BUILD-BENCH: Benchmarking LLLM Agents on
Compiling Real-World Open-Source Software

Zehua Zhang, Ati Priya Bajaj, Divij Handa, Siyu Liu, Arvind S Raj, Hongkai Chen,
Hulin Wang, Yibo Liu, Zion Leonahenahe Basque, Souradip Nath, Vishal Juneja,

Nikhil Chapre, Yan Shoshitaishvili, Adam Doupé, Chitta Baral, Ruoyu Wang
School of Computing and Augmented Intelligence
Arizona State University
Tempe, AZ 85281, USA
{zzhan645, abajaj7, dhanda, chitta, fishw}@asu.edu

Abstract

Automatically compiling open-source software (OSS) projects is a vital, labor-
intensive, and complex task, which makes it a good challenge for LLM Agents.
Existing methods rely on manually curated rules and workflows, which cannot
adapt to OSS that requires customized configuration or environment setup. Recent
attempts using Large Language Models (LLMs) used selective evaluation on a
subset of highly rated OSS, a practice that underestimates the realistic challenges
of OSS compilation. In practice, compilation instructions are often absent, de-
pendencies are undocumented, and successful builds may even require patching
source files or modifying build scripts. We propose a more challenging and realistic
benchmark, BUILD-BENCH, comprising OSS that are more diverse in quality,
scale, and characteristics. Furthermore, we propose a strong baseline LLM-based
agent, OSS-BUILD-AGENT, an effective system with enhanced build instruction
retrieval module that achieves state-of-the-art performance on BUILD-BENCH and
is adaptable to heterogeneous OSS characteristics. We also provide detailed analy-
sis regarding different compilation method design choices and their influence to
the whole task, offering insights to guide future advances. We believe performance
on BUILD-BENCH can faithfully reflect an agent’s ability to tackle compilation
as a complex software engineering tasks, and, as such, our benchmark will spur
innovation with a significant impact on downstream applications in the fields of
software development and software security.

1 Introduction

Imagine that you are a graduate student during a rebuttal period. The reviewers strongly suggested
that you compare your system with prior work. It was only published a few years ago, so you find the
GitHub repo, download the code, and read the included docs. It doesn’t compile. The dependency
URLs are missing. Required libraries aren’t included. Even if it worked perfectly when first published,
it’s going to take you days to even compile this system. This scenario highlights the difficulty of
compiling once-maintained open-source code, and in fact this problem is faced by the broader
software engineering community. However, recent advances in Large Language Models (LLMs)
promise to improve various software engineering tasks [Brown et al.|[2020} [Touvron et al., 2023} |(Chen
et al.} 2021]. While commercial software can be developed with stringent and consistent engineering
practices, OSS projects are highly heterogeneous. Additionally, OSS projects are maintained by varied

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

P EEEEE—,

’
[Rule-based Baseline

\
| w) ¥ | :
g | #if ”7:’3’;5 ;“’"’:‘9“’9 f’f& . | Execution Results:
N " | Iconfigure make | exitcode: 1
= g;:;i'an‘::’md;’o'ucrggp"e }——n # else if there is CMakeLists.txt > 3:(0 oo outout
! I RUN mkdir -p build && cd I A
| build : libevent not found
e » . I\ cmake {flags} && make]
1cies.md: N 7/
These are the dependencies used by ST T T T T T T T \\
Bitcoin Core. / Bash Command Generator \

You can find installation instructions in

4 Thoughts: Based on the
the “build-*.md" file for your platform.

README and dependencies.md we
fetched, we need to install libevent.
Then | will use CMake to compile it...

Execution Results:
exitcode: 0

Dependency Version used
Minimum)

Boost 1.81.0 1.73.0 # install missing libevent module Code output:
libevent 2.1.12-stable 2.1.8 RUN apt install -y libevent-dev Ran successfully.
RUN cmake

glibc N/A 2.31 .
-DCMAKE_BUILD_TYPE... {°°]
\ && make | E | //

=

I
|
: I
| I
| I
! I
CMake N/A 3.22 ‘—i c d g 4
I
! I
| I
| I
! |

Figure 1: Demonstration of rule-based and Al agentic compilation methods. While rule-based
methods follow a predefined workflow, they cannot adequately adapt to different environments. In
comparison, Al agents leverage their pre-trained knowledge to adjust the compilation commands
based on execution results. In this example, the agent realizes LIBEVENT is a key missing dependency
for Bitcoin to compile and installs it to successfully compile the project.

contributors, adopt various build frameworks, and frequently require platform-specific configurations.

Compiling OSS often requires manual intervention to resolve missing dependencies, version mis-
matches, or undocumented environment requirements. Although prior rule-based methods (e.g.,
GHCC [Hu,[2020] and Assemblage [Liu et al.,|2024]) attempted to automate this process by iteratively
invoking build scripts, they cannot robustly handle dependency, toolchain, or platform mismatches.
These challenges impact human software engineers who integrate OSS into their own applications, as
this requires compilation to turn the software into a library or binary that they can use in their own
system. Reliable and scalable automated compilation, in addition to improving software engineering,
has other research benefits: It enables large-scale usage of binary data sources, supports program
analysis and vulnerability discovery, and accelerates software maintenance workflows [Lacomis
et al., [2019} [Dramko et al.l 2023| [Pal et al.| |2024]. This work addresses these challenges by using
LLM-based agents to automate OSS compilation at scale.

LLMs that are pre-trained on a large amount of natural language data exhibit strong performance
in general-purpose tasks, even with zero-shot prompting [Kojima et al., 2023]]. This capability is
generalized to software engineering-related tasks, such as code generation, software debugging,
documentation generation, and code refactoring. As such, LLM-based Al agents [Yao et al., 2023
Shinn et al.| |2023]], which are autonomous systems that use LLMs to iteratively plan, reason, and
act, are increasingly used to automate and facilitate complex software engineering workflows [Wang
et al., 2024]. In this context, we position OSS compilation as a challenging and underexplored
target for LLM-based agents. We are thus motivated to create a benchmark (BUILD-BENCH) and
systematically evaluate various, specifically agentic, solutions. BUILD-BENCH includes 148 humanly
verified repositories out of 385 randomly selected C/C++-heavy OSS from GitHub, each manually
annotated for compilation success and build instruction retrieval. We use an additional 70 carefully
chosen projects as a validation set to support the development of our agentic baseline method,
OSS-BUILD-AGENT. Using BUILD-BENCH, we evaluate existing rule-based and LLM baselines
and agentic compilation methods. We showcase the current shortcoming of rule-based methods in
compilation performance and success verification. For LLM and agentic compilation methods, we
inspect in detail the performance discrepancy of various compilation system designs. Specifically,
we demonstrate the effectiveness of our LLM-Assisted Retrieval and Multi-Agent Compilation
module design through a side-by-side comparison to another agentic solution. Through the release of
BUILD-BENCH and our analysis, we encourage researchers to create better agentic solutions for the
compilation task, which will ultimately benefit the Al, software engineering, and software security
communities.

