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Abstract

The widespread use of large language mod-001
els (LLMs) is increasing the demand for meth-002
ods that detect machine-generated text to pre-003
vent misuse. The goal of our study is to004
stress test the detectors’ robustness to mali-005
cious attacks under realistic scenarios. We com-006
prehensively study the robustness of popular007
machine-generated text detectors under attacks008
from diverse categories: editing, paraphrasing,009
prompting, and co-generating. Our attacks as-010
sume limited access to the generator LLMs, and011
we compare the performance of detectors on012
different attacks under different budget levels.013
Our experiments reveal that almost none of the014
existing detectors remain robust under all the015
attacks, and all detectors exhibit different loop-016
holes. Averaging all detectors, the performance017
drops by 35% across all attacks.1018

1 Introduction019

LLMs are becoming increasingly adopted in infor-020

mation seeking scenarios, assistive writing, transla-021

tion, mental health support, and many more (Zhao022

et al., 2023a). Their evolving capabilities to gen-023

erate human-like and persuasive language raise024

wide concerns about misuse, e.g., deception, aca-025

demic misconduct, and disinformation (Zellers026

et al., 2019; Weidinger et al., 2021; Kumar et al.,027

2022; Feng et al., 2024), and it becomes harder028

for humans to distinguish machine-generated texts029

(MGT) from human-written texts (HWT) (Dugan030

et al., 2023). As a result, much recent work focus031

on automatic MGT detection to mitigate the risks032

(Liu et al., 2022; Mitchell et al., 2023; Kirchen-033

bauer et al., 2023a; Mao et al., 2024) (related work034

discussed in Appendix A).035

In this work, we focus on potential malicious036

attacks that attempt to deceive the detector using037

various attack strategies. Existing works on this038

1Code and data will be released in the public version.
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Figure 1: Pipeline of the study. The attacks are carried
out on the machine-generated texts before, during, or
after generation. Each attack is applied with different
perturbation levels, denoted as budgets (§4).

topic mostly focus on the robustness of specific 039

detectors or particular attack methods. For exam- 040

ple, Liu et al. (2022) specifically evaluate the to- 041

ken editing attack for model-based detectors, and 042

Zhang et al. (2023) assay the topic-shifting attack 043

for metric-based detectors, etc. To the best of our 044

knowledge, in the literature, there is no thorough 045

comparative evaluation of robustness of machine- 046

generated text detectors against malicious attacks, 047

covering a wide range of detectors and attacks. 048

With this goal, we study the robustness of 8 049

prevalent MGT detectors from 3 categories under 050

12 realistic attacks (§6, Table 1), including edit- 051

ing, paraphrasing, prompting, co-generating, etc. 052

The majority of the attacks in this paper are pro- 053

posed or attempted for the first time. For a fair 054

comparison across detectors and attacks, we utilize 055

a series of metrics to measure the perturbation level 056

of each attack, which we term “budget” (§4). Strik- 057

ingly, our experiments (§6.1) reveal that almost 058

none of the existing detectors remains robust un- 059

der all the attacks, showing a variety of potential 060

weaknesses or loopholes. For example, about 2 to 061

6-character editing by typo insertion can severely 062

deceive metric-based detectors, such as DetectGPT 063

(Mitchell et al., 2023), to perform worse than a 064

random prediction (§6.2), etc. Hence, we view the 065

attacks as the stumbling blocks for current MGT de- 066

tectors toward robustness. Moreover, we interpret 067

the reasons behind the detectors’ weaknesses under 068
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Attack Category Method Model-Free? Level Access Detailed Descriptions

Editing
(§6.2)
post-generation

Typo Insertion ✓ Character None
Create typos by inserting, deleting, substituting, and
transposing mainly.

Homoglyph Alteration ✓ Character None
Change English characters into visually similar Unicodes,
e.g., Cyrillic characters.

Format Character Editing ✓ Character None
Change or insert formatting characters, including
zero-width whitespace \u200B insertion, and shift
character editing, e.g., \n, \r, \u000B (vertical tab), etc.

Paraphrasing
(§6.3)
post-generation

Synonyms Substitution opt ✓ or ✗ Word None
For model-free (✓) setting, retrieve a synonym from a
static dictionary; for model-based (✗) setting, utilize a
LLM to generate synonyms list given context.

Span Perturbation ✗ Span None
Use a masked LM (Raffel et al., 2020) to rewrite spans of
tokens by masked filling.

Inner-Sentence Paraphrase ✗ Inner-Sent. None
Use Pegasus (Zhang et al., 2020) to paraphrase each
sentence of the text and then join them.

Inter-Sentence Paraphrase ✗ Inter-Sent. None
Paraphrase with Dipper (Krishna et al., 2023), a
paragraph-level paraphraser that can re-order, split, and
merge sentences meanwhile paraphrasing each sentence.

Prompting
(§6.5)
pre-generation

Prompt Paraphrasing ✗ Inter-Sent. Prompting
Paraphrase the raw prompt before generation using
Pegasus.

In-Context Learning ✗ Inter-Sent. Prompting
Given the example of HWT and MGT as positive and
negative demonstrations when generating MGT on the
same prompt.

Character-Substituted Generation ✗ Inter-Sent. Prompting
Prompt to ask the model to generate the text with specific
character substitution criteria and recover the output after
finishing the whole generation.

Co-Generating
(§6.4)
on-generation

Emoji Co-Generation ✓ Inter-Sent. Decoding
Compulsorily generate or insert an emoji after finishing
each sentence while recurrent generation and remove all
the emojis after finishing the whole text.

Typo Co-Generation ✓ Inter-Sent. Decoding
Preset character substitution rules and execute the rules
when finishing sampling each token and recover them after
finishing the whole text generation.

Table 1: Overview of the attacks. ‘Model-Free’ means whether the attacker is free from using any additional
language model or not. ‘Access’ indicates the access to the generator needed when doing the attack (details in §6
and examples in Table 15).

attacks, and we further introduce out-of-the-box069

patches with inferior performance in some scenar-070

ios (further defense discussed in Appendix E.1).071

We build a robustness leaderboard (Table 2, and072

the pipeline is illustrated in Figure 1) by averag-073

ing results from different attacks. We find that074

watermarking (Kirchenbauer et al., 2023a) per-075

forms best for robust MGT detection to its ap-076

plicable attacks.2 Next, model-based detectors077

are more robust than metric-based ones in most078

cases. Overall, this study aims to raise awareness079

of the detection vulnerabilities and the urgency of080

more robust methodologies, thereby turning the081

stumbling blocks into stepping stones.082

2 Problem Formulation083

Threat Model. Figure 1 shows the overall pipeline.084

There are three roles in the problem: generator085

(§3), detector (§3), and attacker (Table 1, §6). The086

task for the detector is to classify whether a given087

piece of text is human-written (HWT) or machine-088

generated (MGT) from the generator LM. In the089

attacked scenario, before the MGT is sent to the090

detector, an attacker could tamper with the text or091

2Watermarking requires logit-level access to the generator
model and has the risk of negatively impacting text quality.

the generator, attempting to deceive the detector 092

into classifying the MGT as HWT. We compute the 093

budget (§4) of each attack to measure its impact on 094

text quality and semantics. 095

Scope. For a realistic scenario, we set the scope of 096

our robustness evaluation under attack as follows: 097

i) We assume that the attacker does not have any 098

knowledge or access to the detectors. ii) The at- 099

tacker only has limited access to the generators: 100

We assume to have prompting access with tunable 101

sampling hyper-parameters for the following rea- 102

son: currently, most top-performing LLMs accessi- 103

ble to users are closed-source (e.g., GPT-4, Claude), 104

to which we only have API access or a panel includ- 105

ing a prompt input and sampling settings (OpenAI, 106

2022a). Due to the same reason, adversarial attacks 107

(Li et al., 2018; Le et al., 2022) are not covered in 108

this study. iii) For a holistic comparison, we apply 109

each attack on different perturbation levels (e.g., 110

number of typos), termed as budgets (§4). 111

3 Generators and Detectors 112

We select GPT-2 XL (1.5B) (Radford et al., 2019), 113

GPT-J (6B) (Wang and Komatsuzaki, 2021), and 114

LlaMA-2 (7B-hf) (Touvron et al., 2023a) as the 115

representative open-source generators, and Text- 116
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Davinci-003 (OpenAI, 2022b) and GPT-4 (OpenAI,117

2023) as the closed-source generator representa-118

tives. All the generators shared similar results119

under attacks (Appendix G.3). We select GPT-J120

(6B) as the default generator to show the results121

in §6 if unspecified (we empirically find stronger122

generative LMs are not as well good at detecting123

when used for metric-based detectors). The results124

of LlaMA-2 and GPT-4 will be additionally shown125

in Appendix G.3 and §6. For closed-source genera-126

tors, some of the detectors can not be applied due127

to the requirement of white-box parameters.128

Current MGT detectors could be classified into129

3 high-level categories, as we introduce below. We130

include representative detectors from each category131

for our evaluation. A detailed introduction of the132

detectors is deferred to Appendix C.2.1.133

Metric-Based Detector relies on the inferenced134

log-probability from the generator LLM, and135

adopts a threshold for classification.3 Detectors136

for this type does not require any training. We137

include GLTR (Gehrmann et al., 2019; Solaiman138

et al., 2019), Rank and LogRank (Solaiman et al.,139

2019), and DetectGPT (Mitchell et al., 2023) as140

representative approaches in the category.141

Fine-Tuned Detector is trained on a pretrained lan-142

guage model (PLM) in a supervised method with143

a classification loss. We include OpenAI Detector144

(Solaiman et al., 2019), SimpleAI Detector (Guo145

et al., 2023), and Fine-tuned DeBERTa as represen-146

tative models in the category.147

Watermark-Based Detector adds algorithmically148

detectable signatures into texts during generation.149

Kirchenbauer et al. (2023a) is a representative ap-150

proach, which adds a token-level bias in the decod-151

ing stage (represented as Watermark afterward).152

We follow the recommended configurations for153

most detectors. Detailed hyperparameters are in-154

cluded in the Appendix C.2.2.155

4 Budget of Attacks156

As stated in §2, to measure the perturbation level157

of attacks on the generated texts, we utilize a series158

of text generation evaluation metrics as the budget159

of attacks, covering syntactic- or semantic-level160

perturbation. A strong attack should induce large161

detection performance degradation with a relatively162

3The setting of threshold largely impacts the detection
accuracy, but it is out-of-the-scope of this paper’s focus. Thus,
we mainly use threshold-free metrics (e.g., AUC ROC and
TPR@FPR) in experiments (detailed in §5).

