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One goal of AI research is to develop agentic systems capable of operating in open-ended environ-1

ments with the autonomy and adaptability akin to a scientist in the world of research. An ideal "AI2

scientist" should be able to generate and test hypotheses, and draw conclusions about the world3

based on the evidence. It also needs to be intrinsically motivated to adapt to a continually changing4

world with sparse reward signals. Here, we propose hierarchical reinforcement learning (HRL) as a5

key ingredient to building agents that can systematically generate and test hypotheses that enables6

transferrable learning of the world, and discuss potential implementation strategies.7

Defining hypothesis. For us, a hypothesis is a fundamentally a statement about the causal structure8

of the world, which we formulate as a Structural Causal Model (SCM, Pearl (2000)). The learning9

objective is identifying the set of nodes (concepts) and edges (relationships) in the SCM. The focus10

on causality is crucial for two main reasons. First, having the right causal structure allows the agent11

to adapt more quickly in the face of changing environments (Bengio et al., 2019). Second, causal12

structures can enable the agent to more efficiently achieve its objectives via counterfactual reasoning13

and long-term credit assignment (Meulemans et al., 2023).14

Hypothesis testing through HRL. We choose the RL framework due to its emphasis on active learn-15

ing and natural interpretation of actions as interventions, and propose one way to combine Markov16

Decision Processes (MDPs) with SCMs (see Appendix A). Hypothesis testing through HRL leverages17

learned abstract-level subgoals, such as skills (Eysenbach et al., 2019) or options (Sutton et al., 1999;18

Bacon et al., 2016), to intervene on SCM nodes. This approach can be implemented by training19

hypothesis-conditioned policies, π(a|s, h), where the hypothesis h consists of variables with different20

attributes. For example, in the blicket detector task from developmental psychology, we can formulate21

hypotheses about relationships between variables representing objects and the detector’s outcome22

(Gopnik and Sobel, 2000). Consider a scenario with three potential blickets (X(1), X(2), X(3)) and a23

blicket machine (X(4)). A hypothesis might be that X(1) = on_top_machine leads to X(4) = on,24

indicating that the first object is the blicket. To test this hypothesis, we would set X(1) to have the25

attribute on_top_machine and observe the resulting state of X(4), while also verifying that this26

relationship holds regardless of the attributes of other variables. As the action space may not directly27

correspond to causal interventions, we require sequences of actions (i.e. hypothesis-conditioned28

policies) to set variables to specific attributes, therefore allowing the agent to observe the outcome29

of interventions. This naturally gives rise to an HRL setting where action sequences occur at lower30

temporal abstractions than the world model reasoning about variable relationships. Further, our HRL31

approach is also inspired by cognitive science, particularly the observation that humans act and plan32

at abstract rather than muscle level, and that children are "scientists in the cribs" (Gopnik et al.,33

2009) who excel at learning efficiently the causal structure of the world through exploration and34

experimentation. Hypothesis testing, through this lens, could be seen as a way of guiding exploration35

at the abstract (i.e., SCM) level. It can also be easily combined with other child-inspired intrinsic36

motivations, such as empowerment (Gopnik, 2024) as a way of deciding which hypothesis to test37

(see Appendix B).38

In conclusion, here we present a framework for designing AI agents that can generate and test hypothe-39

ses using HRL, inspired by developmental psychology, and propose some concrete implementations.40

We hope to prompt discussion about future directions, including a formal definition of hypothesis and41

hypothesis testing, and foster collaborations among disciplines.42
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Appendix80

A MDPs and SCMs81
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Figure 1: Structural Causal Models (SCMs) describing causal relationships. The inter-variable
relationships are the same between the two SCMs, with the time-dependent SCM treating the
dependency as occurring across a single time-step.

We propose one perspective to reason about Markov Decision Processes (MDPs) and Structural82

Causal Models (SCMs) together. The former is a framework for embodied behavior, while the latter83

reasons about structures and relationships.84

A (reward free) Markov Decision Process (MDP) is the tuple ⟨S,A, P ⟩, with state space S , primitive85

action space A, and transition probability function P : S × A × S → [0, 1]. A Structural Causal86

Model (SCM) is defined via a set of internal variables X = {X(1), X(2), ..., X(n)}, and independent87

noise variables {ϵ(1), ϵ(2), ..., ϵ(n)}. A SCM consists of a collection of n assignments,88

X(i) ← fi(Pa(X(i)), ϵ(i)) , (1)

where Pa(X(i)) ⊆ {X(1), ..., X(n)} \ {X(i)} are the parents of X(i), and fi is some function that89

takes the parent nodes’ values as inputs to determine the child node’s value (Peters et al., 2017).90

Including the Notion of Time One often reasons about an SCM as “timeless” and encoding91

invariant facts about the world. To reason about how variables evolve dynamically over time, we92

instead treat an assignment as invariant across time-step. Specifically, instead of considering the93

causal parent of X(i), we consider the causal parent of X(i) at time t:94

X
(i)
t ← fi(Pa(X(i)

t ), ϵ(i)) . (2)

If we further make the Markov assumption,1 then the variables in Xt are independent of all other95

variables given Xt−1. In other words, the parents of any variable X
(i)
t must belong to the set Xt−1,96

i.e. Pa(X(i)
t ) ⊆ Xt−1. An example of such a time-dependent SCM is illustrated in Figure 1.97

