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Abstract

Over the last decade, deep neural networks have transformed our society, and
they are already widely applied in various machine learning applications. State-
of-the-art deep neural networks are becoming larger in size every year to deliver
increasing model accuracy, and as a result, model training consumes substantial
computing resources and will only consume more in the future. Using current
training methods, in each iteration, to process a data point x ∈ Rd in a layer, we
need to spend Θ(md) time to evaluate all the m neurons in the layer. This means
processing the entire layer takes Θ(nmd) time for n data points. Recent work
[Song, Yang and Zhang, NeurIPS 2021] reduces this time per iteration to o(nmd)
but requires exponential time to preprocess either the data or the neural network
weights, making it unlikely to have practical usage.
In this work, we present a new preprocessing method that simply stores the weight-
data correlation in a tree data structure in order to quickly, and dynamically detect
which neurons fire at each iteration. Our method requires only O(nmd) time in
preprocessing and still achieves o(nmd) time per iteration. We complement our
new algorithm with a lower bound, proving that assuming a popular conjecture
from complexity theory, one could not substantially speed up our algorithm for
dynamic detection of firing neurons.

1 Introduction

Machine learning applications are requiring larger and larger neural network size, and the computing
resources required to train these large models is growing correspondingly. Determining how to train
these models quickly has become an important research challenge.

Training a neural network is an iterative algorithm, and in each iteration, we need to process each
of the m neurons on each of the n data points. Assuming each data point has a length of d (e.g., d
could be the size of an input image), this means the per-iteration training time of the straightforward
algorithm is at least Ω(nmd) just to compute the activations. As we train larger neural networks on
more training data, this running time can become a significant obstacle.

Recent work by Song, Yang, and Zhang [SYZ21] gave the first training algorithm that reduces this
per iteration training time to o(nmd). The high-level idea of their algorithm is to use a nearest
neighbor search data structure that stores the neural network weights and training data. This allows
the training method to have fast access to the inner products of the training data with the current
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weight of the iteration. However, their algorithm’s initial preprocessing time to set up the data
structure is exponential in the dimension d, making it too slow in most applications. This raises a
natural theoretical question:

Is it possible to design an algorithm that spends polynomial time to preprocess the weights and data,
and which achieves a training time of o(nmd) per iteration?

This question is important for two reasons. First, speeding up neural network training is a fundamental
research challenge with real-world value. Second, dynamic data structures have been successfully
used to speed up computations in many contexts throughout computer science, yet their power and
limitations when applied to the training of neural networks are currently poorly understood.

1.1 Our Result: An Upper Bound

Our main result answers this question in the affirmative, giving a new algorithm with efficient
preprocessing and faster training in the natural over-parameterization regime (which has m≫ n):
Theorem 1.1 (Main result). There is a data structure which preprocesses n data points in d-
dimensional space, and m initialization weights points in d-dimensional space, in O(mnd) prepro-
cessing time and O(mn+md+ nd) space, which can be used to speed up neural network training:
Running the gradient descent algorithm on a two-layer, m-width, over-parameterized ReLU neural
network, which will minimize the training loss to zero, can be performed with an expected running
time (of the gradient descent algorithm per iteration) of

Õ(m4/5n2d).

The following remark gives a comparison between our result and a closely related work [SYZ21]:
Remark 1.2. The prior work [SYZ21] presented two algorithms. Their first result (see Theorem
6.1 and Part 1 of Corollary B.6 in [SYZ21]) has O(2d) preprocessing time and uses O(m1−1/dnd)
cost per iteration. Their second result (see Theorem 6.2 and Part 2 of Corollary B.6 of [SYZ21])
has O(nd) preprocessing time and uses O(m4/5nd) time per iteration. Our result exponentially
improves the running time of the data structure in [SYZ21] in terms of the dimension d. Notably,
unlike [SYZ21], we do not use any complicated geometric data structure in previous work, and our
algorithms are much easier to implement (see Algorithms 1 and 2). Moreover, as we discussed in
Section 5, they can be parallelized to further reduce the cost-per-iteration to Õ(m4/5nd).

Our key observation is that in each iteration of the training process, the weight updates are mostly
sparse, and only a small fraction of neurons are activated for each training data point. Given this
observation, we construct a binary search tree for each training data point (or neuron) to detect which
neurons will fire. Our data structure and the corresponding algorithms are deterministic, not relying
on any randomness, and solve the following dynamic algorithms problem which we prove appears as
a key subroutine of the training process.
Definition 1.3 (Dynamic Detection of Firing Neurons (DDFN)). Given two set of points X =
{x1, . . . , xn} ⊂ Zd, Y = {y1, . . . , ym} ⊂ Zd and a threshold b ∈ R, design a data structure to
support the following operations:

• UPDATE(j ∈ [m], z ∈ Zd), set yj to z

• QUERY(), either output the set

Q = {(i, j) ∈ [n]× [m] | ⟨xi, yj⟩ ≥ b},

or report that |Q| > m4/5n.

We give a data structure for DDFN which takes O(mnd)-time for preprocessing, Õ(nd)-time per
update, and O(min{|Q|,m4/5n})-time per query. At a high level, our data structure works as follows.

Preprocessing We build n binary search trees to maintain the (xi, yj) pairs for i ∈ [n] and j ∈ [m].
More specifically, the i-th tree has m leaf nodes, storing the inner-products between xi and {yj}j∈[m].
Each internal node stores the larger value of its two child nodes. The preprocessing time for the
binary search trees for all the input data and neurons takes O(nmd) time and O(mn) space.
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Update Suppose we will update yj . Then, for each i ∈ [n], we need to update a path from the leaf
node corresponding to (xi, yi) to the root, which contains O(logm) nodes. Hence, the running time
of each update is O(nd logm).

Query We need to find all the leaf nodes with values greater than b. We can traverse each tree from
top to bottom. At each node, if its value is at most b, we will not move further. Otherwise, we will try
to search each of its child nodes. Note that the number of visited nodes is of the same order as the
number of visited leaf nodes. And we visit a leaf if and only if its value is greater than b. Hence, the
total query cost is O(min{|Q|,m4/5n}).

1.2 Our Result: A Lower Bound

We complement our new algorithm with a lower bound, showing that assuming a popular conjecture
from complexity theory, one could not improve much on our running time for Dynamic Detection of
Firing Neurons (DDFN). Prior work [SYZ21] got around this by using exponential preprocessing
time to avoid needing a dynamic algorithm. However, in our setting with polynomial preprocessing
and running times, there is a limit to how quickly one can perform each iteration:

Theorem 1.4 (Lower Bound for DDFN, informal version of Theorem F.4). Let d = 2O(log∗ n), and
assume the OVC or SETH conjecture from complexity theory. For every constant ε > 0, there is no
data structure for DDFN with O(m4/5n1/5−ε) update time and O(m4/5n6/5−ε) query time.

Here, log∗ n denotes the iterated logarithm function, which grows incredibly slowly, such that the
dimension 2O(log∗ n) is barely larger than a constant, and one would typically pick a much larger
d. The complexity-theoretic assumptions OVC and SETH are defined in Section F. We prove
Theorem 1.4 by reducing the Maximum Inner Product Search problem to DDFN.

In other words, our Theorem 1.4 shows that without using a large preprocessing time as in the prior
work, it is impossible to substantially improve on our algorithm, no matter how sophisticated the
algorithmic techniques one might use.