small budget. 163

For the editing attacks, we use Levenshtein Edit 164

Distance (Levenshtein, 1965) as the major budget, 165

which is the minimum number of single-character 166

edits, including insertions, deletions, and substitu- 167

tions. A larger distance represents a larger attack 168

budget. Additionally, we also record Jaro Similar- 169

ity (Jaro, 1989).4 170

To measure the quality of texts under the attacks 171

that change the semantic meaning (e.g., prompt- 172

ing attacks and co-generating attacks), we utilize 173

Perplexity under LlaMA-7B-hf (Touvron et al., 174

2023b) and MAUVE (Pillutla et al., 2021). We 175

use MAUVE to compare the distribution gap be- 176

tween MGTs and HWTs. MGTs are used to esti- 177

mate the model distribution, and HWTs are used 178

to estimate the target distribution (the setting is ab- 179

breviated as ‘M2H’). Lower Perplexity or higher 180

MAUVE (M2H) represents better quality and a 181

smaller budget. Table 6 shows the unattacked value 182

for reference. 183

For the attacks that do not change semantics 184

meaning, e.g., paraphrasing, we use BERTScore 185

(Zhang et al., 2019) as the major metric for the 186

budget. We utilize it to compare the similarity be- 187

tween MGTs after the attack to MGTs before the at- 188

tack. In this scenario, attacked MGTs are the candi- 189

dates for BERTScore, while unattacked MGTs are 190

the reference (the setting is abbreviated as ‘A2B’). 191

The BERTScore we used is rescaled. A larger 192

BERTScore (A2B) value means a smaller budget 193

in the attack. Besides, we also record BARTScore 194

(Yuan et al., 2021) and Cosine Similarity, which 195

shows equivalent results. 196

See Table 16 for more details on the metrics for 197

the attack budget. Appendix G.1 show the correla- 198

tion among all metrics and they show highly similar 199

trends of attacked performance. 200

5 Experiment Setting 201

Data Setting. Following the setting of Pu et al. 202

(2023), we generate News-style texts with a proper 203

sampling strategy for each generator, detailed in 204

Appendix C.1. Our study can be readily applied 205

to data from other domains. The prompts used for 206

MGT generation are the first 20 tokens of HWTs 207

in the dataset. The setting of the sampling strategy 208

aims to prevent repetition, measuring by duplicate 209

n-grams (Welleck et al., 2019). The size of the 210

4The edit distance, Jaco similarity, and cosine similarity
are implemented based on the string2string (Suzgun et al.,
2023) package.
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Leaderboard: MGT Detector Robustness

Detector Edit Para. Prompt CoGen. Avg.

Watermark 99.86 97.17 - - 99.99 99.01
SimpleAI Det. 108.1 97.51 81.58 95.04 95.55
OpenAI Det.-Lg 57.77 97.84 105.2 107.2 92.00
Model. Avg. 76.65 92.08 97.57 92.22 89.63
F.t. DeBERTa 104.1 81.49 99.09 64.28 87.24
OpenAI Det.-Bs 36.63 91.46 104.4 102.4 83.71
DetectGPT-1d 74.82 75.32 102.8 66.46 79.85
DetectGPT-10d 62.67 64.40 97.68 49.78 68.63
DetectGPT-10z 56.41 59.73 93.88 43.08 63.28
Metric. Avg. 51.82 61.89 91.26 33.49 59.62
LogRank 41.76 58.38 84.44 11.20 48.95
Rank 36.46 57.68 81.00 20.08 48.81
GLTR 38.82 55.80 87.79 10.32 48.18

Table 2: The overall robustness leaderboard of MGT
detectors by averaging the relative AUC ROC percent-
age across all attack budget levels in §6, ranking down-
wards by the overall average. ‘Metric. Avg.’ and ‘Model.
Avg.’ represent the average performance of metric-based
and model-based detectors. Bolding indicates the best
performance in each detector category, and worse per-
formance with drops larger than 70% are in orange.

training, evaluation, and testing set is 8,000, 1,000,211

and 1,000, respectively, with balanced labels.212

Metrics for Detector Performance. The met-213

rics we use to evaluate detection performance214

are binary classification metrics AUC ROC and215

TPR@FPR. AUC ROC is the area under the re-216

ceiver operating characteristic curve. TPR@FPR217

is the true positive rate when the false positive rate218

is at a specific percentage. Under our setting, it219

is equivalent to Attack Success Rate (ASR) (Tsai220

et al., 2019). We mainly show TPR@FPR=5%,221

and TPR@FPR=10% and =20% are additionally222

recorded in the Appendix G.2. We do not involve223

Accuracy and F1-score because those metrics are224

dependent on the setting of the threshold for metric-225

based detectors, which could be biased in the com-226

parison. Notably, we report all the metrics of at-227

tacked scenarios in relative value to the unattacked228

performance (Table 3) for clearer comparison.229

6 Attacks and Results230

In this section, we describe the attack methodolo-231

gies and results divided by attack category. We232

view the degraded performance under attacks of233

various detectors as stumbling blocks to robust234

MGT detection. Further, we analyze the defects235

5The x-ticks in format (ZWS) character editing is twice the
ones in typo and homoglyph because the Unicode is 2 bytes
when computing edit distance.

Absolute MGT Detector Performance w/o Attack

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 84.46 39.00 53.40 71.60 76.00
Rank 68.13 22.60 35.60 46.80 63.60
LogRank 87.36 50.00 65.60 78.20 79.00
Entropy 51.84 7.60 14.60 26.40 50.80

DetectGPT-1d 68.66 15.80 27.40 45.80 62.10
DetectGPT-10d 83.12 21.60 43.80 71.20 75.80
DetectGPT-10z 85.16 30.80 50.80 73.20 76.20

OpenAI Det.-Bs 83.12 42.40 56.20 69.00 75.00
OpenAI Det.-Lg 88.55 53.60 65.60 78.00 79.00
SimpleAI Det. 87.98 81.20 82.60 84.60 84.40
F.t. DeBERTa 91.90 5.40 49.20 99.60 88.80

Watermark 99.94 99.80 99.80 99.80 99.99

Table 3: The performance of the detectors in the
unattacked scenario (absolute value). For short,
‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’
is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

and propose defense patches in each category to 236

explore the potential of turning stumbling blocks 237

into stepping stones. Table 1 is an overview of all 238

attacks and Table 15 shows some examples. 239

6.1 Overall Message 240

For readers who want a high-level overview of our 241

findings, we show the overall results and messages 242

ahead here by aggregating results from all types 243

of attacks covered in our work. We will introduce 244

and discuss the detailed attacks and results in the 245

following subsections (§6.2 - §6.4). 246

Leaderboard. Overall, we build a leaderboard of 247

detector robustness averaging all the performance 248

datapoints under attacks. The relative AUC ROC 249

under attack6 are as shown in Table 2. A high rel- 250

ative AUC ROC means that the detector is robust 251

to the attack. According to the leaderboard, wa- 252

termarking is most robust to accessible attacks7. 253

Following, SimpleAI Detector and OpenAI Detec- 254

tor (large) rank second and third. Moreover, model- 255

based detectors are more robust than metric- 256

based detectors in most cases. Additionally, we 257

report the absolute performance of the detectors 258

without attacks in Table 3, which should also be 259

considered while selecting suitable detectors. 260

Detector Defect Review. We summarize the de- 261

6‘Relative AUC ROC under attack’ is the percentage of the
AUC ROC in attacked scenarios divided by the unattacked
AUC ROC, to show the relative performance drop of the de-
tectors under attack. Detailed in §5.