Contributions. Our contributions are as follows:

* We created BUILD-BENCH, which is a benchmark that contains both a hand-picked valida-
tion set and a randomly sampled test set with manual inspection and labeling to support a
rigorous and systematic evaluation of different OSS compilation techniques.

* We evaluated the performance of five rule-based and Al build methods on BUILD-BENCH,
including two agentic methods. Our proposed OSS-BUILD-AGENT achieved the best
performance, surpassing the strongest rule-based baseline by roughly 50%. With a strong
base LLM, OSS-BUILD-AGENT reached a 66.4% success rate, establishing a strong baseline
performance, while BUILD-BENCH remains a challenge for future research.

* We offered a detailed inspection of various design approaches in compilation instruction
retrieval and error resolution modules and their effects on task performance.

2 Constructing BUILD-BENCH

A benchmark for automated OSS compilation requires a representative dataset of OSS. We first
analyze the prior work COMPILEAGENTBENCH [Hu et al.| [2025]], which also targets the automatic
compilation task. Specifically, it consists of 100 popular and well-known GitHub projects, averaging
over 8,000 stars. However, this focus on popular repositories overlooks the vast majority of OSS:
99.88% of C/C++ projects on GitHub have fewer than 500 stars. Therefore, the generalizability of
evaluation results on COMPILEAGENTBENCH may be undermined by projects that are unusually
well documented, well maintained, and less representative of the in-the-wild challenges.

Data Filtering. Therefore, we strive to create BUILD-BENCH as a statistically representative
benchmark to ensure generalizability to the broad diversity of OSS. To create the raw dataset, we
collected 2.77M C and 4.23M C++ repositories from GitHub RESTAPI with a date range between
April 1st, 2008 to January 1st, 2024. To remove extremely low-quality repositories, we apply a
few filters: We exclude projects with names or descriptions that contained certain keywords (e.g.,
homework or assignment, more in Appendix [A]) or have a stargazer count below 50 to ensure
the OSS are meaningful for both practical usage and research purposes. For deduplication, we
excluded repositories that are forks of other repositories. After filtering, the raw dataset contains
6.57M repositories. From this population, we randomly select 385 projects, the minimum sample
size required to measure a population proportion with 95% confidence with a margin of error of
5%, according to [Cochran| [1977] (details in Appendix [B). We believe that this randomly sam-
pling helps ensure that BUILD-BENCH better approximates real-world OSS compilation challenges.

Data Selection and Labeling by Human Experts. 100k 4 — BuildBench (Ours)
Due to the random sampling process, we cannot ——- CompileAgentBench
guarantee that all of the 385 projects can be com- £ 10k W T o

. .] S~ ———e. Py = 2683
piled. Therefore, human experts manually built each 3 —————__
repository to determine its validity. We also exclude g 1«4 P \\\
OSS repositories that fit into following criteria: (a) & Pso = 161 \
The reposi i g T Prs =96

pository targets another operating system and £ 4, | —~—~—— \

cannot be cross-compiled; (b) The repository only \‘*‘
contains trivial or unbuildable content; (c) The repos- . . : i , !
itory is missing critical source files and broken de- 0 20 40 60 80 100

pendencies that cannot be installed or created; (d) Percentile

There are compilation apd linking errors that human Figure 2: Distribution of stargazer counts of
experts cannot resolve in a best-effort setting. BUILD-BENCH and COMPILEAGENTBENCH.
This process resulted in 148 compilable reposito- Note that in BUILD-BENCH, relatively low-
ries as the final test set. Additionally, we manually ~profile repositories made up the majority of
created ground truth labels for compiled binary file the samples.

names and URLs where the build instructions are

hosted, if provided by the developers. The manual labeling involved 12 graduate students with more
than 3 years of experience working on system research, and took roughly 150 hours.

We also created a validation set of 70 popular repositories used to evaluate OSS-BUILD-AGENT.

The representativeness (or diversity) of a benchmark for compilation task is essential to evaluate the
generalizability and performance of any compilation technique. We analyze the representativeness
from two following aspects: popularity distribution and build system distribution.

Popularity. The number of Stargazers (or stars) of a GitHub repository is often used to approximate
popularity and perceived quality [Dramko et al.,[2023]]. A higher number often correlates with popular
or essential functionality, better code quality, and an active development community that supports
continuous and frequent maintenance. However, a majority of repositories tend to have relatively
lower stars compared to high-profile projects such as OpenSSL or FFmpeg. This is partially because
repositories are often created for specific use cases and targeting smaller and specialized audience
groups instead of having widely applicable use cases. Meanwhile, most repositories are for personal
or experimental use, further undermining their limited visibility.

Figure 2 shows the Stargazer counts of repositories in BUILD-BENCH and COMPILEAGENTBENCH.
Most repositories in BUILD-BENCH are in the 50-500 range, indicating random selection results
coincide with the long-tail distribution of overall repository popularity. This characteristic makes
BUILD-BENCH more challenging for evaluating compilation techniques, because low-profile repos-
itories often lack documentation or require additional customization or configuration. In contrast,
the Stargazer counts of COMPILEAGENTBENCH repositories are aggregated between 2k and 10k,
and these popular repositories might be considered as an underestimation of the true difficulty of the
compilation task.

Build Systems. We further analyze the build systems and tool chains used in BUILD-BENCH
repositories: 62 projects use Make, 60 use CMake, 29 use Autotools, and 14 use Visual Studio
(MSBuild). Smaller—but non-negligible subsets—adopt alternative systems such as custom scripts,
OMake, Meson, etc. 10 repositories provide no explicit build system, often relying on direct
compilation. This diversity showcases the heterogeneity of real-world OSS, where the build system
selection often depends on the project domain, platform, and community preference. Note that
there may be multiple build systems available in the same OSS, which offers alternative compilation
approaches.

Overall, the results show that BUILD-BENCH adequately represents a wide variety of real-world C
and C++ projects and is suitable as a benchmark for evaluating of automated build techniques.