Actions and Interventions A common type of intervention are structural, or “surgical” interven-98

tions. Such interventions break (i.e. make independent) a variable X(i) from its causal parents and99

set it to a particular value (i.e. P (X(j)|do(X(i) = c))). In specific settings, actions in an MDP can100

correspond exactly to structural interventions (Dasgupta et al., 2019). Generally speaking, actions101

do not make variables fully independent of its causal parents, but only influence its value. This is102

referred to as a parametric intervention (and is related to the idea of instrumental variables). For a103

fuller discussion of the two types of interventions, we refer the reader to Eberhardt (2007).104

States as Variable Sets The first way of combining together the two frameworks is simply to treat105

the set of structural variables as a state in an MDP. I.e. X = S, and St = Xt = {X(1)
t , ..., X

(n)
t }.106

The problem of learning the correct SCM then correspond to learning how each “state factors” (X(i))107

and actions At ∈ A influence factors at the next time-step. This correspond to learning a “good”108

1Whether or not the Markov assumption is a reasonable assumption here is open for discussion, nevertheless
we argue it is a useful first step in bridging together MDPs and SCMs, and opens up a set of new perspective.
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state-level world model: Pr(St+1|St, At). This learning process to identify how factors influence109

each other can be complex, and might benefit from intrinsic rewards. Intrinsic rewards can be110

designed to encourage exploration of different states (i.e., different combinations of variables values).111

For example, an intrinsic reward might be given for visiting states that are less frequently visited112

(Strehl and Littman, 2008).113

Hierarchies and Abstract Variables To treat a low level state St as the set of variable Xt is114

somewhat unwieldy: one has to account for small fine-grained changes at a low level (e.g. modelling115

“as I move left for one time-step, what is the effect of this on my pixel observation of the world”).116

Instead, it may be much more natural to reason about structural variables at a more abstract level117

than the low level MDP states. Suppose we have a mapping from generic MDP states to a small118

set of structural variables: M : S → X . And further we can consider temporally extended action119

sequences instead of primitive actions as the interventions (Marino et al., 2020). The problem of120

learning the correct SCM then becomes one of learning how abstract variables and policies influence121

future abstract variables across multiple time-steps—an abstracted world model. Given b ∈ B as the122

set of action sequences (options / skills), we learn T(Xu+1|Xu, bu) where the abstract time index u123

updates at a slower frequency than the low level time t.124

By this formulation, we are not limiting ourselves to any specific state or action definition in the125

base MDP ⟨S,A, P ⟩. Instead, through the mapping function M and the set of low level policies126

B, we have define an abstracted level MDP ⟨X ,B,T⟩ whose states are the structural variable sets127

(X(1), ...), and the interventions correspond to low level action sequences. The mapping function128

M defines what kind of concepts Xt we care about extracting from the low level states St, and the129

abstract world model learning correspond to learning the correct SCM between abstract structural130

variables Xt = (X
(1)
t , ..., X

(n)
t ) and Xt+1 = (X

(1)
t+1, ..., X

(n)
t+1).131

B Using empowerment to select hypothesis tested132

In an open-ended world with numerous potential hypotheses to test, how does one choose which to133

pursue for the most promising outcome? Similarly, in a scientific laboratory, what’s the best approach134

to designing experiments that yield the most informative results? Here, we propose one potential135

metric of evaluating and selecting hypothesis to test: empowerment.136

In the RL literature, empowerment has been used as a form of intrinsic motivation that encourages137

the agent to to reach situations where the agent can have more options for action, or assert greater138

influence on the environment (Klyubin et al., 2005). Mathematically it is defined as task-agnostic139

utility function via mutual information between agent’s actions and outcomes: Given the random140

variables A (representing the sequence of K actions that the agent takes) and s′ (representing the141

resulting states of the environment after the K actions), empowerment E is defined as the mutual142

information between A and s′:143

E(A) = I(A; s′) = Ep(A,s′)

[
log

(
p(A, s′)

p(A)p(s′)

)]
Under our formulation of hypothesis as SCM, empowerment can be calculated as the mutual informa-144

tion between action sequence A carried out by the hypothesis-conditioned policy π(a|s, h) and the145

outcome s′. One way we can choose which hypothesis to test is to select the hypothesis conditioned146

policies in order of their mutual information with their respective outcomes — in a way, choosing to147

test the hypothesis with maximal empowerment.148

We note that, despite the fact that its motivation is well-rooted in cognitive science, few works have149

successfully deployed empowerment in an RL setting to solve real-world tasks. The main challenge150

is that the calculation of mutual information is computationally intractable, as it requires calculating151

expectations over probability distributions over s′ and K-step action sequences A. This challenge152

is particularly significant for continuous or high-dimensional state and action spaces. Early works,153

such as Klyubin et al. (2005, 2008); Salge et al. (2012), stayed in discrete action spaces and used154

the Blahut-Arimoto algorithm, which essentially enumerates over all actions and states and thus has155

a high complexity. More recent works have explored the possibility of using variational inference156

to approximate this value. The intractability of empowerment calculation on the low level provides157
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another strong justification for using HRL, since grouping lower-level states into abstract-level,158

conceptual states will reduce the number of states to iterate over, same thing for actions. Lastly, it159

remains an open question as to the definition of the outcome s′, eg., whether it is a final state or160

external reward, as well as the specific implementation of estimating the mutual information.161
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