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Abstract001

Query-focused summarization (QFS) aims to002
produce summaries that answer particular ques-003
tions of interest, enabling greater user con-004
trol and personalization. The advent of large005
language models (LLMs), shows their impres-006
sive capability of textual understanding through007
large-scale pretraining, which implies the great008
potential of extractive snippet generation. In009
this paper, we systematically investigated two010
indispensable characteristics that the LLMs-011
based QFS models should be harnessed, Ef-012
ficiently Fine-grained Query-LLM Alignment013
and Lengthy Document Summarization, re-014
spectively. Correspondingly, we propose two015
modules called Query-aware HyperExpert and016
Query-focused Infini-attention to access the017
aforementioned characteristics. These innova-018
tions pave the way for broader application and019
accessibility in the field of QFS technology.020
Extensive experiments conducted on existing021
QFS benchmarks indicate the effectiveness and022
generalizability of the proposed approach.023

1 Introduction024

In today’s world, where we are constantly bom-025

barded with vast amounts of text, the ability to026

efficiently summarize information has become cru-027

cial. Textual summarization (Gambhir and Gupta,028

2017) is the process of condensing a lengthy docu-029

ment into a succinct and digestible version while030

preserving the most crucial information, enabling031

quicker understanding and better management of032

information. As everyone has unique needs and033

interests in real-life scenarios, necessitating sum-034

marizers that succinctly address the information035

needed for a specific query by extracting essential036

information from documents, i.e., Query-Focused037

Summarization (QFS) (Daumé III, 2009). This038

task involves analyzing the content to identify key039

themes and then highlighting these in the summary,040

which attracts increasing attention in the textual041

summarization community.042
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Figure 1: Our Query-aware HyperExperts outperform
the corresponding PEFT methods on QFS tasks using a
comparable amount of trainable parameters.

Traditionally, QFS has used extract-then- 043

summarize methods (Zhong et al., 2021; Wang 044

et al., 2022; Amar et al., 2023) that rely on the most 045

relevant spans of text from a candidate document 046

based on the prevalence of query terms. However, 047

real-world QFS tasks require a comprehensive and 048

in-depth understanding of complex and lengthy 049

documents to generate high-quality, relevant sum- 050

maries. Further onwards, the triumph of Large 051

Language Models (LLMs) such as the GPT se- 052

ries (Achiam et al., 2023), LLaMA (Touvron et al., 053

2023), and other open-source LLMs showcased the 054

power of large-scale pretraining in understanding, 055

reasoning and generating intricate textual patterns, 056

the great potential of LLMs offering new opportu- 057

nities for QFS. 058

However, there has been relatively little investi- 059

gation into LLMs-based QFS methods (Yang et al., 060

2023a). Our primary goal in this paper is to close 061

this gap correspondingly by proposing two indis- 062

pensable characteristics that should be harnessed 063

by LLMs while dealing with QFS: (i) Efficiently 064

Fine-grained Query-LLM Alignment, as com- 065
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monly known, the pre-trained LLMs are powerful066

