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Abstract

Diffusion models (DMs), as a state-of-the-art gen-
erative modeling method, have enjoyed tremen-
dous success in multiple generating tasks. How-
ever, the memorization behavior of DMs, that
the generation replicates the training data, raises
serious privacy concerns and contradicts the ac-
tual generalizability of DMs. These prompt us to
delve deeper into the generalizability and memo-
rization of DMs, particularly in cases where the
closed-form solution of DMs’ score function can
be explicitly solved. Through a series of compre-
hensive experiments, we demonstrate the discrep-
ancies and connections between the optimal score
and the trained score, noting that the trained one
is smoother, which benefits the generalizability
of DMs. We also further explore how mixing the
optimal score with the trained score during the
sampling phase affects generation. Our experi-
mental findings provide novel insights into the
understanding of DMs’ generalizability.

1. Introduction
Diffusion models (DMs) have demonstrated exceptional ca-
pability in generating high-quality images (Ho et al., 2020;
Song et al., 2020; Vahdat et al., 2021; Dhariwal & Nichol,
2021), audio (Liu et al., 2023; Yang et al., 2024), and videos
(Ho et al., 2022). However, recent works have reported the
memorization behavior of DMs (Carlini et al., 2023; Gu
et al., 2023; Wen et al., 2023; Yoon et al., 2023; Zhang et al.,
2023), specifically, generating samples that replicate train-
ing data. The memorization phenomenon contradicts the
generalization ability of DMs (Kadkhodaie et al., 2023; Oko
et al., 2023; Li et al., 2024) and also raises concerns about
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privacy issues when applied (Carlini et al., 2023). Therefore,
this memorization phenomenon needs deep investigation.

There has been a line of work (Somepalli et al., 2023a; Car-
lini et al., 2023; Wen et al., 2023; Somepalli et al., 2023b;
Yi et al., 2023; Gu et al., 2023) attempting to understand
the memorization behavior of DMs. However, they pri-
marily examine the effects of factors like training dataset
size (Somepalli et al., 2023a), prompts (Wen et al., 2023;
Somepalli et al., 2023b), and initializations (Wen et al.,
2023) on DMs’ memorization, rather than focusing on more
fundamental aspects, such as the influence of DMs’ training
processes on generalizability. Specifically, for the typical
denoising score matching loss of DMs, the closed-form op-
timal solution of the denoising score suggests the necessity
of DMs replicating training data (Yi et al., 2023; Gu et al.,
2023), which contradicts the generalizability observed in
the denoising scores obtained from actual DMs training.
Therefore, it naturally leads us to ask:

What are the discrepancies and connections between these
two scores regarding memorization and generation?

To address the question, our study primarily compares the
oracle true score and the trained one from various perspec-
tives. The comparison demonstrates that the data generated
by both can minimize the denoising loss, while the trained
score is smoother, thereby facilitating generalizability. We
further investigate the effects of mixing the optimal and
trained denoising scores during sampling on the memoriza-
tion behavior of DMs. We find that introducing the optimal
score exacerbates the memorization of DMs, with even late-
stage replacement leading to the exact replication of training
data. Our contributions are summarized as follows:

• We conduct various experiments to compare the optimal
and trained denoising scores, emphasizing their discrep-
ancies and connections on generalizability. This offers an
intuitive explanation for the superior generalizability of
DMs based on trained scores compared to those based on
oracle scores.

• We mix the optimal denoising score with the trained de-
noising score during the sampling phase and observe that
the introduction of the optimal denoising score exacer-
bates the memorization behavior of DMs.
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2. Preliminary
In this section, we will introduce the notations and problem
settings that are commonly used in the following section.

Notations. We refer to ϵθ as the trained score and ϵ∗ as the
nonparametric optimal score. We denote the Jacobian ma-
trix of a vector-valued function f with respect to x as J f(x).
S (x) denotes the softmax vector of x = (x1, . . . , xn).
⟨x,y⟩ refers to inner product of n-dimensional vector x,y
which is defined as

∑n
i=1 xiyi. {xi

0}ni=1 refers to the train-
ing set of diffusion models. All the norms ∥·∥ are L2 norm.