3 Agentic Building Methods

We create an agentic compilation technique, OSS-BUILD-AGENT. As Figure [3|shows, an initial
(and optional) LLM iteratively extends the README with additional compilation instructions, then a
multi-agent build system iteratively generates and executes compilation steps.

3.1 Compilation Instruction Retrieval

Many repositories with complex build processes or that require specialized configurations tend to
document these steps for human developers. Accessing these instructions is crucial because they
provide agents with helpful information regarding necessary setup and configuration steps.

However, we find that this documentation is not only located in the OSS repository’s README, but
can also be located in other files in the repository or on another website. To solve this challenge
we propose an LLM-Assisted Retrieval module, an optional component that precedes OSS-BUILD-
AGENT. Our approach uses an out-of-box LLM as an incremental retriever to synthesize the complete
set of instructions required for compiling a given repository.

The process uses the project’s README as input. The LLM then iteratively performs three operations:
(1) it distills potential compilation instructions from the file, (ii) it evaluates the sufficiency of the
acquired information, and (iii) if the information is not sufficient enough to support compilation, it
identifies promising links, encompassing both internal files and external web pages. The contents
of up to three newly identified links are subsequently fetched, summarized, and re-evaluated. This
recursive process of retrieval and refinement continues until the LLM’s confidence in the completeness
of the build knowledge is fulfilled or a maximum of three iterations is reached. The output of this is
the final compilation instructions.

@ LLM-Assisted Retrieval

[
: If Retrieval '/ > LLM Extractor \I :
README | —! N
1
| | Q ¥
1 ! i1
1 ! !
1 Final ' Accessing | ! !
] Compilation <;i‘l[Relevant Instructions][New Links]I:D links orfiles | 1
' Instructions N a
\

I
Compilation Command !

@& :>:> B
Executor :
Agent 1
1

1

1

1

I

Repository *
Compiled
Repository

Figure 3: OSS-BUILD-AGENT system diagram. The initial input is the README, then an optional
LLM extends this with additional compilation instructions. Finally, a multi-agent build system
iteratively generates and executes compilation steps, attempting to compile the target repository.

Generator
ﬁ Agent Execution
k; Tra]ectorles <:‘ Outputs

__

1
1
1
1
1
1
: Bash Command
1
1
1
1
\

3.2 Multi-Agent Compilation System

The compilation system comprises two cooperating agents, both using an out-of-the-box LLM of
the user’s selection: Bash Command Generator is given the final compilation instructions from the
prior module (if using LLM-Assisted Retrieval) and the repository as input and produces a candidate
sequence of bash commands to compile the repository. Execution Agent runs these commands within
a containerized environment and returns the execution results. Prompts are included in Appendix

Section and

For refinement steps £ = 0,..., K, let C) be the input into Bash Command Generator, which
produces Si, the commands to be executed by Execution Agent in the environment that returns
execution results f.

Initialization. Bash Command Generator produces the first set of commands directly from the input
prompt Cj because there is no execution feedback. Execution Agent runs generated commands Sy in
a fresh Docker container, yielding the initial execution results fj.

Iterative Error Resolution. This constitutes the standard agentic loop: Bash Command Generator
uses both C; and the latest execution results fj, to craft revised commands Sy, which the Execution
Agent then executes again.

The process ends when Success(fi;) = true or when k = K, exceeding the maximum turns allowed.
This iterative error resolution process enables the compilation to recover from missing dependencies,
incorrect flags, or environmental mismatches, an ability that is required for OSS compilation task, as
we analyzed in Section[6]

4 Baseline Methods

In this section, we present existing rule-based techniques as well as two LLM-based compilation
methods we compare against.

GHCC. GHCC [Hu, [2020] is a rule-based tool for building GitHub repositories. Prior research uses
datasets that GHCC created [Lacomis et al., 2019} Xie et al.| [2024]. Given a repository, GHCC
attempts to build the project by first discovering all build system-specific files (e.g., Makefile and
CMakeLists.txt) and then conducting a rule-based build routine customized for these build systems.

Assemblage. Assemblage [Liu et al.,|[2024] is a system designed to automate the construction of
binary datasets of primarily Windows executables by building source code. It follows a similar
rule-based compilation workflow as GHCC.

Single-turn LLM baseline. To evaluate the project-building performance of pretrained LLMs on a
single-turn basis, we prompt an out-of-the-box LLM to generate a set of Bash commands to build a
target repository and execute the commands in a Docker container. The input to this baseline is the
README file and file directory of the OSS’s root directory. Without any execution feedback, this
single-turn baseline cannot adjust its initial output. (Prompt in Appendix [C.1])

CompileAgent. CompileAgent [Hu et al.|[2025] also introduces a multi-agentic compilation system.
It adopts a flow-based agent strategy in which a master agent orchestrates the build process across
two core modules: (1) CompileNavigator for locating and extracting build instructions and (2)
ErrorSolver for resolving compilation errors. These modules are supported by five specialized tools
(shell execution, file navigation, instruction extraction, web search, and multi-agent discussion), four
of which involve auxiliary LLM agents, totaling seven agents in the pipeline. We include its official
open-source implementation as a baseline in our evaluation to provide a representative comparison
against our agentic approaches.

S Experiment Setup and Evaluation Methods

We evaluate the performance of baseline build techniques and OSS-BUILD-AGENT on BUILD-
BENCH. We implement single-turn LLM baseline with two base models: GPT 03-mini and Claude
3.7-Sonnet. For OSS-BUILD-AGENT, we use five models, representing diverse characteristics
including reasoning vs. non-reasoning, generic vs. coding-specific, and different parameter sizes. For
CompileAgent we use GPT-40 as the main base model as its implementation indicates.

All build methods build each repository in a fresh Ubuntu 22.04 Docker container, with minimal
packages pre-installed.

Success Metrics. A key evaluation challenge is to determine if a build method successfully builds a
given repository. Existing build methods determine the compilation process as Completion with the
presence of at least one binary post-building. This metric is unreliable when (1) a failed building
process generates intermediate binary files, or (2) a submodule (or a vendored package) successfully
builds while the main repository fails building.

We improve the completion success criteria with additional validation using expert-generated, per-
repository lists of binary file names as ground truth. After the building of a repository completes, we
compare the file names of all produced binary files against a expert-generated list. We categorize
success into two types: (1) Strict Success only when all binary file names in the expert-generated list
exist, and (2) Flexible Success when at least one file name in our expert-generated list exists.

6 Evaluating Build Methods

Table [T] presents the performance of all build methods on BUILD-BENCH.

