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Abstract

Scalable or layered video coding encodes a video stream into multiple layers in
such a way that it can be decoded at different levels of quality or resolution, depend-
ing on the capabilities of the device or the available network bandwidth. Traditional
approaches are built as an extension of existing video codec standards, but lack
industry deployments. In this paper, we propose a Scalable Neural Representation
(SNeRV) for video coding that encodes multi-resolution/-quality videos into a sin-
gle neural network comprising multiple layers. The base layer (BL) of the neural
network encodes the lowest resolution/quality of the video stream. Enhancement
layers (ELs) encode additional information that, using the BL as a starting point,
can be used to reconstruct a higher-resolution/-quality video during the decoding
process. This multi-layered structure allows the scalable bitstream to be truncated
to adapt to the client’s bandwidth conditions or computational decoding require-
ments. Unlike conventional video codecs constrained by complex and highly
designed modules, SNeRV represents a video as a neural network and employs any
model weight compression method for video compression. Experimental results
demonstrate that SNeRV outperforms H.264/AVC’s Scalable Video Coding (SVC)
extension and achieves comparable decoding speed at high resolutions.

1 Introduction

In recent years, video and multimedia applications have developed rapidly on platforms, such as
smartphones, tablets, laptops, and TVs. Streaming a video to a wide variety of devices needs to
match the receiver’s context characteristics, such as network bandwidth and device resolution. In
some cases, video streaming requires bitrate adaptation by delivering different versions of the same
video content to quickly adjust to changes in network conditions or device characteristics. However,
traditional video compression approaches such as H.264/AVC [21] or H.265/HEVC [19] generally
perform single-layer encoding, producing a single bitstream that hinders real-time adaptation of video
streaming.

Layered video coding has been proposed and standardized as extensions of existing video codecs
such as Scalable Video Coding (SVC) [16] for H.264/AVC. The concept of this method is to generate
multi-layered bistreams through a single encoding process, accommodating the video at different
versions. The layered structure of scalable video content comprises a base layer (BL) and one or more
enhancement layers (ELs). The BL can be independently decoded using a legacy video decoder (e.g.,
AVC) and comprises the lowest quality version, and the ELs can be added to the BL to enhance the
bitstream’s resolution, framerate, or quality. Since this approach is based on traditional video coding
standards, the improvement in coding performance is constrained by hand-designed techniques and
highly engineered modules of the specific codec.

With the development of deep learning, several learning-based video compression methods [13, 9, 10]
have been proposed to replace hand-crafted modules with neural networks, presenting the potential
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Figure 1: The overview of SNeRV. The encoder performs neural network training on multi-resolution videos to
fit an implicit neural network, which includes a BL for reconstructing a lowest resolution video and subsequent
ELs for higher resolution videos. The fitted model is then compressed into a scalable bitstream, allowing for
adaptive streaming based on the bandwidth and the computational resources of the decoder.

to compete with traditional, standard video codecs. In this context, Implicit Neural Representations
(INRs) have previously been investigated to represent and encode images [17, 18] and videos [4,
3], showing relatively faster decoding speed compared to other learning-based methods. Neural
Representation for Videos (NeRV) methods [4, 12, 2, 3, 8, 7] represent a video as a neural network
by encoding the video in the weights of the network. In NeRV methods, video coding involves
training a neural network to represent the video content, with the trained model acting as the video
bitstream. Decoding is done by simply passing data through the network in a feedforward operation.

In this paper, we propose Scalable Neural Representations (SNeRV) for video coding. Based on the
single-stream NeRV structure in previous work [7], we explore a multi-stream NeRV network, which
consists of executable sub-networks for constructing videos at different representations. Figure 1
shows an example of SNeRV that encoding a video at three resolutions (270p, 540p and 1080p)
through one network. Specifically, a BL block corresponds to the lowest resolution of 270p, while
the subsequent EL1 and EL2 blocks represent higher resolutions of 540p and 1080p, respectively.
Therefore, these three resolutions can be represented by a scalable bitstream with three layers, and
the video at each resolution can be decoded independently.

The remainder of this paper is structured as follows. Section 2 details the proposed SNeRV method.
Experimental results are presented in Section 3 and Section 4 concludes the paper.

