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ABSTRACT

Learning physical systems on unstructured meshes by flat Graph neural networks
(GNNs) faces the challenge of modeling the long-range interactions due to the
scaling complexity w.r.t. the number of nodes, limiting the generalization under
mesh refinement. On regular grids, the convolutional neural networks (CNNs)
with a U-net structure can resolve this challenge by efficient stride, pooling, and
upsampling operations. Nonetheless, these tools are much less developed for
graph neural networks (GNNs), especially when GNNs are employed for learn-
ing large-scale mesh-based physics. The challenges arise from the highly irreg-
ular meshes and the lack of effective ways to construct the multi-level structure
without losing connectivity. Inspired by the bipartite graph determination algo-
rithm, we introduce Bi-Stride Multi-Scale Graph Neural Network (BSMS-GNN)
by proposing bi-stride as a simple pooling strategy for building the multi-level
GNN. Bi-stride pools nodes by striding every other Breadth-First-Search (BFS)
frontier; it 1) works robustly on any challenging mesh in the wild, 2) avoids us-
ing a mesh generator at coarser levels, 3) avoids the spatial proximity for build-
ing coarser levels, and 4) uses non-parametrized aggregating/returning instead of
MLPs during pooling and unpooling. Experiments show that our framework sig-
nificantly outperforms the state-of-the-art method’s computational efficiency in
representative physics-based simulation cases.

1 INTRODUCTION

Simulating physical systems through numerically solving partial differential equations (PDEs) plays
a key role in various science and engineering applications, ranging from particle-based (Jiang et al.,
2016) and mesh-based (Li et al., 2020a) solid mechanics to grid-based fluid (Bridson, 2015) and
aero (Cao et al., 2022) dynamics. Despite the extensive successes in improving their stability, accu-
racy, and efficiency, numerical solvers are often computationally expensive for time-sensitive appli-
cations, especially iterative design optimization where fast online inferring is desired.

Recently, machine learning approaches have demonstrated impressive potential in improving the
efficiency of inferring physical states with competitive accuracy. Representative methods include
end-to-end frameworks (Obiols-Sales et al., 2020) and those with physics-informed neural networks
(PINNs) (Raissi et al., 2019; Karniadakis et al., 2021; Sun et al., 2020; Gao et al., 2021). Many
existing works apply convolutional neural networks (CNNs) (Fukushima & Miyake, 1982) to learn
physical systems on two- or three-dimensional structured grids (Kim et al., 2019; Fotiadis et al.,
2020; Gao et al., 2021; Guo et al., 2016; Tompson et al., 2017). It is generally recognized that
CNNs exhibit strong performance on handling local information with convolution and global infor-
mation with pooling/upsampling. However, the strict dependency on regular domain shapes makes
it non-trivial to be applied on unstructured meshes. Although it is possible to deform the domains
to rectangular shapes to apply CNNs (Gao et al., 2021) or other models, such as NeuralOpera-
torNets (Li et al., 2022), the challenge remains for domains with complex topologies, which are
common in practice.

On the other hand, graph neural networks (GNNs) have been considered as a natural choice for
physics-based simulation on unstructured meshes (Battaglia et al., 2018; Belbute-Peres et al., 2020;
Gao et al., 2022; Harsch & Riedelbauch, 2021; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2018;
2020). However, all the above methods use the flat GNN that faces two challenges when the graph
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size increases: (1) Oversmoothing: the graph convolution can be seen as a low-pass filter that
suppresses the signal with higher frequency than a certain value (Chen et al., 2020; Li et al., 2020b).
Multiple passes of graph convolution then become an iterative projection onto the eigenspace of the
graph where all higher frequency signals are smoothed out, which also makes training harder. (2)
Complexity: Under mesh refinement, not only that more nodes are there to be processed, but the
message passing (MP) iterations also grow linearly to propagate information to the same physical
distance (Fortunato et al., 2022). As a result, a quadratic complexity becomes inevitable for both the
running time and the memory to store the computational graph.

To mitigate these limitations, researchers recently start investigating multi-scale GNNs (MS-GNNs)
for physics-based simulation (Fortunato et al., 2022; Li et al., 2020b; Lino et al., 2021; Liu et al.,
2021; Lino et al., 2022a;b). The multi-scale approach is appealing as it tackles the oversmoothing
issue by building sub-level graphs on coarser resolutions, which lead to longer range interaction and
naturally fewer MP times. However, pooling and adjacency building should be conducted carefully
to avoid introducing partitions into the coarser levels (Gao & Ji, 2019), which stops information
exchange across the separated clusters. Existing solutions include utilizing the spatial proximity for
building the connections at the coarser levels (Lino et al., 2021; Liu et al., 2021; Lino et al., 2022a;b),
or generating coarser meshes for the original geometry (Fortunato et al., 2022; Liu et al., 2021), and
randomly pooling nodes then applying Nyström approximation for the original adjacency matrix (Li
et al., 2020b). However, all of them suffer from limitations: the spatial proximity can result in wrong
connections across the geometry boundaries; the mesh generation is laboring and often unavailable
for unseen meshes; and the random pooling may introduce partitions in the coarser levels.

We observe that all the aforementioned limitations originate from pooling and building connections
at coarser levels. To the best of our knowledge, no existing work can systematically generate multi-
scale GNNs with arbitrary levels for an arbitrary geometry in the wild while completely avoiding
cutting or wrong connections across the boundaries. To this end, in this work, we introduce a simple
yet robust and effective pooling strategy, bi-stride. Bi-stride is inspired by the bi-partition determi-
nation in DAG (directed acyclic graph). It pools all nodes on every other BFS (breadth-first-search)
frontiers, such that a 2nd-powered adjacency enhancement conserves all the connectivity. We also
accompany bi-stride with a non-parameterized aggregating/returning method to handle the transi-
tion between adjacent levels to decrease the model complexity. Our framework, namely Bi-Stride
Multi-Scale Graph Neural Network (BSMS-GNN), is tested on three benchmarks (CYLINDERFLOW,
AIRFOIL, and DEFORMINGPLATE) from GraphMeshNets and INFLATINGFONT, a new dataset of
inflating elastic surfaces with many self-contacts. In all cases, BSMS-GNN shows a dominant ad-
vantage in memory footprint and required training and inference time compared to alternatives.

