥2 ≤ 22η0d
− 1

4

(
2 + 11η0d

− 1
4

)
,

where we have used (13). By picking d ≥ (88η20+111η0+2)8, we get maxs,s′ |(p1)⊤(E1
s −E1

s′)| ≤
d−

1
8 , which implies that, for any X and any i ∈ {1, . . . , T},

1

T
− 2d−

1
8

T
≤ qi(X) ≤ 1

T
+

2d−
1
8

T
.

Thus, we lower bound yf(X; p,E) for each pair (X, y) as

yf(X; p,E) =

T∑
i=1

qi(X)γi(X)

≥ 1

T

T∑
i=1

η0
2
yαxi −

T∑
i=1

2d−
1
8

T

η0
2
αxi +

T∑
i=1

yqi(X)v⊤(E0
xi
+ errxi)

≥ 1

T

T∑
i=1

η0
2
yαxi − d−

1
8 η0 − (1 + 2d−

1
8 )v⊤(E0

xi
+ errxi)

≥ 1

T

T∑
i=1

η0
2
yαxi − d−

1
8 η0 − 3(1 + 11η0)d

− 1
4

≥ 1

T

T∑
i=1

η0
2
yαxi −

1

22η0
,

which allows us to conclude that

L(E1, p1) = Ê [log(1 + exp(−yf(X; p,E)))]

≤ Ê

[
log

(
1 + exp

(
− 1

T

T∑
i=1

η0
2
yαxi +

1

22η0

))]
.

(16)
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Appendix D. Proofs for Section 3

D.1. Proof of Lemma 2

For simplicity, in the proof we drop the time dependency in all the variables. By picking

d ≥
(
2 log

|S|2

δ

)2

,

from (13) we have

max

{
max
s∈S

|E⊤
s v|,max

s∈S
|E⊤

s p|, |p⊤v|
}

≤ d−
1
4 ,

max

{
max
s∈S

∥Es∥2, ∥p∥2
}

≤ 2.

Thus, at initialization, we have that, for all s,

exp
(
−d−

1
4

)
≤ exp

(
p⊤Es

)
≤ exp

(
d−

1
4

)
,

which implies that, for any sequence X and any position i,

1

T + 2T
(
d−

1
4

) ≤ 1

1 + (T − 1) exp
(
2d−

1
4

) ≤ qi(X) ≤ 1

1 + (T − 1) exp
(
−2d−

1
4

) ≤ 1

T − 2T
(
d−

1
4

) ,
where we use the fact that for z ∈ [−1, 1], 1− |z| ≤ exp(z) ≤ 1 + |z|.

Furthermore, for d > 256 and for any sequence (X, y), we have

1

T
− 4d−

1
4

T
≤ qi(X) ≤ 1

T
+

4d−
1
4

T
,

and

−2d−
1
4 ≤ −Td−

1
4

T − 2Td−
1
4

≤ yf(X; p,E) ≤ Td−
1
4

T − 2Td−
1
4

≤ 2d−
1
4 .

Then,

g(X, y) ≤ 1

1 + exp
(
−2d−

1
4

) ≤ 1

2− 2d−
1
4

≤ 1

2
+ d−

1
4 ,

and similarly

g(X, y) ≥ 1

2
− d−

1
4 .
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Now we look at the gradient update of the first step. By Lemma 7, we have

−∇EsL(E, p) = Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp+

T∑
i=1

1xi=sqiv


=

1

2T
Ê

[
y

T∑
i=1

1xi=s

]
v

+
1

2
Ê

[
y

T∑
i=1

1xi=s

(
qi −

1

T

)]
v

+ Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp


+ Ê

[
y

(
g(X, y)− 1

2

) T∑
i=1

1xi=sqiv

]
,

−∇pL(E, p) = Ê

yg(X, y)

 T∑
i=1

∑
j ̸=i

qiqj(Exi − Exj )E
⊤
xi
v

 .

We note that
1

2T
Ê

[
y

T∑
i=1

1xi=s

]
v =

1

2
αsv,

and we bound the remaining error terms.
We have that ∥∥∥∥∥12 Ê

[
y

T∑
i=1

1xi=s

(
qi −

1

T

)]
v

∥∥∥∥∥
2

≤ d−
1
4 ,

and∥∥∥∥∥Ê
[
yg(X, y)

 T∑
i=1

∑
j ̸=i

(1xi=s − 1xj=s)qiqj

E⊤
xi
vp


+ y

(
g(X, y)− 1

2

) T∑
i=1

1xi=sqiv

]∥∥∥∥∥
2

≤ 10d−
1
4 .

Furthermore, we also have that
∥∇pL(E, p)∥2 ≤ 8d−

1
4 .

Thus, the desired claim follows.

D.2. Proof of Lemma 3

Proof We first show that, if (9) is feasible, then the solution is unique. Indeed, assume by con-
tradiction that p1, p2 are two different solutions of (9). Clearly, p1 and p2 have the same norm, so

18
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p⊤1 p2
∥p1∥2∥p2∥2 ̸= 1. Then, any convex combination of p1, p2 gives a feasible solution with a strictly
smaller norm, which is a contradiction.