when transferred to downstream tasks with instruc-067

tion tuning (Ouyang et al., 2022), this also applies068

to the QFS task when the LLMs specialized for069

user’s interests. However, as the parameter number070

grows exponentially to billions or even trillions,071

training the fully fine-tuned model for each down-072

stream task becomes very inefficient. Moreover,073

the simple approach of concatenating the query074

to the input document proves insufficient for ef-075

fectively guiding the model to focus on the query076

while generating the summary. Due to the small077

proportion of the query length in the overall input078

(e.g., in the QMSum (Zhong et al., 2021) dataset,079

the average token counts for queries and documents080

are 15 and 13,227, respectively), the query’s con-081

trol over the model tends to be relatively weak in082

attention-based models during summary generation.083

Therefore, the foundation of more effective LLM-084

based QFS lies in achieving fine-grained query-085

LLM alignment through efficient learning. (ii)086

Lengthy Document Summarization, QFS tasks087

usually involve long documents. However, self-088

attention-based LLMs have been shown to strug-089

gle with handling such long text inputs due to the090

quadratic complexity of the attention mechanism091

in terms of both memory usage and computation092

time. How to process lengthy documents under lim-093

ited memory is also an important characteristic of094

LLMs-based QFS approaches. Summing up, these095

characteristics necessitate a thorough reevaluation096

of QFS and its corresponding solutions with LLMs.097

Based on the aforementioned insights, we pro-098

pose Infinite and Dynamic largE languAge modeL-099

based framework, abbreviated as IDEAL 1 for100

ideal QFS, which consists of two modules: Query-101

aware HyperExpert and Query-focused Infini-102

attention, achieving the two indispensable charac-103

teristics, respectively.104

The Query-aware HyperExpert (Figure 2) lever-105

ages the parameter-efficient fine-tuning (PEFT)106

(Mangrulkar et al., 2022) strategies that enable107

a pre-trained LLM to perform a new QFS task108

with minimal parameter updates. Innovatively,109

we tailor the previous PEFT approaches to QFS110

tasks with a HyperNetwork (Ha et al., 2016),111

which can dynamically generate the strongly cor-112

related instance-level PEFT Adapter’s parame-113

ters according to users’ queries. Such dynamic114

1Code:https://anonymous.4open.science/r/IDEAL-
Summary-04EA

characterization allows us to achieve the best of 115

both worlds by adjusting the LLM’s parameters 116

while encouraging the model to adapt to each in- 117

stance. By doing so, efficient and fine-grained 118

query-LLM alignment can be achieved. Notably, 119

we develop three types of HyperExpert, include 120

IDEALPrompt, IDEALPAdapter, and IDEALLoRA 121

based on Prompt-tuning (Lester et al., 2021), Par- 122

allel Adapter (He et al., 2022a), and Low-Rank 123

Adaptation (LoRA) (Hu et al., 2021) respectively. 124

To enable Transformer-based LLMs to handle 125

extremely long inputs for QFS tasks under limited 126

memory constraints, we propose a Query-focused 127

Infini-Attention (Figure 3) module that can be 128

seamlessly integrated into the Query-aware Hy- 129

perExpert framework. The Query-focused Infini- 130

Attention builds upon the Infini-Attention mecha- 131

nism (Munkhdalai et al., 2024), which enhances the 132

standard Transformer architecture by introducing 133

compressive memory and a long-term linear atten- 134

tion mechanism. Specifically designed for QFS 135

tasks, the Query-focused Infini-Attention incorpo- 136

rates a Query-focused memory block to preserve 137

critical query-related document details, effectively 138

mitigating the loss of essential information dur- 139

ing the compression of query instructions and ex- 140

tremely long input documents. 141

Our contributions can be summarized as follows: 142

• We explored query-focused PEFT methods 143

and proposed a method, IDEAL, that tunes 144

instance-level PEFT approaches according to 145

query instructions, enhancing the model’s fine- 146

grained instruction-following capabilities. 147

• We propose to incorporate a query-focused 148

infini-attention module to process long text un- 149

der low memory resources for QFS tasks. For 150

example, IDEAL with the backbone model 151

LLAMA2-7B can process datasets where the 152

average length of input tokens is 13,000 on 153

a single 24GB Nvidia GeForce RTX 3090. 154

• We performed extensive and rigorous experi- 155

ments across multiple QFS datasets. IDEAL 156

significantly outperforms other baselines. 157

2 Methodology 158

2.1 Query-aware HyperExpert Module 159

Given a dataset with input text pairs containing 160

a query and a document, outputs in the form of 161

a summary, and a pre-trained LLaMA with an N - 162

layer transformer, IDEAL used three kinds of PEFT 163
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Figure 2: Overview of IDEAL. We place a regular (non-generated) PEFT Adapter layer in the first l layers, and then
use the hidden states of the query instruction to generate the Adapter’s parameters of the last N -l layers.