1.3 Related Work

Orthogonal Vector Conjecture The orthogonal vector problem (OV) is a fundamental problem
in fine-grained complexity which asks, given X,Y ⊂ {0, 1}d of size |X| = |Y | = n, whether there
are x ∈ X and y ∈ Y with ⟨x, y⟩ = 0. The state-of-the-art algorithm [AWY14, CW16] runs in time
n2−1/O(log c) in dimension d = c log n for all c ≥ 1; as the dimension d increases, its running time
approaches the trivial bound n2. The orthogonal vector conjecture (OVC) conjectures an n2−o(1)

lower bound for OV when d = ω(log n). It is also known that the popular Strong Exponential Time
Hypothesis (SETH) regarding the hardness of k-SAT implies OVC. This conjecture has been used to
obtain conditional lower bounds for other important problems with polynomial-time algorithms in a
wide variety of areas, including pattern matching [AWW14, Bri14, BI15, BI16, BM16, BGL17,
BK18, CW19], kernel sparsification [ACSS20, AA22], softmax attention computation [AS23a,
AS23b, DSZ23], graph algorithms [RVW13, ABH+18, GIKW18, KT18, DLW22, CWX22], and
computational geometry [BBK+16, Rub18, Wil18a, Che20, KM20]; see also the survey [Wil18b].

Acceleration via high-dimensional search data-structure Data structures have been designed
that allow one to quickly find high-dimensional points in geometric query regions (e.g., half-spaces,
simplices, etc). Currently, there are two main approaches to designing these structures. One is based
on Locality Sensitive Hashing (LSH) [IM98], which aims to find nearby points (e.g., small ℓ2 distance
[DIIM04, AR15, AIL+15, ARN17, Raz17, AIR18, BIW19, DIRW20] or large inner product [SL14,
SL15b, SL15a]) to a query q ∈ Rd in a given set of points S ⊂ Rd. LSH-based algorithms typically
run quickly in practice, but only support approximate nearest-neighbor queries. The other approach is
based on space partitioning data structures, such as partition trees [Mat92a, Mat92b, AEM92, AC09,
Cha12], k-d trees/range trees [CT17, TOG17, Cha19], and Voronoi diagrams [ADBMS98, Cha00],
which can exactly search for points in the queried region.

There is a recent line of research that has applied high-dimensional geometric data structures to reduce
deep neural networks’ training time in practice. Empirically, SLIDE [CMF+20] uses LSH-based
methods to efficiently find neurons with maximum inner product in the forward pass; Reformer
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[KKL20] also applies LSH to save the space complexity such that the neural networks are able
to process very long sequences; MONGOOSE [CLP+21] combines the learnable LSH-based data
structure [Cha02] with the lazy update framework [CLS19] to speedup the neural network training.
Theoretically, [SYZ21] gives the first provable sublinear-time training algorithm for 2-layer over-
parameterized neural networks using the HSR data structures in [AEM92].

The goal of our paper is to design an efficient high-dimensional geometric data structure that can
be embedded in the neural network training framework with provable performance guarantees.
Specifically, our data structures have the same functionalities as the HSR data structures [AEM92]
which can find all the points that have large inner products and support efficient data updates. However,
our data structures do not have an exponential dependence on d, the dimension of the points, which
appears in the time complexities of many computational geometry algorithms (including [AEM92])
due to the curse of dimensionality. Compared with the LSH-based approaches, our data structures
have a stronger correctness guarantee, and will always report all the points with a sufficiently large
inner product; LSH only gives approximate guarantees and might miss some of them.

Convergence via over-parameterization Over-parameterization, where the trainable parameters
are much larger than the number of training data points (i.e., m≫ n), is a very natural and common
regime in deep learning. It plays a key role in explaining why deep neural networks can perform
so well at many different tasks. Over the last few years, there has been a tremendous amount of
work toward theoretically understanding the convergence and generalization of deep neural net-
works in the over-parameterization regime, e.g., [LL18, DZPS19, AZLS19a, AZLS19b, ADH+19a,
ADH+19b, SY19, CGH+19, ZMG19, CG19, ZG19, OS20, JT20, LSS+20, HLSY21, ZPD+20,
BPSW21, SZZ21, Zha22, HSWZ22, MOSW22, YJZ+23, GMS23, LSY23, QSS23, QSY23]. A key
observation is that when the width (m) of the neural network tends to infinity, the neural network is
equivalent to a neural tangent kernel (NTK) [JGH18], and so technical tools from kernel methods can
be adapted to analyze deep neural networks. In particular, it has been shown that (stochastic) gradient
descent ((S)GD) can train a sufficiently wide neural network with random initialization, converging
to a small training error in a polynomial number of steps.

Roadmap This paper is organized as follows: In Section 2, we formulate our problem of training
neural networks. In Section 3, we develop the Correlation Tree data structure, which is the main
contribution of this work. In Section 4, we state our main result for quickly training neural networks
using Correlation Trees. In Section 5, we conclude and discuss some future directions. A number of
our proofs are deferred to the appendix.

2 Preliminaries

Before describing our new data structure, we first present the notation we will use, and formulate the
problem setting.

Basic Notation. For n ∈ N+, we use [n] to denote the set {1, 2, · · · , n}. We write E[X] to denote
the expected value of a random variable X , and Pr[Y ] to denote the probability of a random event
Y . For a matrix M , we write M⊤ to denote the transpose of M . We use x⊤y to denote the inner
product between vectors x and y. We use Id to denote the d× d identity matrix. We use N (µ;σ2) to
denote the Gaussian distribution with mean µ and variance σ2.

Problem Formulation In this section, we introduce the neural network model we study in this
paper. We consider a two-layer ReLU-activated neural network f that has width m and uses an ℓ2
loss function.
Definition 2.1 (Prediction function and loss function). For a threshold parameter b ∈ R, data point
x ∈ Rd, weight matrix W ∈ Rd×m, and weights a ∈ Rm, the prediction function f(W,x, a) and
loss function L(W ) are given by

f(W,x, a) :=
1√
m

m∑
r=1

arσb(⟨wr, x⟩), L(W ) :=
1

2

n∑
i=1

(f(W,xi, a)− yi)
2,

where σb(x) := max{x− b, 0} is the ReLU function with threshold parameter b. Following the prior
work [SYZ21], we write 2NN(m, b) to denote this function f for simplicity.
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Remark 2.2. In the neural network, w1, · · · , wm ∈ Rd are the weight vectors of the edges between
input nodes and hidden neuron nodes, and a1, · · · , am ∈ R are the weights of the edges connecting
hidden neuron nodes with the output node.

Following the setups in previous work, we only train the weight parameters W ∈ Rd×m to minimize
the loss L(W ), and will leave a ∈ Rm unchanged after the initialization.

In this work, we study the following training process:

• Initialization: For each hidden neuron, we sample wr(0) ∼ N (0, Id), and sample ar from
{−1,+1} uniformly at random.

• Gradient computation: For each neuron, we have

∂f(W,x, a)

∂wr
=

ar√
m
x1w⊤

r x≥b, and

∂L(W )

∂wr
=

ar√
m

n∑
i=1

(f(W,xi, a)− yi)xi1⟨wr,xi⟩≥b.

• Weight update: We follow the standard update rule of the GD algorithm from iteration k
to iteration k + 1:

W (k + 1) = W (k)− η · δW (k),

where W (k) denotes the weights at iteration k, and

δW (k) =
∂L(W (k))

∂W (k)
.

Sparsity phenomenon in the training process As observed in many experimental and theoretical
works [CLP+21, SYZ21, SZZ21, GS22, GSZ23, DCL+22, DMS23, GSYZ23, LWD+23, GSY23,
ZSZ+23, SWYZ23, BSZ23], for a randomly initialized over-parameterized neural network (Defi-
nition 2.1), given input data x, only a small fraction (o(m)) of the neurons will be activated when
evaluating 2NN(m, b) (Definition 2.1) in each training iteration. We refer to this phenomenon as
“Sparsity”. We exploit this property to design an efficient data structure to identify the sparse activated
neurons, achieving sublinear training time in terms of m, the number of neurons in the hidden layer.