Next, we show that (9) is always feasible. To see this, by definition, there exists some τ such that

p⊤◦ (Es − Es′) ≥ τ, ∀s ∈ SX(p◦), ∀s′ ∈ SX(p◦), ∀X ∈ Xn.

Then, p◦
τ is a feasible solution of (9) which concludes the proof of uniqueness.

To characterize p∗(p◦), we first note that (9) can be equivalently written as:

argmin
p

1

2
∥p∥22

s.t. p⊤(Es − Es′) ≥ 1, ∀s ∈ SX(Pp◦), ∀s′ ∈ SX(Pp◦), ∀X ∈ Xn.

(17)

Now we characterize the solution of (17) explicitly. First of all, we can rewrite the constraints as

1N −Mp ≤ 0.

Then we can write the Lagrangian of (17) as

L(p, λ) =
1

2
∥p∥22 + λ⊤(1N −Mp),

where λ ∈ RN and p is a KKT point if

∇pL(p, λ) = p−M⊤λ = 0,

∇λL(p, λ) = 1N −Mp = 0.

Since the objective function is convex and the constraints are affine, the global optimum is
achieved at the KKT point, which satisfies Mp = 1N . Thus, if there exists a p satisfying this
condition, we can rewrite (17) as

argmin
p

1

2
∥p∥22

s.t. Mp = 1N ,

whose solution is
p̂ = M †1N .

It remains to show that there exists a feasible p. Since d > |S|+2, we have that, with high-probability,
E0 is full rank. Furthermore, E1 = E0 +∆ and each row of ∆ is in the subspace generated by v
and p0. Thus, we can pick p̂ ⊥ v, p0, so that

E1p̂ = E0p̂.

Then, we define a ∈ R|S| such that ai = 1 for all i ∈
⋃

X SX(p◦), and ai = 0 otherwise. Let

E0p̂ = a.

Since d > |S| and E0 has full row rank, there exists a non-zero p̂ that solves the above equation,
which finishes the proof.
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D.3. Proof of Theorem 5

We prove each part separately. We first show that limt→∞ ∥pt∥2 = ∞.

Lemma 13 Under Assumption 4, for any δ > 0, by picking

d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, |S|+ 3

}
,

with probability at least 1− δ, we have limt→∞ ∥pt∥2 = ∞.

Proof It is sufficient to show that there exists a non-zero finite-norm p̂, such that for any finite norm
p,

p̂⊤∇pL(E1, p) ̸= 0.

Indeed, the above condition means that there is no stationary point for any finite-norm p. For
gradient flow, we have that

lim
t→∞

∇pL(E1, pt) = 0,

which by contradiction implies the desired result.
Now we construct such p̂. Since d > |S|+ 2, we have that with high-probability E0 is full rank.

Furthermore, E1 = E0 +∆ and each row of ∆ is in the subspace generated by v and p0. Thus, we
can pick p̂ ⊥ v, p0, so that

E1p̂ = E0p̂.

Without loss of generality, let x1 be an important token in a positive sequence Xk, i.e., γ1(Xk) ≥ η0
4nT .

Then, we define a ∈ R|S| such that a1 = 1 and ai = 0 for all i ̸= 1. Let

E0p̂ = a.

Since d > |S| and E0 has full row rank, there exists a non-zero p̂ that solves the above equation. By
Lemma 8, we have that, for any p,

−p̂⊤∇pL(E1, p) = Ê

g(X, y)

 T∑
i=1

∑
j>i

(ai − aj)qiqj(γi − γj)


= g(Xk, yk)

∑
j>1

q1(Xk)qj(Xk)
η0
4nT

> 0,

which concludes the proof.

Next, we show that, if the directional limit exists, then it must select all completely posi-
tive/negative tokens.

Lemma 14 Under Assumption 4, for any δ > 0, by picking

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

with probability at least 1− δ, if p∞ = limt→∞
pt

∥pt∥2 exists, then p∞ satisfies

sX∗ ∈ SX(p∞), for all X ∈ Xn,

where sX∗ denotes the unique completely positive/negative token in the sequence X .
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Proof We prove the lemma by contradiction. W.l.o.g., assume by contradiction that there exists
X ∈ Xn cointaining the important token x1 s.t. x1 /∈ SX(p∞). We show that there exists t̄ such that,
for all t ≥ t̄,

L(E1, pt) > L(E1, p1),

which contradicts the fact that the gradient flow always decreases the loss.
To see this, we first note that by the definition of SX(p∞), there exists some τ > 0 independent

of t such that
min
j ̸=1

p⊤∞(Ex1 − Exj ) = −τ.

W.l.o.g, we assume that x2 is the token that achieves the minimum.
As limt→∞ ∥pt∥2 = ∞ and limt→∞

pt
∥pt∥2 = p∞, we have that, for any µ > 0, R > 0, there

exists a large enough t̄ such that

∥pt∥2 ≥ 2R,

∥∥∥∥ pt
∥pt∥2

− p∞

∥∥∥∥
2

≤ µ, for all t ≥ t̄.

Thus, we have:

p⊤t
∥pt∥2

(Ex1 − Ex2) = p⊤∞(Ex1 − Ex2) +

(
pt

∥pt∥2
− p∞

)⊤
(Ex1 − Ex2)

≤ −τ + 2µ(4η0 + 2)2,

where we have used the result of Lemma 11. Thus, by picking µ = τ
4(4η0+2)2

, we have

p⊤t
∥pt∥2

(Ex1 − Ex2) ≤ −τ

2
,

which implies that
p⊤t (Ex1 − Ex2) ≤ −τR.