Diffusion Models. Inspired by thermodynamics, DMs
are a two-stage framework that includes a forward process
(mapping data distribution p0 to noise distribution q0) and a
reverse process (transforming noise distribution q0 back to
data p0). We consider DDPM (Ho et al., 2020) in our study,
the forward process is a Markov chain whose transition ker-
nel is Gaussian perturbation, which gradually adds standard
Gaussian noise to the data sample x0. At time step t, the
transition kernel is

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt ∈ (0, 1) is a hyperparameter chosen prior training.

Conversely, the reverse process aims to remove the added
noise and recover the original data using a learnable transi-
tion kernel, described as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where θ denotes trainable model parameters and the
statistics-mean µθ and variance Σθ-are parameterized by
deep neural networks. With a trained learnable transition
kernel, data can be generated by sampling from the standard
Gaussian by following xt−1 ∼ pθ(xt−1|xt) till t = 1.

Trained Denosing Score. The remaining task is training
the reverse transition kernel. Derived from evidence lower
bound (ELBO), this goal can be achieved by minimizing
the following weighted sum of denoising score network ϵθ
objectives (Ho et al., 2020):

Et∼U(1,T ),x0∼q0,ϵ∼N (0,I)[λ(t)∥ϵt − ϵθ(xt, t)∥2] (3)

where λ(t) is a positive weighting function for better sample
quality (Ho et al., 2020; Yang et al., 2023) and with the
time length T , U(1, T ) is a uniform distribution over the
set {1, · · · , T}. ϵθ(xt, t) is the trained denosing network
to predict the ground truth noise ϵt given xt and t. More
details about DDPM are included in Appendix D.

Optimal Denosing Score. Given the ground truth noise ϵ
satisfies the standard Gausssian distribution N (0,Σ), the

Figure 1: Visualization of ltθ(λ) and lt∗(λ) on CIFAR10 and
CelebA with fixed t = 10. λ = 1 refers to generated image
while λ = 0 refers to its nearest neighbor in the training set.
We show pictures of z0(0), z0(0.5), z0(1) from left to right.

closed-form optima of empirical counterpart of Equation (3)
can be derived as follows (Yi et al., 2023; Gu et al., 2023):

ϵ∗(xt, t) =
xt√
1− ᾱt

−
( √

ᾱt√
1− ᾱt

) n∑
i=1

exp

(
−∥xt−

√
ᾱtx

i
0∥2

2(1−ᾱt)

)
xi
0∑n

i=1 exp

(
−∥xt−

√
ᾱtxi

0∥2

2(1−ᾱt)

) .

(4)
where ᾱt :=

∏
1≤s≤t αs and αt := 1 − βt. The oracle

solution ϵ∗ can actually be regarded as a linear combination
of the training data x0 given xt =

√
ᾱtx0 +

√
1− ᾱtϵ,

suggesting the memorization of DDPM towards x0.

In our study, we aim to understand the memorization of
DDPM by comparing the trained solution ϵθ in (3) with the
oracle solution ϵ∗ in (4) from various perspectives.

3. Main Results
In this section, we show the main results of our work. First
we explore the similarity and difference between the trained
score and nonparametric optimal score from the following
three aspects. 1) We propose a criterion inspired by the
expression of nonparametric optimal score and verify that
generated data are local minima. 2) We utilize pseudo differ-
ence quotient to compare the local geometric features of the
two score functions. 3) We adopt SVD on Jacobian matrix
to explore the information carried by the two score func-
tions. Afterwards, we mix the two scores into one sampling
process to check the memorization status.