7Some prompting attacks can not be done on watermark
since in need of white-box models and compatibility to the
watermarking decoding.
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Figure 2: Performance drop of the detectors under the editing attacks. We show the mixed setting for typo
insertion, and the zero-width whitespace setting (ZWS for short) for format character editing. The budget on the
x-axis is the edit distance at character level (↑ a larger number represents a stronger attack). The color of dashed
lines indicates the category of detectors.5

fect for each detector as follows. GLTR, Rank,262

and LogRank have an average performance drop263

of 51.35% under all attacks, especially not robust264

to editing, paraphrasing, and co-generating attacks.265

In comparison DetectGPT shows better robustness266

(average 29.41% drop), especially on paraphras-267

ing and co-generating attacks. Among fine-tuned268

detectors, the strongest attack method varies. Sim-269

pleAI Detector drops performance on paraphrasing270

and prompting attacks, OpenAI Detectors drop on271

editing, and F.t. DeBERTa performs worse on co-272

generating while it keeps decent robust to other273

attacks. We empirically find a larger model size of274

OpenAI Detectors eases the robustness drawback.275

Notably, watermarking is robust to all applicable276

attacks, but it requires decoding-time access to the277

generator compared with other detectors.278

6.2 Editing Attacks279

The first attack type we explore is the editing at-280

tacks, which are applied to the generated texts by281

minor editing at the character level without any282

change in semantics at the post-generation stage.283

Thus, editing attacks are at a low granularity. Some284

of the attacks might cause the text to lose minor285

quality and readability. Below, we will introduce286

three attack types.287

6.2.1 Approaches288

Typo Insertion intentionally adds a few typos into289

generated texts. We consider four main kinds of290

typos in English keystroke scenarios: insertion,291

deletion, substitution, and transposition (Kukich,292

1992). Aside from testing on each kind, we pro-293

pose a mixed typo insertion to mimic the realistic294

scenario according to the distribution investigated295

by Baba and Suzuki (2012).8 Also, we additionally 296

take letter frequency into account when selecting 297

the characters to be attacked (Pavel, 2000). 298

Homoglyph Alteration uses graphemes, charac- 299

ters, or glyphs with visually identical or very simi- 300

lar shapes but different meanings for imperceptible 301

replacements, first introduced in the cyber security 302

domain (Gabrilovich and Gontmakher, 2002). We 303

use VIPER (Eger et al., 2019) (Visual Perturb) Easy 304

Character Embedding Space (ECES) to get the best 305

homoglyph alternative of the selected character. 306

Format Character Editing, also named Discreet 307

Alteration (Kirchenbauer et al., 2023a), uses spe- 308

cial escape characters and format-control Unicodes 309

as human-invisible disruptions to deceive detectors. 310

See details in Appendix F.2. 311

We do all the editing on the character level, and 312

the budget is measured by edit distance. Also, we 313

do at most one edit per word. 314

6.2.2 Results and Analysis 315

As shown in Figure 2, all metric-based detectors 316

and some fine-tuned ones drop dramatically, while 317

only SimpleAI-Detector and Fine-tuned DeBERTa 318

maintain good performance. Specifically, around 319

2 to 6 characters editing of typos or homoglyph 320

per text can degrade the performance of most 321

detectors to be worse than random (The average 322

length of texts is around 120 tokens). All metric- 323

based methods show a continuous decrease while 324

attack budgets increase. In typo and homoglyph 325

attacks, the decrease can mount up to a total failure 326

with ROC AUC near 0. In comparison, the Detect- 327

GPT is more robust than the others. e.g., its drop 328

converges to about 0.5 under homoglyph alteration 329

8substitution 55.6%, insertion 20.3%, transposition 1.1%,
deletion 23.0%.
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Figure 3: Illustration of the distribution of the metric
value of the metric-based detectors before the attack,
after the attack, and after patching (an out-of-the-box
defense we proposed in §6.2.3). The light-red dotted
lines are the optimal decision boundaries.

while GLTR and Log Rank are near 0. But, Detect-330

GPT with fewer perturbed samples (_1d) is more331

robust than larger ones (_10d and _10z), which is332

counterintuitive.333

Among fine-tuned detectors, OpenAI Detectors334

show a similar unsoundness as metric-based ones.335

And their drops are most significant in format336

character editing. SimpleAI Detector and F.t.-337

DeBERTa show great robustness to all editing at-338

tacks. Moreover, comparing two underperforming339

OpenAI Detectors of different sizes indicates that340

larger classification models could be more robust341

than smaller ones under editing. The watermarking342

method is also very robust to attacks, i.e., keeping343

the AUC ROC above 99%.344

In addition, all four individual types of typo345

share similar negative impacts as the mixed version,346

as shown in Appendix F.1. Also, we observe sim-347

ilar drops for all format character editing attacks,348

while zero-width whitespace is more effective.349

Interpretation. The assumption of metric-350

based detectors is that HWTs have smaller log-351

probabilities than MGTs when inferenced by the352

generator model. However, editing attacks can353

effectively decrease the next-token probabilities,354

leading to indistinguishable situations of the dis-355

tribution curves and even inverse relative relation-356

ships, which cause completely wrong predictions357

(ROC AUC near 0) as the budget increases. Fig-358

ure 3 shows a detailed illustration, taking GLTR359

and DetectGPT as examples. In the figure, af-360

ter the attack, a larger overlap of the two curves361

(column 2) means more severe indistinguishability,362

and the interchange of the relative positions of the363

two curves (column 3) leads to wrong predictions.364

From this intuition, we attempt to patch the issue365

in §6.2.3 by removing anomalies. Discuss for fine-366

tuned and watermarked detectors are deferred to367

Detector Before Att. After Att. w/ Patch

DetectGPT-1d 0.6866 0.4299 0.5111
DetectGPT-10d 0.8312 0.3301 0.6048
DetectGPT-10z 0.8516 0.2735 0.6032

Table 4: Performance of DetectGPT after patching un-
der typo insertion attack in terms of AUC ROC.

Appendix D.1. 368

6.2.3 Out-of-the-box Defense Patch 369

In this section, we propose a simple patch for the 370

under-performing DetectGPT approach. As the 371

editing attacks mainly cause extremely low token 372

probabilities to deceive the classification, we view 373

them as anomaly points to filter them out. Specif- 374

ically, for each text, the top k% tokens with the 375

lowest probabilities would be prevented from be- 376

ing masked and perturbed when doing mask-filling. 377

Next, we do not take their token probability into 378

the computation. Table 4 show the patch recovers 379

performance by 0.2285 on average for 3 settings. 380

Other potential patches include adversarial train- 381

ing (Goodfellow et al., 2014), visual character em- 382

beddings (Wehrmann et al., 2019) for homoglyph, 383

and preprocessing with grammatical error correc- 384

tion (Bryant et al., 2022). These approaches are 385

more costly, and we leave them to future work. 386

6.3 Paraphrasing Attacks 387

Paraphrasing attacks aim to rewrite the generated 388

texts without changing the semantic meanings at 389

the post-generation stage. Paraphrasing has been 390

used for robustness evaluation and data augmenta- 391

tion in many other tasks, e.g., sentiment analysis, 392

textual entailment (Iyyer et al., 2018), and machine 393

translation (Merkhofer et al., 2022). Usually, an 394

extra LLM is used as the paraphraser (Iyyer et al., 395

2018; Yang et al., 2022). Krishna et al. (2023) has 396

reported the attack success of their paragraph-level 397

paraphraser on some MGT detectors, but a compre- 398

hensive study across a wider range of paraphrasers 399

and detectors is missing in the literature. In this 400

section, we will introduce five attack types that 401

cover paraphrasing attacks of different granularity, 402

from word-level to paragraph-level. 403

6.3.1 Approaches 404

Synonyms Substitution is to replace some words 405

with their synonyms to perturb the textual fea- 406

tures. Inspired by the red teaming setting of Shi 407

et al. (2023), we design a model-free method and 408

a model-based method. For the model-free sub- 409

stitution, we replace the selected words with their 410
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Figure 4: Performance drop of the detectors under the paraphrasing attacks. We use BERTScore (A2B) as
the budget in the figure.‘A2B’ means we compute BERTScore between unattacked MGTs and attacked MGTs. ↓
Smaller BERTScore value means a larger budget on the attack.

synonyms retrieved from a static dictionary Word-411

Net (Miller, 1994).9 However, it does not consider412

the context of the substituted words. In the model-413

based method, we use T5-large (Raffel et al., 2020)414

to select the words to be substituted and prompt415

LlaMA (Touvron et al., 2023b) to get the synonyms416

given the context (detailed in Appendix F.3).417

Span Perturbation is to rewrite word spans like418

phrases or clauses. Compared to synonym substi-419

tution, span perturbation is more flexible in that420

tokens can be reordered or replaced. Following421

the perturbation method of DetectGPT, we first422

randomly select spans for masking and then use423

T5-large to fill in.424

Inner-Sentence Paraphrase is to paraphrase each425

sentence separately. We use Pegasus (Zhang et al.,426

2020) to process sentences of texts and join them427

back to the full texts. To control the budget, we can428

adjust the portion of sentences to be paraphrased.429

Inter-Sentence Paraphrase uses Dipper (Krishna430

et al., 2023) to paraphrase the whole text at once,431

which can reorder, merge, and split multiple sen-432

tences. We control the lexical diversity and order433

diversity to change the budgets.434

For budget, we measure the semantic difference435

between before- and after-attack with BERTScore.436

9We avoid substituting the pronouns and prepositions to
avoid grammatical problems. However, issues like verb tense
still might happen.