Next, we upper bound yf(X; pt,E
1). We first note that

q1
q2

= exp
(
p⊤t (Ex1 − Ex2)

)
≤ exp(−τR),

which gives
q1 ≤ exp(−τR).

Note that

yf(X; pt,E
1) =

T∑
i=1

qiγi

≤ exp(−τR)γ1 +max
j ̸=1

γj

≤ exp(−τR)
(η0
2

+ (1 + 11η0)d
− 1

4

)
+ (1 + 11η0)d

− 1
4 .

Thus, by picking R ≥ log d
4τ , we have

yf(X; pt,E
1) ≤

(
3

2
+

23

2
η0

)
d−

1
4 ≤ 3

4
d−

1
8 ,
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which implies a lower bound on the loss:

L(E1, pt) ≥
1

n
log
(
1 + exp

(
−yf(X; pt,E

1)
))

≥ 1

n
log

(
1 + exp

(
−3

4
d−

1
8

))
≥ 1

2n
, (18)

where we used that d ≥ 256 in the last passage. Under Assumption 4, by Lemma 2, we have that
yαxi ≥ 1/(nT ) if xi is either the completely positive or the completely negative token in X , and
otherwise yαxi = 0. Hence, given that each sequence X contains a completely positive or negative
token, we have that

1

T

T∑
i=1

yαxi ≥
1

nT 2
.

As η0 > 4n2T 2 >
√

2nT 2/11, by applying Lemma 12, we obtain

L(E1, p1) ≤ log
(
1 + exp

(
− η0
4nT 2

))
≤ log(1 + exp(−n)) ≤ exp(−n) <

1

2n
,

which gives a contradiction and concludes the proof.

Finally, we show that for each possible selection, if pt converges in direction, it must converge
to the max-margin solution. In particular, we first prove the following lemma which gives an
approximation to the directional gradient of the locally optimal selection. To do so, we define the
secondary selection set and the locally optimal selection as follows:

Definition 15 Given a vector p, for each sequence X, denote by S2
X(p) the secondary selection set

given by
S2
X(p) = argmax{s : p⊤Es, s /∈ SX(p)}. (19)

We also denote by S<
X(p) the set of tokens that are not chosen in the first and in the second place, i.e.,

S<
X(p) = X \ (SX(p)

⋃
S2
X(p)). (20)

Definition 16 Given a vector p, we say that p is locally optimal if for every (X, y) pair, we have∑
i∈SX(p)

(γi(X, y)− γj(X, y)) ≥ µ > 0, for all j ∈ S2
X(p),

for some constant µ that does not depends on p.

In the definition above and for the rest of this appendix, to help readability, we will abuse notation
by letting indices (e.g., i, j above) also denote the corresponding tokens (e.g., xi, xj above).

Lemma 17 Let p be a unit-norm vector and p = Rp for some positive constant R. Suppose p is
a locally optimal direction as defined in Definition 16 with some µ that does not depends on R.
Moreover, suppose there exists a constant τ1 that may depend on p, η0, n, T, d but not on R, such
that:

min
X

{p⊤(Es − Es′), ∀s ∈ SX(p),∀s′ ∈ S2
X(p)} ≥ τ1,

min
X

{p⊤(Es − Es′), ∀s ∈ S2
X(p),∀s′ ∈ S<

X(p)} ≥ τ1.
(21)
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Then, for any ϵ > 0, for any p̂ ≊ p such that ∥p̂∥2 does not depend on R and

min
X

{p̂⊤(Es − Es′),∀s ∈ SX(p̂),∀s′ ∈ X \ SX(p̂)} ≥ τ2,

there exists R large enough such that:

− p̂⊤∇L(E1, p) ≤ (1 + ϵ)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 ,

− p̂⊤∇L(E1, p) ≥ (1− ϵ)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 ,

where âi(X) = p̂⊤Exi , âj(X) = p̂⊤Exj and

hi,j(X, y, p) = g(X, y)qi(X)qj(X)(γi(X, y)− γj(X, y)).

Proof By Lemma 8, we can write the directional gradient as follows:

−p̂⊤∇pL(E1, p) = Ê

 T∑
i=1

∑
j>i

(âi(X)− âj(X))hi,j(X, y, p))


= Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

 (B0)

+ Ê

 ∑
i∈SX(p)

∑
j∈S<

X(p)

(âi(X)− âj(X))hi,j(X, y, p))

 (B1)

+ Ê

 ∑
i∈X\SX(p)

∑
j>i:j∈X\SX(p)

(âi(X)− âj(X))hi,j(X, y, p))

 . (B2)

The rest of the proof is to show that

− C1 exp(−τ1R)(B0) ≤ (B1) ≤ C1 exp(−τ1R)(B0),

− C2 exp(−τ1R)(B0) ≤ (B2) ≤ C2 exp(−τ1R)(B0),

for some C1, C2 > 0 that do not depend on R. Then, by taking R large enough, we obtain the desired
result.