To be specific, the sparsity of activated neurons during the training process is bounded by choosing a
proper threshold b for the ReLU function. Because of a concentration phenomenon of the randomized
initialization, we can upper-bound the number of activated neurons just after initialization, which
we refer to as “sparsity after initialization”. Then, in subsequent training iterations, using the neural
tangent kernel (NTK) property, it follows that there is only a minor increase in the number of activated
neurons per iteration. Therefore, the total number of activated neurons can be bounded by a small
quantity.

For simplicity, we define the “fire set” Sfire(x) first, which is the set of neurons that is activated when
the neural network’s input is x.
Definition 2.3 (Fire set). Let the neural network be defined as in Definition 2.1. For a data point
x ∈ Rd, let Sfire(x) denote the set of neurons that are activated on input x, i.e.,

Sfire(x) := {i ∈ [m] : σb(⟨x,wi⟩) > 0}.

Then, we similarly define fire sets for hidden neurons and input data points for each iteration:
Definition 2.4 (Fire set per iteration). For each data point xi ∈ Rd with i ∈ [n] and each iteration
t ∈ {0, 1, · · · , T}, let wr(t) ∈ Rd be the weight vector of the r-th neuron at the t-th iteration for
r ∈ [m]. Define

Si,fire(t) := {r ∈ [m] : σb(⟨xi, wr(t)⟩) > 0},
S̃r,fire(t) := {i ∈ [n] : σb(⟨xi, wr(t)⟩) > 0}.

We further denote the sizes of these sets by ki,t := |Si,fire(t)| and k̃r,t := |S̃r,fire(t)|.
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The following lemma upper bounds the sparsity after initialization.

Lemma 2.5 (Sparsity after initialization, informal version of Lemma B.3, [SYZ21]). Let b > 0 be a
tunable parameter. If we setup the neural network as in Definition 2.1, then after the randomized
initialization, with probability at least 1 − exp(−Ω(m · exp(−b2/2))), it holds that for any input
data x, the number of activated neurons is at most O(m · exp(−b2/2)), where m is the total number
of neurons.

Remark 2.6. This suggests that if we take b =
√
0.4 logm, we achieve a sublinear number, O(m4/5),

of activated neurons.

We can similarly control the sparsity in each iteration, and not just the first iteration; we defer the
details to Section B.2.

In the next section, we will show how our weight-tree correlation data structure can take advantage of
this sparsity phenomenon.

3 Correlation Tree Data Structure

In this section, we consider a neural network 2NN(m, b) (Definition 2.1) with n data points.
We let {w1, · · · , wm} ⊂ Rd be the weights, {x1, · · · , xn} ⊂ Rd be the data points, and
{(wr, xi)}r∈[m],i∈[n] ⊂ Rm+n be the weight-data pairs.

We propose two data structures: Correlation DTree and Correlation WTree. The DTree data structure
has n trees, and its i-th tree has m leaf nodes corresponding to the set of inner-products between xi

and all hidden neurons, i.e., {⟨wr, xi⟩}r∈[m]. Similarly, the WTree data structure consists of m trees,
and its r-th tree has n leaf nodes corresponding to the set of inner-products between the r-th neuron
and all data points, i.e., {⟨wr, xi⟩}i∈[n].

The Correlation Tree is a simple binary tree data structure. At a high level, it works as follows:

• Tree construction We first calculate the inner products of all weight-data pairs ⟨wi, xj⟩,
each representing the evaluation of a neuron at a data point. To search activated neurons
efficiently, we create a tree structure in the following way (taking the Correlation DTree as an
example): we first build m leaf nodes, where the r-th leaf stores ⟨wr, xi⟩ for r ∈ [m]. Then,
we recursively construct a binary tree such that a parent node takes the larger value from
its two child nodes. Finally, we obtain a tree with root having value maxr∈[m]{⟨wr, xi⟩}.
Moreover, the value of each internal node equals to the maximum value among the leaf
nodes in this subtree.

• Efficient search Given a threshold b, the data structure can find all the pairs of vectors
whose inner product is greater than b. Take the Correlation DTree as an example. It outputs
the indices of those activated neurons (i.e., ⟨wr, xi⟩ > b) in a recursive way: starting from
the root, it checks whether it is “activated” (i.e., with value > b). If not, the search ends.
Otherwise, it moves to each of the child nodes and repeats this searching process until stops.
This is a typical depth-first search strategy. Its running time is determined by how many
nodes it visits during searching. The number of visited nodes has the same magnitude as the
number of visited leaf nodes, i.e., the number of activated neurons. Hence, the efficiency of
our data structures relies on the sparsity phenomenon of the training process.

• Relation between DTree and WTree In the Correlation DTree, each weight vector wr

appears only in n different trees. In the Correlation WTree, each weight vector wr appears
only in one of the m trees. When wr is updated, DTree will change the nodes along a
root-to-leaf path in n trees, whereas WTree only changes such paths in the r-th tree.

3.1 Correlation DTree data structure

We now state our main theorem summarizing the correlation DTtree data structure. Its pseudocode is
given in Algorithms 1 and 2 below. Its proof are deferred to Section D.1.

Theorem 3.1 (Correlation DTree data structure). There exists a data structure with the following
procedures:
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• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and data x1, x2, · · · , xn in d-dimensional space, it
performs preprocessing in time O(nmd).

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and an index r, it updates weight wr to z in
time O(n · (d+ logm)).

• QUERY(i ∈ [n], τ ∈ R). Given an index i indicating data point xi and a threshold τ , it
finds all indices r ∈ [m] such that ⟨wr, xi⟩ > τ in time O(|S̃(τ)| · logm), where

S̃(τ) := {r : ⟨wr, xi⟩ > τ}.

Algorithm 1 Correlation DTree data structure

1: data structure CORRELATIONDTREE ▷ Theorem 3.1
2: members
3: W ∈ Rm×d (m weight vectors )
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , Tn ▷ n binary search trees
6: end members
7: procedure INIT(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷ Lemma D.2
8: for i = 1→ n do
9: xi ← xi

10: end for
11: for j = 1→ m do
12: wj ← wj

13: end for
14: for i = 1→ n do ▷ for data point, we create a tree
15: for j = 1→ m do
16: uj ← ⟨xi, wj⟩
17: end for
18: Ti ← MAKEMAXTREE(u1, · · · , um) ▷ Each node stores the maximum value for his

two children, Algorithm 7
19: end for
20: end procedure
21: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ Lemma D.3
22: wr ← z
23: for i = 1→ n do
24: l← the l-th leaf of tree Ti

25: l.value = ⟨z, xi⟩
26: while l is not root do
27: p← parent of l
28: p.value← max{p.value, l.value}
29: l← p
30: end while
31: end for
32: end procedure
33: end data structure

3.2 Correlation WTree data structure

We next state the main theorem summarizing our similar Correlation WTree data structure. Both the
Correlation DTree and Correlation WTree have a query time that is roughly equal to the output size,
but since they have different outputs, each can be faster than the other depending on the setting. The
pseudocode and proof for Correlation WTree are deferred to Section D.3.

Theorem 3.2 (Correlation WTree data structure). There exists a data structure with the following
procedures:
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Algorithm 2 Correlation DTrees

1: data structure CORRELATIONDTREE ▷ Theorem 3.1
2: procedure QUERY(i ∈ [n], τ ∈ R≥0) ▷ Lemma D.4
3: return FIND(τ, root(Ti))
4: end procedure
5: procedure FIND(τ ∈ R≥0, r ∈ T )
6: if r is leaf then
7: return r
8: else
9: r1 ← left child of r, r2 ← right child of r

10: if r1.value ≥ τ then
11: S1 ←FIND(τ, r1)
12: end if
13: if r2.value ≥ τ then
14: S2 ←FIND(τ, r2)
15: end if
16: end if
17: return S1 ∪ S2

18: end procedure
19: end data structure

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and data x1, x2, · · · , xn in d-dimensional space, it
performs preprocessing in time O(nmd).