2 BACKGROUND AND RELATED WORKS

GNNs for Physics-Based Simulation GNNs are first applied to physical simulation to learn the
behaviors of particle systems, deformable solids, and Lagrangian fluids (Battaglia et al., 2016; Chang
et al., 2016; Mrowca et al., 2018; Sanchez-Gonzalez et al., 2020). Notably, the generalized Message
Passing (Sanchez-Gonzalez et al., 2018) is broadly accepted for information propagation. Based on
that, GraphMeshNets (Pfaff et al., 2020) sets a milestone for learning mesh-based simulation. Fol-
lowing GraphMeshNets, which predicts a single forward timestep, there have been several variants,
including 1) solving forward and inverse problems by combining GNNs with PINNs (Gao et al.,
2022), 2) predicting long-term system states combined with GraphAutoEncoder (GAE) and Trans-
former (Han et al., 2022), 3) predicting steady states with multi-layer readouts (Harsch & Riedel-
bauch, 2021), and 4) up-sampling from coarser meshes with differentiable simulation (Belbute-Peres
et al., 2020). Yet still, with flat GNNs, the quadratic computation complexity on finer meshes poses
great challenges. We claim that adopting a multi-level structure is an effective solution.

Multi-Scale GNNs It is common to apply GNNs with multi-level structures in various graph-
related tasks, such as graph classification (Wu et al., 2020; Mesquita et al., 2020; Zhang et al.,
2019). GraphUNet (GUN) (Gao & Ji, 2019) first introduces the UNet structures into GNN with a
trainable scoring module for pooling; it also has a 2nd-powered adjacency enhancement to reduce
the chance of losing connectivity. A few works have investigated multi-scale GNNs (MS-GNNs)
for physics-based simulation. Specifically, Fortunato et al. (2022) and Liu et al. (2021) define two-
and multi-level GNNs, respectively, for physics-based simulation, but both of them rely on pre-
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(a) learnable pooling (b) pooling by rasterization (c) pooling by spatial proximity

Figure 1: Issues of existing multi-level GNNs. (a) A learnable pooling (Gao & Ji, 2019) may lead
to loss of connectivity even after 1st-order enhancement. (b) A pooling by rasterization (Lino et al.,
2021; 2022a;b) and (c) by spatial proximity (Liu et al., 2021; Fortunato et al., 2022) can lead to
wrong connections across the boundaries at the coarser level.

generated coarse meshes. Lino et al. (2021; 2022a;b) use the original mesh at the first level and
project it to regular grids (MS-GNN-GRID) at the coarser levels. Li et al. (2020b) adopt multi-level
matrix factorization to generate the kernels at arbitrary levels without requiring mesh generators or
K-nearest neighbor (K-NN) interpolations. Concerning building the connections and hierarchies on
point clouds with radius samplers, there are representative works such as GNS Sanchez-Gonzalez
et al. (2020), PointNet Qi et al. (2017a), PointNet++ Qi et al. (2017b), and GeodesicConv Masci
et al. (2015). Still, these methods by construction suit better cases without meshes, such as particle
fluid simulations.

Motivations of Our Method We present an overview of representative GNN architectures with
U-net structure in Fig. 1. Two major disadvantages we observed are: 1) easy loss of connectivity by
pooling, even with a 2nd-powered adjacency enhancement; and 2) lack of direct connections between
pooled and unpooled nodes, leading to additional edges built by the spatial proximity for transition
between levels.

For a more clear illustration, we start with a few definitions. We first define the adjacency enhance-
ment by the K th-order matrix power as A ← AK , where A is the adjacency matrix of the graph.
Geometrically, A(i, j) = 1 means the edge (i, j) exists, and AK(i, j) = 1 means that node j is
connected to node i via at most K hops. Given a pooling strategy P and the selected pooled nodes
SP, we define a Kth-order outlier set asOK , where the nodes inOK are not connected to any pooled
nodes even after K th-order adjacency enhancement: AK(i, j) = 0,∀i ∈ SP,∀j ∈ OK .

We further define that a pooling strategy P is K th-order connection conservative (K-CC) if OK is
empty. We argue that larger K in K th-order adjacency enhancement is harmful to distinguish the
node features. As K increases, AK(i, j) approaches a matrix with all its entries equal to 1, repre-
senting a fully connected graph, where a single step of convolution will average all node features and
make them indistinguishable. The most favorable and possible, i.e. the smallest, K we should seek
is 2. Gao & Ji (2019) uses the 2nd order enhancement to help conserve the connectivity. Nonetheless,
there is no theoretical guarantee that a learnable pooling module is consistently 2-CC for any graph
(a counter example is shown in Fig. 1(a)). There are two alternative solutions to the matrix power
enhancement that ensure conservation of the connectivity at coarser layers: 1) Lino et al. (2022a;
2021; 2022b) build the coarser graph by projecting the finer nodes to the nearby background grids
(Fig. 1(b)); 2) Liu et al. (2021); Fortunato et al. (2022) create coarser meshes for the same do-
main (Fig. 1(c)). However, both methods need spatial proximity to build additional connections for
the transition between levels, which may produce wrong connections across the boundary. These
limitations motivate us to create a consistent 2-CC pooling strategy, as described in Sec. 3.2.

An additional overhead is the learnable transition modules which have the same network architecture
as the message passing. This overhead in model size and computational complexity grows linearly
w.r.t. the number of levels of U-net. As a result, they often end up with a relatively shallow level at 2
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Figure 2: BSMS-GNN pipeline uses encode-process-decode trained with one-step supervision.
G1,G2, · · · ,Gd represents the graph at different levels (finest to coarsest). The encoder/decoder
only connects the input/output fields with the latent fields at G1. The latent nodal fields are updated
by one MP (message passing) at each level. The bi-stride pooling selects the pooled nodes for the
adjacent coarser level, and the transition is conducted in a non-parameterized way.

or 3. We claim that none-parameterized transition is performance-wise crucial for deeper multi-layer
GNNs, and propose the first non-parameterized transition method in Sec. 3.3.

Overall, our method adopts a similar message passing layer as in GraphMeshNets (Pfaff et al., 2020).
Compared to Liu et al. (2021); Fortunato et al. (2022), our advantage is that no mesh generators is
needed for the coarser-level graphs. Compared to Lino et al. (2021; 2022a;b), our advantage is
that no spatial proximity is necessary. Together, we eliminate the need for building connections via
spatial proximity nor using learnable MLP for aggregation and returning. Note that the work of Li
et al. (2020b) shares similar advantages to some extent, but it focuses on generalization with PDE
parameters, while ours focuses on a systematic pooling strategy for arbitrary complex geometries.