First, we simplify (B0). Note that, for all i, i0 ∈ SX(p), we have that âi(X) = âi0(X). Hence,
by switching the order of i, j, we obtain∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, p) =
∑

j∈S2
X(p)

(âi0(X)− âj(X))
∑

i∈SX(p)

hi,j(X, y, p)

= g(X, y)
∑

j∈S2
X(p)

(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)),
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for any i0 ∈ SX(p). Since p is a locally optimal direction, we have∑
i∈SX(p)

(γi(X, y)− γj(X, y)) ≥ µ, for all j ∈ S2
X(p).

Now, we compare (B1) and (B0). By the exact same reason above, we can rewrite∑
i∈SX(p)

∑
j∈S<

X(p)

(âi(X)− âj(X))hi,j(X, y, p)

= g(X, y)
∑

j∈S<
X(p)

(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)),

for any i0 ∈ SX(p), and we compare to (B0) term-by-term. Namely, for any X , j ∈ S2
X(p) and

k ∈ S<
X(p), we have:

|âi0(X)− âk(X)|
âi0(X)− âj(X)

≤
∥p̂∥2∥Exi0

− Exj∥2
τ2

≤ 2∥p̂∥2maxs ∥Es∥2
τ2

:= C3, (22)

qk(X)

qj(X)
= exp(ak(X)− aj(X)) ≤ exp(−τ1R), (23)∑

i∈SX(p) |γi(X, y)− γk(X, y)|∑
i∈SX(p)(γi(X, y)− γj(X, y))

≤ 2T maxs |γs|
µ

≤ 2T maxs ∥Es∥2
µ

:= C4, (24)

which implies that, for any X , j ∈ S2
X(p) and k ∈ S<

X(p),

|âi0(X)− âk(X)|qi0(X)qk(X)
∑

i∈SX(p)

|γi(X, y)− γk(X, y)|

≤ exp(−τ1R)C3C4(âi0(X)− âj(X))qi0(X)qj(X)
∑

i∈SX(p)

(γi(X, y)− γj(X, y)).

Thus, we get that:
|(B1)| ≤ exp(−τ1R)TC3C4|(B0)|.

Next, we compare (B2) and (B0). Take any i′ ∈ X \ SX(p), k > i′ ∈ X \ SX(p), i0 ∈
SX(p), j ∈ S2

X(p). We compare

(âi′(X)− âk(X))hi′,k(X, y, p)

with each term in (B1). We note that the bounds on âi′ (X)−âk(X)
âi0 (X)−âj(X) and |γi′ (X)−γk(X)|∑

i∈SX (p)(γi(X,y)−γj(X,y)) are

the same as those in (22) and (24). Furthermore,

qi′qk
qi0qj

≤ exp(−τ1R),

which gives that
|(B2)| ≤ T 2 exp(−τ1R)C3C4|(B0)|,

thus concluding the proof.
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Lemma 18 Under Assumption 4, for any δ > 0, by picking

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8

}
,

with probability ≥ 1− δ over the initialization, if p∞ = limt→∞
pt

∥pt∥2 exists, then p∞ ∈ P∗(p∞).

Proof We prove the lemma by contradiction. We first assume that there exists p∞ such that
p∞ /∈ P∗(p∞) and p∞ = limt→∞

pt
∥pt∥2 . Then, we show that there exists p̂ ∈ P∗(p∞) such that, for

any ϵ > 0, there is t̄(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E1, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E1, pt), for all t ≥ t̄(ϵ).

As a consequence, by Lemma 9, we have that p∞ = p̂
∥p̂∥2 , which gives a contradiction.

For the rest of the proof, we fix any ϵ > 0 and denote R = ∥pt∥2. We define pt =
pt∥p̂∥2
∥pt∥2 , and

we equivalently show that:

−p̂⊤∇pL(E1, pt) ≥ −(1− ϵ)pt∇pL(E1, pt). (25)

To prove this, we first note that since p∞ /∈ P∗(p∞), for all p̂
∥p̂∥2 ∈ P∗(p∞), there exists τ0

independent of R such that
∥p̂− p∞∥p̂∥2∥2 ≥ τ0.

Thus, by the definition of P∗(p∞), there exists X0 ⊆ Xn such that for each sequence X ∈ X0,
we can find a pair of indices (i, j) with i ∈ SX(p∞), j ∈ X \ SX(p∞) violating the margin, i.e.,

(∥p̂∥2p∞)⊤(Exi − Exj ) ≤ 1− 3τ,

for some τ < 1
6 that does not depend on R. With a slight abuse of notation, we define τ as

τ =
1

3
min{min

X∈X0

{1− (∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ SX(p∞), j ∈ S2
X(p∞)},

min
X∈Xn

{(∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ SX(p∞), j ∈ S2
X(p∞)},

min
X∈Xn

{(∥p̂∥2p∞)⊤(Exi − Exj ), i ∈ S2
X(p∞), j ∈ S<

X(p∞)}}.

