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ABSTRACT

BACKGROUND Machine learning is a useful tool for predicting medical outcomes. This study aimed to develop a

machine learning–based preoperative score to predict cardiac surgical operative mortality.

METHODS We developed various models to predict cardiac operative mortality using machine learning techniques and

compared each model to European System for Cardiac Operative Risk Evaluation-II (EuroSCORE-II) using the area

under the receiver operating characteristic (ROC) and precision-recall (PR) curves (ROC AUC and PR AUC) as perfor-

mance metrics. The model calibration in our population was also reported with all models and in high-risk groups for

gradient boosting and EuroSCORE-II. This study is a retrospective cohort based on a prospectively collected database

from July 2008 to April 2018 from a single cardiac surgical center in Bogot�a, Colombia.

RESULTS Model comparison consisted of hold-out validation: 80% of the data were used for model training, and the

remaining 20% of the data were used to test each model and EuroSCORE-II. Operative mortality was 6.45% in the entire

database and 6.59% in the test set. The performance metrics for the best machine learning model, gradient boosting

(ROC: 0.755; PR: 0.292), were higher than those of EuroSCORE-II (ROC: 0.716, PR: 0.179), with a P value of .318 for the

AUC of the ROC and .137 for the AUC of the PR.

CONCLUSIONS The gradient boosting model was more precise than EuroSCORE-II in predicting mortality in our

population based on ROC and PR analyses, although the difference was not statistically significant.

(Ann Thorac Surg 2022;113:92-9)

ª 2022 by The Society of Thoracic Surgeons
The Supplemental Tables and Supplemental Figure can be viewed in

the online version of this article [https://doi.org/10.1016/j.athoracsur.

2021.02.052] on http://www.annalsthoracicsurgery.org.
C ardiac surgery has become an important tool in
the treatment of cardiovascular disease. Mor-
tality scores aim to precisely predict cardiac

mortality for a given procedure (even multiple proced-
ures) in each patient.1

Cardiovascular disease is the leading cause of death
worldwide, and in low-income countries approximately
80% of deaths are related to cardiovascular disease. By
2018, approximately 20% of the general population fell
below the threshold for multidimensional poverty in
Colombia.2 There are no scores specifically validated in
Colombia, except for the European System for Cardiac
Operative Risk Evaluation (EuroSCORE) validation by
Figueredo and associates.3

Risk assessment models in cardiac surgery have been
developed since the 1980s. As the number of procedures
grew and databases became a widespread tool to
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evaluate patient characteristics, it became possible to
build statistical models with preoperative variables to
predict operative mortality. The Society of Thoracic
Surgeons has created multiple risk assessment models
for different cardiac procedures with more than 700,000
patients.4

The most widely used model is EuroSCORE-II, which
is believed by many to be the gold standard for operative
mortality prediction.5 For the Latin American popula-
tion, the first model was created in Argentina in 2009. It
consisted of multivariate logistic regression and sur-
passed EuroSCORE using the area under the curve (AUC)
of the receiver operating characteristic (ROC).6,7
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Recent literature considers machine learning a subset

of artificial intelligence that refers to the ability of ma-
chines to learn independently from data and make ac-
curate predictions.8 Mortality prediction is a task that
falls under a machine learning subfield called supervised
learning, where a machine is trained to learn an input–
output function with a collection (data set) of such
pairs.9,10 Furthermore, we consider 2 classes (death or no
death), so it is a binary classification problem.10

Algorithms developed in the machine learning field
have been used to analyze large databases, and it has
been demonstrated that they are superior to simpler
models such as logistic regression in mortality prediction
after cardiac surgery.11 There is a tradeoff, however,
between complex models and their interpretability.12

For predictive algorithms in medicine, it tends to be
preferable to have complex relationships between vari-
ables, resulting in better performance in practice, than
simple models with easy interpretations of risk factors.13

The objective of this study was to develop a machine
learning model to predict operative cardiac mortality
using preoperative variables from retrospective patient
data.
PATIENTS AND METHODS

STUDY POPULATION. We collected data from all adult
patients undergoing cardiovascular surgical procedures
for acquired cardiomyopathies between July 2008 and
April 2018 at the Clinica Universitaria Colombia in
Bogot�a, Colombia. Our Cardiovascular Surgical Depart-
ment was created in 2008, and since then, we have
collected an in-house 351-variable database. This
database contains diagnostic, preoperative,
intraoperative, and in-hospital postoperative variables.