6.3.2 Results and Analysis 437

The result is shown in Figure 4. Interestingly, 438

lower-level perturbations (i.e., word substitu- 439

tion) show greater attack success than higher- 440

level perturbations (i.e., sentence-level para- 441

phrases) at the same budget. Metric-based de- 442

tectors show weakness at all level perturbations, 443

especially degrading to near 0.0 AUC ROC under 444

word substitution attacks. Among metric-based 445

detectors, DetectGPT shows slightly better robust- 446

ness at word-level perturbation but then loses the 447

lead at higher levels. For fine-tuned detectors, Sim- 448

pleAI Detector remains robust under all attacks, 449

while OpenAI Detectors and F.t.-DeBERTa fail at 450

some attacks. A surprising result is that in some 451

cases, fine-tuned detectors’ performance first drops 452

but then increases as the budget increases, e.g., 453

OpenAI Detectors under word substitution and F.t.- 454

DeBERTa under inter-sentence paraphrase. Finally, 455

for watermarking, inter-sentence paraphrasing 456

is the only attack effective. 457

See interpretation in Appendix D.2 and discus- 458

sion on future defense in Appendix E.1.1. 459

6.4 Co-Generating Attacks 460

Co-generating attacks perturb the generated tokens 461

at each recurrent step with some designed rules. 462

Their mechanism shares similarities to the typo in- 463

sertion attack (§6.2). But for co-generating, the 464

perturbed text is cleaned to be grammatically cor- 465

7



Figure 5: Performance drop of the detectors under
the co-generation attacks. We use MAUVE (M2H)
as the budget to evaluate the text quality in the fig-
ure.‘M2H’ means we compute MAUVE between HWTs
and attacked MGTs. The vertically dotted red line is
the score w.o. attack. ↓ Smaller MAUVE (M2H) value
means a larger budget on the attack.

rect after generation. We will introduce two attack466

types: emoji and typo co-generation.467

6.4.1 Approaches468

Typo Co-Generation is to insert typos during gen-469

eration. Different from the typo insertion attack470

(§6.2), we introduce typos immediately after the471

token is sampled (before the generation of the next472

token), following preset typo insertion rules, e.g.,473

substitute all ‘a’s into ‘z’s. After the whole gener-474

ation is finished, we reverse the inserted typos to475

clear the errors. Compared to the typo insertion at-476

tack, typo co-generation does not directly damage477

quality and human imperceptibility.478

Emoji Co-Generation is developed in a similar479

fashion: We insert emojis at the end of generated480

sentences (before the generation of the next sen-481

tences) and remove them post-generation. The de-482

tails are deferred to Appendix F.5.483

6.4.2 Results and Analysis484

Figure 5 shows the results. We observe that the485

metric-based detectors and F.t.-DeBERTa are not486

robust to the co-generation attacks, while OpenAI487

and SimpleAI Detectors show minor degradation.488

DetectGPT is more robust than other metric-based489

methods without perturbation, e.g., it converges at490

around 0.5 under typo co-generation while GLTR491

and (Log-)Rank converge near 0.1. For all de-492

tectors, the further increase in budgets for co-493

generation attacks does not cause proportional per-494

formance drops.495

See interpretation in Appendix D.3 and discus-496

sion on future defense in Appendix E.1.3.497

10For short, ‘P.-Para’ is the prompt paraphrasing attack,
and ‘CS Gen’ is the character-substituted generation attack.

AUC% Attack P.-Para ICL CS Gen
Dataset GPT-J GPT-4 GPT-4 GPT-4

PPL unatt. 1.930 2.042 2.042 2.042
MAUVE unatt. 0.944 0.483 0.483 0.483

Budget
PPL attacked 1.867 2.064 2.080 4.971
MAUVE att. 0.963 0.348 0.680 0.056

Detect.

GLTR 105.3 111.3 96.83 16.40
Rank 103.8 114.5 95.15 13.47
LogRank 105.0 111.7 97.37 16.58
DetectGPT-1d 99.64 109.4 98.96 59.68
DetectGPT-10d 99.98 112.9 96.76 31.44
DetectGPT-10z 99.94 112.9 97.15 35.62
OpenAI Det.-Bs 115.9 135.8 96.71 54.04
OpenAI Det.-Lg 110.4 128.1 99.79 57.25
SimpleAI Det. 25.63 33.20 102.64 107.44
F.t. DeBERTa 43.70 98.19 99.70 108.13
Watermark* 99.98 - - - - - -

Table 5: Performance drop of the detectors under the
prompting attacks. The perplexity (abbr. PPL) and
MAUVE (M2H) are as the budgets for quality.10

6.5 Prompting Attacks 498

Most detectors are trained and tested on data based 499

on fixed, well-designed prompts, e.g., question 500

answering (Guo et al., 2023), continually writing 501

(Zellers et al., 2019), etc. But in realistic scenar- 502

ios, user prompts might be much more diverse, ab- 503

normal, and even noisy (Zamfirescu-Pereira et al., 504

2023). In this section, we introduce three attack 505

types, namely prompt paraphrasing, in-context 506

learning, and character-substituted generation. Ta- 507

ble 5 shows the results. Due to lack of space, the 508

detailed methods, results, analysis, and interpre- 509

tation are delayed to Appendix B. Discussion on 510

future defense is deferred to Appendix E.1.2. 511

7 Conclusion 512

Due to a lack of space, we defer future and re- 513

lated work to Appendix E and Appendix A. 514

This study evaluates the robustness of 8 MGT de- 515

tectors against 12 realistic attacks, revealing strik- 516

ing vulnerabilities. Findings show that no detector 517

consistently withstands all attacks, as some attack 518

strategies severely compromise detection accuracy. 519

Among various detectors, watermarking is the most 520

robust, followed by model-based detectors. We 521

also suggest combining metric- and model-based 522

detectors for better resilience. Aiming at robust 523

MGT detection, we call for awareness of vulnera- 524

bility and the need for further methods. 525

Bolding indicates severe performance drop (drops larger than
50% are in red; between 25% and 50% are in yellow). Since
GPT-4 is close-sourced, we can not test the watermark on it.
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Limitations526

We mainly show and discuss the results of represen-527

tative generators, detectors, and attack methods in528

the main paper following the preset scope §2. Since529

our work is a general and reproducible evaluation530

pipeline, it is readily applicable to other generators531

or detectors.532

We mainly focus on English in our work. Most533

attacks are able to be generalized to other lan-534

guages, but the generation quality might suffer535

mainly depending on the generator’s capability, es-536

pecially in lower-resource languages. Also, the de-537

tection accuracy highly relies on the base model’s538

capability in other languages. Some attacks could539

have slightly different designs for other languages,540

e.g., the homoglyph alteration attack could be more541

complex in logographic languages like Chinese,542

Japanese (Kanji), and Vietnamese (Chu Nôm), and543

it would be interesting to explore in future work.544

Ethics Statement545

The goal of this paper is not to provide a cookbook546

for malicious use of attacks to deceive MGT detec-547

tors. On the contrary, we want to draw attention to548

the potential vulnerabilities of current MGT detec-549

tors. Moreover, we call for future MGT detectors550

that are robust against the attacks we tested. For551

this target, we will open-source all the code and552

dataset for easy reproduction of our pipeline of ro-553

bustness tests. We also propose and describe some554

defense patches for fixing these loopholes.555
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Unwatermarked Watermarked

PPL MAUVE(M2H) PPL MAUVE(M2H)
1.930 ± 0.386 0.9444 2.119 ± 0.524 0.9639

Table 6: The unattacked value of average Perplexity
and MAUVE (M2H) as the base point. Notably, for
the watermark-based detector, the reference texts for
budget computation are watermarked MGTs instead of
the original unwatermarked MGTs.

A Related Work946

To the best of our knowledge, there is no exist-947

ing thorough study on the robustness of machine-948

generated text detection under various attacks. The949

most related studies are:950

Study on Adversarial Attack to MGT Detection.951

Adversarial attack (Goodfellow et al., 2014), which952

exposes optimized regions of the input space where953

the model under-performs, first introduced to text954

data by Li et al. (2018), is powerful to reveal robust-955

ness in text classification (Jin et al., 2020). Shi et al.956

(2023) first use adversarial attack on MGT detec-957

tors, including OpenAI-Detector, DetectGPT, and958

watermarking. They cover adversarial word sub-959

stitution and adversarial prompting, both of which960

deceive three detectors. Furthermore, RADAR (Hu961

et al., 2023) attempts to improve the robustness of962

model-based detectors by adversarial learning on963

paraphrasing. We also take inspiration from recent964

work on the blind spots of NLG metrics (He et al.,965

2023).966

However, under realistic scenarios, attackers do967

not have detailed knowledge of which detector968

is being used (§2). Our work focuses on non-969

adversarial attacks, which are less costly and under-970

explored.971

Study on Generalization of MGT Detection.972

Generalization capability is an important aspect973

of robustness in MGT detection. For model-based974

detectors, Solaiman et al. (2019) evaluate their Ope-975

nAI Detector on generalize through different model976

sizes, sampling strategies, and input text length. Pu977

et al. (2023) study the generalization ability when978

training and testing on data from different genera-979

tors. Pagnoni et al. (2022) analyze the generaliza-980

tion on sequence length, decoding strategy, dataset981

domain, and generator size. Wang et al. (2023) in-982

troduce a multi-generator, multi-domain, and multi-983

lingual corpus to train more generalizable detec-984

tors. For metric-based detectors, Mireshghallah985

et al. (2023) explore the generalization between986

different base models and dataset generators on a 987

perturbation-based metric-based detector. In com- 988

parison, our research focus is not on the generaliza- 989

tion problem but on the robustness against realistic 990

and malicious attacks. 991

Robustness of MGT Detection. Some existing 992

works of MGT detectors evaluate their robustness 993

under some specific attacks. Liu et al. (2022) eval- 994

uate the robustness of their model-based detector 995

CoCo under token editing. Krishna et al. (2023) 996

stress test detectors on paragraph-level paraphrase, 997

and further purpose a retrieval-based method to 998

increase robustness. Hu et al. (2023) focus on para- 999

phrastic robust model-based detectors by adopting 1000

adversarial learning. Zhang et al. (2023) purpose 1001

that topic shifting drops the metric-based detectors’ 1002

performance. In the watermark domain, Kirchen- 1003

bauer et al. (2023a) propose a list of initial attack 1004

ideas, including editing, paraphrasing, and genera- 1005

tion strategy. But, they only experiment on the span 1006

perturbation attack for their watermark method. 1007

Further, Kirchenbauer et al. (2023b) study the wa- 1008

termark robustness after LLM paraphrase, manual 1009

paraphrase, and mix into a longer document. Ku- 1010

ditipudi et al. (2023) purpose a distortion-free wa- 1011

termark that is robust against perturbation. Zhao 1012

et al. (2023b) enhance the robustness of the water- 1013

marking scheme against editing and paraphrasing 1014

attacks by employing a fixed group design. And 1015

Hou et al. (2023) propose a semantic watermark 1016

at the sentence level for paraphrastic robustness. 1017

To summarize, a thorough and comparative study 1018

on the robustness covering a wide range of detec- 1019

tors and attacks is lacking in the literature, which 1020

motivates our work. 1021

B Prompting Attack 1022

B.1 Approaches 1023

Prompt Paraphrasing. Instead of paraphrasing 1024

whole texts post-generation (§6.3), paraphrasing 1025

the prompt prior to generation is much cheaper and 1026

low-impact on the output quality. We use Pegasus 1027

paraphraser to rewrite the prompts.11 1028

In-Context Learning (Dong et al., 2022) improves 1029

generation quality by giving only a few examples 1030

in the form of demonstration. To generate more 1031

human-like texts to deceive detectors, we give the 1032

11Since the prompts are usually very short, it is hard for us
to control the budget while paraphrasing. Hence, we report
attacked performance under a single budget at Table 5.
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Prompt:
Continue 20 words with all ‘a’s substituted
with ‘z’s and all ‘z’s substituted with ‘a’s:

As the sun dipped below the horizon, casting

GPT-4:

Zs the sun dipped below the horiaon, czsting
shzdows zcross the lzndsczpe, z gentle
breeae whispered through the trees, czrrying
with it the sweet zromz of spring flowers ...