Baselines. For rule-based methods, GHCC achieves 30.2% completions and 13.4% flexible validated
successes, outperforming Assemblage. Single-turn LLM baselines’ results vary: o3-mini exhibits
degraded performance, while Claude 3.7-Sonnet is surprisingly strong for a non-agent setting (21.5%
strict; 22.1% flexible). Moreover, the performance of COMPILEAGENT suffers a substantial drop
from 89% strict validated success on COMPILEAGENTBENCH to 49.7% strict and 55.7% flexible on
BUILD-BENCH. This performance drop indicates a pronounced distribution shift and higher difficulty
of BUILD-BENCH.

Agents enable compilation error resolution in multi-turn setting. OSS-BUILD-AGENT sub-
stantially outperforms all rule-based baselines. The best configuration, OSS-BUILD-AGENT with
LILM-assisted Retrieval using Claude 3.7-Sonnet, reaches 66.4% strict and 71.8% flexible validated
successes, a gain of 49.7 percentage points over single-turn baseline with the same model. Iterative
observation—repair—rebuild loops allow agents to access and receive feedback from execution results,
backtrack from ineffective commands, and apply targeted fixes that single-turn approaches cannot.

Agentic build methods are model-agnostic, but scale with model intelligence. The agent frame-
work uses out-of-the-box pre-trained LLMs, allowing our framework to be model-agnostic. Never-
theless, performance scales with model capability. Among all settings, Claude 3.7-Sonnet achieves
the best performance with significant margin to the next best model. This confirms that stronger

Table 1: Performance of all evaluated build techniques on BUILD-BENCH test set. Sectiondescribes
the evaluation metrics of completion and validated successes.

Un-validated Validated Successes %

LLM Usage Build Method Completions %

Strict Flexible
N/A GHCC 30.2 10.1 134
N/A Assemblage 10.7 6.0 9.4
Single Turn LLM baseline (03-mini) 9.4 7.4 8.1
Single Turn ~ LLM baseline (Claude 3.7-Sonnet) 23.5 21.5 22.1
Multi-Agents CompileAgent (GPT-40 with Retrieval) N/A 497 55.7

Multi-Agents OSS-BUILD-AGENT w/o Retrieval (Ours)
GPT-40 56.8 38.5 41.9
GPT 03-mini 67.6 48.0 50.7

Multi-Agents OSS-BUILD-AGENT w/ LLM-Assisted
Retrieval (Ours)

GPT-40 (Avg of 3 Runs) 70.2 53.0 57.6
GPT 03-mini 79.9 63.1 68.5
Claude 3.7-Sonnet 85.2 66.4 71.8
Gemini-2.5-flash 77.2 57.0 61.1
Qwen3 235B 83.9 59.7 66.4
Qwen3 Coder 485B 48.3 34.2 38.9

LLMs are more effective in adjusting its output based on error results and applying targeted fixes,
two skills that are central to resolving complex build failures. In contrast, smaller models (e.g., 03-
mini) perform consistently but saturate at around 68—-69% flexible success, while specialized models
(Qwen3 Coder) underperform (38.9% flexible), suggesting that coding specialization may become a
drawback, considering retrieval module challenges more on model’s documentation comprehension
ability. Overall, the performance of OSS-BUILD-AGENT is model-agnostic, but stronger LLMs still
improve the performance of OSS-BUILD-AGENT.

6.1 Instability and Repeated Experiments

Instability in agentic frameworks is a well-recognized
Table 2: Results from three repeated runs of issue [Yao et al.,[2024]. Although OSS-BUILD-AGENT
OSS-BUILD-AGENT with retrieval using performs strongly, its results fluctuate over runs. To

GPT-4o0. k refers to the order in Figure quantify this, we repeat experiments with GPT-40, a
Error Fixing attempts is the average of at- non-reasoning model, as the base model in three in-

tempts across all repositories in one run. dependent runs. Table E] shows the results, 'where

OSS-BUILD-AGENT achieves 53.0% + 6.8 strict and

N Error Fixing Strict Flexible 57.6% + 6.5 flexible validated success, indicating non-

Attempts Success% Success% {rivial variance. We attribute this to two major factors.

k=2 438 45.6 50.3 First, LLM-guided retrieval can follow different doc-

k=1 6.9 547 59.5 umentation accessing trajectories and produce differ-
k=3 8.4 58.8 62.9

ent build recipes across runs, shifting the subsequent
compilation trajectories. Second, LLM outputs are non-
deterministic even with identical prompts [Song et al.,|2024]], and this randomness compounds over
multi-turn interactions. Together, these effects lead to instability.

Additionally, we evaluate pass @k across three runs to assess the benefit of multiple attempts (Figured).
For the strict setting, the pass rates increase from 54.7% at pass@1 to 59.5% at pass@2 and 65.5% at
pass@3. Under the flexible setting, the corresponding rates are higher, rising from 59.5% to 64.2%
and 70.3%. These results demonstrate that multiple agentic trials substantially improve performance,
which may better control the stochastic nature of Al agents. Repeated experiments not only control
for performance variance, but also help to validate the arguments based on performance.

6.2 Retrieval and Error Resolution

Despite the architectural differences between COMPILEAGENT and OSS-BUILD-AGENT, they both
incorporate two similar modules of build instruction retrieval and agentic error resolution. We discuss
the system design differences and their performance impact.

Retrieval Analysis. Accurate retrieval of build instructions has a strong impact on subsequent
compilation performance. Developer-provided instructions offer a solid starting point that agents can
adapt to match specific configuration requirements or environment differences. In BUILD-BENCH,
we identified 130 OSS repositories from BUILD-BENCH test set with clear URL labels for the build
instruction. Together, these form a secondary benchmark for evaluating the retrieval module described
in Section 311

We evaluate COMPILEAGENT on the 130 OSS repositories with URL labels along with OSS-
BUILD-AGENT’s LLM-Assisted Retrieval (both using GPT-40), using the same criteria for success:
whether the retrieval module accessed the ground-truth URL that hosts the build instruction for
the given repository. In our evaluation, the retrieval module of OSS-BUILD-AGENT achieved a
retrieval accuracy of 73.8%, significantly outperforming COMPILEAGENT’s 46.2%. We attribute this
performance improvement to key design choices in our retrieval module.