3 METHODOLOGY

3.1 DEFINITIONS

Figure. 2 presents the overall structure of BSMS-GNN. We consider the evolution of a physics-based
system discretized on a mesh, which is converted to an undirected graph G1 = (V1, E1). Here, with
subscript 1, V1 and E1 label the nodal fields and the connectivities at the finest level (the input mesh),
respectively. Specifically for edges, we define E1 = {E11 , · · · , ES1 }, where E11 is the edge set directly
copied from the input mesh, and {Ek1 |Sk=2} are optionally the additional problem-dependent edge
sets involved. For example, both DEFORMINGPLATE (Fig. 5(c)) and INFLATINGFONT (Fig. 5(d))
benchmarks have a second edge set E21 for the nearby colliding vertices. We use {p, q}, stacked
vectors of {pi, qi} of all nodes i ∈ V1, to denote the input and output nodal fields, respectively.
Given an input field pj at a previous time tj , one pass of our BSMS-GNN returns the output field
qj+1 at time tj+1 = tj + ∆t, where ∆t is the fixed time step size. The output q can contain more
physical fields than the input p and must be able to derive the input for the next pass. The rollout
refers to iteratively conducting BSMS-GNN from the initial state p0 → q1 → p1 → · · · → qn and
producing the temporal sequence output {q1, q2, · · · , qn} within the time range of (t0, t0 + n∆t],
where n is the total number of evaluations.

Message Passing In general, we follow the encode-process-decode fashion in GraphMeshNets,
where encoding and decoding only appear at the beginning and the end of the finest level G1, map-
ping the nodal input p and output q to/from the latent feature v, respectively (see Table A.1 for
the domain-specific information). As for the process part, unlike GraphMeshNets where multiple
message passings (MPs) are needed, we observe that a single MP at each level is sufficient for all
experiments. Therefore, it becomes unnecessary to keep updating the latent edge information across
multiple MPs. To include the directional information of an edge (xi,xj), we simply prepend its
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positional offset ∆xij = xi − xj to the stacked sender/receiver latent as input to calculate the
information flow. For a problem involving S edge sets, an MP pass at level l is formulated as:

esl,ij ← fsl
(
∆xl,ij ,vl,i,vl,j

)
, s = 1, · · · , S,

v′
l,i ← vl,i + fVl

(
vl,i,

∑
j

e1l,ij , · · · ,
∑
j

eSl,ij

)
, (1)

where f is a MLP function, e is the latent information flow through an edge, and v is the latent node
feature. Please refer to Sec. A.2 for the detailed architecture of the model.

Cross-Level Transition We handle information transition between two adjacent levels with down-
sampling and upsampling modules. Here we define downsampling as the sequence of pooling (se-
lecting pooled nodes) and then aggregating the information from the neighbors to the coarser level,
and we define upsampling as the sequence of unpooling and then returning the information of the
pooled nodes to their neighbors at the finer level. Please refer to Sec. 3.3 for details.

3.2 BI-STRIDE POOLING AND ADJACENCY ENHANCEMENT
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(b) Bi-stride of a mesh

As aforementioned, two challenges of building a multi-level GNN
for learning physical simulation, especially on wild geometries, are
1) not introducing partitions that break the connectivity, and 2) not
introducing wrong edges by spatial proximity. We tackle these chal-
lenges by improving the pooling phase. Specifically, is there a pool-
ing strategy that is consistently 2nd-order connection conservative
(2-CC) for any input graph so that an efficient 2nd-order enhance-
ment is sufficient to conserve the connectivity? We draw the initial
inspiration from the bi-partition determination algorithm (Asratian
et al., 1998) in a directed acyclic graph (DAG). As show in the inset
figure (a), after topological sorting, pooling on every other depth
(yellow and green) generates a bi-partition. To resemble the bi-

partition determination on a mesh, which is not bi-partite due to cycles, we can conduct a breadth-
first search (BFS) to compute the geodesic distances from an initial seed to all other nodes, and then
stride and pool all nodes at every other BFS frontiers (bi-stride). A bi-stride example is shown in
the inset figure (b), where the number in each vertex represents the distance to the seed (node 1 in
red circle) by BFS. This pooling is 2-CC by construction and conserves direct connections between
pooled nodes and unpooled nodes. As a result, we avoid building edges by spatial proximity or
handling the cumbersome corner cases such as cross-boundary connections.

Seeding Heuristics We claim that there should exist some freedom as long as the seeding is bal-
anced to a certain degree. The time complexity for searching seeds is tolerable because of the one-
pass preprocess. For training datasets, we choose two deterministic seeding heuristics: 1) closest
to the center of a cluster (CloseCenter) for INFLATINGFONT, and 2) the minimum average distance
(MinAve) for all other cases, and we preprocess the multi-level building in one pass. One can con-
sider the cheaper heuristic CloseCenter during the online inferring phase if an unseen geometry is
encountered. The details of the algorithms can be found in Sec.A.6.

Auxiliary Edges For multi-physics problems, such as DEFORMINGPLATE (Fig. 5(c)) and INFLAT-
INGFONT (Fig. 5(d)), the auxiliary edges (such as contact edges AC) should be built dynamically by
spatial proximity to exchange the interfacial information between different systems. The enhance-
ment of these edges should be handled properly for multi-layered GNN, which, to the best of our
knowledge, has not been addressed yet. At level l, given two adjacent matrices Al and AC

l for the
mesh edges from the input graph G1l and the contact edges, respectively, we apply the enhancement
followed by per-cluster bi-stride pooling for Al with selected node indices I:

A′
l+1 ← AlAl, Al+1 ← A′

l+1[I, I],
A′C

l+1 ← AlA
C
l Al, AC

l+1 ← A′C
l+1[I, I].

(2)

This enhancement can be geometrically interpreted as such: an auxiliary edge (i, j) should exist if
j is reachable from i in 2 hops and one of which is an auxiliary edge at the finer level. We prove in
Sec. A.5 that our pooling conserves all the contact edges under this enhancement.
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3.3 TRANSITION BETWEEN LEVELS

We propose a unified non-parameterized method to reduce the overhead of the learnable transition
modules between every pair of adjacent levels.

ŵij ← wiAij/
∑

j Aij Cij ← ŵij/
∑

i ŵij vj ←
∑

i viCij vi ← vjC
T
ij

(a) weight convolution (b) edge contribution (c) aggregation (d) returning

Figure 3: Schematic plot of the transition steps between adjacent levels.