Cleaned
Output:

As the sun dipped below the horizon, casting
shadows across the landscape, a gentle
breeze whispered through the trees, carrying
with it the sweet aroma of spring flowers ...

Table 7: A character-substituted generation example.

generator a related HWT as a positive example1033

and a vanilla MGT as a negative example. We fol-1034

low the prompt design of Super-NaturalInstructions1035

(Wang et al., 2022).121036

Character-Substituted Generation is inspired by1037

substitution cipher (Spillman et al., 1993) in the1038

domain of cryptography. We found that recent1039

LLM, e.g., GPT-4, are able to follow some easy1040

substitution rule, e.g., replace ‘a’s with ‘z’s,1041

during generation. Afterward, we substitute the1042

mapping back to clean the output. Table 7 shows an1043

example. Notably, we only find GPT-4 maintains1044

acceptable generation quality under this attack, so1045

we solely show its result.1046

B.2 Results and Analysis1047

Table 5 shows the results. The metric-based detec-1048

tors severely suffer the character-substituted gener-1049

ation attack but are robust to prompt paraphrasing1050

and in-context learning. On the other hand, the fine-1051

tuned detectors show some drop in prompt para-1052

phrasing but have great robustness under character-1053

substituted generation.131054

Interpretation. The character-substituted gener-1055

ation attack is a more localized perturbation com-1056

pared with prompt paraphrasing and in-context1057

learning, which is on the general level. So, similar1058

to the paraphrasing attacks, metric-based detectors1059

show a larger vulnerability to localized perturbation1060

since it directly increases the next-token probabil-1061

ities, which is also shown as the high perplexity1062

12It is also hard to adjust the budget for this attack. One
potential way is to change the demonstration number, but
it shows no clear correlation to the budgets and also might
exceed the generator’s maximum length of the input sequence.

13Note that the budget of character-substituted generation
is larger than other attacks. As a prompting method, it is hard
to control it, so a milder character-substitution method with
an adjustable budget is by controlled generation (§6.4).

after the attack. However, fine-tuned detectors fo- 1063

cus more on long-term patterns, which may not 1064

impacted by a few substitutions. But, prompt para- 1065

phrasing is a form of attack that shifts the prompt 1066

pattern, which can degrade fine-tuned detectors 1067

severely, especially those ones that are not general- 1068

izable. 1069

Discussion on future defense is deferred to Ap- 1070

pendix E.1.2. 1071

C Experiment Settings 1072

The experiments are done on 8 Tesla V100 and 4 1073

Tesla A100 GPUs, taking up a total of around 500 1074

GPU hours. 1075

C.1 Dataset and Generators 1076

We build the dataset based on Pu et al. (2023). The 1077

HWTs are from the News domain of the dataset, 1078

and the MGTs are generated with different tempera- 1079

tures for each generator we selected. Table 8 shows 1080

the sample number of each split in our dataset. 1081

Split Train Eval Test

Sample Num. 8,000 1,000 1,000

Table 8: The sample number of each split of the dataset.

For sampling, we use a combination of nucleus 1082

sampling (Welleck et al., 2019) with top-p = 0.96 1083

and a tuned temperature parameter (Caccia et al., 1084

2020; Nadeem et al., 2020). While smaller temper- 1085

ature gives higher quality, it will also cause repeti- 1086

tion, especially for less capable LMs. So, we tune 1087

the temperature based on the criteria of preventing 1088

repetition, which is < 0.2 in terms of 4-gram du- 1089

plication under metric seq-rep-4 in Welleck et al. 1090

(2019). Table 9 shows the our temperature settings. 1091

Generator GPT-2 XL GPT-J LlaMA LlaMA-2 DaVinci-003 GPT-4

Temp. 1.5 1.5 1.0 1.5 0.7 0.7

Table 9: The temperature we set for each generator to
follow the criteria of avoiding severe repetitions.

C.2 Detectors 1092

C.2.1 Detailed Introduction 1093

Metric-Based Detector relies on the inferenced 1094

log-probability from the generator LLM, and 1095

adopts a threshold for classification. 1096

GLTR (Gehrmann et al., 2019; Solaiman et al., 1097

2019) using the average of the next-token proba- 1098
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bility to determine whether an input text is MGT.1099

Texts with high average probability are classified1100

as MGTs.1101

Rank and LogRank (Solaiman et al., 2019;1102

Mitchell et al., 2023) using the averaged rank and1103

log-rank of next-token probability for detection re-1104

spectively.1105

DetectGPT (Mitchell et al., 2023) stands as the1106

pioneering work of using perturbation as a com-1107

parison to original texts to enhance metric-based1108

detection. Perturbation here refers to rewriting or1109

substituting spans of tokens using a mask-filling1110

LM (i.e., T5-small (Raffel et al., 2020)). It poses1111

that perturbed MGTs tend to have lower log proba-1112

bilities compared to the original samples under the1113

base LM, while perturbed HWTs may be at about1114

a similar level to the origin. Bao et al. (2023); Su1115

et al. (2023); Liu et al. (2024); Mao et al. (2024)1116

further follow up DetectGPT.1117

We apply the white-box setting to the metric-1118

based detectors, where full knowledge (e.g., which1119

LLM generated the texts) and access ( including1120

the parameters of the generator LLM) are given to1121

the detectors. The reason is that those detectors1122

require the generator LLM as the base model to1123

compute the metrics.1124

Fine-Tuned Detector is trained on a pretrained1125

language model (PLM) in a supervised method1126

with a classification loss.1127

OpenAI Detector (Solaiman et al., 2019) is a1128

model to detect GPT-2 generation by fine-tuning1129

a RoBERTa (Liu et al., 2019) model. We evaluate1130

both the base size (125M) and the large size (355M)1131

model.1132

SimpleAI Detector (Guo et al., 2023) is a detec-1133

tor mainly for distinguishing ChatGPT, using the1134

HC3 QA dataset (Guo et al., 2023) to fine-tune a1135

RoBERTa model.1136

Fine-tuned DeBERTa is the model we fine-tuned1137

on our generation data, representing an in-domain1138

setting. We use DeBERTa-v3-base (He et al., 2021)1139

as the base model.141140

Compared with OpenAI and SimpleAI Detectors1141

as off-the-shelf models, our fine-tuned DeBERTa is1142

relatively in-domain since it is solely fine-tuned on1143

the dataset from the same generator and within the1144

same topic domain as the test set. All the fine-tuned1145

14We have also tried other base models, e.g., BERT (Devlin
et al., 2018), RoBERTa, ELECTRA (Clark et al., 2020), etc.
The selection of base model does not impact the overall trend
of the findings, and the gap on the absolute detection accuracy
is within 2%.

detectors are under the black-box setting, which 1146

means they have no knowledge or access to the 1147

generator LLM but only the generated dataset. 1148

Watermark-Based Detector adds algorithmically 1149

detectable signatures into texts during generation. 1150

Kirchenbauer et al. (2023a) is a representative wa- 1151

termarking approach, which adds a token-level bias 1152

in the decoding stage (represented as Watermark 1153

afterward). This work is followed up by Zhao 1154

et al. (2023b); Christ et al. (2023); Kuditipudi et al. 1155

(2023); Hou et al. (2023). All watermark-based de- 1156

tectors are under the white box setting, where they 1157

have all the knowledge and access to the generator 1158

LLM. 1159

C.2.2 Detailed Hyperparameters 1160

For all model-based detectors, we use the origi- 1161

nal generator of the test set as the base model to 1162

compute the next-token probability and perplexity. 1163

For DetectGPT, we follow the recommendation 1164

hyperparameter setting. The perturbation word ra- 1165

tio is 15% on 2-spam, the perturbation model is 1166

T5-3B (Raffel et al., 2020), and the sample number 1167

of perturbation is 1 or 10 (indicated in the name 1168

of the legend). In the legend, mode ‘d’ represents 1169

the direct use of the absolute likelihood drop while 1170

mode ‘z’ adds an additional normalization. The 1171

mask-filling in perturbation is with temperature 1 1172

without any sampling strategy (e.g., top-p and top- 1173

k). 1174

For all fine-tuned detectors, we directly use the 1175

logits as the output probability. When fine-tuning 1176

F.t. DeBERTa, we set batch size as 4, learning rate 1177

as 1e-5, weight decay as 0, adam epsilon as 1e-8, 1178

and epoch number as 10. 1179

For the watermark, we follow the setting in 1180

Kirchenbauer et al. (2023a), setting gamma as 0.25, 1181

seeding scheme as selfhash, and z-score threshold 1182

as 4.0. 1183

C.2.3 Under Closed-Source Dataset 1184

For GPT-4 datasets, as we do not have the white- 1185

box generator model, we select an alternative LM 1186

as the base model. According to the conclusion 1187

from Mireshghallah et al. (2023), GPT-2 Small 1188

(Radford et al., 2019) is the best-performed base 1189

model when generalized to GPT-4. Our exper- 1190

iment compares GPT-2 (Small, Medium, Large, 1191

XL), OPT (125M, 350M, 1.3B, 2.7B) (Zhang et al., 1192

2022), GPT-Neo (125M, 1.3B, 2.7B) (Black et al., 1193

2021), and GPT-J (6B), and the results align that 1194

GPT-2 Small is the best. Hence, our GPT-4 dataset 1195
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results are all under GPT-2 Small as the base model.1196