adapters to fine-tune LLaMA to generate query-164

focused summaries respectively. For example,165

IDEALLoRA, we place a regular (non-generated)166

LoRA module in the first l layers, then we use167

the hidden representation H l
query of query in l-th168

layer as the input of a Hypernetwork to generate169

the LoRA parameters for the last N − l layers.170

2.1.1 PEFT approaches171

As shown in Figure 2(a), Prompt tuning can add172

soft prompts to the hidden states in attention layers173

to guide model learning and adapt to new tasks,174

where only the soft prompts are updated during175

training. LLaMA-Adapter-v1 (Zhang et al., 2023)176

introduces a zero-initialized attention mechanism177

into prompt tuning, which adaptively incorporates178

the knowledge from soft prompts. We use this179

LLaMA-Adapter-v1 as our prompt tuning baseline.180

Parallel adapters (He et al., 2022a) aim to in-181

corporate additional learnable networks in paral-182

lel with distinct sublayers in the backbone model.183

To reduce the number of parameters, small bottle-184

neck networks are used as parallel adapters. In185

transformer-based LLMs, parallel adapters can be186

applied to both the feedforward and self-attention187

modules in each transformer block. Hu et al.188

(2023) conducted experiments showing that ap-189

plying parallel adapters only to the feedforward190

module achieves the best results on math reasoning191

datasets. As shown in Figure 2(c), we also apply192

parallel adapters only to feedforward modules in193

LLaMA’s transformer block.194

LoRA (Hu et al., 2021) adds trainable low-195

rank decomposition matrices in parallel to existing196

weight matrices (Figure 2(b)). For a pre-trained 197

weight matrix W ∈ Rd×k, LoRA constrains its 198

update by adding low-rank matrix pairs, resulting 199

in W + ∆W = W + BA, where B ∈ Rd×r, 200

A ∈ Rr×k, and the rank r ≪ min(d, k). During 201

training, W is frozen while B and A are trainable. 202

LoRA initializes A randomly and B to zero, en- 203

suring that ∆W = BA starts from zero at the 204

beginning of training, thereby preserving the pre- 205

trained knowledge as much as possible. 206

2.1.2 Adapter-based HyperExpert 207

Previous works (Ivison and Peters, 2022; Zhao 208

et al., 2024) indicate that hypernetworks can learn 209

the parameter information of the main neural net- 210

work under different input scenarios and efficiently 211

adjust the target network’s parameters to adapt to 212

this information. We propose leveraging a Hyper- 213

network to generate adapters conditioned on query 214

instructions, enhancing the model’s query-focused 215

capabilities. 216

Our HyperExpert is a Hypernetwork that con- 217

sists of an encoder that transforms the mean- 218

pooling of the query representation Hquery into 219

a low-dimensional representation h ∈ Rb, and a 220

decoder that converts h into the parameters of the 221

target PEFT adapters. The encoder is consistent 222

across all three types of HyperExpert and is com- 223

puted as follows: 224

h = Dr(ReLU(W 0mean(Hquery) + b0)) (1) 225

where Dr denotes dropout. 226

The decoder of HyperExpert varies based on the 227

structure of the target PEFT adapters. 228
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Decoder of IDEALLoRA. The decoder uses lin-229

ear layers to transform the compressed represen-230

tation h into the LoRA matrix for self-attention.231

For instance, the computations of LoRA matrix for232

W q and W k in self-attention are as follows:233

Âq = W 1h+ b1, Âk = W 2h+ b2. (2)234

We only generate the A matrix in the LoRA mod-235

ule, initialize B to zero, and update it during train-236

ing as the original LoRA setup. This ensures that237

∆W = BÂ starts from zero at the beginning of238

training.239

Decoder of IDEALPrompt. Prompt tuning in-240

cludes an additional prompt embedding E ∈241

RK×d in each attention layer. The decoder is a242

linear layer that generates the prompt embedding243

E from the compressed query representation h as244

Ê = W ph + bp, where W p ∈ R(K×d)×b. Here,245

K is the prompt embedding length, and d is the246

dimension of the transformer’s hidden states.247

Decoder of IDEALPAdapter. The parallel248

adapter is a bottleneck network composed of two249

linear layers. Therefore, our decoder uses two250

linear layers to generate the weights for the parallel251

adapter as follows:252

L1 = W l1h+ bl1,L2 = W l2h+ bl2. (3)253

In terms of implementation details, adapter pa-254

rameters can be generated in two ways: parallel255

generation and sequential generation. Parallel256

generation utilizes the query representation of the257

l-th layer to produce the parameters for the sub-258

sequent N − l layers in one step. In contrast, se-259

quential generation uses the query representation260

of the l-th layer to generate the adapter parameters261

for the (l + 1)-th layer iteratively. In HyperExpert,262

the number of encoder layers can correspond to the263

number of layers that parameters are generated or264

a single shared layer can be used. For the decoder265

layers, we adopt a shared-layer approach to reduce266

the parameter overhead.267

2.2 Query-focused Infini-attention Module268

The Query-focused Infini-Attention mechanism269

consists of several key steps. The first step is Fixed-270

length Local Attention, designed to maximize the271

utilization of the capabilities of the self-attention272

mechanism. The input tokens are segmented for273

long context documents to perform standard causal274

dot-product attention within each segment. In both275
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Figure 3: Query-focused Infini-attention has a long-
term context memory and a query-focused memory with
linear attention for processing infinitely long contexts.
KVs−1 and KVs are attention keys and values for pre-
vious and current input segments, respectively. Q repre-
sents the attention queries for the current input segment,
while Qins refers to the attention queries for the input
query instruction. PE signifies position embeddings.

training and inference, we cache the previous seg- 276

ment’s key-value (KV) attention states to pad the 277

local attention KV states to a fixed length. The next 278

step is Compression and Retrieval of Memory. 279

Before completing the local attention for the cur- 280

rent segment, the cached KV attention states are 281

compressed into two memory blocks: one preserv- 282

ing the entire historical context and another retain- 283

ing query-related information. These compressed 284

memories are subsequently used to retrieve relevant 285

context for the following segments. The final step is 286

Repeated Query Instruction, which ensures accu- 287

rate query-focused summarization during inference. 288

To achieve this, we prepend and append the query 289

instruction to the document. The prepended query 290

instruction facilitates the compression of historical 291

memory, while the appended query instruction en- 292

sures that local attention adheres to the full query 293

instruction. For a detailed description of the Query- 294

focused Infini-attention implementation, we refer 295

the reader to Appendix A. 296

3 Experiments 297

3.1 Datasets 298

We evaluate our approach on three query-focused 299

summarization datasets: CovidET (Zhan et al., 300

2022), QMsum (Zhong et al., 2021), SQuALITY 301

(Wang et al., 2022). Detailed dataset statistics are 302
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provided in the Appendix B.1.303