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr to z in time
O(nd).

• QUERY(r ∈ [m], τ ∈ R). Given an index r indicating weight wr and a threshold τ , it finds
all indices i ∈ [n] such that ⟨wr, xi⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i :
⟨wr, xi⟩ > τ}.

4 Running Time of Our Algorithm

In this section, we show how to apply the Correlation Tree data structures developed in Section 3 to
speed up neural network training.

4.1 Weights Preprocessing

Algorithm 3 Training Neural Network based on Correlation DTree

1: procedure TRAININGWITHDTREE({(xi, yi)}i∈[n],n,m,d) ▷ Theorem 4.1
2: Initialize wr, ar for r ∈ [m] and b according to Section 2
3: DTREE.INIT({wr(0)}r∈[m],m, d) ▷ Algorithm 10
4: for t = 1→ T do
5: Si,fire ← DTREE.QUERY(xi, b) for i ∈ [n]
6: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
7: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
8: Gradient update for the neurons in ∪i∈[n]Si,fire

9: DTREE.UPDATE(wr(t+ 1), r)
10: end for
11: return Trained weights wr(T + 1) for r ∈ [m]
12: end procedure

In Algorithm 8, we use DTree structure to speed up the training process. We preprocess weights
wr, r ∈ [m] for each data point xi, i ∈ [n] by constructing n weight-data correlation trees. In each
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iteration, QUERY finds the set of activated neurons Si,fire (Definition 2.4) efficiently for each data
point xi and UPDATE helps change the weights in backward propagation.

Our main result for weight preprocessing is as follows.
Theorem 4.1 (Running time part, informal version of Theorem E.1). Given n data points in Rd,
gradient descent using the DTree data structure (Algorithm 8) for the neural network 2NN(m, b =√
0.4 logm) (Definition 2.1) takes O(m4/5n2d) time per iteration in expectation.

4.2 Data Preprocessing

Algorithm 4 Training Neural Network based on Correlation WTree

1: procedure TRAININGWITHWTREE({(xi, yi)}i∈[n],n,m,d) ▷ Theorem 4.2
2: Initialize wr, ar for r ∈ [m] and b according to Section 2
3: WTREE.INIT({xi}i∈[n], n, d) ▷ Algorithm 13
4: S̃r,fire ← WT.QUERY(wr(0), b) for r ∈ [m] ▷ Data points fire set
5: Si,fire ← {r | i ∈ S̃r,fire} ▷ Hidden neurons fire set
6: for t = 1→ T do
7: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
8: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
9: for r ∈ ∪i∈[n]Si,fire do

10: S̃r,fire ← WTREE.QUERY(wr(t+ 1), b)

11: Update Si,fire for each i ∈ S̃r,fire

12: end for
13: end for
14: return Trained weights wr(T + 1) for r ∈ [m]
15: end procedure

Preprocessing weights based on data points is a common practice for neural networks. Here we
consider its dual form: preprocessing input data xi, i ∈ [n] based on neural network weights
wr, r ∈ [m]. This can be easily done due to the symmetric property of the inner product that we used
in the correlation tree structure.

Given a weight vector wr, we can quickly find S̃i,fire (Definition 2.4) which contains the indices
of data points that “fire” for weight wr. By the dual relationship between S̃i,fire and Si,fire, we can
recover Si,fire easily.

One advantage of the data preprocessing approach is that the data structure only depends on the
training dataset, instead of the neural network architecture. Therefore, the data structure could be
pre-computed and stored in cloud platforms.

The performance guarantee of our data preprocessing training algorithm is shown as follows:
Theorem 4.2 (Running time part, informal version of Theorem E.2). Given n data points in Rd,
gradient descent algorithm using the WTree data structure (Algorithm 9) for the neural network
2NN(m, b =

√
0.4 logm) takes O(m4/5n · log n)-time per iteration to initialize S̃r,fire, Si,fire for

r ∈ [m], i ∈ [n], and the total running time per iteration is

O(m4/5n2d)

in expectation.

5 Conclusion
Deep neural networks are becoming larger every year to offer improved model accuracy. Training
these models consumes substantial resources, and resource consumption will only increase as these
models grow. In traditional training methods, for each iteration, we need to spend Θ(nmd) time
to evaluate the m neurons on n data points with dimension d. Recent work [SYZ21] reduced the
per-iteration cost to o(nmd), but required exponential time to preprocess either the data or the neural
weights. We develop a new method that reduces the preprocessing cost to O(nmd) while keeping the
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per-iteration running time at o(nmd). One limitation of our algorithm is that it has an n2 dependence
in the cost-per-iteration. However, for very wide neural networks (with m ≫ n), the runtime is
still sublinear. More importantly, we design a simple binary tree-based dynamic geometric data
structure that can efficiently identify all the activated neurons in each training iteration and bypass
the high-dimensional barrier of the prior approach. We further remark that the Update procedure
of DTree/Wtree structure (Algorithm 1 and 14) can be parallelized, where we can update all the
correlation trees using distributed computing simultaneously. It will improve the running time from
O(nd) to O(d), resulting in a total running time O(m4/5nd) per iteration.

Our work naturally raises some open questions for future study:

• First, can we apply our data structure, together with an analysis of the sparsity in training
over-parameterized neural networks [SYZ21, SZZ21], to speed up neural network training
with more than two layers? Giving a provable, theoretical backing for quickly training
multi-layer networks remains an open, difficult challenge.

• Second, many empirical results (e.g., [CMF+20, CLP+21]) indicate that only approximately
identifying the activated neurons (i.e., neurons with top-k inner products) in each itera-
tion may still be enough to train a neural network. Can we provide a more theoretical
understanding of these approaches?

• Third, our current algorithms use more memory (i.e., O(mn) space) to store the correlation
tree data structure. Is it possible to reduce the space complexity of the algorithms?

• Fourth, we think it is possible that our data structures will work for more general activation
functions. Roughly speaking, as long as the activated neurons are sparse or approximately
sparse, our data structures will be able to theoretically reduce the cost-per-iteration. However,
we need to re-prove the sparsification results in [SYZ21] for the activation function other
than ReLU.
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Appendix

Roadmap. We restate our notation and provide additional tools about probability in section A.
Then we present the results about sparsity in section B. In section C, we demonstrate the idea of two
different correlation trees, DTree and WTree, and present the full version of training algorithms using
our data structure. In section D, we provide detailed implementation and analysis of running time
for our data structure. Section E presents the proof of running time for training a 2NN(m, b) using
DTree and WTree. Section F shows a formal version of lower bound for dynamic detection of firing
neurons.

A Preliminary

A.1 Basic Notation

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[X] to denote the
expected value of a random variable X , and Pr[Y ] to denote the probability of a random event Y .
For a matrix M , we write M⊤ to denote the transpose of M . We use x⊤y to denote the inner product
between vectors x and y. We use Id to denote a d-dimensional identity matrix. We use N (µ;σ2) to
denote the Gaussian distribution with mean µ and variance σ2.

A.2 Upper bound on the movement of weights per iteration

The following Claim is quite standard in the literature, we omit the details.
Claim A.1 (Corollary 4.1 in [DZPS19], Lemma 3.8 in [SY19]). Let err(i) be defined as Definition A.2.
If ∀i ∈ [t], ∥err(i)∥22 ≤ (1− ηλ/2)i · ∥err(0)∥22, then

∥W (t+ 1)−Wr(0)∥∞,2 ≤ 4λ−1m−1/2 ·
√
n · ∥err(0)∥2 := D.