Table 11 shows the unattacked performance. Ta-1197

ble 10 shows the Perplexity and MAUVE (M2H)1198

as budget of unattacked GPT-4 dataset.1199

Unwatermarked

PPL MAUVE(M2H)
2.042 ± 0.250 0.4831

Table 10: The unattacked value of average Perplexity
and MAUVE (M2H) of GPT-4 dataset as the base point
budget.

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 62.41 2.20 7.20 22.00 60.40
Rank 62.15 11.40 21.20 36.00 59.80
LogRank 65.96 5.00 17.00 32.60 62.00
Entropy 66.40 12.40 23.00 35.80 61.80

DetectGPT-1d 51.22 3.60 6.60 15.20 50.40
DetectGPT-10d 55.61 2.00 4.40 16.20 55.60
DetectGPT-10z 59.53 5.80 11.00 22.20 58.40

OpenAI Det.-Bs 55.72 13.20 20.20 28.60 52.60
OpenAI Det.-Lg 57.70 6.00 12.20 24.60 56.00
SimpleAI Det. 86.81 81.00 82.20 85.40 84.40
F.t. DeBERTa 100.0 99.80 99.80 99.80 99.80

Table 11: The performance of detectors in the
unattacked scenario for the GPT-4 dataset. For short,
‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’
is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

D Interpretation1200

D.1 Editing Attacks (§6.2)1201

For the fine-tuned detectors, OpenAI Detectors per-1202

form worse in most cases, while SimpleAI Detector1203

and F.t.-DeBERTa show great robustness. We sur-1204

mise the reason is that OpenAI Detectors is trained1205

on the GPT-2 corpus, which is outdated compared1206

to the ChatGPT corpus for SimpleAI Detector and1207

the GPT-J corpus for F.t.-DeBERTa. Under such1208

an out-of-distribution (OOD) situation, the model1209

shows less robustness.1210

The watermarked detector adds a signature at1211

each token, and our editing attacks only change a1212

minimal portion of them. Hence, they show sub-1213

stantial robustness, maintaining high AUC ROC.1214

D.2 Paraphrasing Attacks (§6.3)1215

For metric-based detectors, localized disturbances1216

from lower-level perturbations cause more de-1217

creases in next-token probability than high-level1218

perturbations. While for high-level perturbations, 1219

the decrease is spread out in wider spans, thus mi- 1220

nor the overall impact. For fine-tuned detectors, 1221

Liu et al. (2022) pose that they concentrate more on 1222

long-form patterns (e.g., commonly used phrases 1223

or sentence structures) from LLM to detect. Hence, 1224

localized disturbances of low-level perturbation di- 1225

rectly interrupt the long-form patterns, while high- 1226

level paraphrasing is milder as it rewrites such pat- 1227

terns but still keeps some of the machine signatures. 1228

Moreover, we surmise that paraphrasing attacks are 1229

not making MGTs more human-like but only mix- 1230

ing the machine signatures. So, sometimes, the 1231

detectors’ performance falls then rises as the bud- 1232

gets increase, during which the dominant machine 1233

signatures switch from the original generator’s to 1234

the paraphraser’s. 1235

D.3 Co-Generating Attacks (§6.4) 1236

The insertion of emojis and typos during recurrent 1237

next-token generation is a disruption for the sam- 1238

pling of LLMs, shifting the generation away from 1239

the generator’s original distribution. Moreover, re- 1240

moving the emojis and recovering the typos post- 1241

generation disrupt the conditional probability again 1242

for metric-based detectors. For fine-tuned models, 1243

we surmise that when doing in-domain detection 1244

(F.t.-DeBERTa), the detector might focus more on 1245

localized features. Otherwise, out-of-domain mod- 1246

els here (OpenAI and SimpleAI Detectors) focus 1247

on long-term patterns. Thus, the in-domain model 1248

is less robust to the attacks. 1249

We have also attempted emoji co-generation 1250

for watermarking, and it also demonstrates very 1251

strong robustness, similar to the typo case. Inter- 1252

estingly, inserting more emojis did not affect the 1253

budget (MAUVE score) for watermarked genera- 1254

tion. Therefore, we choose not to plot this result in 1255

Table 5 to avoid confusion. 1256

E Future Work 1257

E.1 Future Work on Defenses 1258

E.1.1 Paraphrasing Attacks (§6.3) 1259

For metric-based detectors, a straightforward way 1260

is to choose a base model that is related to com- 1261

mon paraphrasers’ base models, e.g., T5, Prophet- 1262

Net (Qi et al., 2020), or fine-tune the base model 1263

on some paraphrased corpus. Similarly, data aug- 1264

mentation on paraphrasing and adversarial learning 1265

could be useful for training fine-tuned detectors 1266

(Hu et al., 2023). Moreover, Krishna et al. (2023) 1267
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purpose that retrieval on an MGT database can be1268

the defense, if it is possible to collect enough in-1269

domain MGT entries. For watermarking, semantic-1270

level watermarking (Hou et al., 2023) (as opposed1271

to token-level) has been proposed for paraphrastic1272

robustness.1273

E.1.2 Prompting Attacks (§6.5)1274

To patch the weakness of fine-tuned detectors un-1275

der prompt paraphrasing, an efficient way is to fine-1276

tune the classifier on multi-generator, multi-domain1277

datasets, e.g., M4 by Wang et al. (2023). Other-1278

wise, using an ensembling system (Pagnoni et al.,1279

2022) containing both metric-based and fine-tuned1280

detectors could ease the problem. However, we sur-1281

mise there is no direct way to patch the character-1282

substituted generation because it mimics the subop-1283

timal generation strategy of humans at the root. Yet1284

current LLMs are not capable of always following1285

the character-substitution prompts with high text1286

quality, which could cause unnatural expressions1287

and extra typos. A way to fix the loophole could be1288

censoring the prompts and generated texts if they1289

have weird expressions (Dou et al., 2022; Chiang1290

and Lee, 2023). Additionally, training detectors1291

on the MGT corpus from unnatural instructions1292

(Honovich et al., 2022) could also be considered.1293

E.1.3 Co-Generating Attacks (§6.4)1294

To the best of our knowledge, there are no re-1295

lated existing works. We feel it is hard for metric-1296

based detectors to overcome the defects. Under this1297

scenario, fine-tuned detectors could be the better1298

choice. One potential way to enhance fine-tuning1299

is to adopt some data augmentation, like random1300

masking on short-term spans. Also, we surmise a1301

combination of metric-based detectors and model-1302

based detectors is useful to bypass each other’s1303

stumbling blocks better when attacked. The ensem-1304

bling could also ease the impact of other attacks.1305

Fortunately, the co-generation attacks are still not1306

widely available now since they need to be on the1307

white-box models.1308

E.2 Future Work on Attacks1309

Below, we briefly discuss other types of attacks1310

related to generalization, which are not covered in1311

this work.1312

Sampling Attacks. Diverse sampling strategies1313

(Holtzman et al., 2019) can be adopted when1314

generating MGTs both by setting different hyper-1315

parameters. Pagnoni et al. (2022) show that de-1316

AUC% Typo Type Mixed Insert Delete Subst. Trans.

Budget Edit Distance 17.68 18.05 18.04 16.76 17.87

Detect.