3.1. Generated Data Are Local Minimum

First we focus on the closed form expression of ϵ∗ in (4).
The interested softmax part inspires us to extract the same
part from the trained score by a similar definition, and we
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denote it x̂:

x̂θ(x, t) ≜
x−

√
1− ᾱtϵθ(x, t)√

ᾱt
, (5)

x̂∗(x, t) ≜
x−

√
1− ᾱtϵ

∗(x, t)√
ᾱt

. (6)

In particular, the former is popular as the predicted original
data(Ho et al., 2020) while the latter is exactly

n∑
i=1

exp

(
−∥x−√ᾱtx

i
0∥2

2(1−ᾱt)

)
xi
0∑n

i=1 exp

(
−∥x−√ᾱtxi

0∥2

2(1−ᾱt)

) . (7)

When t is small, (7) is a certain training sample xi
0 which is

determined by

i = argmin
j

∥∥∥xt −
√
ᾱtx

j
0

∥∥∥2 . (8)

Thus with the goal of investigating the relationship between
a generated new image x0 and its pixel-wise nearest neigh-
bor y0 in the training set, we consider the interpolation of
their noisy version: zt(λ) = λyt+(1−λ)xt, λ ∈ [0, 1]. To
assess the capability of the trained score to restore the inter-
polation to original clean data, we introduce a new criterion
as follows

ltθ(λ) ≜ ∥x̂θ(zt(λ), t)− z0(λ)∥ , (9)

lt∗(λ) ≜ ∥x̂∗(zt(λ), t)− z0(λ)∥ . (10)

Since the latter is approximately
∥∥xi

0 − z0(λ)
∥∥, we pay

more attention to ltθ(λ). When t is small, it is natural for
ltθ(0) to be small because it represents the ability of the
trained score network to denoise data from the training set
that is perturbed by small-scale noise. But we surprisingly
find that ltθ(1) is as small as ltθ(0) while ltθ(λ), λ ∈ (0, 1)
is bigger, demonstrating that the trained score is able to
denoise both training samples and generated data but is
impotent faced with interpolation. Besides, lt∗ shows a
monotonically increasing trend, suggesting that ϵ∗ does
not restore the noisy generated data to clean ones.

Figure 1 shows the graph of ltθ(λ) with respect to λ and
detailed experimental results are in Appendix C. We can
summarize that generated images, similar to training sam-
ples, reside in some local minima regarding ltθ.

3.2. First Order Behavior

In this section, we analyze the first order behavior of ϵθ
and ϵ∗ given fixed t. We use difference quotient to analyze
local properties on the line connecting two training data and
Jacobian matrix to compare the information carried by the
two score functions at certain training samples. We find that
trained score is much smoother than nonparametric oracle
score around the training samples, leading to the potential
of generating new samples.

Difference Quotient. Difference quotient is a computa-
tionally friendly mathematical tool to gain insights into the
local behavior of certain functions along interested direc-
tions. We leave more detailed discussions about this tool in
Appendix B.1 and here we directly use it on score functions
at different time step t, especially small ones because they
contain more information about the original data distribu-
tion and thus are harder to learn for a neural network. With
the goal of figuring out the local behavior along the line
connecting any two training samples, we again consider the
interpolation. Specifically, we select two samples x0,y0

from the training set and obtain the noisy version xt,yt

from the forward process. For the optimal score and trained
score, we obtain the corresponding difference quotient:

∥ϵθ(xt, t)− ϵθ(λxt + (1− λ)yt, t)∥
(1− λ) ∥xt − yt∥

, (11)

∥ϵ∗(xt, t)− ϵ∗(λxt + (1− λ)yt, t)∥
(1− λ) ∥xt − yt∥

. (12)

By directly calculating (11), we find that it is small com-
pared to the pseudo difference quotient of ϵ∗ which happens
to be 1√

1−ᾱt
approximately when λ approaches 1, demon-

strating a smoother local behavior. Furthermore, the value
remains unchanged for a duration as λ moves from about
0.5 to 1, revealing that the geometric landscape exhibits an
approximate straight-line pattern with a consistent slope in
the direction of xt − yt around the point xt. In contrast, ϵθ
has smaller difference quotient. Thus the geometry terrain
along xt − yt near the point xt appears to be flatter.

The brief results are in Figure 2 and the detailed experiments
are presented in Appendix E where we analyze the reason
why the pseudo difference quotient of ϵ∗ approaches 1√

1−ᾱt

when λ is closed to 1.