This claim shows a uniform bound on the movement of weights.

Next, we introduce the definition of error of prediction.
Definition A.2 (Error of prediction). For each t ∈ {0, 1, · · · , T}, we define err(t) ∈ Rn to be the
error of prediction err(t) = y − u(t), where u(t) := f(W (t), a,X) ∈ Rn

A.3 Probabilities

We introduce the classical Bernstein inequality here.
Lemma A.3 (Bernstein inequality [Ber24]). Assume Z1, · · · , Zn are n i.i.d. random variables.
∀i ∈ [n], E[Zi] = 0 and |Zi| ≤M almost surely. Let Z =

∑n
i=1 Zi. Then,

Pr [Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
,∀t > 0.

Next, we show an inequality on a shifted small ball with a Gaussian distribution.
Claim A.4 (Theorem 3.1 in [LS01]). Let b > 0 and r > 0. Then,

exp(−b2/2) Pr
x∼N (0,1)

[|x| ≤ r] ≤ Pr
x∼N (0,1)

[|x− b| ≤ r] ≤ Pr
x∼N (0,1)

[|x| ≤ r].

We state the anti-concentration inequality here.
Lemma A.5 (Anti-concentration for Gaussian distribution). Let Z ∼ N (0, σ2). Then, for t > 0,

Pr[|Z| ≤ t] ≤ 2t√
2πσ

.

B Sparsity

In this section, we start by restating the result about sparsity after initialization in Section 2. Then we
show how to bound the number of fire neurons per iteration in Section B.2.
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B.1 Sparsity after initialization

The goal of this section is to prove the sparsity after the initialization of the neural network.

We start by defining the ”fire” set.

Definition B.1 (fire set, Definition 3.7 in [SYZ21]). Fix a query point x ∈ Rd, let Sfire(x) denote
the set of neurons that are ”fire”, i.e.,

Sfire(x) := {i ∈ [m] : ⟨x,wi⟩ > b}

Next, we introduce the fire set for each training iteration.

Definition B.2 (fire set per iteration, Definition 3.7 in [SYZ21]). For each data point xi ∈ Rd, i ∈ [n],
weight wr ∈ Rd, r ∈ [m] and each iteration t ∈ {0, 1, · · · , T}, we define

Si,fire(t) := r ∈ [m] : ⟨xi, wr(t)⟩
S̃r,fire(t) := i ∈ [n] : ⟨xi, wr(t)⟩

Also, we define ki,t := |Si,fire(t)| and k̃r,t := |S̃r,fire(t)|

With the above definitions, we can state the sparsity after initialization.

Lemma B.3 (Sparsity after initialization, formal version of Lemma 2.5, Lemma 3.8 in [SYZ21]). Let
b > 0 be a tunable parameter. If we use the Φb as the activation function, then after the initialization,
with probability at least 1− exp(−Ω(m · exp(−b2/2))), it holds that for input data x, the number
of activated neurons kx is at most O(m · exp(−b2/2)), where m is the total number of neurons.

B.2 Bounding the number of fired neuron per iteration per level

In this section, we will show that for t = 0, 1, . . . , T, k = 0, 1, · · · , logm, the number of fire neurons
ki,k,t = |Si,k,fire(t)| is small with high probability.

We define the set of neurons that are flipping at time t:

Definition B.4 (flip set, Definition C.8 in [SYZ21] ). For each i ∈ [n], for each time t ∈ [T ] let
Si,flip(t) ⊂ [m] denote the set of neurons that are never flipped during the entire training process,

Si,flip(t) := {r ∈ [m] : sgn(⟨wr(t), xi⟩ − b) ̸= sgn(⟨wr(t− 1), xi⟩ − b)}.

Over all the iterations of training algorithm, there are some neurons that never flip states. We provide
a mathematical formulation of that set,

Definition B.5 (noflip set, Definition C.9 in [SYZ21]). For each i ∈ [n], let Si ⊂ [m] denote the set
of neurons that are never flipped during the entire training process,

Si := {r ∈ [m] : ∀t ∈ [T ] sgn(⟨wr(t), xi⟩ − b) = sgn(⟨wr(0), xi⟩ − b)}. (1)

In Lemma 2.5, we already show that ki,0 = O(m · exp(−b2/2)) for all i ∈ [n] with high probability.
We can show that it also holds for t > 0.

Lemma B.6 (Bounding the number of fired neuron per iteration, Lemma C.10 in [SYZ21]). Let b ≥ 0
be a parameter, and let σb(x) = max{x, b} be the activation function. For each i ∈ [n], t ∈ [T ], ki,t
is the number of activated neurons at the t-th iteration. For 0 < t ≤ T , with probability at least
1− n · exp

(
−Ω(m) ·min{R, exp(−b2/2)}

)
, ki,t is at most O(m exp(−b2/2)) for all i ∈ [n].

C Algorithm

In this section, we explain the procedures for two correlation tree data structure. We use the same
setting as Section 3

For the DTree data structure, it contains n binary trees indexed by n data points and supports the
following operations:
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• Initialize It takes data points {x1, · · · , xn} ⊂ Rd and weights {w1, · · · , wm} ⊂ Rd as
input and compute inner products of all weight-data pairs (wr, xi). It uses these inner
products to create n different trees. For the i-th tree based on data point xi, it is constructed
from m leaf nodes ⟨wr, xi⟩, r ∈ [m] and satisfies the property that the value of parent node
is the maximum value of its child nodes.

• Update It takes a new weight z ∈ Rd and an index r ∈ [m] as input. For the i-th tree, it
calculate the new inner product ⟨z, xi⟩ and stores the value into the r-th leaf node. Then it
compares the new value with its parent node. It replaces parent node with new value if it is
larger and continue this comparing process. Otherwise it stops. Repeat the same operation
for all n trees.

• Query It takes a threshold b ∈ R≥0 and an index i ∈ [n] as input. Starting from the root of
the i-th tree, it checks if its value is greater than threshold b. If no, search ends. If yes, it
treats the child nodes as the root of a new subtree and repeat this searching process until
stop. Then it finds all indices r ∈ [m] that satisfy {wr : sgn(⟨wr, xi⟩ − b) ≥ 0}.

For the WTree data structure, it contains m binary trees indexed by m weights and supports the
following operations:

• Initialize Similar to DTree, it takes data points {x1, · · · , xn} ⊂ Rd and weights
{w1, · · · , wm} ⊂ Rd as input and compute inner products of all weight-data pairs (wr, xi).
It uses these inner products to create nm different trees. For the r-th tree based on weight
wi, it is constructed from n leaf nodes ⟨wr, xi⟩, i ∈ [n] and satisfies the property that the
value of parent node is the maximum value of its child nodes.

• Update It takes a new weight z ∈ Rd and an index r ∈ [m] as input. Then it re-constructs
the r-th tree with weight z.

• Query It takes a threshold b ∈ R≥0 and an index r ∈ [m] as input. Starting from the root of
the r-th tree, it checks if its value is greater than threshold b. If no, search ends. If yes, it
treats the child nodes as the root of a new subtree and repeat this searching process until
stop. Then it finds all indices i ∈ [n] that satisfy {wr : sgn(⟨wr, xi⟩ − b) ≥ 0}.