We observe that COMPILEAGENT’s retrieval tool favors certain files or pages and often avoids
less obvious links, leading to missed instructions. For example, when given the structure of
the root directory of a repository, agents usually pick build scripts (e.g., Makefile) as the re-
trieval target. Unfortunately, build scripts are often too noisy and can divert the agents from
continuing to find explicit documentation about configuration or setup. Additionally, build in-
structions can exist across multiple sources (e.g., README files, wiki pages, and subdirecto-
ries), and the derailment of agents compounds when facing noises from the scattered instructions.
In comparison, we design the LLM-Assisted Retrieval

module of OSS-BUILD-AGENT as a workflow that mim- P
ass@k across 3 runs

ics a human engineer. It focuses on exploring the doc- 1.0

umentation instead of the build process. In the first it- 0.8 1 70.39
eration of retrieval, we instruct the LLM to inspect the 5 0_6596%;__”_——:;!2%—_:’_—/&!0
main README file to extract information or find useful & /1" "

URLs. This prevents the LLM from being distracted by — * —e— Strict
build scripts. Traversing a path of documentation files, our 027 —#— Flexible
retrieval module better handles scattered information. 0.0° 2 3

. . k (number of attempt
Error Resolution Attempts. We compare two different (number of attempts)

agentic systems and manually inspect their action trajec- Figure 4: pass@k performance of OSS-
tories of error resolution. We observe that while COM- By11.p-AGENT with LLM-Assisted Re-
PILEAGENT employs a variety of tools, the main agent
rarely invokes some of these tools (such as Multi-Agent
Discussion for error resolution). The master agent usually
exits too “easily” when encountering compilation errors,
without attempting more fixes by invoking tools. Because compilation errors are often long, verbose,
and nested, locating and fixing root-cause errors may require iterative attempts (interested readers
may refer to an example in Appendix [F). Thus, more error resolving attempts is favorable, which is
validated by our repeated experiments with OSS-BUILD-AGENT as Table[2] shows. Using the same
base model, we observe that validated success rate scales well with the number of attempts to resolve
the error.

trieval using GPT-4o0. For K = 1, we
report the earliest chronological run.

Despite the scaling effect of error resolution attempts, OSS-BUILD-AGENT attempts 6.6 times on
average, in comparison to 7.5 times in COMPILEAGENT (excluding its retrieval module for fair
comparison). This difference is due to our agent outputting the entire set of build commands, while
COMPILEAGENT outputs one bash command at a time and refines it iteratively if execution shows
error. While this fine-grained approach can be effective, it also inflates the trajectory with trivial
commands (e.g., Is, mkdir) that rarely fail but still count as separate steps. Conversely, OSS-BUILD-
AGENT generates a more complete set of compilation commands intended to drive the build to
completion in a single run, followed by troubleshooting if needed. This design allows the agent to
observe the full command history at each step, providing contextual information for error resolution.
For example (details in Appendix [E), an error such as The source directory does not appear to

contain CMakeLists.txt can be resolved more effectively when the agent has access to prior directory
navigation steps, enabling it to adjust the working directory and retry seamlessly.

Together, our agentic designs in OSS-BUILD-AGENT ensure better retrieval and error resolution
practices achieve better performance despite using only two agents (vs. seven in COMPILEAGENT)
and simpler architectural design, showcasing the competitive performance of our end-to-end agentic
compilation pipeline.

6.3 Failure Modes of Agentic Build Methods

Agentic methods are known for instability, task derailment, disobeying instructions, and
many other drawbacks [Cemr1 et al, [2025]. Thus, it is important to identify the fail-
ure modes of agents to facilitate future development of more potent agents for our task.
We manually inspect the building process ex-
ecuted by the agentic build method, which is
built on the GPT 03-mini model and enhanced
with the LLM-assisted retrieval approach. The
results are shown in Figure 5] It includes er-
rors in both the retrieval and compilation stages.
The most common failure mode happens to 69
repositories, the agents could recognize the error
messages but failed to produce fixes to eliminate 0 - B
the errors after many turns and decided to ter- SE DRE 'T IF RE
minate. As dependency errors are often straight-
forward to solve but will lead to build failures
if not fixed, we also identified the failure cases
resulting from dependency errors.

63.1% SE = Successful Execution

DRE = Dependency Resolution Errors
IT = Insufficient Troubleshooting

IF = Incorrect Flags

RE = Runtime Errors

o
o

N
o

12.7% 11.5% 11.5%

Percentage (%)
B
o

Figure 5: Agent failure modes analysis of OSS-
BUILD-AGENT enhanced with LLM-Assisted Re-
trieval implemented with 03-mini.

7 Limitations

One of potential drawbacks of our benchmark is the relatively small number of compilable reposi-
tories for the test set. However, we compensate for the quantity with intensive manual verification
that produces ground-truth binary file and retrieval labels that facilitate both analysis and future
developments.

Although OSS-BUILD-AGENT shows competitive performance, we acknowledge the inherent in-
stability of the agentic framework that may introduce variations in performance when reproducing
the experiments. Also, we believe that agentic retrieval could be further enhanced with recent ad-
vancement of Al agent research, which ultimately improves the accuracy of the retrieval to enhance
the overall compilation performance. We also invite researchers to expand the potential of different
agents’ design philosophies and validate them on BUILD-BENCH to facilitate real-life developers and
downstream research.

8 Related Work

LLM has shown promising performance across various software engineering tasks. These include
automated resolution of GitHub issues [Jimenez et al.l [2024] [Su et al. [2025]], intelligent code
generation [Ishibashi and Nishimura, |2024]], automated test case generation [Pizzorno and Berger,
2025, [Yuan et al.}[2024]), and Python software installation [Milliken et al.,[2024]. Within this growing
landscape, the task of automatically compiling C/C++ OSS remains relatively underexplored. The
intricacies of these languages, including discontinued maintenance, complex build systems that
depend on many external dependencies, and the often less informative error messages from compilers
like GCC and Clang [Onyango and Mariga, 2023|}, all add up to the difficulties of the task. Rule-based
methods have been used extensively in previous work on building binary datasets for downstream
tasks [[Hul 2020, Lacomus et al.,[2019, [Liu et al.,2024]]. While such methods suffer from their inherent
fragility, Al agents may be a suitable solution. As initial efforts, such as CompileAgent [Hu et al.|
2025]], have indicated the potential of using the agentic compilation method, the dataset against
which it is evaluated consists of many well-known OSS that may have their compilation processes
memorized by LLM, introducing biases to the evaluation results. We believe it is necessary to create

a more challenging and representative benchmark dataset that allows for more insightful evaluation
and analysis of agentic compilation methods.

9 Conclusion

In this paper, we present the first comprehensive benchmark for evaluating automated methods for
building C and C++ source code repositories to construct binary datasets. We first create BuildBench,
a representative dataset of 385 C and C++ code repositories. We systematically evaluate existing and
newly proposed Al-based agentic build methods on BuildBench. Our evaluation provides valuable
insights in agentic build methods.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July 2020. URL
http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs].