Downsampling We treat the latent information as a conserved variable and project it to the pooled
nodes. We define A as the unweighted adjacency matrix where its row and column indices represent
the sender and the receiver, respectively. We further represent the nodal mass or importance as a
nodal weight field w, which is initialized on the finest level to ones for near-uniform meshes or the
volume/mass field for highly irregular meshes. With the receiver vertex j and its sender vertices i,
the formal procedure is formulated as (Fig. 3):

• Normalize by row as in a standard graph convolution Âij ← Aij/
∑

j Aij , and then
convolve the weight once ŵij ← wiÂij (Fig. 3(a));

• Calculate edge weights Cij ← ŵij/
∑

i ŵij , where C can be viewed as a contribution table
with Cij as the share of weights in the receiver j contributed by the sender i (Fig. 3(b));

• Convolve the latent information by the contribution table vj ←
∑

i viCij , which is equiv-
alent to equally splitting and sending the weighted information to neighbors, and then ob-
taining the weighted average (Fig. 3(c)).

Upsampling After unpooling, all nodes except the pooled ones have zero information. A returning
process, resembling the transposed convolution in CNNs, can help distinguish the receivers. With
the contribution table C recording the edge weights, a natural choice is vi ← vjC

T
ij (Fig. 3(d)).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets We adopt three representative public datasets from GraphMeshNets (Pfaff et al., 2020):
1) CYLINDERFLOW: incompressible fluid around a cylinder where the mass conservation has to be
enforced globally, 2) AIRFOIL: compressible flow around an airfoil where an auxiliary prediction,
the pressure, is included, and 3) DEFORMINGPLATE: deforming an elastic plate with an actuator
where simple contact is included. In addition, to illustrate the ease of extending our method to
multiset problems, we further create a new dataset, INFLATINGFONT, featuring the inflation of
enclosed elastic surfaces with massive self-contacts (Fang et al., 2021).

Baselines On all datasets, we compare computational complexity, training/inference time, and
memory footprint of BSMS-GNN to baselines: 1) GRAPHMESHNETS (Pfaff et al., 2020): the
single-level GNN architecture of GraphMeshNets, 2) MS-GNN-GRID (Lino et al., 2021; 2022a;b):
a representative work for those building the hierarchy with spatial proximity (i.e. using the distance
between nodes), and 3) GRAPHUNET (Gao & Ji, 2019): a representative work for those using learn-
able modules for pooling. The detailed reimplementation of these works can be found in Sec. A.2.
We note again that methods such as Liu et al. (2021); Fortunato et al. (2022) are not practical be-
cause they require pre-drawing meshes at multiple levels. For all cases reported in this work, this
means manually drawing 20, 000 meshes using CAE or meshing software.
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Measurements Case Our’s Lino et al. (2021) Pfaff et al. (2020) Gao & Ji (2019)

Training time/step
[ms]

Cylinder 10.14 15.36 19.29 16.20
Airfoil 18.82 25.26 36.72 55.08
Plate 15.58 49.65 49.15 31.88
IDP 45.96 107.16 117.48 1,833.37

Infer time/step
[ms]

Cylinder 6.75 6.18 14.50 24.30
Airfoil 8.64 20.40 24.20 33.60
Plate 14.01 18.12 15.70 16.20
IDP 33.33 41.66 82.35 629.33

Training cost
[hrs],

Final epoch

Cylinder 21.41, 19 35.84, 21 64.30, 30 76.15, 39
Airfoil 122.33, 39 176.82, 42 275.40, 45 206.55, 37
Plate 56.07, 27 125.78, 19 176.94, 27 127.50, 30
IDP 2.68E+01, 21 5.66E+01, 19 6.20E+01, 19 NA

RMSE-1
[1e-2]

Cylinder 2.04E-01 2.20E-01 2.26E-01 8.09E-01
Airfoil 2.88E+01 2.68E+01 4.35E+01 2.93E+01
Plate 2.87E-02 2.20E-02 1.98E-02 2.03E-02
IDP 1.77E-02 1.87E-02 1.95E-02 NA

RMSE-50
[1e-2]

Cylinder 2.42 2.74 4.39 1.87E+01
Airfoil 1.10E+03 1.22E+03 1.66E+03 1.17E+03
Plate 3.18E-02 2.78E-02 2.88E-02 5.19E-02
IDP 1.08E-01 3.24E-01 1.78E-01 NA

RMSE-all
[1e-2]

Cylinder 8.37 8.49 1.07E+01 1.65E+02
Airfoil 4.21E+04 5.56E+04 6.95E+04 6.11E+04
Plate 1.60E-01 1.48E-01 1.51E-01 5.46E-01
IDP 2.20E-01 3.78E-01 3.65E-01 NA

Table 1: Detailed measurements of our method, MS-GNN-GRID, GRAPHMESHNETS, and GRA-
PHUNET. All measurements are conducted using a single Nvidia RTX 3090. BSMS-GNN consis-
tently generates stable and competive global rollouts with the smallest training cost. BSMS-GNN
is also lightweight and has the fastest inference time. It is also free from the large RMSE due to poor
pooling on unseen geometries where the learnable pooling module of GRAPHUNET suffers.

Implementation We implement our BSMS-GNN framework with PyTorch (Paszke et al., 2019)
and PyG (PyTorch Geometric) (Fey & Lenssen, 2019). We train the entire model by supervising the
single-step L2 loss between the ground truth and the nodal field output of the decoding module. For
more detailed information, such as the statistics of the mesh, the number of layers, the multi-edge
sets, and the hyperparameters of the MLP network, please refer to Sec. A.1 and A.2. Our datasets
and code are publicly available at https://anonymous.4open.science/r/BSMS-GNN-ICLR-2023/ .

MISCs We also conduct the ablation study for the specific choice of our transition method in
Sec. A.3, and include the scaling test on INFLATINGFONT in Sec. A.4. Another ablation study can
be performed on whether or not to use a learnable pooling module. But we already covered this
aspect by comparing to GRAPHUNET in the full experiments (details in Sec. 4.2).

4.2 RESULTS AND DISCUSSIONS

We evaluate BSMS-GNN on all described benchmarks and compare it with the baselines (Sec. 4.1).
In general, our method builds multi-level graphs without the loss of connectivity; it is free from
spatial proximity and therefore avoids wrong edges across the boundary for complex geometries (the
generated multi-level graphs of each example are plotted in Fig. 5), leading to high-quality rollouts
on all tasks. Compared to all baselines, our method shows dominant advantages in significantly less
memory footprint and training time to reach the desired accuracy, as plotted in Table. A.1.