Algorithm 5 Correlation DTree Data Structure
1: data structure CORRELATIONDTREE
2: procedures:
3: INIT(S ⊂ Rd,W ⊂ Rd, n,m, d) ▷ Initialize the data structure via building n trees
4: QUERY(i, b) ▷ i ∈ [n], b ∈ R. Output the set {r ∈ [m] : sgn(⟨wr, xi⟩ − b) ≥ 0}
5: UPDATE(x, i) ▷ Update the i’th point in Rd with x
6: end data structure

Algorithm 6 Correlation WTree Data Structure
1: data structure CORRELATIONWTREE
2: procedures:
3: INIT(S ⊂ Rd,W ⊂ Rd, n,m, d) ▷ Initialize the data structure via building m trees
4: QUERY(r, b) ▷ r ∈ [m], b ∈ R. Output the set {i ∈ [n] : sgn(⟨wr, xi⟩ − b) ≥ 0}
5: UPDATE(w, r) ▷ Update the r’th point in Rd with w
6: end data structure

We present MAKEMAXTREE algorithm (Algorithm 7) which shows how to construct a tree satisfying
the property that the value of parent node is the max value of its child node.

We then give two training algorithms (Algorithm 8 and Algorithm 9) to show how DTree and WTree
help in training neural network efficiently.

D Correlation Tree Data Structure

In this section, we demonstrate detailed results for DTree and WTree data structures.
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Algorithm 7 Make MaxTree

1: procedure MAKEMAXTREEINNER(r1, · · · , rn)
2: if n = 1 then
3: return r1
4: else
5: for i ∈ [n/2] do
6: Create node r′i
7: if r2i−1.value > r2i.value then
8: r′i ← r2i−1

9: else
10: r′i ← r2i
11: end if
12: Insert r2i−1 as left child
13: Insert r2i as right child
14: end for
15: ▷ If n is odd, create a parent node for the last node.
16: return MAKEMAXTREEINNER({r′1, · · · , r′i})
17: end if
18: end procedure
19: procedure MAKEMAXTREE(u1, · · · , un)
20: for i ∈ [n] do
21: Create nodes ri
22: ri.value← ui

23: end for
24: return MAKEMAXTREEINNER(r1, · · · , rn)
25: end procedure

D.1 Correlation DTree data structure

We start by stating the main theorem of correlation DTree data structure.
Theorem D.1 (Correlation DTree data structure). There exists a data structure with the following
procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(n · (d+ logm))

• QUERY(i ∈ [n], τ ∈ R). Given an index i indicating data point xi and a threshold
τ , it finds all index r ∈ [m] such that ⟨wr, xi⟩ > τ in time O(|S̃(τ)| · logm), where
S̃(τ) := {r : ⟨wr, xi⟩ > τ}

D.2 Running time for CORRELATIONDTREE

The goal of this secion is to prove the running time of INIT, UPDATE and QUERY.

We start by showing the running time of INIT.
Lemma D.2 (Running time of INIT). Given a series of weights {w1, w2, · · · , wm} ⊂ Rd and datas
{x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd)

Proof. The INIT consists of two independent forloop and two recursive forloops. The first forloop
(start from line 8) has n interations, which takes O(n) time. The second forloop (start from line 11)
has m iterations, which takes O(m) time. Now we consider the recursive forloop. The outer loop
(line 14) has n iterations. In inner loop has m iterations. In each iteration of the inner loop, line 16
takes O(d) time. Line 18 takes O(m) time. Putting it all together, the running time of INIT is

O(n+m+ n(md+m))
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Algorithm 8 Training Neural Network via building n trees, where each tree is the correlation between
one data point and all the weights

1: procedure TRAININGWITHPREPROCESSWEIGHTS({xi}i∈[n], {yi}i∈[n],n,m,d) ▷ Theorem 4.1
2: /*Initialization step*/
3: Sample W (0) and a according to Definition
4: b←

√
0.4 logm.

5: /*A dynamic data-structure*/
6: CORRELATIONDTREE CDT ▷ Theorem 3.1
7: CDT.INIT({xi}i∈[n], {wr(0)}r∈[m], n,m, d) ▷ It takes Tinit(n,m, d) time. Alg. 10
8: /*Iterative step*/
9: for t = 0→ T do

10: /*Forward computation step*/
11: for i = 1→ n do
12: Si,fire ← CDT.QUERY(i, b) ▷ It takes Tquery(m, ki,t) time. Alg. 12
13: u(t)i ← 1√

m

∑
r∈Si,fire

ar · σb(wr(t)
⊤xi) ▷ It takes O(d · ki,t) time

14: end for
15: /*Backward computation step*/
16: P ← 0n×m ▷ P ∈ Rn×m

17: for i = 1→ n do
18: for r ∈ Si,fire do
19: Pi,r ← 1√

m
ar · σ′

b(wr(t)
⊤xi)

20: end for
21: end for
22: M ← X diag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
23: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P )) time, nnz(P ) = O(nm4/5)

24: W (t+ 1)←W (t)− η ·∆W .
25: /*Update data structure*/
26: Let Q ⊂ [m] where for each r ∈ Q, the ∆W∗,r is not all zeros ▷ |Q| ≤ O(nm4/5)
27: for r ∈ Q do
28: CDT.UPDATE(wr(t+ 1), r) ▷ Alg. 11
29: end for
30: end for
31: return W ▷W ∈ Rd×m

32: end procedure

= O(nmd)

Thus, we complete the proof.

Next, we analyze the running time of UPDATE.

Lemma D.3 (Running time of UPDATE). Given a weight z ∈ Rd and index j ∈ [m], it updates
weight wj with z in time O(n · (d+ logm))

Proof. The running time of UPDATE mainly comes from the forloop (line 23), which consists of n
iterations. In each iteration, line 24 takes O(logm) time, line 25 takes O(d) time and the while loop
takes O(logm) time since it go through a path bottom up. Putting it together, the running time of
UPDATE is O(n(d+ logm)).

Finally, we state the running time for QUERY procedure.

Lemma D.4 (Running time of QUERY). Given a query q ∈ Rd and a threshold τ > 0, it finds all
index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i : ⟨wi, q⟩ > τ}

Proof. The running time comes from FIND with input τ and root(Ti). In FIND, we start from the
root node r and find indices in a recursive way. The INIT guarantees that for a node r satisfying
r.value > τ , the sub-tree with root r must contains a leaf whose value is greater than τ If not satisfied,
all the values of the nodes in the sub-tree with root r is less thanτ . This guarantees that all the paths
it search does not have any branches that leads to the leaf we don’t want and it will report all the
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Algorithm 9 Training Neural Network via building m trees, where each tree is the correlation
between one weight and all the data points

1: procedure TRAININGWITHPROCESSDATA({xi}i∈[n], {yi}i∈[n],n,m,d) ▷ Theorem 4.2
2: /*Initialization step*/
3: Sample W (0) and a according to Definition
4: b←

√
0.4 logm.

5: /*A static data-structure*/
6: CORRELATIONWTREE CWT ▷ Algorithm 10, Part 2 of Theorem 3.1
7: CWT.INIT({xi}i∈[n], {wr(0)}r∈[m], n,m, d) ▷ It takes Tinit(n,m, d) time
8: /*Initialize S̃r,fire and Si,fire */
9: ▷ It takes

∑m
r=1 Tquery(n, k̃r,t) = O(m4/5n · logn) time

10: S̃r,fire ← ∅ for r ∈ [m]. ▷ S̃r,fire is the set of samples, for which neuron r fires
11: Si,fire ← ∅ for i ∈ [n]. ▷ Si,fire is the set of neurons, which fire for xi

12: for r = 1→ m do
13: S̃r,fire ← CWT.QUERY(r, b)

14: for i ∈ S̃r,fire do
15: Si,fire.ADD(r)
16: end for
17: end for
18: /*Iterative step*/
19: for t = 1→ T do
20: /*Forward computation step*/
21: for i = 1→ n do
22: u(t)i ← 1√

m

∑
r∈Si,fire

ar · σb(wr(t)
⊤xi) ▷ It takes O(d · ki,t) time

23: end for
24: /*Backward computation step*/
25: P ← 0n×m ▷ P ∈ Rn×m

26: for i = 1→ n do
27: for r ∈ Si,fire do
28: Pi,r ← 1√

m
ar · σ′

b(wr(t)
⊤xi)