CLINICAL OUTCOMES. This study’s only outcome was
operative mortality, defined as death during the same
hospitalization as surgery or after discharge but within
30 days of the procedure.14 After signing informed con-
sent forms, patients granted access to electronic health
records; this was approved by our hospital ethics com-
mittee. Sample size calculations were unnecessary for
this study, and we used all available data. The data were
collected from electronic health records by a physician
tasked with data entry. The database was password-
protected, and only members of the research group
had access to it.

MODEL DEVELOPMENT. The database was separated into
2 independent, randomly sampled sets at a ratio of 4:1
between the training and test sets. All further analyses
were performed in the training set unless explicitly
stated. Feature selection was made using the c2 test15 for
nominal and categorical variables, with operative
mortality as the response variable; only variables with P
< .05 were selected. The same process was repeated
with continuous and ordinal variables using the Mann-
Whitney U test.16 Sex, body mass index, and aortic
insufficiency were not significantly different between
outcome groups but were included because of their
clinical significance. Multiple machine learning models
were trained with the selected features and validated
on the test set using the ROC AUC.17 Given that there
was a high imbalance between the predicted classes
(30-day mortality was an uncommon occurrence in the
data set), precision-recall (PR) AUC was also used.18

Optimal thresholds for each curve were obtained by
maximizing Youden’s J statistic and the maximum F
measure (F1), respectively.19,20 To assess model
calibration, the expected calibration error and
maximum calibration error were used and reported as
supplemental material.21 For groups considered high
risk in the test set, observed mortality, model
confidence, and calibration error were calculated and
compared to low-risk groups.21 These included patients
with age greater than 75 years, a left ventricular
ejection fraction (LVEF) of less than 50%, arrhythmias,
heart failure, dialysis, emergency and urgency upon
admission, cardiogenic shock. or resuscitation.22-24

Confidence intervals and statistical significance tests
for metrics in the test set were performed using the
bootstrap method with 1000 bootstrapped samples,
whenever applicable.25 Furthermore, differences in the
ROC AUCs were also validated analytically using
DeLong’s method.26

Each model was trained 10 times with different
random seeds (whenever applicable), and the average of
the probability outputs was taken as the model’s pre-
diction, as described by Allyn and coworkers.11

In this study, 6 different models were used:

• Logistic regression models the log-odds of the
outcome using a weighted combination of the input
features and outputs a probability using the logistic
function.10

• Naive Bayes fits a distribution for each feature
(assuming conditional independence) and applies
Bayes’ theorem to output a prediction.10

• Multilayer perceptron is a low-depth neural
network that can approximate complex decision
boundaries by using activations between neuron
layers.27

• Support vector machine (SVM) is a classification
algorithm that best separates classes based on data
points (support vectors) lying close to each class’s
boundaries.28

• Random forest is a model that consists of simple
decision trees (collections of logical rules to separate
the population into smaller homogeneous



FIGURE 1 Compar ison between rece iver operat ing character is t ic (ROC) and prec is ion- recal l (PR) curves for each of the

t ra ined models wi thout c lass ba lance. * : C lass ba lancing for na ive Bayes models was not implemented, and European

System for Card iac Operat ive Risk Eva luat ion I I (EuroSCORE- I I ) i s prov ided as a reference.
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subgroups); each takes a random subsample of both
the data and the possible features to make a
prediction.29

• Gradient boosting (boosted trees), a strong classi-
fier, is built from an ensemble of decision trees.
Leveraging a differentiable cost function, it is
possible to greedily improve the model’s pre-
dictions by fitting each consecutive tree with the
last one’s residuals (gradients).30

Inverse-weighted coefficients proportional to class
frequency were used in the logistic regression model to
give equal importance to both outcomes during training
(class balance). As such, misclassification in rare events
(death) incurs a greater cost for optimization problems.