Disadvantages of Learnable Pooling Compared to other methods, GRAPHUNET has similar er-
ror only in AIRFOIL where the mesh is consistent across instances, but has significantly larger error
(2 ∼ 4× 1-step RMSE and 5 ∼ 20× rollout RMSE) in CYLINDERFLOW and DEFORMINGPLATE
where instances have varying meshes. Empirically, this difference indicates that learnable modules
infer poor pooling results for unseen geometries and harms information passing at coarser levels.
Another concern is the overhead by adjacency enhancement. Though the learnable pooling module
(Linear + Top-K) itself does not take long, GRAPHUNET needs to enhance adjacency by matrix
multiplication in the forward pass. These multiplications, although reimplemented with sparse op-
erations, result in 2 ∼ 40× unit training time and 4 ∼ 20× unit infer time (except for DEFORMING-
PLATE). In INFLATINGFONT, a single epoch takes an unaffordable 50 hours, making it impossible
for the full experiment. Due to these issues, we conclude that GRAPHUNET is not suitable for
large-scale cases or cases with varying meshes, hence we exclude it in the further discussions.
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Case Method Train with different Batch # Infer
2 4 8 16 32 64

Cylinder

Our’s 2.41 2.92 4.37 6.06 11.4 22.27 1.92
Lino et al. (2021) 2.79 3.60 5.31 8.56 15.10 - 1.97
Pfaff et al. (2020) 3.25 4.46 6.91 11.84 21.60 - 1.94
Gao & Ji (2019) 23.33 - - - - - 2.18

Aifroil

Our’s 3.66 5.46 8.88 15.70 - - 2.02
Lino et al. (2021) 4.18 6.25 10.65 19.25 - - 2.02
Pfaff et al. (2020) 5.53 8.90 16.08 - - - 2.06
Gao & Ji (2019) - - - - - - 2.67

Plate

Our’s 2.36 2.87 3.85 5.78 9.28 16.85 1.95
Lino et al. (2021) 3.41 4.81 7.75 13.20 - - 2.00
Pfaff et al. (2020) 3.10 4.29 6.59 11.49 20.80 - 1.93
Gao & Ji (2019) - - - - - - 2.18

Font

Our’s 6.28 10.80 - - - - 2.23
Lino et al. (2021) 10.87 19.79 - - - - 2.45
Pfaff et al. (2020) 12.48 23.39 - - - - 2.28
Gao & Ji (2019) - - - - - - 4.51

Table 2: Memory footprint under multi-batches, BSMS-GNN consistently cuts RAM con-
sumption by approximately half in all cases in the training stage, and also has the smallest (except
for DEFORMINGPLATE) inference RAM.

Unit Training/Inference Time We evaluate the time complexity with unit training time per step.
Compared to GRAPHMESHNETS, BSMS-GNN only takes 51% and 31% ∼ 39% of the unit train-
ing time for Eulerian systems (CYLINDERFLOW and AIRFOIL) and Lagrangian systems with con-
tacts (DEFORMINGPLATE and INFLATINGFONT), respectively. The main source of the speedup is
the reduction of total MP times. In GRAPHMESHNETS, 15 MP passes are conducted on the finest
level of the mesh. While in our method, 2 × levels + 3 MPs are conducted, and only 4 of them
happen on the finest level. As for MS-GNN-GRID, they share the similar advantage of performing
more MPs on smaller subsets at coarser levels, but 4× levels + 6 in total MPs are required, while 8
of which happen at the finest level; they also have the overhead of learnable aggregation/returning
modules. When applied to Eulerian systems, their unit training/infer time lies between our method
and GRAPHMESHNETS. For Lagrangian systems with contacts, the contact edge sets bring in addi-
tional overhead and degrade the unit training time to the same level as GRAPHMESHNETS.

Regarding inference time, the performances for DEFORMINGPLATEwith the smallest mesh size
(∼ 1K) are very similar. Our method and MS-GNN-GRIDhave similar performance in CYLINDER-
FLOW(mesh size∼ 1.5K) as well, and both outperformed GRAPHMESHNETS. As mesh size grows
(5K ∼ 15K), BSMS-GNN boost the inference time gradually up to 2.5× compared to MS-GNN-
GRID, and 2.9× compared to GRAPHMESHNETS.

Training time to reach desired rollout accuracy Since rolling out is the ultimate purpose for
predicting physical systems, we define the training cost (in time) as the earliest wall time to obtain
the converged global rollout RMSE. The global rollout error is reduced by feeding the model with
noisy inputs but correct outputs at each epoch, so that it can learn to better correct noises generated
during inference (Pfaff et al., 2020). The essential point is epoch number, i.e. the number of random
noise patterns seen. In our observation, all methods reach the desired global rollout RMSE with a
similar amount of epochs, which leads to our superiority due to much faster unit training time.

Accuracy We plot the detailed RMSEs with different rollout steps (1, 50, or until the end) for
different methods. Our method has the smallest global rollout RMSE for all cases except DEFORM-
INGPLATE, where the error is slightly higher than the alternatives. For INFLATINGFONT, with the
most complicated contact connectivities, our method cuts about 55% of the training time while also
reducing 40% of the global rollout error.

Memory Footprint The memory footprint affects both the training and the inference stage. In the
training stage, the higher RAM consumption sets the lower cap of batch number and results in more
data transfer from CPU to GPU and a larger overhead to finish an epoch. In our observation, we can
achieve at most ∼ 3x acceleration by simply increasing the batch number. In the inference stage,
the RAM consumption is closely related to the deployment in production. We measure the memory
footprint of all methods under varying batch sizes (Table. 3). Compared to GRAPHMESHNETS,
BSMS-GNN consistently reduces memory consumption by approximately half in all cases. As for

8



Under review as a conference paper at ICLR 2023

Figure 4: Failure cases for MS-GNN-GRID. Left: the configuration of the simplest failure case
for multi-level GNNs by spatial proximity: the steady-state 1-D heat transfer. Right, leading two
columns: two tests showing that even if trained to convergence, the erroneous edge across the bound-
ary can still result in wrong inference. Right, last two columns: the erroneous edge coincidentally
does not affect the results due to the symmetry of the solution and that no heat will diffuse between
two nodes with the same temperature.

MS-GNN-GRID, we observe a similar phenomenon as the unit training time: their advantage only
stands for the Eulerian systems. For the Lagrangian systems with additional contact edge sets, they
consume similar or even higher memory than GRAPHMESHNETS. Overall, our method consumes
17% ∼ 57% less memory than MS-GNN-GRID. Our method also has the smallest inference RAM,
except for DEFORMINGPLATE where ours is slightly higher (20MBs) than GRAPHMESHNETS.