This means that, for all X ∈ Xn and for all (i, j) pairs such that i ∈ SX(p∞), j ∈ S2
X(p∞), we have

(∥p̂∥2p∞)⊤(Exi − Exj ) ≥ 3τ ;

for all pairs (i, j) such that i ∈ S2
X(p∞), j ∈ S<

X(p∞), we have

(∥p̂∥2p∞)⊤(Exi − Exj ) ≥ 3τ ;

and for all X ∈ X0, i ∈ SX(p∞), j ∈ S2
X(p∞), we have

(∥p̂∥2p∞)⊤(Exi − Exj ) ≤ 1− 3τ,
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with some τ that does not depend on R.
Now, we compute the overlap with pt. For all X and (i, j), we have

pt
⊤(Exi − Exj ) = (∥p̂∥2p∞)⊤(Exi − Exj ) + (pt − ∥p̂∥2p∞)⊤(Exi − Exj ).

We upper bound

|(pt − ∥p̂∥2p∞)⊤(Exi − Exj )| ≤ ∥p̂∥2
∥∥∥∥ pt
∥pt∥2

− p∞

∥∥∥∥
2

∥Ex1 − Ex2∥2,

and since ∥p̂∥2, ∥Ex1 − Ex2∥2 are finite, we have

lim
t→∞

|(pt − ∥p̂∥2p∞)⊤(Exi − Exj )| = 0.

Thus, we can pick t1, such that for t ≥ t1, we have

|(pt − ∥p̂∥2p∞)⊤(Exi − Exj )| ≤ τ,

which implies that, for all X ∈ Xn and for all (i, j) pairs such that i ∈ SX(p∞), j ∈ S2
X(p∞), we

have
pt

⊤(Exi − Exj ) ≥ τ ;

for all (i, j) pairs such that i ∈ S2
X(p∞), j ∈ S<

X(p∞), we have

pt
⊤(Exi − Exj ) ≥ τ ;

and for all X ∈ X0, i ∈ SX(p∞), j ∈ S2
X(p∞), we have:

pt
⊤(Exi − Exj ) ≤ 1− τ,

for some τ that does not depend on R.
Next, we show that pt is a locally optimal solution as per Definition 16. By Lemma 13, p∞

selects all the completely positive/negative tokens. Thus, as pt ≊ p∞, pt also selects such tokens, the
rest being irrelevant by Assumption 4. Hence, for any pair (X, y) and for any j ∈ X \ SX(pt), we
have: ∑

i∈SX(pt)

(γi(X, y)− γj(X, y)) ≥ η0
4nT

,

by picking d large enough (as per the hypothesis of the lemma). By construction, p̂ ≊ pt, ∥p̂∥2 does
not depends on R and, moreover, for any X ,

p̂⊤(Exi − Exj ) ≥ 1, for all i ∈ SX(p̂), j ∈ X \ SX(p̂).

By applying Lemma 17 on both p̂ and pt, we have that for any ϵ1 > 0 there exist t2 s.t. for all
t ≥ max{t1, t2}, we have

− p̂⊤∇pL(E1, pt) ≥ (1− ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)

 ,

− pt
⊤∇pL(E1, pt) ≤ (1 + ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 ,
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where ai(X), aj(X) are defined analogously to âi(X), âj(X) by replacing p̂ with pt.
Now, we further show that, for any ϵ2 > 0, there exist t3 such that for all t ≥ t3,

Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)


≤ (1 + ϵ2)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 .

To see this, we use the same idea as in the proof of Lemma 17. We can write

Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)


= ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 (A0)

+ ÊX′∈Xn\X0

 ∑
i∈SX′ (p)

∑
j∈S2

X′ (p)

(ai(X
′)− aj(X

′))hi,j(X
′, y′, pt)

 , (A1)

and it is sufficient to show that
(A1) ≤ ϵ2(A0).

To prove this, we compare term-by-term. Let X ∈ X0, X
′ ∈ Xn \ X0, j ∈ S2

X(pt), j
′ ∈ S2

X(pt),
and recall that:∑

i∈SX(pt)

(ai(X)− aj(X))hi,j(X, y, pt)

= g(X, y)(ai0(X)− aj(X))qi0(X)qj(X)
∑

i∈SX(pt)

(γi(X, y)− γj(X, y)),

∑
i∈SX′ (pt)

(ai(X
′)− aj′(X

′))hi,j′(X
′, y′, pt)

= g(X ′, y′)(ai1(X
′)− aj′(X

′))qi1(X
′)qj′(X

′)
∑

i∈SX′ (pt)

(γi(X
′, y′)− γj′(X

′, y′)),

for any i0 ∈ SX(pt), i1 ∈ SX′(pt). Note that

g(X ′, y′)

g(X, y)
≤

maxX,y g(X, y)

minX,y g(X, y)
≤ max

X,y
(1 + exp(yf(X))) ≤ (1 + exp(η0)) := C5.

By using the same argument as in (22) and (24), we have

ai1(X
′)− aj′(X

′)

ai0(X)− aj(X)
≤ C3,∑

i∈SX′ (pt)
(γi(X

′, y′)− γj′(X
′, y′))∑

i∈SX(pt)
(γi(X, y)− γj(X, y))

≤ C4.
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Finally, we need to upper bound:
qi1(X

′)qj′(X
′)

qi0(X)qj(X)
.