3.2 Evaluation Metrics304

Reference-based Evaluation Metric We eval-305

uate the summaries using ROUGE metrics (Lin,306

2004), including ROUGE-1, ROUGE-2, the307

sentence-level ROUGE-L, and the summary-level308

ROUGE-Lsum. Additionally, we use a Roberta-309

large version of BERTScore (Zhang et al., 2020),310

which leverages Roberta-large to compute the sim-311

ilarity between the references and the model’s out-312

puts. Specifically, since SQuALITY includes mul-313

tiple summaries for each question, we report multi-314

reference scores for all metrics following Wang315

et al. (2022). We calculate the metrics for each pair316

of a generated summary and multiple references,317

then choose the maximum score.318

LLM-based Evaluators Recent studies, such as319

G-Eval (Liu et al., 2023) and GPTRank (Liu et al.,320

2024), demonstrate that LLM-based evaluators out-321

perform reference-based metrics with higher align-322

ment to human judgments. Using GPTRank, we323

evaluate our method by prompting the LLM to first324

generate an explanation and then provide a rank-325

ing for a list of candidate summaries corresponding326

to the same source article.327

3.3 Implementation Details328

We use the pre-trained LLaMA (2-7B, 3.1-8B)329

(Touvron et al., 2023) with N = 32 transformer330

layers as the backbone model. LLaMA3.1-8B331

served as our primary baseline model. How-332

ever, for low-memory experiments with Query-333

focused Infini-attention, the more memory-efficient334

LLaMA2-7B was employed. Additional details can335

be found in Appendix B.2.336

3.4 Comparison of Methods337

Our approach is compared against several fully fine-338

tuned pre-trained language models frequently em-339

ployed for summarization, including BART-large340

(Lewis et al., 2019), LED-base-OASum (Yang341

et al., 2023b), and HMNet (Zhu et al., 2020) (with342

results reported by Zhong et al. (2021)). We fur-343

ther evaluate the latest iteration of LLaMA (3.1344

8B) and three corresponding PEFT-based baselines:345

Prompt, PAdapter, and LoRA. Comparisons are346

also conducted with ChatGPT (Yang et al., 2023a)347

and, using 50 randomly sampled instances per348

dataset, with GPT-4O (version of 2024-08-06).349

For long document datasets, we compare our 350

methods against several Retrieval-Augmented Gen- 351

eration (RAG) approaches, including BART-large + 352

DPR (Wang et al., 2022), HMNet + Locator (Zhong 353

et al., 2021), and Qontsum (Sotudeh and Goharian, 354

2023). We also include the abstractive summarizer 355

SegEnc (Vig et al., 2022), its pre-training frame- 356

work Socratic Pretraining (Pagnoni et al., 2023), 357

and Unlimiformer (Bertsch et al., 2024), a retrieval- 358

based method for handling unlimited-length inputs. 359

3.5 Main Results of IDEAL 360

Models LC R-1 R-2 R-L R-Lsum BScore
CovidET Dataset

Bart-large 1K 27.54 7.72 21.66 22.24 88.61
LED-base-
OASum∗ 4K 25.61 6.58 - 20.45 -

ChatGPT∗ - 20.81 3.99 15.35 15.36 -
GPT-4O 1K 16.57 2.59 12.46 12.67 87.06
Llama3.1-8B 1K 12.85 2.12 9.32 11.04 84.55
Prompt 1K 29.18 8.77 23.64 24.15 89.20
PAdapter 1K 29.37 8.84 23.20 23.86 89.06
Lora 1K 29.00 8.43 22.79 23.43 89.00
IDEALPrompt 1K 29.10 9.01 23.65 24.18 89.26
IDEALPAdapter 1K 29.51 8.78 23.21 23.80 89.07
IDEALLoRA 1K 29.62 8.84 23.40 24.06 89.12

QMsum(Golden) Dataset
Bart-large 1K 38.49 14.26 25.25 33.75 86.38
HMNet∗ - 36.06 11.36 - 31.27 -
ChatGPT∗ - 36.83 12.78 24.23 24.19 -
GPT-4O 3K 33.31 9.01 19.88 28.80 85.01
Llama3.1-8B 3K 20.51 6.76 13.94 18.44 82.39
Prompt 3K 34.81 13.33 24.99 30.73 86.69
PAdapter 3K 39.41 15.77 28.18 34.98 87.54
Lora 3K 40.69 16.11 28.84 36.18 87.71
IDEALPrompt 3K 35.58 13.75 25.33 31.52 86.73
IDEALPAdapter 3K 40.79 17.24 29.64 36.55 87.80
IDEALLoRA 3K 40.85 16.89 29.67 36.66 87.83

Table 1: Comparison with baselines on CovidET and
QMsum(Golden). LC denotes the local context size
of the model. R-L, R-Lsum, and BScore denote
ROUGE-L, ROUGE-Lsum, BERTSCore, respectively.
∗ indicates that experimental results are obtained from
related work. We color each row as the best and
second best .