The Failure Case for Spatial Proximity To illustrate the adversarial impact of wrong edges built
by spatial proximity, we design a simple 1-D steady-state heat transfer on sticks (Figure. 4 left).
The training set contains two mirrored instances, where one end of the stick is fixed at a specific
temperature, and the other has the fixed heat flux. The result of such a configuration is the linear
temperature distribution. In the test set, we simply align two sticks in a head-to-tail fashion but leave
some space between them so no heat diffuses across the boundary. We choose MS-GNN-GRID as
an example of those utilizing spatial proximity. The training for BSMS-GNN and MS-GNN-GRID
can converge quickly under a few hundred iterations. However, in the test phase, the erroneous
connection by proximity transfers the information between two isolated sticks and can yield wrong
results (Figure. 4 right, leading two columns). We also note that although preprocessing (separately
inferring for two sticks) can help resolve the issue in this simple example, it is not doable for a single
but wild geometry. The simplest counter example is the fluid dynamics in a U-shaped channel where
the two ends of the channel are close spatially but far away geodesically.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Bi-Stride Multi-Scale GNN features a simple and robust pooling strategy that systematically gen-
erates an arbitrary-depth, multi-level graph neural network given geometry in the wild as the sole
input. It does not rely on mesh generators or projecting to regular grids. Bi-Stride guarantees direct
connections between the pooled and unpooled nodes, while free from any redundant connections
by spatial proximity. This further helps replace the MLPs for the transition between adjacent levels
with a unified non-parametrized transition scheme. BSMS-GNN eliminates the necessity of multi-
ple MPs and the latent edge embedding. Combined, it significantly reducing computational costs.
With moderate tailoring, BSMS-GNN can be easily extended to multi-edge-set problems involving
different dynamical behaviors.

In summary, we believe that the non-parameterized Bi-Stride strategy will conceptually complete the
methodology path created by GraphMeshNets, just like what striding and up-sampling by interpo-
lation are for CNN. Following our non-parametrized strategy, there are interesting ideas to explore.
For example, although any general multi-level GNN can reduce the time complexity to linear, it still
need to load the whole graph initially. Combining the multi-level GNN and batch training is crucial
for huge-scale graphs. Second, as stated in Li et al. (2020b), the transition from fine to coarse levels
is equivalent to the transition from sparse, high-rank kernels to dense, low-rank kernels. Although
the dense or fully connected graphs only appear near the bottom layers with minimum nodes in
practice, there is no theoretical guarantees. Whether strategies like edge pruning is needed to avoid
dense graphs at coarser levels becomes an interesting question. In addition, since all the nodal fea-
tures will be smoothed without the skip-layers, how to migrate our strategy to GAE+Transformer
(Han et al., 2022) is also a meaningful direction.
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A APPENDIX

(a) CYLINDERFLOW (b) AIRFOIL (c) DEFORMINGPLATE (d) INFLATINGFONT

Figure 5: Example plots of the multi-level graphs produced by our bi-stride pooling. Our dataset
contains both Eulerian and Lagrangian systems. Many meshes are highly irregular and contain
massive self-contact, which poses strong challenges for building the coarser level connection by
spatial proximity. The bi-stride strategy only relies on topological information and has proven to be
robust and reliable on arbitrary kinds of geometry.

A.1 DATASET DETAILS

We adopt three existing test cases: Cylinder (Flow), Airfoil, and (Deforming) Plate from
GRAPHMESHNETS. The Cylinder includes the transient incompressible flow field around a fixed
cylinder at varying locations. The Airfoil includes the transient compressible flow field at varying
Mach numbers around the airfoil with varying angles of attack (AOA). The Plate includes hyperelas-
tic plates squeezed by moving obstacles. In addition to these three cases, our Font(INFLATINGFONT)
case involves the quasi-static inflation of enclosed elastic surfaces (3D surface mesh) possibly with
self-contact. We create the INFLATINGFONTcases using the open-source simulator (Fang et al.,
2021), with the same material properties and inflation speed. The input geometries for INFLATING-
FONTare 1, 400 2×2-character matrices in Chinese. All the datasets are split into 1000 training, 200
validation, and 200 testing instances. In the following table, the second entries with superscript∗ in
the average edge number column are for the contact edges:

Case Ave # nodes Ave # edges Mesh type Seed method # Levels # Steps
Cylinder 1886 5424 triangle, 2D MinAve 7 600
Airfoil 5233 15449 triangle, 2D MinAve 9 600
Plate 1271 4611, 94∗ tetrahedron, 3D MinAve 6 400
Font 13177 39481, 6716∗ triangle, 3D CloseCenter 6 100

Below we list the model configurations: 1) the offset inputs to prepend before the material edge
processor eMij , and eWij , and 2) nodes pi, as well as the nodal outputs qi from the decoder for each
experiment cases, where X and x stand for the material-space and world-space positions, v is the
velocity, ρ is the density, P is the absolute pressure, and the dot ȧ = at+1 − at stands for temporal
change for a variable a. All the variables involved are normalized to zero-mean and unit variance
via pre-processing.

As for time integration, Cylinder, Airfoil, and Plate inherited the first-order integration from
GRAPHMESHNETS. For INFLATINGFONT, the first-order quasi-static integration (Fang et al., 2021)
is used in the solver. Hence, we also adopt the first-order integration for INFLATINGFONT.
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Case Type Offset inputs eMij Offset inputs eWij Inputs pi Outputs qi
Cylinder Eulerian Xij , |Xij | NA vi, ni v̇i

Airfoil Eulerian Xij , |Xij | NA ρi,vi, ni v̇i, ρ̇i, Pi

Plate Lagrangian Xij , |Xij |,xij , |xij | xij , |xij | ẋi, ni ẋi

Font Lagrangian Xij , |Xij |,xij , |xij | xij , |xij | ni ẋi

A.2 ADDITIONAL MODEL DETAILS

A.2.1 BASIC MODULES AND ARCHITECTURES

The MLPs for the nodal encoder, the processor, and the nodal decoder are ReLU-activated two-
hidden-layer MLPs with the hidden-layer and output size at 128, except for the nodal decoder whose
output size matches the prediction q. All MLPs have a residual connection. A LayerNorm normal-
izes all MLP outputs except for the nodal decoder.

A.2.2 BASELINE: GRAPHMESHNETS

Our GRAPHMESHNETSimplementation uses the same MLPs as above but with an additional mod-
ule: the edge encoder. Also, the edge latent is updated and carried over throughout the end of
multiple MPs. We use 15 times MP for all cases to keep it consistent with GRAPHMESHNETS.

A.2.3 BASELINE: MS-GNN-GRID

Our re-implementation of MS-GNN-GRIDuses the same MLPs as above but with four additional
modules: the edge encoder at the finest level, the aggregation modules for nodes and edges at every
level for the transitions, and the returning modules for nodes at every level. This method also
requires assigning the regular grid nodes for each level. We assign these grid nodes by defining an
initial grid resolution and an inflation rate between levels. As for the MP times at each level, we
follow Lino et al. (2022a) to use four at the top and bottom levels and two for the others.