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why Do Multi-Agent LLM Systems Fail?, April 2025. URL http:
//arxiv.org/abs/2503.13657. arXiv:2503.13657 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo Bavarian, Clemens Winter,
Philippe Tillet, F. Such, D. Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Balaji, Shantanu Jain,
A. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, P. Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, 1. Sutskever, and Wojciech Zaremba. Evaluating Large Language Models Trained
on Code. ArXiv, July 2021. URL https://www.semanticscholar.org/paper/
Evaluating-Large—-Language—Models—Trained-on-Code-Chen-Tworek/
acbdbf49f9bc3f151b93d9¢ca%9a06009fd4foeb269.

William Gemmell Cochran. Sampling Techniques. Wiley, 1977. ISBN 978-81-265-1524-0. Google-
Books-ID: xbNn41DUrNwC.

Luke Dramko, Jeremy Lacomis, Pengcheng Yin, Ed Schwartz, Miltiadis Allamanis, Graham Neubig,
Bogdan Vasilescu, and Claire Le Goues. DIRE and its Data: Neural Decompiled Variable
Renamings with Respect to Software Class. ACM Trans. Softw. Eng. Methodol., 32(2):39:1-39:34,
March 2023. ISSN 1049-331X. doi: 10.1145/3546946. URL https://dl.acm.org/doi/
10.1145/3546946.

Li Hu, Guogiang Chen, Xiuwei Shang, Shaoyin Cheng, Benlong Wu, Gangyang Li, Xu Zhu, Weiming
Zhang, and Nenghai Yu. CompileAgent: Automated Real-World Repo-Level Compilation with
Tool-Integrated LLM-based Agent System, May 2025. URL http://arxiv.org/abs/2505}
04254, arXiv:2505.04254 [cs].

Zecong Hu. huzecong/ghce: GitHub Cloner & Compiler, January 2020. URL https://github,
com/huzecong/ghcc/tree/master.

Yoichi Ishibashi and Yoshimasa Nishimura. Self-Organized Agents: A LLM Multi-Agent Framework
toward Ultra Large-Scale Code Generation and Optimization, April 2024. URL http://arxiv,
org/abs/2404.02183. arXiv:2404.02183 [cs].

10

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2503.13657
http://arxiv.org/abs/2503.13657
https://www.semanticscholar.org/paper/Evaluating-Large-Language-Models-Trained-on-Code-Chen-Tworek/acbdbf49f9bc3f151b93d9ca9a06009f4f6eb269
https://www.semanticscholar.org/paper/Evaluating-Large-Language-Models-Trained-on-Code-Chen-Tworek/acbdbf49f9bc3f151b93d9ca9a06009f4f6eb269
https://www.semanticscholar.org/paper/Evaluating-Large-Language-Models-Trained-on-Code-Chen-Tworek/acbdbf49f9bc3f151b93d9ca9a06009f4f6eb269
https://dl.acm.org/doi/10.1145/3546946
https://dl.acm.org/doi/10.1145/3546946
http://arxiv.org/abs/2505.04254
http://arxiv.org/abs/2505.04254
https://github.com/huzecong/ghcc/tree/master
https://github.com/huzecong/ghcc/tree/master
http://arxiv.org/abs/2404.02183
http://arxiv.org/abs/2404.02183

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, November
2024. URL http://arxiv.org/abs/2310.06770. arXiv:2310.06770 [cs].

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners, January 2023. URL http://arxiv.org/abs/
2205.11916k arXiv:2205.11916 [cs].

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. DIRE: A Neural Approach to Decompiled Identifier Naming,
October 2019. URL http://arxiv.org/abs/1909.09029, arXiv:1909.09029 [cs].

Chang Liu, Rebecca Saul, Yihao Sun, Edward Raff, Maya Fuchs, Townsend Southard Pantano, James
Holt, and Kristopher Micinski. Assemblage: Automatic Binary Dataset Construction for Machine
Learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
editors, Advances in Neural Information Processing Systems, volume 37, pages 58698-58715. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/
paper/2024/file/6bbefc73a187dd42e0dc065b4e7a0615-Paper-Datasets_
and_Benchmarks_Track.pdfl

Louis Milliken, Sungmin Kang, and Shin Yoo. Beyond pip install: Evaluating LLM Agents for the
Automated Installation of Python Projects, December 2024. URL http://arxiv.org/abs/
2412.06294] arXiv:2412.06294 [cs].

Kevin Agina Onyango and Geoffrey Wambugu Mariga. Comparative Analysis on the Evaluation
of the Complexity of C, C++, Java, PHP and Python Programming Languages based on Halstead
Software Science. International Journal of Computer and Information Technology(2279-0764), 12
(1), March 2023. ISSN 2279-0764. doi: 10.24203/ijcit.v12i1.294. URL https://www.ijcit|
com/index.php/ijcit/article/view/294. Number: 1.

Kuntal Kumar Pal, Ati Priya Bajaj, Pratyay Banerjee, Audrey Dutcher, Mutsumi Nakamura,
Zion Leonahenahe Basque, Himanshu Gupta, Saurabh Arjun Sawant, Ujjwala Anantheswaran, Yan
Shoshitaishvili, Adam Doupé, Chitta Baral, and Ruoyu Wang. "Len or index or count, anything
but v1": Predicting Variable Names in Decompilation Output with Transfer Learning. In 2024
IEEE Symposium on Security and Privacy (SP), pages 4069-4087, May 2024. doi: 10.1109/
SP54263.2024.00152. URL https://ieeexplore.ieee.org/document/10646727.
ISSN: 2375-1207.

Juan Altmayer Pizzorno and Emery D. Berger. CoverUp: Effective High Coverage Test Generation
for Python, May 2025. URL http://arxiv.org/abs/2403.16218. arXiv:2403.16218
[cs].

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language Agents with Verbal Reinforcement Learning, October 2023. URL
http://arxiv.org/abs/2303.11366. arXiv:2303.11366 [cs].

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The Good, The Bad, and The Greedy:
Evaluation of LLMs Should Not Ignore Non-Determinism, July 2024. URL http://arxivl
org/abs/2407.10457. arXiv:2407.10457 [cs].

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O Arik. Learn-by-interact:
A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments, January 2025.
URL http://arxiv.org/abs/2501.10893) arXiv:2501.10893 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models, February 2023. URL |http://arxiv.org/abs/2302.13971. arXiv:2302.13971
[cs].