Inverse-weighted cost functions were used to achieve
class balance in the multilayer perceptron, SVM, and
gradient boosting models. Additionally, the random
forest model used weighted subsampling with replace-
ment (each decision tree was trained with a 1:1 alive:-
dead ratio). Outputs of the SVM were transformed into
class probabilities using Platt scaling, adjusted on the
training data.31

All model implementations and statistical analyses
were performed in Python using the SciPy, XGBoost,
Keras, and Sci-kit learn libraries.30,32-34 Hyperparameter
tuning was performed using a grid search on the test set.
The code for the project is available at https://github.
com/santiag0m/cardio.
RESULTS

Out of an initial sample of 2960 patients, 174 (5.88%)
were excluded due to missing data in 1 or more vari-
ables. This left a total sample of 2786 patients split into
training (n ¼ 2228; 80%) and test (n ¼ 558; 20%) sets. We
had 179 deaths among the 2786 patients (mortality rate
of 6.42%). A total of 23 features were selected based on
the criteria described earlier. Summary statistics for the
selected variables can be found in Supplemental
Table S1. The year in which the procedure was per-
formed was not statistically significant (P ¼ .51), so it was
excluded from the analysis.

For each model, the ROC AUC and PR AUC were
calculated and compared to those of EuroSCORE-II. The
resulting curves for models trained on imbalanced and
balanced data are shown in Figures 1 and 2.

Most models surpassed the EuroSCORE-II ROC AUC,
the best being random forest trained on imbalanced data
(ROC AUC of 0.716 vs 0.771, P ¼ .181) (Table 1). In terms
of the PR AUC, the best model was gradient boosting
trained on imbalanced data, which was also superior to
EuroSCORE-II (0.179 vs 0.292, P ¼ .137) (Table 2).

https://github.com/santiag0m/cardio
https://github.com/santiag0m/cardio


FIGURE 2 Compar ison between rece iver operat ing character is t ic (ROC) and prec is ion- recal l (PR) curves for each of the

t ra ined models with c lass ba lance. * : C lass ba lanc ing for na ive Bayes models was not implemented, and European System

for Card iac Operat ive Risk Eva luat ion I I (EuroSCORE- I I ) i s prov ided as a reference.
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For the ROC curve, the optimal threshold was calcu-
lated using Youden’s J statistic and the F1 measure for
the PR curve (Tables 1, 2). The closest model to the ideal
classifier in the ROC curve was SVM trained on balanced
data (J ¼ 0.415), which was superior to EuroSCORE-II
(J ¼ 0.328, P ¼ .276). For the PR curve, the best classi-
fier was gradient boosting trained on imbalanced data
(F1 ¼ 0.355), which was also superior to EuroSCORE-II
(F1 ¼ 0.274, P ¼ .137).
TABLE 1 Metrics Related to the ROC Curve for Each of the M

Method ROC AUC (95% CI) P Value P Value

EuroSCORE-II 0.716 (0.630-0.800) .