Case # Levels Initial grid dx dx inflation Level-wise # MPs
Cylinder 4 [5e-2, 5e-2] 2 [4, 2, 2, 4]
Airfoil 4 [4.5, 4.5] 2 [4, 2, 2, 4]
Plate 4 [4e-3, 4e-3, 4e-3] 2 [4, 2, 2, 4]
Font 4 [1.5e-2, 1.5e-2, 1e-3] 2 [4, 2, 2, 4]

A.2.4 BASELINE: GRAPHUNET

Our re-implementation of GRAPHUNET uses the same number of levels as those of BSMS-GNN.
Likewise, we make the following modifications to the original GRAPHUNET: (1) We change the
information passing from GCN to our message passing module for consistency and translational
invariance. (2) GraphUNet was intended for tiny graphs (100 nodes) and used dense matrix multi-
plications. This design is not scalable as it can break the memory limit and slow down the training
to take more than 30 days per epoch in our graph size (1500 to 15000 nodes). We thus optimize the
operations such as matrix multiplication and aggregation with sparse implementations.

A.2.5 NOISE AND BATCH NUMBER

For all three methods, we enhance the datasets by shuffling noise into them so the model can resist
the noise produced by single-step predictions. Each method’s batch number has been tuned to
achieve a good convergence rate under smaller subsets.

Case Batch size Noise scale
Ours Pfaff et al. (2020) Lino et al. (2022a) Gao & Ji (2019)

Cylinder 32 16 16 2 velocity: 2e-2
Airfoil 8 4 8 1 velocity: 2e-2, density: 1e1
Plate 8 2 2 1 pos: 3e-3
Font 2 1 1 1 pos: [5e-3, 5e-3, 3.33e-4]
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Figure 6: (a) All three transition methods can reach the target training RMSE given 200 iterations.
(b) However, our weighted graph aggregration+returning has the strongest resistance to the noise
during the rollout. (c) The visual comparisons show that no transition produces mosaic-like pat-
terns, while the graph convolution transition smeared out the information and ceased propagating
downstream. (d) The global rollout error distribution of no transition (Left) shows the edge of the
mosaic patterns look similar to the simulation mesh; The error of our transition (Right) travels with
the generated vortices downstream and leaves the domain after step 200, which explains the RMSE
drop in (b).

A.3 ABLATION STUDY

A.3.1 TRANSITION METHOD

While exploring the non-parametric transition solutions, we started with no transition because our
method is adopted directly from GUN (Gao & Ji, 2019). The no-transition strategy produces low
enough 1-step RMSE and visually correct rollouts for INFLATINGFONT. However, in the global
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rollouts of CYLINDERFLOWand AIRFOILcases, we observed stripe patterns (Figure. 6 (c), column
None) where the stripes are aligned with the edges at the coarser levels (Figure. 6 (d)). We suspect
that this error results from the fact that the unpooled nodes all have zero information before MP,
making them indistinguishable for the processor modules and exaggerating the difference between
pooled and unpooled nodes over rollouts.

The no-transition strategy resembles no interpolation during the super-resolution phase of
CNN+UNet. Naturally, we then tried a single step of graph convolution (without activation) to
resemble the interpolation in regular grids. However, this turns out to over-smooth the features (Fig-
ure. 6 (e), column Graph Conv), and the information propagation was smeared out except for the
area near the generator (in this case, near the cylinder).

We believe the over-smoothing issue arises from the ignorance of the irregularity of the mesh. Un-
like CNN, where the fine nodes regularly lie at the center of coarser grids, irregular meshes have
varying topology and element sizes. The element sizes are almost always smaller near the inter-
face for higher precision in simulations; hence an unweighted graph convolution can smear the finer
information near the cylinder and their adjacent neighbors during returning. The natural choice to
account for the irregularity is to include reasonable nodal weights (such as the size). In the end,
we arrive at the solution proposed in Sec. 3.3 by utilizing the nodal weights during aggregation and
recording the shares of contribution for later returning. Our transition method works consistently
for all experiment cases and produces the lowest RMSE for global rollouts (Figure. 6 (b)).

Comparing to alternative transition methods Additionally, we compare our transition methods
to two alternatives extracted from previous works: (1) calculating the edge weights (kernel) for
the information flow using the inverse of its length (node position offset), which we refer to as
Pos-Kernel (Liu et al., 2021); and (2) the level-wise learnable transition modules implemented by
additional MP, which we refer to as Learnable (Fortunato et al., 2022).

Measurements Ours None Graph-Conv Pos-Kernel Learnable
Training time/step [ms] 10.14 9.30 10.07 10.06 17.75
Infer time/step [ms] 6.75 5.70 6.46 6.90 11.28
Training RAM [GBs] 11.041 11.041 11.041 11.041 18.033
Infer RAM [GBs] 1.923 1.923 1.923 1.923 1.931
RMSE-1 [1e-2] 2.85E-01 1.49E-01 3.41E-01 6.38E-01 4.70E-01
RMSE-50 [1e-2] 1.43E+01 2.05E+02 2.40E+02 1.77E+01 1.35E+01
RMSE-all [1e-2] 1.68E+01 2.59E+02 5.51E+02 2.01E+01 1.57E+01

Table 3: Detailed measurements of different transition methods. Ours and Pos-Kernel are the only
two non-parametric transitions which are light-weighted and procude reliable rollouts compred to
the expensive Learnable transition.

In addition to the high RMSE of None and Graph-Conv shown in Figure. 6, we can also observe
that: (1) the training/infer time and RAM consumption for all non-parametric transitions (including
None) are similar, which supports the statement that our transition method is light-weighted. (2)
Learnable transition can reach slightly higher accuracy but at the price of∼ 70% more training/infer
time and RAM. As mentioned in Sec. 4.2, higher training RAM can limit the batch number and
increase the frequency of data communication between CPU and GPU, slowing down the training
process even further when the scale goes up. (3) Pos-Kernel results in a slightly higher RMSE
compared to our method, making it a competitive alternative choice in production.

A.4 SCALING ANALYSIS

We train and evaluate three different methods on INFLATINGFONT with varying resolutions
(5K,15K,30K, and 45K) for the scaling analysis.

Adjustments for datasets and models We generate the downscale and the upscale version of IN-
FLATINGFONT with different average node numbers for the initial geometry, and then use the same
settings to simulate the sequence. As reported in Fortunato et al. (2022), the low-resolution model
suffers from converging to very small RMSE; hence we loosen the termination criteria by enlarging
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the target RMSE relative to the average edge length to prevent convergence failures. Similarly, the
noise injection is also adjusted to be relative to the average edge length. Moreover, with a smaller
number of nodes, the number of levels required to achieve the same bottom resolution also reduces.
We make the corresponding adjustments to the levels of our model d1 and that of the MS-GNN-
GRIDd2. The adjustments are plotted below.