GLTR 2.14 2.96 6.96 3.17 5.76

Rank 6.81 7.25 13.70 6.67 12.18

LogRank 2.56 3.65 9.74 3.72 7.67

DetectGPT-1d 44.66 44.57 53.38 42.59 58.28

DetectGPT-10d 17.99 15.98 32.62 18.01 25.18

DetectGPT-10z 15.02 14.54 26.24 15.95 20.75

OpenAI Det.-Bs 27.62 27.37 24.00 26.32 25.57

OpenAI Det.-Lg 34.76 29.56 35.11 32.68 33.58

SimpleAI Det. 111.6 111.1 112.1 111.0 111.2

F.t. DeBERTa 108.4 96.80 97.20 96.83 97.48

Table 12: Detectors’ performance drops in terms of
relative AUC ROC % of 4 typo types, namely insertion,
deletion, substitution, and transposition.

tection performance generally decreases when a 1317

fine-tuned detector is evaluated on a sampling strat- 1318

egy it was not trained on. 1319

Fine-Tuning Attacks. In some scenarios, users 1320

might fine-tune the generator LLM on their spe- 1321

cific domain. Since the detectors have no knowl- 1322

edge and access to the customized generator, their 1323

performance might decrease. 1324

Human-Involved Attacks is to manually polish 1325

or replenish MGTs to be more human-like and im- 1326

prove their quality, which could deceive the MGT 1327

detector. Kirchenbauer et al. (2023b) purpose man- 1328

ual paraphrasing and mixing HWTs into MGTs as 1329

an attack to watermarks. And Christ et al. (2023) 1330

describe a manual prefix-specificity scheme to lead 1331

to a more human-like generation. Therefore, a ma- 1332

jor limitation of the current detector technique is 1333

the inability to classify human-LLM-collaborated 1334

texts into binary classes. Future MGT detectors 1335

that are able to measure the portion of LLM in- 1336

volvement in text writing are worth considering as 1337

an answer to this attack genre. 1338

F Attack Details 1339

In this section, we report the details that are not 1340

included in the main paper due to lack of space, 1341

including methodologies and settings. 1342

F.1 Typo Insertion 1343

Table 12 shows the performance drop of four sepa- 1344

rate typo types, i.e., insertion, deletion, substitution, 1345

and transposition. All of them share similar obser- 1346

vations on degradation trends and are close to the 1347

mixed typo type. Therefore, for the figure in the 1348

main text, we show the result of mixed for brevity. 1349
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F.2 Homoglyph Alteration1350

We consider \n - newline, \r - carriage return,1351

\v - vertical tab, \u200B - zero-width whitespace,1352

and \u000B - line tabulation as representatives and1353

they shared similar results. Specifically, zero-width1354

whitespace can be inserted between any tokens,1355

while we only add shift-related characters at the1356

end of sentences.1357

F.3 Synonym Substitution1358

Table 13 shows the prompt design for LlaMA to do1359

the model-based synonym generation with the con-1360

text. After the generation, we have an additional1361

step to ask LlaMA double check and correct the1362

grammar of the substituted sentences.1363

${sentence}\n Synonyms of the word “${word}"
in the above sentence are:\n a)

Table 13: Prompt for LlaMA to generate synonyms
based on the context for substitution attack.

F.4 Typo Co-Generation1364

The results reported in the main text using the typo1365

substitution rule switching ‘c’s and ‘k’s. We have1366

also tried other rules, e.g., ‘a’s and ‘z’s. The differ-1367

ent rules cause different budgets depending on the1368

character appearance frequency in the texts. We1369

select a rule that has a comparable budget interval1370

to other attacks, but our system also supports other1371

rules.1372

F.5 Emoji Co-Generation1373

Emojis are widely used in web texts, especially1374

social media (Ayvaz and Shiha, 2017). However,1375

emojis are usually excluded from the training cor-1376

pus of fine-tuned detectors and are situated at the1377

long tail of distribution for metric-based detectors.1378

Thus, they have a similar effect as the insertion1379

of typos (§6.2). We insert a random emoji from1380

Gemoji15 when LLM finishes a sentence and let1381

the LLM generate the next sentence recurrently.1382

We control the budgets by tuning the probability1383

of inserting an emoji after a sentence. We clean1384

the output texts after generation by removing all1385

emojis to hide the trace of the attack. Note that1386

the distribution shift caused by emoji during sam-1387

pling will still embodied in the text and deceive the1388

detectors.1389

15A package of emoji collections: https://github.com/
wooorm/gemoji.

G Additional Results 1390

G.1 Across Budgets 1391

The design of the budget considers the alignment 1392

of different metrics’s indications, especially for the 1393

ones on the same aspects. 1394

Figure 6 to Figure 10 and Figure 11 to Figure 15 1395

show the performance drop in terms of BERTScore, 1396

BARTScore, Cosine Similarity, Jaro Similarity, and 1397

Edit Distance for paraphrasing attacks. Figure 16 1398

to Figure 17 show the editing attacks, and Figure 18 1399

to Figure 21 show the co-generating attacks. The 1400

line charts illustrate a similar trend for performance 1401

drop of MGT detectors under attacks, which cross- 1402

validate our results and conclusion. Also, they sup- 1403

port the reasonability of the design of our budget. 1404

G.2 Across Metrics 1405

Figure 22 to Figure 27 shows the performance drop 1406

of the detectors in terms of different metrics, in- 1407

cluding ROC AUC, PR AUC, accuracy (ACC), 1408

TPR@FPR=20%, =10%, and =5%. The similar 1409

drop trends show the correlation between all met- 1410

rics involved in our study. Here, we show editing 1411

attacks as examples and omit others for brevity. 1412

G.3 Across Generators 1413

In this section, we report the results of the main test 1414

on LlaMA-2 (Touvron et al., 2023a) as the genera- 1415

tor. As we have mentioned, due to larger LLMs not 1416

having good detection capability for metric-based 1417

detectors (Mireshghallah et al., 2023), the trend re- 1418

sults might be noisy and unclear compared with the 1419

GPT-J main results in §6. However, the results and 1420

conclusion align well across generations at a high 1421

level. Table 14 and Figure 28 - Figure 28 show the 1422

results. 1423
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Figure 6: Performance drop under the paraphrasing attacks with BERTScore (A2B) as budget (x-axis). (Row 1)

Figure 7: Performance drop under the paraphrasing attacks with BARTScore (A2B) as budget (x-axis). (Row 1)

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 84.09 29.60 52.20 72.00 76.40
Rank 67.15 17.80 29.20 42.80 64.60
LogRank 87.25 40.20 62.60 78.60 79.20
Entropy 46.96 6.20 10.00 21.80 47.80

DetectGPT-1d 57.83 5.00 12.60 26.00 54.20
DetectGPT-10d 66.26 15.40 22.20 38.40 61.00
DetectGPT-10z 72.91 16.20 33.00 52.00 66.40

OpenAI Det.-Bs 74.40 30.20 40.60 53.40 68.20
OpenAI Det.-Lg 79.62 31.40 41.00 62.60 72.60
SimpleAI Det. 88.26 82.00 83.40 85.80 84.80

Table 14: The performance of detectors in the
unattacked scenario for the LlaMA-2 dataset. For
short, ‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%,
‘ACC’ is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-
tuned.
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Figure 8: Performance drop under the paraphrasing attacks with Cosine Similarity as budget (x-axis). (Row 1)

Figure 9: Performance drop under the paraphrasing attacks with Jaro Similarty as budget (x-axis). (Row 1)

Figure 10: Performance drop under the paraphrasing attacks with Edit Distance as budget (x-axis). (Row 1)
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Figure 11: Performance drop under the paraphrasing attacks with BERTScore (A2B) as budget (x-axis). (Row 2)

Figure 12: Performance drop under the paraphrasing attacks with BARTScore (A2B) as budget (x-axis). (Row 2)

Figure 13: Performance drop under the paraphrasing attacks with Cosine Similarity as budget (x-axis). (Row 2)
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Figure 14: Performance drop under the paraphrasing attacks with Jaro Similarty as budget (x-axis). (Row 2)

Figure 15: Performance drop under the paraphrasing attacks with Edit Distance as budget (x-axis). (Row 2)

Figure 16: Performance drop under the editing attacks with Edit Distance as budget (x-axis).
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Figure 17: Performance drop under the editing attacks with Jaro Similarty as budget (x-axis).

Figure 18: Performance drop under the co-generating attacks with MAUVE (M2H) as budget (x-axis).

Figure 19: Performance drop under the co-generating attacks with MAUVE (A2B) as budget (x-axis).
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Figure 20: Performance drop under the co-generating attacks with Cosine Similarity as budget (x-axis).

Figure 21: Performance drop under the co-generating attacks with Perplexity as budget (x-axis).

Figure 22: Performance drop under the editing attacks with relative ROC AUC as performance metrics (y-axis).
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Figure 23: Performance drop under the editing attacks with relative PR AUC as performance metrics (y-axis).

Figure 24: Performance drop under the editing attacks with relative accuracy as performance metrics (y-axis).

Figure 25: Performance drop under the editing attacks with relative TPR@FPR=20% as performance metrics
(y-axis).

25



Figure 26: Performance drop under the editing attacks with relative TPR@FPR=10% as performance metrics
(y-axis).

Figure 27: Performance drop under the editing attacks with relative TPR@FPR=5% as performance metrics
(y-axis).

Figure 28: LlaMA-2 dataset: Performance drop under the editing attacks with Edit Distance as budget (x-axis).
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Prompt A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio

HWT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio and newspapers combined, and Internet reports are
considered much more reliable that other media. It also shows only 1 in 200
people surveyed believes newspapers will be a dominant source of information in
2014. The survey discovered 56 percent of adults nationwide would pick the
Internet if they were allowed just one source for their news, while television,
newspapers and radio earned the support of 41 percent – together. Among
Republicans, 56 percent would choose the Internet for their news, while among
Democrats that figure was 50 percent.

unattacked MGT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. And it’s true: only a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Center poll, only 37 percent of Americans said they get their news from
newspapers. That’s down from 44 percent who said they got news from newspapers
in 2010. TV news was a distant second in the poll. Only 23 percent of Americans
said they get their news from TV. That’s down from 26 percent in 2010.

unattacked
watermarked MGT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio, newspapers or magazines. The poll, conducted by the
News Literacy Project, found that 42 percent of American adults say they rely
exclusively on the Internet for news. That’s up from 33 percent in 2008. At the
same time, the number of people relying on television for information has
declined since the poll began asking this question in 2003. In 2003, 47 percent
of Americans said they used TV exclusively for news. That’s down to 38 percent
in 2008 and 34 percent today.

typo insertion
(mixed)

Description: Create typos by a mixture method of inserting, deleting, substituting, and transposing.
Config: Insert typo in 20% of tokens, one edit per selected token.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, rapio or newsbapers. And it’s true: only a third of
Ameyicans get their news from newspapers, TV or radio. In a now Pew Research
Center poll, only 37 percent of Americans said they ges their nws fro
newspapers. Bhat’s down rrom 4 percent who aid hthey got nelws from newspapers
in 2010. TV news wae a distant secod in the poll. Only 23 percent of Americans
said hey get their news fdom TV gThat’s down from 26 percent in 2010.