Tables 1- 2 present the results on QFS datasets. 361

Our approaches achieve the best results overall. 362

IDEAL consistently outperforms the correspond- 363

ing PEFT Adapters. For instance, on the QM- 364

sum(Golden) dataset, IDEALPAdapter surpasses 365

PAdapter by 1.46 (5.2%) ROUGE-L points and 366

1.57 (4.5%) ROUGE-Lsum points with the same 367

input size of 3K. 368

For the two long document datasets shown in 369

Table 2, IDEALLoRA with an input length of 8K 370
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Models LC R-1 R-2 R-L R-Lsum BScore
SQuALITY Dataset

Bart-large 1K 38.58 9.81 20.97 36.11 84.81
LED-base-
OASum∗ 4K 37.6 8.81 - 35.14 -

Bart-Large+
DPR∗ 1/-K 41.5 11.4 21.0 - 85.5

ChatGPT∗ - 37.02 8.19 18.45 22.56 -
GPT-4O 8K 40.04 9.59 20.85 36.68 85.79
Llama3.1-8B 8K 36.84 9.34 20.14 34.17 84.39
SegEnc∗ - 45.68 14.51 22.47 - 85.86
+ Socratic Pret.∗ - 46.31 14.80 22.76 - 86.04
Qontsum∗ - 45.76 14.27 24.14 - 86.07
Prompt 8K 36.81 10.72 23.69 33.26 85.23
PAdapter 8K 43.86 13.13 24.21 40.83 86.55
Lora 8K 44.47 13.23 24.32 41.46 86.63
IDEALPrompt 8K 37.40 11.23 23.93 34.44 85.56
IDEALPAdapter 8K 44.37 13.43 24.76 41.47 86.66
IDEALLoRA 8K 43.87 13.86 25.54 40.99 86.86

QMSum Dataset
Bart-large 1K 31.76 7.76 20.02 27.52 85.22
LED-base-
OASum∗ 4K 30.30 7.56 - 26.67 -

HMNet+Locator∗ - 32.29 8.67 - 28.17 -
ChatGPT∗ - 28.34 8.74 17.81 18.81 -
GPT-4O 16K 29.53 7.51 17.50 25.67 84.48
Llama3.1-8B 16K 21.34 6.26 14.39 19.03 82.69
Bart+
Unlimiformer∗ 1K 30.9 8.0 19.9 - -

SegEnc∗ - 37.05 13.03 - 32.62 87.44
+ Socratic Pret.∗ - 38.06 13.74 - 33.51 87.63
Qontsum∗ - 38.42 13.50 - 34.03 87.72
Prompt 8K 30.52 9.77 21.50 26.33 85.89
PAdapter 8K 36.03 12.61 24.64 31.74 86.96
Lora 8K 36.40 12.10 23.98 31.87 86.66
IDEALPrompt 8K 31.41 10.60 22.27 27.19 86.08
IDEALPAdapter 8K 37.27 13.90 26.32 32.73 87.19
IDEALLoRA 8K 38.67 14.42 26.28 34.24 87.29

Table 2: Comparison with baselines on SQuALITY and
QMSum.

achieved the best ROUGE-L and BERTScore on371

SQuALITY, and the best ROUGE-L on QMSum.372

3.6 LLM-based Evaluation373

The results on reference-based metrics indicate that374

our method achieves a certain level of effectiveness.375

However, while these metrics are simple and fast,376

they suffer from poor correlation with human evalu-377

ators, lack interpretability, and fail to capture high-378

level semantic qualities of summaries. To address379

this, we employ GPTRank (gpt-4o-2024-08-06) to380

compare our method with the open-source state-of-381

the-art (SOTA) approach, Socratic Pret (Pagnoni382

et al., 2023), for evaluating the high-level semantic383

qualities of summaries.384

As shown in the table 3, while Socratic Pret385

achieves comparable performance to IDEALLoRA386

on ROUGE-L and BERTScore and even surpasses 387

IDEALLoRA on ROUGE-Lsum, the comparison 388

using GPTRank reveals a different perspective. 389

Across 254 test samples, IDEALLoRA outperforms 390

Socratic Pret in 214 cases, achieving an 84% win 391

rate. This indicates that although the SOTA non- 392

LLM method performs similarly to LLM-based 393

methods on certain metrics, it lags significantly 394

in terms of high-level semantic qualities. Further- 395

more, analysis of the GPTRank evaluations reveals 396

that summaries generated by Socratic Pret exhibit 397

more inconsistencies with the original article com- 398

pared to those generated by IDEALLoRA. Addi- 399

tionally, IDEALLoRA produces more concise and 400

fluent summaries. 401

Models Win Lose Tie R-L R-Lsum BScore
SQuALITY Dataset

Socratic Pret 39 214 1 23.14 42.28 85.86
IDEALLoRA 214 39 1 25.54 40.99 86.86

Table 3: GPTRank comparison between Socaric Pret.
and IDEALLoRA.