Jacobian. In addition to the difference quotient, the Ja-
cobian matrix is a direct but more expensive way to reflect
the local properties of a vector-valued function. Inspired
by the closed form expression of ϵ∗, we can compute the
Jacobian matrix of x√

1−ᾱt
−ϵ∗(x, t) for a fixed t to analyze

the softmax part of ϵ∗. Similarly, we perform the same
method on the trained score trying to figure out the local
behavior of ϵθ. In particular, we define

J t
θ(x) ≜

1√
1− ᾱt

I−∇xϵθ(x, t), (13)

J t
∗(x) ≜

1√
1− ᾱt

I−∇xϵ
∗(x, t). (14)

Then we calculate singular value decomposition(SVD) on
J t
θ(x) and J t

∗(x) to compare their singular values and vec-
tors. The visualization in Figure 3 shows that J t

∗ has one
large singular value while the singular values curve of J t

θ is
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Figure 2: Results of pseudo difference quotient of trained score and nonparametric optimal score. The four figures from left
to right represent the time t = 10, 50, 100, 200 respectively. The interpolation points x0,y0 are chosen randomly from the
training set and each figure shares the same x0,y0.
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(a) Singular values of Jt
θ(x) and Jt

∗(x) when t = 10.

0 = 30.959 6 = 21.228 24 = 20.739 60 = 20.029 132 = 18.462 276 = 15.643

0 = 2509738.0 6 = 0.083 24 = 0.045 60 = 0.033 132 = 0.022 276 = 0.011

(b) Visualization of the first dimension of the singular
vectors. The first row and the second row show the
singular vectors of Jt

θ(x) and Jt
∗(x) respectively.

Figure 3: Visualization of SVD on J t
θ(x) and J t

∗(x).

smoother. The singular vector corresponding to the biggest
singular value of J t

∗ presents a clear contour of the input im-
age whereas the singular vectors of J t

θ are fuzzier. Thus we
consider J t

∗ to carry most information in one single direction
while J t

θ distributes information to several different singular
vector directions. See the detailed results in Appendix F.

3.3. Sampling with Mixture of ϵθ and ϵ∗

Since we have unraveled the discrepancies and connections
between memorization and generation from both data per-
spective and score function perspective, we now wonder the
impact of the two score functions on generation. A most
direct way is to mix them up during a sampling process.
That is, what will happen if ϵ∗ exclusively contributes to the
reverse process within a defined interval i ≤ t ≤ j while ϵθ
is involved for the remaining duration?

In order to explore the answer, we define

ϵji (x, t) ≜

{
ϵ∗(x, t), i ≤ t ≤ j.
ϵθ(x, t), otherwise. (15)

and go through the DDPM reverse process with ϵji (x, t).

Table 1: Memorization ratios of Mixed Sampling on CI-
FAR10 and CelebA. A start time and end time of 0 in the
first row means the memorization results of standard DDPM
sampler. The third column and the fourth column present
the memorization ratio of the generated 64 images of CI-
FAR10 and CelebA respectively.

start time i end time j CIFAR10 (%) CelebA (%)

0 0 68.75 68.75
5 10 100.00 100.00
50 100 98.44 100.00

100 200 89.06 100.00
200 300 78.13 100.00
500 600 75.00 73.44
700 800 68.75 68.75

We find that the model cannot generate new images even
if only a few steps are interfered by ϵ∗(x, t) when t is
small enough. The detailed experiments are presented in
Appendix D and one can see the sampling algorithm in
Algorithm 2. We briefly show the memorization ratios of
mixed sampling in Table 1, illustrating that as the mixture
interval [i, j] moves to the noisier side of the sampling pro-
cess, the memorization ratios decrease and finally arrive at
the same ratio as standard DDPM sampling. It reveals the
strong ability of ϵ∗ to “redirect” the generative process to
the training set.