29: end for
30: end for
31: M ← X diag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
32: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P )) time, nnz(P ) = O(nm4/5)

33: W (t+ 1)←W (t)− η ·∆W .
34: /*Update S̃r,fire and Si,fire step*/
35: ▷ It takes O(

∑n
i=1 ki,t +

∑
r∈S[n],fire

Tquery(n, d, k̃r,t+1)) = O(n · logn ·m4/5)

36: S[n],fire ← ∪i∈[n]Si,fire
37: for r ∈ S[n],fire do
38: for i ∈ S̃r,fire do ▷ Removing old fired neuron indices. It takes O(k̃r,t) time
39: Si,fire.DEL(r)
40: end for
41: CWT.UPDATE(wr(t+ 1), r) ▷ It takes Tupdate(n, d) time
42: S̃r,fire ← CWT.QUERY(r, b) ▷ It takes Tquery(n, d, k̃r,t+1) time
43: for i ∈ S̃r,fire do ▷ Adding new fired neuron indices. It takes O(k̃r,t+1) time
44: Si,fire.ADD(r)
45: end for
46: end for
47: end for
48: return W ▷W ∈ Rd×m

49: end procedure

indices i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is O(log n), the running time of QUERY is
O(|S(τ)| · log n)

D.3 Correlation WTree data structure

In this section, we state the main theorem of correlation wtree data structure.
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Algorithm 10 Correlation DTree data structure

1: data structure CORRELATIONDTREE ▷ Theorem D.1
2: members
3: W ∈ Rm×d (m weight vectors )
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , Tn ▷ n binary search trees
6: end members
7:
8: public:
9: procedure INIT(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷ Lemma D.2

10: for i = 1→ n do
11: xi ← xi

12: end for
13: for j = 1→ m do
14: wj ← wj

15: end for
16: for i = 1→ n do ▷ for data point, we create a tree
17: for j = 1→ m do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ← MAKETREE(u1, · · · , um) ▷ Each node stores the maximum value for his two

children
21: end for
22: end procedure
23: end data structure

Algorithm 11 Correlation DTrees

1: data structure CORRELATIONTREE ▷ Theorem D.1
2: public:
3: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ Lemma D.3
4: wr ← z
5: for i = 1→ n do
6: l← the l-th leaf of tree Ti

7: l.value = ⟨z, xi⟩
8: while l is not root do
9: p← parent of l

10: p.value← max{p.value, l.value}
11: l← p
12: end while
13: end for
14: end procedure
15: end data structure

Theorem D.5 (Correlation WTree data structure). There exists a data structure with the following
procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N). Given
a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional space, it
preprocesses in time O(nmd)

• UPDATE(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr with z in
time O(nd)

• QUERY(r ∈ [m], τ ∈ R). Given an index r indicating weight wr and a threshold τ , it
finds all index i ∈ [n] such that ⟨wr, xi⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i :
⟨wr, xi⟩ > τ}
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Algorithm 12 Correlation DTrees

1: data structure CORRELATIONDTREE ▷ Theorem D.1
2: public:
3: procedure QUERY(i ∈ [n], τ ∈ R≥0) ▷ Lemma D.4
4: return FIND(τ, root(Ti))
5: end procedure
6:
7: private:
8: procedure FIND(τ ∈ R≥0, r ∈ T )
9: if r is leaf then

10: return r
11: else
12: r1 ← left child of r, r2 ← right child of r
13: if r1.value ≥ τ then
14: S1 ←FIND(τ, r1)
15: end if
16: if r2.value ≥ τ then
17: S2 ←FIND(τ, r2)
18: end if
19: end if
20: return S1 ∪ S2

21: end procedure
22: end data structure

Algorithm 13 Correlation WTree data structure

1: data structure CORRELATIONWTREE ▷ Theorem D.5
2: members
3: W ∈ Rm×d (m weight vectors )
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , TM ▷ m binary search trees
6: end members
7:
8: public:
9: procedure INIT(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷ Lemma D.6

10: for i = 1→ n do
11: xi ← xi

12: end for
13: for j = 1→ m do
14: wj ← wj

15: end for
16: for i = 1→ m do ▷ for weight, we create a tree
17: for j = 1→ n do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ← MAKETREE(u1, · · · , un) ▷ Each node stores the maximum value for his two

children
21: end for
22: end procedure
23: end data structure

D.4 Running time for Correlation WTree

The goal of this secion is to prove the running time of INIT, UPDATE and QUERY.

As in DTree, we first show the running time for INIT.

Lemma D.6 (Running time of INIT). Given a series of weights {w1, w2, · · · , wm} ⊂ Rd and datas
{x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd)
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Algorithm 14 Correlation WTrees

1: data structure CORRELATIONWTREE ▷ Theorem D.5
2: public:
3: procedure UPDATE(z ∈ Rd, r ∈ [m]) ▷ Lemma D.7
4: wr ← z
5: for j = 1→ n do
6: uj ← ⟨xj , wr⟩
7: Ti ← MAKETREE(u1, · · · , un) ▷ Each node stores the maximum value for his two

children
8: end for
9: end procedure

10: end data structure

Algorithm 15 Correlation WTree

1: data structure CORRELATIONWTREE
2: public:
3: procedure QUERY(r ∈ [m], τ ∈ R≥0) ▷ Lemma D.8
4: return FIND(τ, root(Tr))
5: end procedure
6:
7: private:
8: procedure FIND(τ ∈ R≥0, r ∈ T )
9: if r is leaf then

10: return r
11: else
12: r1 ← left child of r, r2 ← right child of r
13: if r1.value ≥ τ then
14: S1 ←FIND(τ, r1)
15: end if
16: if r2.value ≥ τ then
17: S2 ←FIND(τ, r2)
18: end if
19: end if
20: return S1 ∪ S2

21: end procedure
22: end data structure

Proof. The INIT consists of two independent forloop and two recursive forloops. The first forloop
(start from line 10) has n interations, which takes O(n) time. The second forloop (start from line 13)
has m iterations, which takes O(m) time. Now we consider the recursive forloop. The outer loop
(line 16) has m iterations. In inner loop has n iterations. In each iteration of the inner loop, line 18
takes O(d) time. Line 20 takes O(n) time. Putting it all together, the running time of INIT is

O(n+m+m(nd+ n))

= O(nmd)

Thus, we complete the proof.

Next, we turn to the running time for UPDATE.

Lemma D.7 (Running time of UPDATE). Given a weight z ∈ Rd and index r ∈ [m], it updates
weight wj with z in time O(nd)

Proof. In this procedure, it generates a new tree for weight wr with n leaves, which takes O(nd)
time. Thus, we complete the proof.

Finally, we present the running time of QUERY.
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Lemma D.8 (Running time of QUERY). Given a query q ∈ Rd and a threshold τ > 0, it finds all
index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where S(τ) := {i : ⟨wi, q⟩ > τ}

Proof. The running time comes from FIND with input τ and root(Ti). In FIND, we start from the
root node r and find indices in a recursive way. The INIT guarantees that for a node r satisfying
r.value > τ , the sub-tree with root r must contains a leaf whose value is greater than τ If not satisfied,
all the values of the nodes in the sub-tree with root r is less thanτ . This guarantees that all the paths
it search does not have any branches that leads to the leaf we don’t want and it will report all the
indiex i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is O(log n), the running time of QUERY is
O(|S(τ)| · log n)

E More Details of Our Training Algorithms

E.1 Weights Preprocessing

In this section, we present the formal version of our training algorithm using DTree, which prepro-
cessing weights for each data point.