2 Scalable Neural Representations for Video Coding

Figure 1 presents the overview of SNeRV, which compresses a video into a multi-layered bitstream
through an end-to-end training process. The multi-layer bitstream can represent the video in I
resolutions, with the scale factor and output resolution adjustable according to the specified network
architecture. In this paper, we encode the video at three different resolutions (270p, 540p and 1080p)
as an example, i.e., I = 3. As shown in Figure 1, the encoder trains a SNeRV model to represent
a video at three resolutions. This model consists of a BL and two ELs. The BL corresponds to
the lowest supported video resolution, whereas the ELs allow for the higher resolutions by the
refinement of the aforementioned BL. After a single training process, the video is represented as
a multi-layered model, which is then compressed into a scalable bitstream and transmitted to the
decoder. Therefore, receivers can select and decode bitstreams of different sizes corresponding to
different video resolutions, depending on the limitations of the network and the device itself.

2.1 Multi-stream Network Structure

The SNeRV is based on the image-wise NeRV network from the literature [4, 7], which takes frame,
patch, or pixel coordinates as inputs and leverages neural representations for reconstructing video
frames. These NeRV models usually represent a video as a single stream. In this paper, we transform
the single-stream video model into a multi-stream model, composed of distinct yet complementary
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Figure 2: Left: The network structure of SNeRV model. Certain sub-layers of the SNeRV Blocks are shared
among the three branches of sub-networks. The sub-network used for generating higher-resolution frames
integrates EL along with the BL that generate lower-resolution frames. The size of the feature maps is denoted
as Hx ×Wx × Cx. Right: The SNeRV Block. The frame index t is incorporated to enhance the network’s
capacity to learn high-frequency information; however, it is not depicted in the overall network structure for
simplicity.

network layers. Given that a video V T×H×W×C , where T,H,W and C represent the number of
frames, height, width and the number of channels in the video frames, respectively. The multi-stream
model can be trained on either the entire frame or divided patches of the video. Here we take a frame
vt ∈ V for better explication (0 < t ≤ T ).

Figure 2 illustrates the multi-stream network structure, which consists of a base encoding layer, a
stem layer, M SNeRV blocks and N head layers. In this paper, we utilize three video resolutions and,
therefore, our method utilizes four SNeRV blocks and three heads, i.e., M = 4, N = 3. Similarly
to other NeRV blocks [4, 12, 7], the SNeRV block is used to upscale the spatial dimensions of
feature maps and enhance their expressiveness through multiple multilayer perceptrons (MLPs) or
convolutional layers. In this work, we adopt the HiNeRV block [7] as the backbone of the SNeRV
block due to its reasonable performance compared to traditional video codecs. For each SNeRV
block, the feature maps are first upscaled using simple linear interpolation, enriched with embedding
information, and then transformed by a set of MLPs or convolutional layers.

In the multi-stream network, the input frame index (t) is first encoded and interpolated into base
feature maps with size H0 ×W0 × C0. The following four blocks are named SNeRV blocks 1 to
4, arranged from low to high levels. These SNeRV blocks progressively upsample and process the
feature maps. Based on the desired output resolutions, we set the upscale factors to {5, 3, 2, 2} for
SNeRV blocks 1 to 4, respectively. For generating the three video representations, we use three
branches of sub-networks that share certain sub-layers of the SNeRV Blocks. Since the network
needs to gradually reduce the number of channels to achieve higher spatial resolution frames, the
SNeRV Block at lower level would have a larger number of parameters. In order to adjust the
distribution of different sub-bitstream sizes, each sub-network can select the number of sub-layers Dx

according to the required size (0 < Dx ≤ D). In practice, the sub-network responsible for generating
higher-resolution frames adds ELs to the BL that generates the lower-resolution frames.

2.2 Training Strategy

The training for the SNeRV model can be considered as multi-task training. Each task represents a
video in a specific presentation. During the end-to-end training, each task minimizes its individual
loss to optimize the corresponding sub-network. The total loss is the weighted sum of losses for each
sub-network as follows

I∑
i=1

λiLi (1)
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where I is the total number of sub-networks, Li represents the loss of the ith sub-network, and λi

denotes the weight for the loss of each sub-network.

The loss for each sub-network is the combination of ℓ1 and Structural Similarity Index Measure
(SSIM) [20] loss, which is computed over all pixels of the reconstructed frame and the ground-truth
frame at a specific resolution, and can be expressed as

Li = α
∥∥f i

θ(t)− vt
∥∥
1
+ (1− α)(1− SSIM(f i

θ(t), vt)) (2)

where f i
θ is the ith sub-network parameterized by θ, vt ∈ RH×W×3 is the ground-truth tth frame of

the video, and α is hyper-parameter to balance the weight for each loss component.