Naive Bayes 0.749 (0.668-0.829) .419 .4

Logistic regression 0.706 (0.614-0.796) .834 .8

SVM 0.390 (0.302-0.479) < .001 a < .0

Random forest 0.771 (0.690-0.845) .160 .1

MLP 0.739 (0.662-0.813) .558 .5

Gradient boosting 0.755 (0.666-0.838) .369 .3

Logistic regression (balanced) 0.745 (0.666-0.819) .466 .4

SVM (balanced) 0.761 (0.686-0.831) .226 .2

Random forest (balanced) 0.731 (0.651-0.808) .719 .7

MLP (balanced) 0.725 (0.643-0.805) .824 .8

Gradient boosting (balanced) 0.717 (0.626-0.805) .979 .9

aP £ .001. The values in bold indicate the best performing model for each metric Euro
perceptron; ROC, receiver operating characteristic; SVM, support vector machine.
It is important to note that although using an optimal
ROC threshold is an intuitive estimate (closer to the
mortality mean in the test set, 6.00%), it is highly con-
servative, as it assigns more than one third of patients as
high risk for EuroSCORE-II. The PR threshold is less
intuitive but achieves a closer estimate of the high-risk
population, as shown in Figure 3.

Calibration metrics for each of the trained models are
presented in Supplemental Table S2. The model with the
odels Trained

(DeLong) Youden’s J Statistic (95% CI) Threshold, % P Value

. 0.328 (0.235-0.498) 6.00 .

50 0.376 (0.299-0.563) 0.494 .563

23 0.331 (0.238-0.520) 9.62 .959

01 a 0.055 (0.006-0.172) 15.4 < .001 a

81 0.399 (0.319-0.584) 9.84 .276

64 0.347 (0.305-0.526) 5.73 .746

18 0.391 (0.285-0.578) 7.15 .401

48 0.375 (0.314-0.537) 31.3 .393

23 0.415 (0.327-0.570) 5.24 .174

29 0.350 (0.275-0.526) 33.4 .754

13 0.364 (0.275-0.515) 3.10 .588

76 0.351 (0.257-0.538) 57.6 .765

SCORE, European System for Cardiac Operative Risk Evaluation; MLP, multilayer



TABLE 2 Metrics Related to the PR Curve for Each of the Models Trained

Method PR AUC (95% CI) P Value F1 (95% CI) Threshold, % P Value

EuroSCORE-II 0.179 (0.095-0.290) . 0.274 (0.187-0.420) 19.0 .

Naive Bayes 0.193 (0.107-0.321) .795 0.306 (0.211-0.444) 2.26 .591

Logistic regression 0.181 (0.097-0.299) .971 0.338 (0.211-0.475) 19.1 .340

SVM 0.056 (0.035-0.095) < .001 b 0.122 (0.094-0.233) 2.74 .003 a

Random forest 0.260 (0.123-0.387) .249 0.311 (0.229-0.483) 9.84 .545

MLP 0.225 (0.109-0.356) .475 0.280 (0.196-0.453) 16.1 .936

Gradient boosting 0.292 (0.136-0.430) .137 0.355 (0.242-0.517) 30.7 .252

Logistic regression (balanced) 0.198 (0.103-0.323) .748 0.314 (0.211-0.460) 83.3 .526

SVM (balanced) 0.212 (0.105-0.326) .580 0.306 (0.211-0.452) 16.5 .612

Random forest (balanced) 0.154 (0.089-0.245) .550 0.283 (0.186-0.408) 51.7 .878

MLP (balanced) 0.218 (0.104-0.356) .543 0.295 (0.190-0.457) 31.8 .764

Gradient boosting (balanced) 0.193 (0.101-0.314) .798 0.319 (0.210-0.469) 77.2 .496

aP £ .01; bP £ .001. EuroSCORE, European System for Cardiac Operative Risk Evaluation; MLP, multilayer perceptron; PR, precision-recall; SVM, support vector machine.
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lowest expected calibration error and maximum cali-
bration error was the random forest trained on imbal-
anced data (0.016 and 0.030, respectively), which was
better than EuroSCORE-II (0.029 and 0.051, respec-
tively). Although bootstrap confidence intervals and
significance values were calculated for both metrics,
they were highly biased for some of the models (ex-
pected calibration error and maximum calibration error
expected values in the bootstrap distribution were
different from those in the sample by a large margin), so
they were not considered suitable for the study. The
results for calibration error in high-risk groups in the test
sample are presented in Table 3 for the EuroSCORE-II
and gradient boosting models. We found that condi-
tions with larger samples, such as age, ejection fraction,
and urgency upon admission, had lower calibration er-
rors for the high- and low-risk groups in both models.
Smaller-sized groups such as reanimation (n ¼ 12) or
arrhythmia (n ¼ 73) displayed broad variations between
the risk groups.