Table 4 presents a comprehensive example com- 402

paring IDEALLoRA and Socratic Pret using GP- 403

TRank, including the full prompt and GPT’s evalu- 404

ation response, except the full article due to space 405

consideration. We evaluate the quality of the two 406

summaries via prompt engineering with GPT, pro- 407

viding an explanation, a one-word reason for infe- 408

rior summaries, and an indication of the superior 409

summary (or a tie). To mitigate potential bias from 410

summary ordering, the order of the two summaries 411

was randomized in our experiments. 412

3.7 Ablation Study 413

IDEALLoRA vs LoRA by different training se- 414

quence length. To evaluate the effectiveness of 415

our approach under varying training sequence 416

lengths, we compared IDEALLoRA and LoRA on 417

the SQuALITY dataset across training lengths rang- 418

ing from 1500 to 8000. Figure 4 illustrates the re- 419

sults in terms of ROUGE-L, ROUGE-Lsum, and 420

BERTScore metrics. The results demonstrate that 421

our method consistently improves performance on 422

the QFS task across different sequence lengths. 423

Performance vs Parameter Budget. As shown 424

in Figure 1, our Query-aware HyperExperts out- 425

perform the corresponding PEFT methods on the 426

QMSum (Golden) dataset while utilizing a compa- 427

rable amount of trainable parameters. Both LoRA 428
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Prompt:
You will be provided with an article along with a query instruction and two summaries that respond to the query instruction,
numbered as follows: 1. Summary 1, 2. Summary 2. Please compare the quality of these two summaries and determine which
one is better (a tie is also possible). First, provide an explanation for your decision. Then, specify a one-word reason for why the
less favorable summary is inferior. Finally, give your decision in the format: 1, 2, or tie. Response format: Explanation: “Your
explanation here”. Reason: “One word reason”. Decision: 1 or 2 or tie.
Query Instruction: What is Gurn’s role in the story?
Article: Produced by Greg Weeks, Mary Meehan and the Online Distributed Proofreading Team at http://www.pgdp.net Raiders
of the Second Moon By GENE ELLERMAN A strange destiny had erased Noork’s memory,and had brought him to this tiny
world to write ...
Summary 1: Gurn is the leader of the wild Vasads of the jungle. He is a renegade from the walled city of Grath, and the
city rulers call him a traitor because he has spoken against the making of slaves of the captured Zurans from other valleys.
Gurn is also an exile from the city of Konto , and he has told Noork that his brother , Gurn, has told him the reason for the

exile. The reason is that the Zurans are no longer making slaves of other valleys, and Gurn believes that they should no longer
make them slaves. He tells Noork to go to Gurn and tell him that the Misty Ones can be trapped and skinned.
Summary 2: Gurn is the leader of the Vasads, a group of people who live in the jungles of Sekk. He is a tall, golden-skinned man
with a bracelet of golden discs linked together with human hair. He is an exile from the walled city of Grath, and is considered a
traitor by the city rulers. He is Noork’s friend, and Noork tells Sarna that he has been friends with Gurn. Gurn is also the one
who gave Noork his short powerful bow.
GPT Response:
Explanation: Summary 2 provides a more accurate and concise depiction of Gurn’s role in the story. It highlights his leadership
position among the Vasads, his physical description, his exile status from Grath, his friendship with Noork, and his contribution
to Noork by gifting him a bow. On the other hand, Summary 1 contains factual inaccuracies, confuses Gurn’s relationship with
other characters, and includes irrelevant information, such as exiles and slavery, that is not central to understanding Gurn’s role.
Reason: “Inaccuracy”. Decision: 2.

Table 4: An example comparing summaries generated by IDEALLoRA and Socratic Pret using GPTRank on
SQuALITY dataset. The red-highlighted text indicates significant errors. In this example, Summary 1 is generated
by Socratic Pret, and Summary 2 is generated by IDEALLoRA.
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Figure 4: A comparison of LoRA and IDEALLoRA

under different training sequence lengths on SQuALITY
dataset.