homoglyph
alternation

Description: Change English characters into visually similar Unicodes.
Config: Change 20% of tokens, one homoglyph character per selected token.
A new poll reveals thaτ more Americans would choose the Internêt as their only
news source than TV radio or newspapers. And it’s true: oňly a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Ceňter poll, only percent of Americans said they get their neωs from newspapers.
Thât’s down from 44 percent who said they gôt news from newspapers in 2010. TV
newŝ was a distant second în the poll. Only 23 peřcent of Amêricans said they
get their nêws from TV. Thaτ’s down from 26 percenτ in 2010.

format character
editing (zero-width
whitespace)

Description: Insert formatting characters, i.e., zero-width whitespace \u200B.
Config: Insert \u200B at the end of 20% of tokens.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. And it’s true: only a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Center poll, only 37 percent of Americans said they get their news from
newspapers. That’s down from 44 percent who said they got news from newspapers
in 2010. TV news was a distant second in the poll. Only 23 percent of Americans
said they get their news from TV. That’s down from 26 percent in 2010. [Note:
zero-width whitespace can not be displaced in LATEX.]

synonyms
substitution
model-free

Description: Retrieve synonym from a static dictionary to substitute.
Config: Substitute 10% words.
A new poll reveals that more American English would choose the Internet as their
only news source than TV, radio, newsprint or magazines. The crown, conducted
by the news show Literacy Project, found that 42 percent of American English
adults say they rely exclusively on the Internet for news. That’s up from 33
percent in 2008. At the same clock, the bit of people relying on television for
info has declined since the poll began asking this interrogative sentence in
2003. In 2003, 47 percent of American English said they used TV exclusively for
news show. That’s down to 38 percent in 2008 and 34 percent today.
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synonyms
substitution
model-based

Description: Utilize an LLM to generate a synonym list given context.
Config: Substitute 10% words using LlaMA with temperature 1.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, depend on solely newspapers or magazines. The poll,
conducted by the News Literacy Project, found that 42 percent of American
adults say they rely exclusively on radio Internet for news. That’s survey from
33 percent in 2008. At the same time, the number of people relying on
television solely information has declined since the poll began asking this
question in 2003. In yesterday, 47 percent of Americans said they used TV
exclusively for news. That’s down to 38 percent in 2008 and 34 percent today.

span perturbation

Description: Use a masked LM (Raffel et al., 2020) to rewrite spans of tokens by masked filling.
Config: Rewrite 30% of 2-spans.
A new poll reveals that more people choose the Internet as their primary news
source than TV, radio, newspapers or magazines. The survey, conducted by The
Media Literacy Project, found 73 percent of American poll respondents said they
rely exclusively on the Internet for news. It’s up from 33 percent in 2008. At
the same time, the number of people relying on television for news has declined
since the poll began asking questions in 2007. In 2003, 47 percent of Americans
said they used TV exclusively to get their news. That’s down to 38 percent in
2009, and 34 percent today.

inner-sentence
paraphrasing

Description: Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join
them.
Config: Paraphrase 80% of the sentences.
A new poll shows that more Americans would prefer the internet to TV, radio,
newspapers or magazines. The poll, conducted by the News Literacy Project, found
that 42 percent of American adults say they rely exclusively on the Internet
for news. It was up from 33 percent in 2008. At the same time, the number of
people relying on television for information has declined since the poll began
asking this question in 2003. Almost half of Americans used TV exclusively for
news in 2004. In 2008 it was 38 percent and today it is 34 percent.

inter-sentence
paraphrasing

Description: Paraphrase with Dipper (Krishna et al., 2023), a paragraph-level paraphraser that can
re-order, split, and merge sentences.
Config: Lexical (L) diversity 60 and Order (O) diversity 60.
Most Americans get their news from television, radio, and old-fashioned
newspapers. In a recent poll by the Pew Research Center only 37 percent
reported that they get news from newspapers. And that’s true. More Americans
would now use the Internet to get their news than would do so newspapers, radio,
or the Americanized news service. In the survey, “American View” was the second
most favored channel, with 23 percent, and the Americanized news service was
the third most favored with 13 percent. In 2010, 44 percent of Americans said
they would get their news from newspapers. Now that’s just 33 percent. Down
from the old-fashioned 32 percent in 2010.

prompt
paraphrasing

Description: Paraphrase the raw prompt before generation using Pegasus.
Config: -
More Americans would choose the internet as their only news source, according
to a new poll released recently. The survey shows a significant shift in how
people consume news, with a growing preference for digital platforms over
traditional media like television or newspapers. Respondents cited the
convenience, immediacy, and accessibility of online sources as key reasons for
this shift. However, concerns about misinformation and fake news persist,
emphasizing the need for diligent fact-checking and critical evaluation of
digital content. The study underscores the significant influence of the
internet on shaping public opinion and the rapidly changing media landscape.

in-context learning

Description: Given the example of HWT and MGT as positive and negative demonstrations when
generating MGT on the same prompt.
Config: 1 positive demonstration + 1 negative demonstration.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio, and print media. The survey further indicates that
60% of the respondents rely on social media for daily news updates,
highlighting the increasing importance of platforms like Facebook, Twitter, and
Instagram in news dissemination. The trend is particularly prominent among the
younger demographic, with 70% of those aged 18-34 choosing the internet as
their primary news source. Despite this, concerns about the spread of fake news
and misinformation online persist, stressing the need for digital literacy and
fact-checking mechanisms.
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character-
substituted
generation

Description: Prompt to ask the model to generate the text with specific character substitution criteria
and recover the output after finishing the whole generation.
Config: Substitute ‘c’s and ‘k’s using GPT-4.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. This shift in preferenae highlights
the growing influence of the Internet and digital technologa in shaping public
opinion. It’s not surpriaing, given the ezae of access to information online.
Yet, some raise concern over the increasing relianae on the web for news, as it
makes it easier to spread misinformation. With fake news becoming a common
issue, there’s a growing need for digital literacy and critical thinking skills
to discern fact from fiction.

typo co-generation

Description: Preset character substitution rules and execute the rules when finishing sampling each
token and recover them after finishing the whole text generation.
Config: Substitute ‘c’s and ‘k’s with 50% probability.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. The results 73 percent are reported
by Pew Research that were conducted on an average of views based on discussions
and polls around the Internet, and express popular ingestion vivid facts. The
majority of Americans choose fer the Internet as their source of faksual
information rather than TV news or radio news, reports Pew. About half online
respondents (52%), for example, say they go there when they need information
they likely folllow upwere.

emoji
co-generation

Description: Compulsorily generate or insert an emoji after finishing each sentence while recurrent
generation and remove all the emojis after finishing the whole text.
Config: Insert 1 emoji at the end of 20% sentence.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or any print publication. A new study by social
analytics firm Altimeter Group confirms what has been obvious to most consumers
since 2017 We are a far more information-driven species, and are blown away
with the freely available, POV-polling and influence-mongering power of the
Internet perspective Quinnipiac University Polls conducted during April and May
2018 reveal that an astounding eight in ten voters say they trust internet
polls in deciding important battles, versus an abysmal 49 in 2016.

Table 15: Example of the attacks with description and configs.
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Metric Scale Definition

Levenshtein Edit Distance
(Levenshtein, 1965)

≥ 0 ↑ The minimum number of single-character edits (insertions, deletions or
substitutions).

Jaro Similarity (Jaro, 1989) ≥ 0 ↓ A similarity metric based on matching characters and transpositions in two
strings.

Perplexity (PPL) > 0 ↔ Apply Llama-7B-hf (Touvron et al., 2023b).

MAUVE
(Pillutla et al., 2021)

M2H (0, 1] ↔
MGTs to estimate the model distribution Q and HWTs to estimate the target
distribution P . For attacked scenarios, the closer value to the unattacked
scenario is favored.

A2B (0, 1] ↓ MGTs (attacked) to estimate the model distribution Q and MGTs (unattacked)
to estimate the target distribution P .

Cosine Similarity [−1, 1] ↓ Utilize BART embedding (Lewis et al., 2020) to compare the similarity of texts
after the attack to before the attack.

BERTScore
(Zhang et al., 2019)

M2H [0, 1] ↔ MGTs as the candidates ∧
x and HWTs as the reference x. For attacked

scenarios, the closer value to the unattacked scenario is favored.

A2B [0, 1] ↓ MGTs (attacked) as the candidates ∧
x and MGTs (unattacked) as the reference

x.

BARTScore
(Yuan et al., 2021)

M2H < 0 ↔ MGTs as the source x and HWTs as the target y. For attacked scenarios, the
closer value to the unattacked scenario is favored.

A2B < 0 ↓ MGTs (attacked) as the source x and MGTs (unattacked) as the target y.

Semantics Human Eval [0, 1] ↓ Pairing attacked MGTs with the unattacked, asking humans to judge whether
they are semantic-similar.

Quality Human Eval [0, 1] ↓ Pairing attacked MGTs with the unattacked, asking humans to judge which one
is more high-quality.

Table 16: The metrics considered to evaluate the budget of attacks. ↑ means a larger number represents a more
significant attack on the raw texts. ↔ means the value closer to the value of unattacked texts is favorable. ‘M2H’ is
‘MGT to HWT,’ and ‘A2B’ is ‘After to Before Attack’ for short. Metrics in grey are not distinguishable enough
empirically that we do not show in the paper, but are also implemented and reported in our code and data repertory.
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