Using an additive attribution model35 on the input
variables for gradient boosting (Supplemental Figure S1),
we found that the variable behaviors can be divided
according to their level of measurement (binary, cate-
gorical, or continuous) and depending on the operative
mortality outcome.

For some binary variables (3 or more procedures and
cardiogenic shock), being positive implies greater risk in
all cases. Other binary variables also attribute high risk
to positive values, but some patients with negative
values may present a higher risk; this was the case for
arrhythmia, diabetes, dialysis, heart failure, peripheral
artery disease, and stroke. Finally, some variables did
not attribute greater or lesser risk to the outcome, such
as hypertension or sex.

In the categorical variables, we see some variables in
which greater severity carries greater risk, such as
chronic obstructive pulmonary disease, tricuspid regur-
gitation, and urgency upon admission. Quantitative
variables such as age and LVEF had values that limit
regions of positive and negative risk (75 years for age
and 45% for LVEF) and presented stable ranges with low
risk where it neither increased nor decreased (20-50
years for age and 55% or greater for LVEF). In contrast, in
the creatinine and hematocrit groups, there was only a
negative risk range (0.5-1.1 mg/dL for creatinine and
40%-47% for hematocrit). A more complicated case was
body mass index, as the risk varied for each case, and
there was not a clear trend to explain its impact; how-
ever, lower values of body mass index (<20 kg/m2) were
more likely to have positive risk.
COMMENT

This model predicts operative mortality in cardiac sur-
gery in Colombia. Our cohort’s operative mortality was
6.42%, which is similar to that reported worldwide and
in the Colombian population but higher than that re-
ported in the EuroSCORE-II cohort.5 When we compared
our population’s demographics with those from
EuroSCORE-II, we found older patients with a higher
prevalence of diabetes, endocarditis, renal failure, and
chronic obstructive pulmonary disease. We are certain
that this is due to a late referral to cardiac surgery caused
by failings in our health system, as has been the case in
other Latin American countries.

When evaluating the models using AUC ROC and PR
curves (Tables 1 and 2), it is important to note that the
ROC’s optimal classifier tends to overestimate the risk of
operative mortality, assigning more value to false-
negative cases. In contrast, an optimal classifier in the
PR curves will equally value false positives and false
negatives (Figure 3). These results highlight an issue
regarding model metrics and clinical utility. The ROC



FIGURE 3 Confus ion matr ices obta ined in the test set wi th opt imal thresho lds that max imize Youden ’s J sta t is t ic ( top ) , wh ich pr io r i t i zes

sens i t iv i ty and specific i ty , and F1 (bot tom) , which pr ior i t i zes prec is ion and recal l . Shown for the European System for Card iac Operat ive Risk

Eva luat ion I I (EuroSCORE- I I ) ( le f t ) and grad ient boost ing ( r ight ) . (PR, prec is ion- recal l ; ROC, rece iver operat ing character is t ic . )
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metric privileges sensitivity and the optimal gradient
boosting classifier underestimates death risk in only
1.97% of patients but overestimates it for 22.9%. The
optimal classifier under the PR metric, however, which
sets precision as its priority, overestimates death risk in
only 2.87% of patients but underestimates it in 4.30%.
Regarding model calibration, the model with the
lowest calibration error was the random forest, out-
performing both EuroSCORE-II and gradient boosting.
We found that the calibration error for different risk
groups is likely to be dependent on the number of pa-
tients with each condition (as defined in Table 3). It is