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent Workflow Memory,
September 2024. URL http://arxiv.org/abs/2409.07429. arXiv:2409.07429 [cs].

11

http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/1909.09029
https://proceedings.neurips.cc/paper_files/paper/2024/file/6bbefc73a187dd42e0dc065b4e7a0615-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6bbefc73a187dd42e0dc065b4e7a0615-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6bbefc73a187dd42e0dc065b4e7a0615-Paper-Datasets_and_Benchmarks_Track.pdf
http://arxiv.org/abs/2412.06294
http://arxiv.org/abs/2412.06294
https://www.ijcit.com/index.php/ijcit/article/view/294
https://www.ijcit.com/index.php/ijcit/article/view/294
https://ieeexplore.ieee.org/document/10646727
http://arxiv.org/abs/2403.16218
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2407.10457
http://arxiv.org/abs/2407.10457
http://arxiv.org/abs/2501.10893
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2409.07429

Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu Zhang. ReSym:
Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security,
CCS 24, pages 4554-4568, New York, NY, USA, December 2024. Association for Computing
Machinery. ISBN 9798400706363. doi: 10.1145/3658644.3670340. URL https://dl.acm,
org/doi/10.1145/3658644.3670340.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing Reasoning and Acting in Language Models, March 2023. URL http:
//arxiv.org/abs/2210.03629. arXiv:2210.03629 [cs].

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. $$-bench: A Benchmark for
Tool-Agent-User Interaction in Real-World Domains, June 2024. URL http://arxiv.org/
abs/2406.12045. arXiv:2406.12045 [cs].

Zhigiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng. No

More Manual Tests? Evaluating and Improving ChatGPT for Unit Test Generation, May 2024.
URL http://arxiv.org/abs/2305.04207, arXiv:2305.04207 [cs].

12

https://dl.acm.org/doi/10.1145/3658644.3670340
https://dl.acm.org/doi/10.1145/3658644.3670340
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2305.04207

A Filtering Keywords

A portion of keywords we used to filter out low-quality OSS including:

homework, assignment, tutorial, exercise, solution, course, student, university, college, class, lecture,
demo, practice, presentation, getting started, hello world, starter code, sample code, example code,
documentation.

B Sample Size Estimation

To estimate the minimum sample size required to measure a population proportion with 95% confi-
dence and a margin of error of 5%, the standard formula for proportion estimation is:

Z?p(1 —
ng = 2P0~ 1)

ey

where Z = 1.96 for 95% confidence interval, £ = 0.05 is the error margin, and p = 0.5 is chosen to
maximize variance (i.e., yield the largest conservative sample size). This gives:

S 1.96% x 0.5 x 0.5
0~ 0.052

= 384.16.

For finite populations, we apply the finite population correction (FPC)Cochran|[[1977]:

o 384.16

n = T = 53T ~ o84.14. 2)
I+ =5 1+ 6,568,809
384.16
n=_——o = g ~ 38414, 3)
L+ =5 t 57572

We round up to obtain a final required sample size of n = 385. We accordingly conduct a random
sample of 385 repositories from the previously mentioned corpus to compose the final test set.

13

14

C LLM prompts

C.1 LLM baseline prompts

Patch proposed by Agent

You are an expert Linux build engineer working inside a

< *xUbuntudASbased Docker containerx*. The pre-installed
— software and libraries are as listed in the following
— dockerfile content:
\{per_installed_libraries_in_docker\}

\#\#\# Your task

Generate a xxsequence of Bash commandsx* (one command per
— line, no comments, no explanations) that will:

1. Install every builddAStime dependency needed to compile
the repository xx{repo_full_name}*x that lives at

as
— **{repos_dir_in_docker}*x*.

4A¢ Use nondASinteractive “apt-get update \&\& apt-get
s install -y 4Ae” when possible.

4A¢ Avoid PPAs unless strictly necessary.

4A¢ Assume you run as root, so no “sudo” is required.

2. xxDetect build system and configure debug build:*x*

Examine the repository structure (files listed below) to

— choose the proper build configuration command. Configure
— the build system in Debug mode (i.e., include DWARF

— symbols, disable optimizations) .

3. *xInstall the main binary:*x*

Identify the primary or main binary (for example, the one

< built from the projectdAZs main executable) and install
— 1t into {repos_dir_in_docker}

— Ensure the installation directory exists (create it if

— necessary with "mkdir -p7).

— Copy the main binary into that directory and set executable
— permissions if needed.

\#\#\# Strict requirements:

**x*xOutput only Bash commands, separated using the newline

— character.xx

Do not provide any explanations, markdown, or extra comments.
* The commands must be x»xfully sequential and ready-to-runxx
— when concatenated.

There should be no interactive prompts or assumptions beyond
— what is provided.

x* All steps must run successfully in a typical Docker Ubuntu
— environment.

x Assume the current working directory is x* "/app" =*x.

\#\#\# Repository context
xRepo name: {repo_full_name}
*xRoot path in container:xx {repos_dir_in_docker}

* *README : % %
{readme_content}

*xTopdASlevel file list:x=
{files_in_root_dir}

15

C.2 System Prompt for Bash Command Generator

Patch proposed by Agent

u are an helpful AI assistant that is an expert in
compiling cloned GitHub repositories and handling
compilation errors during the process by generating bash
commands .

current working directory is “/app~, and all commands
must use absolute paths referencing the repository's
specific clone directory, with no placeholders. The
compilation process runs inside a Docker container with
root access, so do not use “sudo . Your suggested code
must be complete and executable, as the user cannot
modify it. Ensure the target repository is compiled with
debug information, for instance by adding “-g -00" to
compiler flags, and do not strip this information after
compilation. Whenever possible, use a prefix or “DESTDIR"
flag during the “make®™ command to save compiled artifacts
inside the clone directory. Always run “make install”
after compilation, using multiple cores to speed up the
process, but do not run "make check™ or "make test®. More
detailed building instructions from the repository will
be provided, which you must follow. You should attempt to
fix any errors that occur. To end the process upon
success or failure, send a message explaining the reason
followed by the word "terminate," but never include
"terminate" in a response that also contains a code
block. Do not show appreciation in your responses; if
"Thank you" is said, reply only with "TERMINATE".

[0)

S A A A A A A A= A)

C.3 System Prompt for Executor Agent

System Prompt:
You are an Al assistant that can run bash commands or execute function calling and conduct the
process of GitHub repository compilation.