2.3 Model Compression

After fitting the SNeRV network to a video, we apply the model compression pipeline in NeRV [4, 12,
7], to further reduce the model size, which in turn decreases the bitstream size. The model compression
includes three sequential steps: model pruning, weight quantization, and weight encoding.

Model Pruning. Given a SNeRV network that fits on a video content, we use model pruning with
fine-tuning to reduce the model size first. We adopt adaptive weighting [7] to the parameters of each
layer based on its size for pruning, making wider layers with more redundant parameters more likely
to be pruned. After pruning, we fine-tune the model to regain the representations.

Weight Quantization. After model pruning, we use 6-bit quantization to compress the bitstream
while maintaining the quality of the representations as much as possible. With fine-tuning training
using Quantization Noise [5] at 80% noise ratio, the quantization error can be effectively reduced.

Weight Encoding. Finally, we perform the weight encoding to further enhance the compression
performance. The weights will be compressed using arithmetic coding [14], a type of entropy coding
that leverages the character frequency. To obtain the actual bitrate, we additionally encode all essential
compression information into bitstreams, including the weight pruning and quantization parameters.

3 Experimental Results

3.1 Datasets and Implementation Details

We conduct experiments using the UVG [15] dataset, which consists of seven videos at 1920× 1080
resolution and a total number of 3900 frames. We downscale the original videos using ffmpeg with
bicubic scaling to obtain low-resolution versions of 960× 540 and 480× 270, respectively. In order
to compare with H.264/AVC [21], we reduce the frame rate of raw YUV video from 120 frames per
second (fps) to 60 fps by dropping every other frame, while maintaining the original raw format.

In our experiments, we train all models for each video separately. All models are trained for 300
epochs, followed by fine-tuning for 60 epochs after weight pruning. Finally, they are further optimized
for 30 epochs using fine-tuning with Quantization Noise [5]. We train the SNeRV network using
Adam optimizer [6] with a learning rate of 5e− 4. For the loss of each sub-network in Equation 2,
the parameter α is set to 0.5. The weight λi in Equation 1 is uniformly applied to the loss of each
sub-network. Our experiments indicate that increasing the weight assigned to high-resolution tasks
generally leads to sub-optimal results in most sub-networks. One possible explanation is that the
sub-network for the high-resolution task rely on shared blocks at lower levels, which also have a
significant impact on the final video quality.

For the network structure, we adjust the layer number Dx of each SNeRV block for the sub-networks
to determine the size of each sub-bitstream for different resolutions. Specifically, for the 270p
sub-network, the Dx for SNeRV blocks 1 and 2 are set to 4. In the case of the 540p sub-network, the
Dx of SNeRV block 1, 2, and 3 are each set to 6. For the 1080p sub-network, the Dx for all SNeRV
blocks are uniformly set to 8.

We vary the number of channels of the SNeRV network to achieve different bitstream rates. For
conventional SVC [16], we perform experiments with multiple QP values {32,37,42,47} to obtain the
results at different rates. Specifically, we use the latest SVC reference software, JSVM 9.19.15 [1].
Bitrate is calculated by dividing the bitstream size by the duration of the corresponding video, and is
expressed in kilobits per second (kbps). We evaluate the video quality using two metrics: PSNR and
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Table 1: Model scalability of SNeRV. The results are reported in terms of BD-PSNR/VMAF for the upscaling
factor 2× (from 270p to 540p) and 2× (from 270p to 1080p).

Upscale factor BD-Metric Beauty Bosph. Honey. Jockey Ready. Shake. Yacht. Average

2× BD-PSNR (dB) +0.43 +2.02 +1.60 +1.97 +0.79 +1.85 +1.04 +1.38
BD-VMAF +5.65 +16.04 +15.27 +15.93 +7.02 +11.72 +11.70 +11.90

4× BD-PSNR (dB) +1.66 +3.03 +1.47 +4.80 +1.73 +2.90 +1.05 +2.38
BD-VMAF +2.92 +13.78 +12.31 +16.29 +3.44 +0.19 +9.80 +9.68
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Figure 3: SNeRV vs. SVC based on PSNR.
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Figure 4: SNeRV vs. SVC based on VMAF.

VMAF [11]. To ensure a fair and straight comparison of video quality across different resolutions,
we use ffmpeg to bicubic upscale the generated 270p and 540p videos to 1080p. In the paper, we
compare these upscaled videos with the original 1080p raw video to obtain the video quality metrics.