Theorem E.1 (Running time part, formal version of Theorem 4.1). Given n data points in Rd.
Running gradient descent algorithm (Algorithm 8) on 2NN(m, b =

√
0.4 logm) (Definition 2.1) the

expected cost per-iteration of the gradient descent algorithm is

O(m4/5n2d)

Proof. The per-step time complexity is

T = T1 + T2 + T3

=

n∑
i=1

TQUERY(m, d, ki,t) + TUPDATE · | ∪i∈[n] Si,fire(t)|+ d
∑
i∈[n]

ki,t

The first term T1 =
∑n

i=1 TQUERY(m, d, ki,t) corresponds to the running time of querying the active
neuron set Si,fire(t) for all training samples i ∈ [n]. With the first result in Theorem 3.1, the
complexity is bounded by O(m4/5n logm).

The second term T2 = TUPDATE · |∪i∈[n]Si,fire(t)| corresponds to updating wr in the high-dimensional
search data-structure (Line 28). Again with the first result in Theorem 3.1, we have TUPDATE =
O(n(d+ logm)). Combining with the fact that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n] Si,fire(0)| ≤ O(m4/5n),
the second term is bounded by O(m4/5n2d).

The third term is the time complexity of gradient calculation restricted to the set Si,fire(t). With the
bound on

∑
i∈[n] ki,t (Lemma B.6), we have d

∑
i∈[n] ki,t ≤ O(m4/5nd)

Putting them together, we have

T ≤ O(m4/5n logm) +O(m4/5n2d) +O(m4/5nd)

= O(m4/5n2d)

Thus, we complete the proof.

E.2 Data Preprocessing

In this section, we describe a similar version of training algorithm aforementioned but it uses WTree
to preprocess data points based on weights.

Theorem E.2 (Running time part, formal version of Theorem 4.2). Given n data points in Rd.
Running gradient descent algorithm (Algorithm 9) on 2NN(m, b =

√
0.4 logm), the expected per-

iteration running time of initializing S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] is O(m4/5n · log n). The cost
per-iteration of the training algorithm is O(m4/5n2d).
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Proof. We analyze the initialization and training parts separately.

Initialization From Line 10 to Line 17, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are initialized. For
each r ∈ [m], we need to query the data structure the set of data points x’s such that σb(wr(0)

⊤x) > 0.
Hence the running time of this step is

m∑
r=1

TQUERY(n, k̃r,0) = O(

m∑
r=1

k̃r,0 · log n)

= O(

n∑
i=1

ki,0 · log n)

= O(m4/5n · log n)

where the second step follows from
∑m

r=1 k̃r,0 =
∑n

i=1 ki,0.

Training Consider training the neural networkfor T steps. For each step, first notice that the forward
and backward computation parts (Line 21 - Line 33) are the same as previous algorithm. The time
complexity is O(m4/5n).

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 36 - Line 45) takes
O(m4/5nd) time. For each fired neuron r ∈ [m], we first remove the indices of data in the sets Si,fire,
which takes time

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑
r=1

k̃r,t = O(m4/5n)

Then, we find the new set of x’s such that σb(⟨wr(t+ 1), x⟩) > 0 by querying the correlation tree
data structure. The total ruunning time for all fired neurons is∑
r∈∪i∈[n]Si,fire

TUPDATE(n, d) + TQUERY(n, k̃r,t+1) ≲ m4/5n2(d+ logm) +
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 · log n

= O(m4/5n2d)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training step takes
O(m4/5n2d) time, which completes the proof.

F Lower Bound for Dynamic Detection of Firing Neurons

The goal of this section is to prove the lower bound for Dynamic Detection of Firing Neurons.

We start by introducing the strong exponential time hypothesis, SETH in abbreviation.

Definition F.1 (Strong exponential time hypothesis, SETH, [IP01, CIP09]). For every ϵ > 0, there
exists a k = k(ϵ) ∈ N such that no algorithm can solve k-SAT (i.e., satisfiability on a CNF of width
k) in O(2(1−ϵ)n) time where n is the number of variables.

We present another relative concept called orthogonal vector conjecture, OVC in abbreviation.

Definition F.2 (Orthogonal vector conjecture, OVC, [Wil05, AWW14, BI15, ABW15]). For every
ϵ > 0, there exists a c ≥ 1 such that the orthogonal vector problem of size n in d-dimension requires
n2−ϵ-time when d = c log n.

We refer to a theorem about maximum bichromatic inner product lower bound in [Che20].

Theorem F.3 (Maximum bichromatic inner product lower bound, [Che20]). Assuming SETH
(Definition F.1) or OVC (Definition F.2), there is a constant c such that any exact algorithm for
Z-Max-IPn,d in dimension d = clog

∗ n requires n2−o(1) time, with vectors of O(log n)-bit entries.

Putting things together, we state the main result for the lower bound for Dynamic Detection of Firing
Neurons.
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Theorem F.4 (Lower Bound for Dynamic Detection of Firing Neurons, Formal version of Theo-
rem 1.4). Let d = 2O(log∗ n). Unless OVC or SETH fails, for any constants c ∈ (0, 1), no data
structure can solve DDFN with less than m1−cnc−o(1)-time per update and m1−cn1+c−o(1)-time
per query.

Proof. Without loss of generality, we assume that m > n. Let d = clog
∗ m, where c is defined in

Theorem F.3.

Suppose there exists a data structure that for (m,n, d + 1)-sized instance, can perform updates in
m1−cnc−ϵ-time and answer queries in m1−cn1+c−ϵ-time, for some c ∈ (0, 1) and ϵ ∈ (0, c).

Let X = {x1, . . . , xm} ⊂ Zd, Y = {y1, . . . , ym} ⊂ Zd be a hard instance of Z-Max-IPm,d problem
constructed in Theorem F.3. For each vector xi (or yj), we construct a new vector x̃i (or ỹj) in
(d+ 1)-dimension such that (x̃i)d+1 = −1 and (ỹj)d+1 = w, where w is a parameter to be chosen
later.

Then, we construct k = ⌈m/n⌉ instances of the DDFN problem in Definition 1.3 as follows:

X̃(i) := {x̃1, . . . , x̃n}, Ỹ (i) := {ỹ1, . . . , ỹm},

and b = 0.

We show that the data structures for these instances {(X̃(i), Ỹ (i), b)}i∈[k] can be used to solve
Z-Max-IPn,d(X,Y ).

We perform a binary search for the value of Z-Max-IPn,d(X,Y ). Note that at most O(log n)
iterations suffice to find the exact answer.

Suppose the current value in the binary search is t ∈ Z. Consider the i-th instance (X̃(i), Ỹ (i), b)
for any i ∈ [k]. We first call UPDATE() to set (ỹj)d+1 = t for each j ∈ [m]. By the data structure’s
guarantee, this step takes O(m ·m1−cnc−ϵ) = O(m2−cnc−ϵ) time. Then, we call QUERY(). Notice
that

⟨x̃i, ỹj⟩ = ⟨xi, yj⟩ − t ≥ 0 ⇐⇒ ⟨xi, yj⟩ ≥ t.

Hence, QUERY() will return all pairs of (i, j) such that ⟨xi, yj⟩ ≥ t. This step runs in
O(m1−cn1+c−ϵ)-time. We repeat this process for all k instances. And based on whether the
outputs of all the QUERY() are empty or not, we know the direction of the binary search for the next
iteration.

Hence, the total running time of each iteration is

O(k · (m2−cnc−ϵ +m1−cn1+c−ϵ))

= O(m3−cnc−ϵ−1 +m2−cnc−ϵ)

≤ O(m2−ϵ),

which follows from the assumption of m ≥ n. Thus, we can solve Z-Max-IPn,d(X,Y ) in
Õ(m2−ϵ) < m2−o(1)-time, which contradicts to the lower bound for Z-Max-IPn,d in Theorem F.3.

Therefore, no such data structure can exist.
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