4. Conclusion
In this study, we try to understand the discrepancy and con-
nection between memorization and generation in diffusion
models. Our exploration encompasses various aspects, start-
ing from generated data and extending to the analysis of the
scores, ultimately leading to an assessment of the sampling
process. We conclude that generated data, similar to training
data, are also local minima. Besides, the trained score has
smoother local properties than the nonparametric optimal
one, indicating potential to generalize. Finally, we mix the
two scores in one DDPM sampling process to explore the
impact of them on sampling.
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A. Implementaion Details
In this work, we mainly do our experiments on CIFAR10 and CelebA dataset. According to previous work, small datasets
and big neural networks are more likely to trigger the memorization effect which is closely related to our focus. Thus we
randomly pick 10 thousand pictures(1 thousand for each class) from the CIFAR10 dataset and 7 thousand pictures from
the CelebA dataset. Besides, the images in CelebA are all resized to shape of (64, 64, 3). Moreover, in order to make the
memorization phenomenon more pronounced, we give up all the tricks like dropout and data augmentation, which are
considered beneficial to generalization.

We use the same memorization definition and metric as Carlini et al. (2023). Here we expand on the definition of “a
memorized image” and the metric to evaluate memorization.

Definition A.1 (Memorization). A generated image x is called “memorized” if there exists a image x∗ in the training set,
with

l(x,x∗) ≤ δ, (16)

where the metric l is defined as

l(x,y) ≜
l2(x,y)

αEz∈Sy [l2(x, z)]
, (17)

where l2(x,y) ≜
√∑

i(xi − yi)2/d denotes the normalized l2 distance, and Sy is the set containing the n closest samples
from the training set to the sample x. We follow the default values of n = 50 and α = 0.5 in the literature. We empirically
select δ = 0.12 as the memorization threshold.

B. Mathematical Tools
We expand on some mathematical tools used in this work for completeness.

B.1. Difference Quotient

For a function f(·) : R → R, the first order difference quotient defined as

f(x)− f(y)

x− y
(18)

is the slope of the line connecting two points (x, f(x)), (y, f(y)). It is practically adopted as an approximation to the
first-order derivative of f(x) when x and y are close enough, making it a great criterion to determine the local smoothness
of function f .

Analogously, when it comes to a vector-valued function g(·) : Rm → Rn, the “pseudo difference quotient” can be defined
as

∥g(x)− g(y)∥
∥x− y∥

. (19)

From the mean value theorem(Theorem B.1), the pseudo difference quotient provides a lower bound estimation for the norm
of the Jacobian matrix of g at a certain point ξ ∈ {tx+ (1− t)y|t ∈ (0, 1)}. Moreover, if y = x+ δd where ∥d∥ = 1 and
δ ∈ R has sufficiently small absolute value, the pseudo difference quotient can be considered as ∥J g(x)∥ approximately.

Theorem B.1 (Mean Value Theorem for Vector Function). Assuming E is a convex open set in Rm and g : E → Rn is a
differentiable mapping, then ∀x,y ∈ E, there exists ξ ∈ {tx+ (1− t)y|t ∈ (0, 1)}, s.t.

∥g(x)− g(y)∥ ≤ ∥J g(ξ)∥ ∥x− y∥ . (20)

In particular, if there exists real number M satisfying ∥J g(x)∥ ≤ M, ∀x ∈ E, then we have

∥g(x)− g(y)∥ ≤ M ∥x− y∥ ,∀x,y ∈ E. (21)
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B.2. Singular Value Decomposition

Here we show the singular value decomposition of Jacobian matrix. Suppose ∇xϵθ(x, t) = USVT for fixed time t and
input x. Assume that the first order Taylor expansion of ϵθ(x, t) can approximate it, then we have

ϵθ(x, t) ≈ ∇xϵθ(x, t)x = USVTx. (22)

Since all the column vectors vi ∈ Rn in matrix V form a standard orthogonal basis for the whole space, we have the
following decomposition

x =

n∑
i=1

⟨x,vi⟩vi. (23)

Thus VTx turns out to be a column vector of ⟨x,vi⟩. Then we have

ϵθ(x, t) ≈ ∇xϵθ(x, t)x = USVTx =
∑
k

sk(x)⟨x,vk(x)⟩uk(x), (24)

where sk(x) denotes the singular values of Jacobian matrix given input x. This decomposition tells that the trained score
can be interpreted as shrinkage with factors si along axes of a basis specified by the singular vectors ui(x),vi(x).