We note that

ai1(X
′)− aj′(X

′) ≥ R/∥p̂∥2,
ai0(X)− aj(X) ≤ (1− τ)R/∥p̂∥2,

where ai(X) = p⊤t Exi . Thus by Lemma 10, we have:

qi0(X) ≥ 1

T
, qj(X) ≥ 1

T exp((1− τ)R/∥p̂∥2)
, qi1(X

′) ≤ 1, qj′(X
′) ≤ 1

exp(R/∥p̂∥2)
,

which implies that
qi1(X

′)qj′(X
′)

qi0(X)qj(X)
≤ T 2 exp(−τR/∥p̂∥2).

Thus, for each X ∈ X0, X
′ ∈ Xn \ X0, j ∈ S2

X(pt), j
′ ∈ S2

X(pt), we have∑
i∈SX′ (p)

(ai(X
′)−aj′(X

′))hi,j′(X
′, y′, pt) ≤ C6 exp(−τR/∥p̂∥2)

∑
i∈SX(p)

(ai(X)−aj(X))hi,j(X, y, pt).

Thus by picking large enough t3 which gives large enough R, we have:

(A1) ≤ ϵ2(A0).

This allows us to conclude that

−p̂⊤∇pL(E1, pt) ≥ (1− ϵ1)Ê

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)


≥ (1− ϵ1)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(âi(X)− âj(X))hi,j(X, y, pt)

 ,

−pt
⊤∇pL(E1, pt) ≤ (1 + ϵ1)(1 + ϵ2)ÊX∈X0

 ∑
i∈SX(p)

∑
j∈S2

X(p)

(ai(X)− aj(X))hi,j(X, y, pt)

 .

Note that, for each X ∈ X0,

âi(X)− âj(X) ≥ 1, ai(X)− aj(X) ≤ 1− τ,

which gives that

−p̂⊤∇pL(E1, pt) ≥ − 1− ϵ1
(1 + ϵ1)(1 + ϵ2)(1− τ)

pt
⊤∇pL(E1, pt).

Since ϵ1, ϵ2 can be arbitrarily small, the proof is complete.
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D.4. Proof of Lemma 6

Proof If p̂ selects all the tokens, then p̂⊤Exi = p̂⊤Exj for all xi, xj ∈ X and for all X ∈ Xn. Thus,
by Lemma 8, p̂⊤∇pL(E, p) = 0 for any p, which gives the desired result.

D.5. Statement of Lemma 19

Lemma 19 Under Assumption 4, for any δ > 0, assume that

η0 ≥ 4n2T 2, d ≥ max

{
256,

(
2 log

|S|2

δ

)2

, (88η20 + 111η0 + 2)8, |S|+ 3

}
. (26)

holds. Let p̂ be the solution of the max-margin problem (9) that only selects the completely posi-
tive/negative tokens, i.e.,

p̂ =argmin
p

∥p∥2, s.t. p⊤(EsX∗
− Es) ≥ 1, ∀s ∈ X \ {sX∗ }, ∀X ∈ Xn,

where sX∗ denotes the unique completely positive/negative token in the sequence X . Assume that
p∞ := limt→∞

pt
∥pt∥2 exists and that, for any p̂′ solving (9) with a different selection, ∥p̂∥2 <

(1− µ)∥p̂′∥2 for some constant µ that does not depend d. Then, by taking d ≥
(
8T (1−µ)

µη0

)4
, we have

that p∞ = p̂
∥p̂∥2 with probability at least 1− δ.

The sufficient condition of the result above requires the max-margin direction that does not
select irrelevant tokens to have a larger margin than any other max-margin solution associated to
a different token selection. We expect this to be the case e.g. for datasets where all the completely
positive/negative tokens have the same αs. In fact, given the structure of the context embeddings
in (5), the max-margin solution p̂ is expected to satisfy p̂⊤v ≈ 0, p̂⊤Es ≈ 1, p̂⊤Es′ ≈ 0 for
all s ∈ SX(p̂) and s′ ∈ SX(p̂). Since the token embeddings at initialization are approximately
orthogonal to each other, p̂ ≈

∑
s∈SX(p)E

0
s , meaning that ∥p̂∥2 ≈

√
|SX(p)|, which implies that

the sufficient condition holds.

D.6. Proof of Lemma 19

Proof Let p̂′ be the max-margin solution of (9) with a different selection. By Theorem 5, we
have that, for all X, sX∗ ∈ SX(p̂′). We denote by iX∗ the index of sX∗ . Assume by contradiction
p∞ = p̂′

∥p̂′∥2 . We will now show that this implies the following statement: for any ϵ > 0, there is a
t(ϵ) ensuring

− p̂⊤

∥p̂∥2
∇pL(E, pt) ≥ −(1− ϵ)

p⊤t
∥pt∥2

∇pL(E, pt), for all t ≥ t(ϵ). (27)

Then, by Lemma 9, we have that p∞ = p̂
∥p̂∥2 , which gives a contradiction.