and PAdapter significantly underperform compared429

to IDEALLoRA and IDEALPAdapter, respectively,430

even with the same or a greater number of train-431

able parameters, underscoring the effectiveness of432

HyperExperts.433

3.8 Performance of Low Memory IDEAL434

IDEALLoRA consistently demonstrates improved435

performance as training input length increases.436

However, this comes at the cost of increased GPU437

memory consumption. Table 5 illustrates this trade- 438

off, showcasing IDEALLoRA performance on in- 439

put lengths of 1.6K, 3.8K, and 8K, requiring 24G, 440

40G, and 80G of memory, respectively. In con- 441

trast to IDEALLoRA, our proposed IDEALQF_Inf
LoRA 442

that integrated with Query-focused Infini-attention 443

exhibits memory efficiency when handling long 444

inputs. IDEALQF_Inf
LoRA maintains a consistent mem- 445

ory footprint of 24G regardless of the input length. 446

Notably, on the QMsum dataset, IDEALQF_Inf
LoRA 447

outperforms IDEALLoRA with an input length of 448

1.6K on all metrics within the same 24GB mem- 449

ory constraint. Moreover, it surpasses IDEALLoRA 450

with an input length of 3.8K in 40GB memory on 451

the ROUGE-L metric. 452

4 Related Works 453

Query-focused Summarization. Tan et al. 454

(2020) and Yang et al. (2023b) address QFS by 455

prepending the query or aspect to the input doc- 456

ument and fine-tuning pre-trained models in an 457

end-to-end manner. Zhong et al. (2021), Wang 458

et al. (2022), and Amar et al. (2023) employ extract- 459

then-summarize strategies that use a filter model 460

to extract key parts of the document based on the 461

query, then fitting the shorter text into a summa- 462

rize. Vig et al. (2022) use an encoder to compute 463

7



Models QMSum Dataset SQuALITY Dataset

LC R-L R-Lsum BScore LC R-L R-Lsum BScore
Lora 1.6K 19.58 25.25 84.93 1.6K 20.73 34.41 85.31
IDEALLoRA 1.6K 19.71 26.27 85.29 1.6K 21.16 34.73 85.52

3.8K 21.62 28.46 85.94 3.8K 22.54 37.54 85.83
8K 26.28 34.24 87.29 8K 25.54 40.99 86.86

LoRA+Inf 0.8/6K 21.13 26.58 86.00 1.6/9K 20.59 34.76 85.02
IDEALLoRA+Inf 0.8/6K 21.76 26.16 86.02 1.6/9K 21.68 34.81 85.28

w/o ReQ 0.8/6K 16.57 20.40 84.37 1.6/9K 17.89 30.62 84.13
IDEALQF_Inf

LoRA 0.8/6K 22.16 27.05 86.16 1.6/9K 21.49 34.86 85.54

Table 5: Comparing IDEALQF _Inf
LoRA with Infini-attention based methods and IDEALLoRA with different input

size. LoRA+Inf and IDEALLoRA+Inf denote the incorporation of Infini-attention into LoRA and IDEALLoRA,
respectively. w/o ReQ indicates that the query instruction is not repeated at the end of the input document.

the local attention of a segmented document. The464

resulting encodings are then concatenated into a465

single embedding sequence and passed to a de-466

coder model to generate the summary. Pagnoni467

et al. (2023) introduce a question-driven, unsuper-468

vised pre-training objective, specifically designed469

to improve controllability in summarization tasks.470

Sotudeh and Goharian (2023) propose a contrastive471

learning method aimed at improving the relevance472

of summaries to a given query. Yang et al. (2023a)473

reveal that the performance of ChatGPT is compa-474

rable to traditional fine-tuning methods in terms of475

ROUGE scores on QFS tasks.476

Long-context Transformers. LED (Beltagy477

et al., 2020) employs a more efficient self-attention478

pattern that allows the model to scale to long doc-479

uments. Unlimiformer (Bertsch et al., 2024) en-480

hances pre-trained models like BART (Lewis et al.,481

2019) to handle unlimited inputs without addi-482

tional learned weights by employing a retrieval-483

based long-context method. Infini-transformer484

(Munkhdalai et al., 2024) integrates long-term con-485

text compressive memory into vanilla transform-486

ers, enabling Transformer-based LLMs to scale487

to infinitely long contexts after full continual pre-488

training. Unlike the Infini-transformer, we explore489

the compressive memory method on adapter-based490

PEFT of LLMs and design a query-focused Infini-491

attention for QFS tasks.492

Hypernetwork-based Methods. Ivison and Pe-493

ters (2022) investigate input-conditioned hypernet-494

works for multi-tasking in NLP, which generate495

parameter-efficient adaptations for a decoder using496

a hypernetwork conditioned on the output of an en-497

coder. He et al. (2022b) incorporate hypernetworks498

into prompt-based, task-conditioning Transformer 499

models in a multi-task setting, allowing the net- 500

work to learn task-specific feature maps. Zhang 501

et al. (2024) employ hypernetworks to generate 502

adaptive parameter shifts for a visual projector and 503

an LLM in multimodal tasks. 504

5 Conclusion 505

In this paper, we propose IDEAL, an efficient 506

query-aware adaptation method on LLMs for QFS 507

tasks, which consists of two modules: Query-aware 508

HyperExpert and Query-focused Infini-attention. 509

The two modules enable LLMs to achieve fine- 510

grained query-LLM alignment efficiently and have 511

the ability to handle lengthy documents. Exper- 512

imental results demonstrate that our method im- 513

proves performance on reference-based metrics. 514

Furthermore, in pairwise comparisons against the 515

SOTA fine-tuning method, Socratic Pret (Pagnoni 516

et al., 2023), using the LLM-based evaluator GP- 517

TRank, our method achieved a win probability of 518

0.84, demonstrating its effectiveness. 519

Limitations 520

Due to the absence of longer QFS datasets currently 521

available, we explored IDEAL only on datasets 522

with input lengths around 10k. However, it is nec- 523

essary to validate IDEAL on datasets with longer 524

input documents, such as performing QFS tasks 525

across entire books. Further validation and opti- 526

mization of the IDEAL method on book-length 527

inputs would be both interesting and meaningful. 528
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A The detailed Query-focused 726