C. Results of x̂θ(x, t)

Take another look at ltθ(λ), we can further derive

ltθ(λ) = ∥x̂θ(zt(λ), t)− z0(λ)∥

=

∥∥∥∥√ᾱtz0 +
√
1− ᾱtϵ−

√
1− ᾱtϵθ(zt, t)√

ᾱt
− z0

∥∥∥∥
=

∥∥∥∥√1− ᾱt√
ᾱt

(ϵθ(zt(λ), t)− ϵ)

∥∥∥∥ .
(25)

If we ignore the coefficient
√
1−ᾱt√
ᾱt

, (25) is exactly the training loss function with respect to one specific data instead of
taking expectations on x0 ∼ q0(x). Thus ltθ describes how precisely the neural network predicts the noise ϵ given input
noisy data zt(λ).

(a) Visualization of ltθ(λ) on CIFAR10 with t = 10. (b) Visualization of ltθ(λ) on CelebA with t = 10.

Figure 4: More visualization results of l(λ) on CIFAR10 and CelebA. λ = 1 refers to generated image while λ = 0 refers to
its nearest neighbor in the training set. We show z0(0), z0(0.5), z0(1) from left to right for better visualization.

It turns out that the curve of ltθ(λ) is convex, which means there exist no local minima on the line {txt+(1−t)yt, |t ∈ (0, 1)}.
According to (25), since local minima of l(λ), λ ∈ [0, 1] are attained at the endpoints of the interval [0, 1] rather than in the
interior, the generated images are local minima, which are similar to training data. Moreover, we argue that the trained score
does not generate new data through pixel-wise interpolation.
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D. Mixed Sampling
We show both the typical DDPM sampling algorithm and the entire algorithm for mixed sampling based on DDPM sampling
here.

Algorithm 1 DDPM sampling

xT ∼ N (0, I)
for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0

xt−1 = 1√
αt

(
1−αt√
1−ᾱt

ϵθ(xt, t)
)
+ σtz

end for
return x0

Algorithm 2 Mixed Sample with DDPM

xT ∼ N (0, I)
for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0
if i < t < j then
xt−1 = 1√

αt

(
1−αt√
1−ᾱt

ϵ∗(xt, t)
)
+ σtz

else
xt−1 = 1√

αt

(
1−αt√
1−ᾱt

ϵθ(xt, t)
)
+ σtz

end if
end for
return x0

For the DDPM sampler, we mix trained score with nonparametric optimal score to figure out whether the injection of ϵ∗ will
make some differences to the generative images. We fix random seed to exclude the effect of random noise on the results.
We also pick out the nearest neighbors of generated images to determine whether they are identical.

We claim that the nonparametric optimal score has a strong ability to “redirect” the generative process to point at the nearest
training sample because the softmax vector in ϵ∗ collapses rapidly to a vector with only one component is 0 and all the
others are 1. Therefore, after the generative process is meddled with the nonparametric optimal score when t is relatively
small(about 100), the x←t contains much information of a certain training sample, with which the well-trained score is very
familiar with. The trained score function is more likely to recover it rather than jump out of the high probability region to
generate a brand new sample.

Figure 5 and 6 show that with the nonparametric optimal score intervening the sampling process at t small enough, DDPM
sampler is able to force what would otherwise be a new image to become a replica of some image in the training set.
However, when t is big, despite enlarged interval(e.g. 200 and 300 in Figure 7 and 8) the nonparametric optimal score does
not necessarily lead to a nearest memorized training sample, because when t is big, both ϵθ and ϵ∗ are noisy.