As in the proof of Lemma 18, we define pt =
pt

∥pt∥2 ∥p̂∥2. Thus, (27) is equivalent to

−p̂⊤∇pL(E, pt) ≥ −(1− ϵ)pt
⊤∇pL(E, pt).
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First of all, since p̂, p̂′ are two max-margin solutions, by Lemma 3 we have that all the constraints
are tight, that is:

p̂⊤(EsX∗
− Es) = 1, ∀s ∈ X \ sX∗ , ∀X ∈ Xn,

(p̂′)⊤(Es − Es′) = 1, ∀s ∈ SX(p̂′), ∀s′ ∈ X \ SX(p̂′), ∀X ∈ Xn,

which implies that

p̂′⊤∥p̂∥2
∥p̂′∥2

(Es − Es′) =
∥p̂∥2
∥p̂′∥2

= 1− µ < 1, ∀s ∈ SX(p̂′), ∀s′ ∈ X \ SX(p̂′), ∀X ∈ Xn.

As ∥pt∥2 = ∥p̂∥2 < ∥p̂′∥2, pt violates the max-margin condition. Moreover, as limt→∞ pt =
p̂′⊤∥p̂∥2
∥p̂′∥2 , for any ϵ1 ∈ (0, µ), there exists a t1 ensuring the following for all t ≥ t1: for all (i, j) pairs

such that i ∈ SX(p∞), j ∈ S2
X(p∞), we have

pt
⊤(Exi − Exj ) ≤ 1− µ+ ϵ1 ≤ 1.

By applying Lemma 17 to pt, we obtain that, for any ϵ2 > 0, there exists a t2 ensuring that, for
all t ≥ t2,

−pt
⊤∇pL(E1, pt) ≤ (1 + ϵ2)Ê

g(X, y)
∑

i∈SX(pt)

∑
j∈S2

X(pt)

(ai(X)− aj(X)qi(X)qj(X)(γi(X)− γj(X)))


= (1 + ϵ2)Ê

g(X, y)
∑

j∈S2
X(pt)

(aiX∗ (X)− aj(X)qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


+ (1 + ϵ2)Ê

g(X, y)
∑

i∈SX(pt),i ̸=iX∗

∑
j∈S2

X(pt)

(ai(X)− aj(X)qi(X)qj(X)(γi(X)− γj(X)))

 .

We then compute by Lemma 8 that

−p̂⊤∇pL(E1, pt) = Ê

g(X, y)
∑

j∈X\SX(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


≥ Ê

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


= (1− µ)Ê

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


+ µÊ

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))

 ,

where in the first equality we use the fact that, for all j, j′ ̸= iX∗ , âj′(X) − âj(X) = 0, and in the
second inequality we use the fact that all the terms in the summand are positive.
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We note that:

(1 + ϵ2)Ê

g(X, y)
∑

j∈S2
X(pt)

(aiX∗ (X)− aj(X)qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


<(1− µ)Ê

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))

 ,

as
âiX∗ (X)− âj(X) = 1, aiX∗ (X)− aj(X) ≤ 1− µ− ϵ1.

It remains to show that

µÊ

g(X, y)
∑

j∈S2
X(pt)

(âiX∗ (X)− âj(X))qiX∗ (X)qj(X)(γiX∗ (X)− γj(X)))


≥(1 + ϵ2)Ê

g(X, y)
∑

i∈SX(pt):i ̸=iX∗

∑
j∈S2

X(pt)

(ai(X)− aj(X))qi(X)qj(X)(γi(X)− γj(X)))

 .

(28)

We have that, for each i ∈ SX(pt) : i ̸= iX∗ , j ∈ S2
X(pt),

|γi(X)− γj(X)| ≤ 2d−1/4, γiX∗ (X)− γj(X) ≥ η0
4
.

As d ≥
(
8T (1−µ)

µη0

)4
, (28) holds and the proof is complete.

Appendix E. Numerical experiments

To support our theoretical findings, we showcase the correlation of the embeddings with the ⟨cls⟩
embedding p and the output vector v, having trained all the parameters with gradient descent until
convergence. We consider different datasets (synthetic data in Figure 2; IMDB/Yelp datasets in
Figures 1 and 3) and different architectures (one-layer model (1) in Figures 2 and 3; two-layer model
(32) in Figure 1). Taken together, the experiments display an excellent agreement with our theory
going beyond the one-layer architecture (1) and also beyond the requirements on the data-generating
process. Specifically, the trained embeddings capture the importance of the corresponding tokens: the
dot-product with v is proportional to how frequently the token appears in positive sequences rather
than in negative ones, and the dot-product with p is proportional to the modulus of such frequency.
We detail below the experimental design.

Synthetic data. Let us define the data-generating process for the synthetic experiments in Figure 2.
The data is generated according to a K-level model. Namely, the vocabulary set S is partitioned as

S = S̃ ∪
{
S−1
k

}K
k=1

∪
{
S+1
k

}K
k=1

. (29)
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Figure 2: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities for synthetic
data sampled according to (30). We consider the one-layer attention model in (1) with
all parameters trained until convergence. The point cloud around zero corresponds to the
tokens in the irrelevant set.

Here, S̃ contains irrelevant tokens appearing in both positive and negative contexts with equal
probability, while S+1

k and S−1
k (for k ∈ {1, . . . ,K}) contain tokens appearing mostly in positive

and negative contexts, respectively. Formally, define the importance levels δ̃, δ1, . . . , δK > 0. Then,
given the sequence label y ∈ {−1,+1} and s ∈ S, we sample the tokens from the vocabulary as

p(s|y) =


1−δ̃
|S̃| , s ∈ S̃,
δ̃(1−δk)∑K
k=1 |S

y
k |
, s ∈ Sy

k ,

δ̃δk∑K
k=1 |S

¬y
k |

, s ∈ S¬y
k ,

(30)

where ¬ denotes the binary inversion, i.e., ¬(+1) = −1 and ¬(−1) = +1. The law (30) implies the
following posterior distribution:

p(y|s) =


1/2, s ∈ S̃,
1− δk, s ∈ Sy

k ,

δk, s ∈ S¬y
k .