# Nodes d1 d2 Initial grid dx Target RMSE Noise in pos
5k 4 2 [6e-2 6e-2 4e-3] 1.73e-4 [8.5e-3, 8.5e-3, 5.7e-4]
15k 6 4 [1.5e-2 1.5e-2 1e-3] 1e-4 [5e-3, 5e-3, 3.33e-4]
30k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [3.5e-3, 3.5e-3, 2.4e-4]
45k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [2.9e-3, 2.9e-3, 1.9e-4]

Results The results in Figure. 7 show that both BSMS-GNNand MS-GNN-GRIDscale up well,
preserving a near-linear scale-up rate, in contrast to GRAPHMESHNETS. Still, our method is lighter
weighted and more efficient than MS-GNN-GRIDbecause of the non-parametric transitions and
fewer level-wise MP.

Figure 7: Scale analysis. With the growing size of INFLATINGFONT, BSMS-GNNshows an obvi-
ous trend of growing advantage over GRAPHMESHNETS.

A.5 THE PROOF OF CONSERVATION OF CONTACT EDGES

With Bi-stride pooling, our pooling conserves all the contact edges under the enhancement in Eq. 2.
We assume the graph is undirected and unweighted, such that the adjacent matrix is a boolean matrix.

Formally speaking, given any contact edge (i, j) at level l (i.e. AC
l [i, j] = 1) and a Bi-stride pooling

P which pools nodes I, there exists a contact edge (i′, j′) that remains in the coarser level (i.e.
A′C

l+1[i
′, j′] = 1, i′, j′ ∈ I) and i/i′, j/j′ are connected (i.e. Al[i, i

′] = Al[j, j
′] = 1). There are

only four scenarios concerning the pooling nodes I and the contact edge nodes i, j, under which the
assertion always holds:

1. Both i, j are pooled, i.e. i, j ∈ I. Obviously A′C
l+1[i

′, j′] = 1 by letting i′ = i, j′ = j.
2. Only i is pooled, i ∈ I, j /∈ I. Since we use Bi-stride pooling, j can either be the seed at

level 0 (Bi-stride can select either even or odd levels) that directly connects to all nodes at
level 1, or must have at least one direct connection from the previous level. I.e, at least one
neighbor of j in the adjacent level is pooled, we let it be j′: Al[j, j

′] = 1, j′ ∈ I. Then
AC

l Al[i, j
′] ≥ AC

l [i, j] ∗Al[j, j
′] = 1, and Al(A

C
l Al)[i, j

′] ≥ Al[i, i] ∗ (AC
l Al)[i, j

′] =

1. Let i′ = i, then A′C
l+1[i

′, j′] = 1.
3. Only j is pooled, i /∈ I, j ∈ I. Similarly we have at least one i′ such that: Al[i

′, i] = 1, i′ ∈
I. Then AlA

C
l [i

′, j] ≥ Al[i
′, i] ∗AC

l [i, j] = 1, and (AlA
C
l )Al[i

′, j] ≥ (AlA
C
l )[i

′, j] ∗
Al[j, j] = 1. Let j′ = j, then A′C

l+1[i
′, j′] = 1.

4. None of i, j is pooled, i, j /∈ I. Then, we select one direct pooled neighbor for i, j,
respectively, such that Al[i

′, i] = Al[j, j
′] = 1, i′, j′ ∈ I. Then AlA

C
l [i

′, j] ≥ Al[i
′, i] ∗

AC
l [i, j] = 1, and (AlA

C
l )Al[i

′, j′] ≥ (AlA
C
l )[i

′, j] ∗Al[j, j
′] = 1.
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A.6 ALGORITHMS FOR THE SEEDING HEURISTICS

Here we elaborate our two seeding heuristics for the bi-stride pooling at every levels: picking the
seed that 1) is closest to the center of a cluster (CloseCenter), and 2) with the minimum average
geodesic distance to its neighbors (MinAve). The complexity for MinAve is O(N2) as we need to
conduct BFS for every nodes to find the one with the minimum average distance to neighbors. In
our experiments, the quadratic cost of MinAve is tolerable for all cases but INFLATINGFONT.

Algorithm 1: MinAve: seeding by minimum average geodesic distance to neighbors
Input: Unweighted, Bi-directional graph, G = (N,E)
Output: List of seeds in each clusters Ls

1 Lc ← DetermineCluster(G)
2 Ls ← ∅
/* BFS(s) returns the list of distances to all other neighbors from s

*/
/* if unreachable, the distance is set to infinity */

3 D ← {BFS(s) for s in N}
4 for idx in Lc do
5 Dc ← D[idx, idx]
6 D̄c ← average(Dc, dim = 1)

7 s← idx[argmin(D̄c)]
8 Ls.append(s)
9 return Ls

For INFLATINGFONT, the largest mesh has around 47K nodes, and the time for pre-processing with
MinAve becomes intolerable. We switch to CloseCenter with the linear complexity.

Algorithm 2: CloseCenter: seeding by minimum distance to the center of cluster
Input: Unweighted, Bi-directional graph, G = (N,E); Positions of the nodes, X
Output: List of seeds in each clusters Ls

1 Lc ← DetermineCluster(G)
2 Ls ← ∅
3 for idx in Lc do
4 X̄ ← average(X[idx], dim = 0)

5 ∆X ← X − X̄
6 D ← ||∆X||2
7 s← idx[argmin(D)]
8 Ls.append(s)
9 return Ls

For both heuristics, we conduct the search in a per-cluster fashion to avoid the information from
other clusters that could pollute the search result. For example, when determining the center of
an isolated part of the input geometry, the positions of nodes from other clusters could pollute this
process. The determination of clusters given a graph is elaborated below.

18



Under review as a conference paper at ICLR 2023

Algorithm 3: DetermineCluster
Input: Unweighted, Bi-directional graph, G = (N,E)
Output: List of clusters Lc

/* R stands for remaining nodes that are not inside any cluster */
1 R← N
2 Lc ← ∅
3 while R ̸= ∅ do
4 s← R.pop( )
5 if |R| = 0 then
6 LC .append({c})
7 else
8 D ← BFS(s)
9 C ← ∅

10 R∗ ← ∅
11 for n in R do
12 if D[n] =∞ then
13 R∗.append(n)
14 else
15 C.append(n)

16 LC .append(C)
17 R← R∗

18 return Lc
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