3.2 Model Scalability of SNeRV

SNeRV comprises a sub-network of BL to generate the supported lowest resolution video, and then
uses the sub-networks with ELs to provide higher resolution representations. Table 1 shows the
scalability of SNeRV using BD-PSNR/VAMF, specifically for the upscaling from 270p to 540p and
from 270p to 1080p. Note that for the upscaling performance of 2× and 4×, we only consider the
size of the ELs, rather than the entire sub-network which includes both the BL and EL. Compared
to videos generated from the BL at the same bitrates, videos upscaled to 2× resolution provide
+1.38/+11.90 better quality in PSNR/VMAF, while 4× upscaled videos achieve +2.38/+9.68 better
quality in PSNR/VMAF. It shows that the SNeRV model can generate videos at different resolution
by sharing BL and adopt certain ELs within the network. By leveraging the scalability of the SNeRV
model, we can transform the traditional video compression problem into a model compression
problem, further improving the compression performance of scalable video coding.

3.3 Compare with Conventional Scalable Video Coding (SVC)

Video Compression Performance. Figure 3 and Figure 4 show the overall encoding performance on
the UVG dataset. Video resolutions of 270p, 540p and 1080p are represented by blue, green, and red
lines, respectively. The curves of our proposed SNeRV are shown with solid lines, while the curves of
SVC are represented with dashed lines. The results show that SNeRV achieves better scalable coding
performance compared to SVC. In particular, SNeRV outperforms SVC based on VMAF metric,
which accounts for perceived visual quality. It is also worth noting that at lower bitartes, SNeRV
provides a greater quality gap compared to SVC at the same resolution, demonstrating its potential in
video compression. Figure 5 shows visual comparison between SVC and SNeRV. At each resolution,
SNeRV reconstructs videos with better quality using similar bitrate.

Decoding Speed. For a multi-layered bitstream, the video at each resolution can be decoded
independently. We compare the decoding speed between SVC and SNeRV in terms of frame
per second (fps), as shown in Table 2. Note that SVC runs on CPU, while the learning-based
method SNeRV runs on GPU (a single RTX A6000). Although the decoding efficiency of SNeRV
highly depends on the available GPUs, the results demonstrate that SNeRV has an advantage in
reconstructing high-resolution videos. The speed can be further optimized by loading and running
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SVC (270p @2277 bitrate) SVC (540p @5806 bitrate) SVC (1080p @11934 bitrate)
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Figure 5: Visual comparison between the reconstructed frames (cropped) of SVC and SNeRV (Ours).

Table 2: Decoding speed of SVC and SNeRV at the same bitstream size.

Resolution Bitstream size SVC SNeRV

270p 0.32MB 193.18 fps 69.47 fps
540p 0.82MB 26.58 fps 27.73 fps
1080p 2.63MB 4.65 fps 8.29 fps

the model on specialized hardware. Furthermore, SNeRV is based on an implicit neural network,
allowing potentially for parallel decoding. In traditional scalable video codecs, the decoding process
is sequential, starting with intra-frames and then decoding inter-frames based on those intra-frames.
In contrast, our method allows direct access to any frame using its time index, enabling independent
frame decoding and parallel processing.

4 Discussion

Conclusion. In this work, we propose SNeRV, a scalable neural representation for video coding
that encodes videos using a multi-stream neural network. Without the need for multiple training
processes to encode a single video, we train a neural network to simultaneously represent various
forms of video content, such as different resolutions. Each video representation can be independently
decoded by its respective sub-stream. Since the video is encoded into model weights, the SNeRV
model can take advantage of general model compression techniques to compress videos efficiently.
We demonstrate that SNeRV exhibits scalability for increasing video resolution and refining video
representation by adding ELs to the BL of networks. Furthermore, we show that the proposed SNeRV
method outperforms the traditional scalable video coding method (SVC) and achieves comparable
decoding speed at high resolutions.

Limitations and Future Work. The proposed SNeRV method does have some limitations. First,
while it allows for multiple video representations within a single network, its training performance is
lower than that of a single-stream network with the same training settings. Similarly, in traditional
video codecs, scalable coding typically underperforms compared to non-scalable coding under
equivalent conditions. Second, the current architecture of SNeRV is not yet fully optimized. Although
the scalability of the INR-based network has been demonstrated in the paper, we believe that further
investigations in architectural design could greatly enhance the scalable coding performance. Finally,
like all existing INR-based video compression methods, SNeRV suffers from slow encoding speeds,
and the decoding speed still needs to be improved compared to conventional codecs.
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