(31)

From (31), it is clear that (i) S̃ contains irrelevant tokens as the posterior is uniform, and (ii) δk
quantifies the importance of the tokens in S±1

k by skewing the posterior to be (δk, 1 − δk). For
the experiments in Figure 2, we select the following hyper-parameters: |S| = 2048, K = 8 and
sequence length T = 256; |S+1

k | = |S−1
k | with |S+1

k | = 4 + 2k−1, and |S̃| = 964; δ̃ = 0.05 and
{δk}Kk=1 = {0.45, 0.35, 0.3, 0.25, 0.2, 0.1, 0.05, 0.02}.

Figure 2 shows a clear separation between positive and negative tokens (right plot with the
dot-product ⟨Exi , v⟩), and the selection mechanism (⟨cls⟩ token) assigns high weights to tokens that
have larger importance δk (left plot with the dot-product ⟨Exi , p⟩).
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Figure 3: Dot-product of token embeddings with ⟨cls⟩ embedding p and regression coefficients v, as
a function of the token-wise difference in posterior for IMDB dataset (top row) and Yelp
dataset (bottom row). We consider the one-layer attention model in (1) with all parameters
trained until convergence.

IMDB and Yelp datasets. The IMDB dataset1 consists of 50000 reviews of average length 239
words per review, associated to either a positive or a negative sentiment. Yelp reviews2 provide
a much larger selection. To align the data size and sequence length with the IMDB dataset, we
randomly subsample a portion of the Yelp dataset constrained on the sequence length, i.e., we select
reviews which have at least 1000 and not more than 1500 characters. In addition, Yelp reviews
provide a five-star ranking, which we convert to the binary sentiment based on the following rule:
1/2 stars reviews are assigned label −1; 4/5 star reviews are assigned label +1; neutral reviews, i.e.,
3-star score, are removed. We adhere to a typical preprocessing pipeline for both datasets: we start by
cleaning the data from punctuation symbols and omitting the stop-words, followed by an application
of stemming; and we use the Bert tokenizer from Hugging Face3 to tokenize sequences. Tokens that
appear less than 50 times are purged.

The numerical simulations for both datasets are reported in Figure 3, which displays a phe-
nomenology similar to that obtained for synthetic data in Figure 2, thus providing additional ground-
ing for our theoretical claims.

1. https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
2. https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
3. https://huggingface.co/google-bert/bert-base-uncased
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Figure 4: Dot-product of token embeddings with ⟨cls⟩ embedding p (left) and regression coefficients
v (right), as a function of the token-wise difference in posterior probabilities, for the
two-layer attention model (32) trained on the Yelp dataset.

Two-layer model. We also consider the following two-layer model:

E′
X = LayerNorm(Softmax(EXE⊤

X)EX +EX), f(X; p,E) = Softmax(p⊤(E′
X)⊤)E′

Xv,

(32)

which includes both a skip connection and the layer-norm. We note that, for both IMDB and Yelp
data, the model in (32) achieves significantly smaller loss values at convergence (of the order of
10−5, in contrast to the order of 10−1 achieved by the model in (1)). However, even if this model is
more complex than the one analyzed in Section 3, the results in Figure 1 are still remarkably similar
to those in Figures 2 and 3.

We note that all plots consider on the x-axis the difference in posterior probabilities

p(1|Exi)− p(0|Exi) =

∑
(X,y)∈D y

∑T
i=1 1xi=s∑

(X,y)∈D
∑T

i=1 1xi=s

(33)

in place of the quantity αs defined in (3). In fact, while the quantity in (3) appears naturally from
the analysis of gradient descent, the difference in posterior probabilities provides better visuals for
real data (IMDB and Yelp). The difference between (3) and (33) lies in the normalization used:
the posterior difference in (33) is the discrepancy between counts of the token xi in positive and
negative sentences normalized by the total number of occurrences of xi, while the quantity in (33)
normalizes the discrepancy by the total number of tokens nT in the datasets. For synthetic data
sampled according to (30), due to the uniform nature of the sampling procedure, all tokens appear
the same number of times. Thus, both quantities are the same up to a fixed scaling and, thus, they are
equivalent.

Additional details on hyperparameters. For all numerical simulations, we use the AdamW
optimizer from torch.optim, and we reduce the learning rate in a multiplicative fashion by a
factor γ = 0.1 at epochs 100 and 200, i.e.,

LRnew = LRold · γ.
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We adhere to the batch size of 128 and fix the embedding dimension to 2048. In the experiments
on IMDB and Yelp datasets, the hyperparameters do not differ between the two-layer model and
the one-layer model. We set the number of training epochs to 500, the learning rate to 0.01, and the
weight decay to 10−8. In the experiments on synthetic data, we set the number of training epochs to
196, the learning rate to 10−4, and the weight decay to 10−4.
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