TABLE 3 Patient Count and Calibration Metrics for Low- and High-Risk Groups in the Test Data Set

Variable Risk n (%)
Observed

Mortality, %

EuroSCORE-II Gradient Boosting

Model
Confidence, %

Calibration
Error, %

Model
Confidence, %

Calibration
Error, %

Age High (> 75 y) 173 (31.0) 10.4 10.4 0.000 10.8 0.428

Low (£ 75 y) 385 (69.0) 4.68 5.37 0.691 6.01 1.34

Ejection fraction High (< 50%) 164 (29.4) 8.54 9.01 0.476 11.2 2.65

Low (‡ 50%) 394 (70.6) 5.58 6.06 0.477 5.98 0.39

Urgency upon admission High (Nonelective) 352 (63.1) 7.39 7.81 0.420 8.24 0.852

Low (Elective) 206 (36.9) 4.85 5.43 0.573 6.26 1.40

Arrhythmia High (Yes) 73 (13.1) 12.3 10.9 1.41 21.4 9.10

Low (No) 485 (86.9) 5.57 6.33 0.761 5.41 0.156

Cardiogenic shock High (Yes) 18 (3.23) 38.9 19.7 19.2 35.3 3.55

Low (No) 540 (96.8) 5.37 6.50 1.13 6.58 1.21

Reanimation High (Yes) 12 (2.15) 33.3 19.7 13.7 23.7 9.67

Low (No) 546 (97.9) 5.86 6.65 0.788 7.15 1.29

Heart failure High (Yes) 124 (22.2) 10.5 9.40 1.08 14.8 4.32

Low (No) 434 (77.8) 5.30 6.22 0.922 5.42 0.122

Dialysis High (Yes) 55 (9.86) 12.7 10.7 2.07 12.0 0.728

Low (No) 503 (90.1) 5.77 6.52 0.755 7.02 1.25

A comparison is made between the EuroSCORE-II and gradient boosting models. EuroSCORE, European System for Cardiac Operative Risk Evaluation.
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important to consider that the models we trained may
not have the best performance in risk groups with small
sample sizes, such as resuscitation and arrhythmia.

We decided to use the gradient boosting algorithm
trained without class balance as our prediction model; it
had the highest AUC of all models for the PR curve and
competitive performance for the ROC curve.

Our model’s complex relationships (Supplemental
Figure S1) are consistent with many clinical heuristics
and cannot be expressed with traditional models such as
logistic regression. It is also essential to consider that
feature attribution is personalized and offers a possible
explanation of why some binary variables fluctuate be-
tween positive and negative risk depending on the
patient. We hypothesize that the presence of comor-
bidities, such as heart failure or dialysis, explains
abnormal values in other variables (eg, LVEF or creati-
nine) that otherwise would be unaccounted for and
could indicate other underlying conditions.

Although our cohort is smaller than that used for
EuroSCORE-II and other models in the machine learning
literature,36 the addition of new patients to our data set
in the future can help improve the performance of our
model and increase sample sizes for high-risk groups.

Due to the limited quantity of available data, hyper-
parameter search and model selection (not training)
were performed using the held-out test set. A prospec-
tive study is underway in our center to validate the
model and ensure that such selection is correct.

Another purpose of this study was to create an
application that Latin American cardiac surgeons can
use to calculate cardiac operative mortality risk. This
study’s expanded aim was to introduce our model to the
community and begin testing it as part of a future mul-
ticentric study in Latin America. Our model was tested in
our population, and a multicentric study will help us
determine its external validity.

With this first report’s publication, we want to invite
other Latin American centers to become a part of this
project. We hope to provide cardiac surgeons and
anesthetists with a useful specialized tool with which to
better inform the decision of whether to operate on a
cardiac patient.

Our calculator is available at http://cardiorisk.ml.
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