8
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Figure 5: Results on CIFAR10. Generated images with different start time and end time. The images are presented in pairs,
in which the left ones are generated images and the right ones are their nearest neighbors in the training set. Images in the
top line are generated by a standard DDPM sampler. The next few lines follow the order of start time, end time as follows:
(5, 10), (50, 100), (100, 200), (200, 300), (500, 600), (700, 800)

Figure 6: Results on CelebA. Generated images with different start time and end time. The images are presented in pairs, in
which the left ones are generated images and the right ones are their nearest neighbors in the training set. Images in the
top line are generated by a standard DDPM sampler. The next few lines follow the order of start time, end time as follows:
(5, 10), (50, 100), (100, 200), (200, 300), (500, 600), (700, 800)
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Figure 7: Results on CIFAR10. Generated images with different start time and end time. The images are presented in pairs,
in which the left ones are generated images and the right ones are their nearest neighbors in the training set. Images in the
top line are generated by a standard DDPM sampler. The next few lines follow the order of start time, end time as follows:
(200, 400), (300, 500), (400, 600), (500, 800), (600, 900), (700, 1000)

Figure 8: Results on CelebA. Generated images with different start time and end time. The images are presented in pairs, in
which the left ones are generated images and the right ones are their nearest neighbors in the training set. Images in the
top line are generated by a standard DDPM sampler. The next few lines follow the order of start time, end time as follows:
(200, 400), (300, 500), (400, 600), (500, 800), (600, 900), (700, 1000)
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E. Results of Difference Quotient
The detailed analysis of difference quotient and its high-dimensional version is presented in Appendix B.1. Here we focus
on the results related to our experiments.

As is stated in Section 3.2, we calculate

∥ϵθ(xt, t)− ϵθ(λxt + (1− λ)yt, t)∥
(1− λ) ∥xt − yt∥

, λ ∈ [0, 1), (26)

and
∥ϵ∗(xt, t)− ϵ∗(λxt + (1− λ)yt, t)∥

(1− λ) ∥xt − yt∥
, λ ∈ [0, 1), (27)

for fixed t and xt =
√
ᾱtx0 +

√
1− ᾱtϵ,yt =

√
ᾱty0 +

√
1− ᾱtϵ, where x0,y0 are random samples from the training

set. Since the pseudo difference quotient can be viewed as a function with respect to the interpolation parameter λ whenever
xt,yt, t, f are all fixed:

Df (·) : λ ∈ [0, 1) 7→ ∥f(xt, t)− f(λxt + (1− λ)yt, t)∥
(1− λ) ∥xt − yt∥

, (28)

we can plot the curve of both Dϵθ (λ) and Dϵ∗(λ) with respect to λ. The results are shown in Figure 10.

We surprisingly find that the pseudo difference quotient of the nonparametric optimal score is extremely closed to the
corresponding 1√

1−ᾱt
when λ is closed to 1, whichever two samples we select from the training set. For better comparison,

we show the curve of 1√
1−ᾱt

in Figure 9 for reference where βt follows linear schedule. Here we analyze the reason for this
phenomenon.
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Figure 9: Curve for 1√
1−ᾱt

with respect to t ∈ [0, T ]

For a fixed small t, when λ approaches 1, the softmax part of ϵ∗ remains unchanged because 1− ᾱt is closed to 0 while∥∥x−
√
ᾱtx

i
0

∥∥ ≈
∥∥λx+ (1− λ)y −

√
ᾱtx

i
0

∥∥. For notational convenience, we define the “inner product” of a vector and a
set of vectors:

Definition E.1. Suppose a vector x = (x1, . . . , xn) ∈ Rn and a serious of vectors {yi}ni=1 where yi ∈ Rm. We define an
operation ⊗ as follows

x⊗ {yi}ni=1 ≜
n∑

i=1

xiyi ∈ Rm. (29)
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Figure 10: Results of pseudo difference quotient of trained score and nonparametric optimal score. The four rows from top
to bottom represent the time t = 10, 50, 100, 200 respectively. Each figure in each row represents the pseudo difference
quotient with respect to the interpolation parameter λ. The interpolation points x0,y0 are chosen randomly from the training
set and each column shares the same x0,y0.
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Based on the analysis above, we can roughly assume that

S

(
−
∥∥x−

√
ᾱtx

i
0

∥∥2
2(1− ᾱt)

)
⊗ {xi

0}ni=1

=S

(
−
∥∥λx+ (1− λ)y −

√
ᾱtx

i
0

∥∥2
2(1− ᾱt)

)
⊗ {xi

0}ni=1

=xk
0 ,

(30)

for certain positive integer k. Accordingly the only contribution to the pseudo difference quotient of ϵ∗ is x√
1−ᾱt

, resulting
in its value being closed to 1√

1−ᾱt
.