D Case Study 1: Agentic Compilation patching source files

During our log analysis we observe that in some cases Agentic Compilation would attempt to fix the
source files after encountring compilation errors and then continue building the project. |s9xie/hed
repository, part of BUILD-BENCHhas a code base that is 10 years old which relies on outdated
packages and dependencies. It uses OpenCV v3 API calls and originally build to run on Ubuntu 14.
Newer versions of OpenCV v4 updated their API, which causes this project to fail to build out-of-
the-box on recent versions of Ubuntu. Based on error log that Agent received as part of feedback
loop, it automatically patched the source files updating the occurrences of old API and successfully
compiled the repository. For instance, it updated CV_LOAD_IMAGE_COLOR to IMREAD_COLOR
It showcases the potential of Al-based compilation method of patching deemed ’uncompilable’
repositories, whereas a rule-based approach would never be able to fix it automatically without
human-assistance.

16

https://github.com/s9xie/hed

Error Log

/app/k8s_compiled_repos/hed/src/caffe/layers/window_data_lay
«, er.cpp: In member function aAY¥virtual void
— caffe::WindowDataLayer<Dtype>::load_batch (caffe::Batch<D
< type>«*)aAz:
/app/k8s_compiled_repos/hed/src/caffe/layers/window_data_lay
< er.cpp:288:42: error: AAYCV_LOAD_IMAGE_COLOR&AAZ was not
— declared in this scope

288 | cv_img = cv::imread(image.first,

< CV_LOAD_IMAGE_COLOR) ;

/app/k8s_compiled_repos/hed/src/caffe/util/io.cpp: In
< function aAYcv::Mat caffe::ReadImageToCVMat (const
s string&, int, int, bool)&AZ:
/app/k8s_compiled_repos/hed/src/caffe/util/io.cpp:73:34:
<« error: AAYCV_LOAD IMAGE_COLOR&AAYZ was not declared in this
< scope

73 | int cv_read_flag = (is_color ? CV_LOAD_IMAGE_COLOR

<
| A e e
/app/k8s_compiled_repos/hed/src/caffe/util/io.cpp:74:5:
< error: AAYCV_LOAD_IMAGE_GRAYSCALEAAZ was not declared in
— this scope
74 | CV_LOAD_TIMAGE_GRAYSCALE) ;

I A

/app/k8s_compiled_repos/hed/src/caffe/layers/window_data_lay
<, er.cpp: In member function &AY¥virtual void

— caffe::WindowDataLayer<Dtype>::load batch (caffe::Batch<D
< type>*)aAz:

Patch proposed by Agent

Agent Compilation

" " “bash

Patch the OpenCV constants to use new names \
— (IMREAD_COLOR and IMREAD_GRAYSCALE) in the affected \
— source files.

sed -i 's/CV_LOAD_IMAGE_COLOR/IMREAD_COLOR/g' \
— /app/k8s_compiled_repos/hed/src/caffe/util/io.cpp

sed —-i 's/CV_LOAD_IMAGE_GRAYSCALE/IMREAD_GRAYSCALE/g' \

— /app/k8s_compiled_repos/hed/src/caffe/util/io.cpp
sed -i 's/CV_LOAD_IMAGE_COLOR/IMREAD_COLOR/g'

— /app/k8s_compiled_repos/hed/src/caffe/layers/window_
— data_layer.cpp

— =

17

E CASE STUDY 2: CMake Error due to Directory Changes

Agents fail to compile repositories due to various reasons, as described in[6.3] For instance, when com-
piling GitHub repository bernhard-schmitzer/optimal-transport, the agent invoked cmake from the
wrong working directory; further troubleshooting would have revealed that the CMakeLists.txt
resides in the s rc subdirectory. While changing to a different directory is a simple and straghtforward
solution, but the agent did not perform sufficient troubleshooting.

Compilation commands

" “bash

cd /app/k8s_compiled_repos/optimal-transport/v0.2.0

mkdir -p build && cd build

cmake -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="-g -00" \
— —-DCMAKE_C_FLAGS="-g -00"

make —j15

make install \
— DESTDIR=/app/k8s_compiled_repos/optimal-transport

Execution log

exitcode: 2 (execution failed)

CMake Error: The source directory \
— "/app/k8s_compiled_repos/optimal-transport/v0.2.0" \
— does not appear to contain CMakeLists.txt.

F CASE STUDY 3: Insufficient Troubleshooting

Agents fail to compile repositories due to various reasons, as described in[6.3] For instance, when
compiling GitHub repository blitz3d-ng/package | the agent attempts to first initialize the Git submod-
ules and the execute make to compile the repository. However, the execution failed. First, the current
user running the git submodule update command is not the owner of the specified repository directory,
causing dubious ownership error. Then this results in a follow-up error in make that indicates No rule
to make target ’install’.

To resolve the error, the agent must address the submodule initialization error, as it is the root
cause. If the agent focuses only on tackling the follow-up make error, the resolution will ultimately
fail, highlighting the need for agents to diagnose and fix the primary issue in the execution chain.

18

https://github.com/bernhard-schmitzer/optimal-transport
https://github.com/blitz3d-ng/package

Compilation commands

““bash

apt—-get update

apt—get install -y git ninja-build libxml2-dev zliblg-dev \
— Dbuild-essential autoconf libtool gettext autopoint \
— gperf cmake clang libwxgtk3.0-gtk3-dev libxrandr-dev \
— libxinerama-dev libxcursor-dev uuid-dev \
— libfontconfigl-dev

cd /app/compiled_repos/package

git submodule update —--init —--recursive

source /app/k8s_compiled_repos/package/env.sh

make —3jl5 1llvm

make -jl5 CPPFLAGS='—-g -00' CXXFLAGS='-g -00'

make install PREFIX=/app/compiled_repos/package

Execution log

exitcode: 2 (execution failed)

git submodule update failed:

fatal: detected dubious ownership in repository at \
— '/app/k8s_compiled_repos/package’

make install failed: No rule to make target 'install'

	Introduction
	Constructing Build-Bench
	Agentic Building Methods
	Compilation Instruction Retrieval
	Multi-Agent Compilation System

	Baseline Methods
	Experiment Setup and Evaluation Methods
	Evaluating Build Methods
	Instability and Repeated Experiments
	Retrieval and Error Resolution
	Failure Modes of Agentic Build Methods

	Limitations
	Related Work
	Conclusion
	Filtering Keywords
	Sample Size Estimation
	LLM prompts
	LLM baseline prompts
	System Prompt for Bash Command Generator
	System Prompt for Executor Agent

	Case Study 1: Agentic Compilation patching source files
	CASE STUDY 2: CMake Error due to Directory Changes
	CASE STUDY 3: Insufficient Troubleshooting