In conclusion, we claim that ϵθ is smoother than ϵ∗ at any certain training samples. In other words, despite the strong
expressive power of the score neural network, the trained score is far from recovering every, or even most information
carried by the training set as ϵ∗ does. That is probably the reason why the trained score has the potential of generating new
samples while the nonparametric optimal score can only recover the training set.
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F. Results of SVD on Jacobian Matrix
We have given detailed derivation of the application of SVD in our analysis in Appendix B.2. Now we present some
visualized results of SVD on both J t

θ(xt) and J t
∗(xt) to compare the singular values and singular vectors. In addition,

we repeat the same things at t = 10, 100, 200 so that we can better understand the local behavior of the trained score at
relatively small t.
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(a) Singular values of Jt
θ(x) and Jt

∗(x).

0 = 30.654 6 = 21.11 24 = 20.453 60 = 19.394 132 = 17.356 276 = 14.509 564 = 10.667

0 = 3537764.5 6 = 0.118 24 = 0.062 60 = 0.041 132 = 0.027 276 = 0.015 564 = 0.002

0 = 30.328 6 = 21.302 24 = 20.966 60 = 20.411 132 = 19.127 276 = 16.576 564 = 12.071

0 = 4084539.0 6 = 0.178 24 = 0.059 60 = 0.04 132 = 0.028 276 = 0.016 564 = 0.002

(b) Visualization of left singular vectors. The first row shows the singular vectors of Jt
θ(x)

while the second row shows the singular vectors of Jt
∗(x).

Figure 11: Singluar values of Jacobian matrix at t = 10. The visualized left singular vectors are only the first of three
channels and use blue and red to distinguish between positive and negative pixel values.

The visualization of singular values and vectors is consistent with the results in Kadkhodaie et al. (2023) which claims that
the singular vectors demonstrate oscillating patterns, adapting to the input image’s geometry in both contour regions and
uniformly regular areas.
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(a) Singular values of Jt
θ(x) and Jt

∗(x).

0 = 3.028 6 = 1.834 24 = 1.138 60 = 0.659 132 = 0.398 276 = 0.308 564 = 0.25

0 = 53623.664 6 = 0.002 24 = 0.001 60 = 0.001 132 = 0.0 276 = 0.0 564 = 0.0

0 = 2.924 6 = 1.788 24 = 1.105 60 = 0.595 132 = 0.419 276 = 0.322 564 = 0.249

0 = 81241.56 6 = 0.003 24 = 0.001 60 = 0.001 132 = 0.001 276 = 0.0 564 = 0.0

(b) Visualization of left singular vectors. The first row shows the singular vectors of Jt
θ(x)

while the second row shows the singular vectors of Jt
∗(x).

Figure 12: Singluar values of Jacobian matrix at t = 100. The visualized left singular vectors are only the first of three
channels and use blue and red to distinguish between positive and negative pixel values.
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(a) Singular values of Jt
θ(x) and Jt

∗(x).

0 = 1.596 6 = 0.766 24 = 0.404 60 = 0.23 132 = 0.14 276 = 0.1 564 = 0.084

0 = 15329.62 6 = 0.001 24 = 0.0 60 = 0.0 132 = 0.0 276 = 0.0 564 = 0.0

0 = 1.44 6 = 0.59 24 = 0.342 60 = 0.208 132 = 0.133 276 = 0.103 564 = 0.086

0 = 19083.04 6 = 0.001 24 = 0.0 60 = 0.0 132 = 0.0 276 = 0.0 564 = 0.0

(b) Visualization of left singular vectors. The first row shows the singular vectors of Jt
θ(x)

while the second row shows the singular vectors of Jt
∗(x).

Figure 13: Singluar values of Jacobian matrix at t = 200. The visualized left singular vectors are only the first of three
channels and use blue and red to distinguish between positive and negative pixel values.
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