Infini-attention. 727

Memory compression. For the s-th segment 728

with length L, before computing the local at- 729

tention, we update the full context memory 730

Mall
s−1 ∈ Rdkey×dvalue and the query-focused mem- 731

ory M query
s−1 ∈ Rdkey×dvalue , and a normalization 732

term zs−1 ∈ Rdkey is then used for memory re- 733

trieval as follows: 734

Mall
s−1 ←Mall

s−2 + σ(Kcache)
TV cache (4) 735

736
M query

s−1 ←M query
s−2 + σ(Kcache)

T V̂ cache (5) 737
738

zs−1 ← zs−2 +

L∑
t=1

σ(Kt
cache) (6) 739

where σ is a nonlinear activation function. Follow- 740

ing the work of Katharopoulos et al. (2020) and 741

Munkhdalai et al. (2024), we employ element-wise 742

ELU+1 as the activation function (Clevert et al., 743

2015). The term σ(K)TV on the right side of 744
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Equation 4 and 5 is referred to as an associative745

binding operator (Schlag et al., 2020). The query-746

focused memory M query
s−1 differs from the full con-747

text memory only in the value states V̂ cache used748

within the associative binding operator. We uti-749

lize the query states Qquery of query instruction to750

scale the value states and keep only query-related751

information V̂ cache as752

αi = sigmoid

(
mean(Qquery)(K

i
cache)

T

√
dmodel

)
(7)753754

V̂ cache = α⊙ V cache. (8)755

Here, we use the mean pooling of Qquery and the756

key states to compute a related score for each rep-757

resentation.758

Memory retrieval. After updating the memory,759

we retrieve new content Aall ∈ RL×dvalue and760

Aquery ∈ RL×dvalue from the full context memory761

Mall
s−1 and the query-focused memory M query

s−1 , re-762

spectively. This retrieval is performed using the763

query states Q ∈ RL×dkey as follows:764

Aall =
σ(Q)Mall

s−1

σ(Q)zs−1
(9)765

766

Aquery =
σ(Q)M query

s−1

σ(Q)zs−1
(10)767

Long-term context injection. First, we apply a768

linear layer to aggregate Aall and Aquery. Then,769

we aggregate the retrieved content and the local770

attention Alocal using a learned gating scalar β:771

γ = sigmoid(W gAquery) (11)772

773

Aret = γ ⊙Aquery + (1− γ)⊙Aall (12)774

775

A = sigmoid(β)⊙Aret+776

(1− sigmoid(β))⊙Alocal (13)777

where W g ∈ R1×dvalue is a trainable weight that778

dynamically merges the two retrieved contents. β779

contains a single scalar value per head as a training780

parameter, enabling a learnable trade-off between781

the long-term and local information flows in the782

model.783

Repeated query instruction. To incorporate 784

query instructions into the model, we concatenate 785

the query instruction with the document as the 786

model input. During local attention, the query 787

states Qquery of the query instruction are utilized 788

to compute query-focused memory within each seg- 789

ment. However, when generating summaries, the 790

retrieved information from memory fails to effec- 791

tively guide the model in producing summaries that 792

adhere to the query instructions. To address this 793

issue, we employ a straightforward approach: we 794

replicate the query instruction at the end of the doc- 795

ument. This ensures that the query instruction is 796

within the window of the local attention compu- 797

tation when generating summaries, enabling the 798

model to generate query-relevant summaries accu- 799

rately. 800

B Additional Experiments and Analyses 801

B.1 Dataset statistics 802

Table 6 shows the detailed statistics of the datasets 803

used in our experiments. QMsum is a multi-domain 804

dataset for meeting summarization, covering Prod- 805

uct, Academic, and Committee meetings. QM- 806

sum(Golden) is a shorter version of QMsum where 807

documents only contain sections relevant to the 808

queries. SQuALITY is a public-domain dataset 809

for story summarization. Unlike others, SQuAL- 810

ITY includes multiple summaries for each ques- 811

tion. The input documents in the CovidET and 812

QMSum (Golden) datasets have token counts of 813

228 and 2670, respectively, when tokenized using 814

the LLaMA2 tokenizer. In contrast, the QMSum 815

and SQuALITY datasets feature longer input token 816

lengths, with 8071 and 13227 tokens, respectively. 817

B.2 Implementation Details 818

All IDEAL models are trained by the AdamW op- 819

timizer with a cosine annealing schedule after the 820

warmup starts. The warmup epochs, batch size, 821

learning rate, and weight decay are set to 1, 32, 822

0.006, and 0.02, respectively. We use the validation 823

set to find the optimal epochs for each dataset. Dur- 824

ing the generation stage, we adopt top-p sampling 825

as the default decoding method with a temperature 826

of 0.1 and a top-p value of 0.75. 827

For IDEALPrompt, we follow LLaMA-Adapter- 828

v1 (Zhang et al., 2023), adopting a prompt length 829

K = 10 and applying prompts to the last 30 layers, 830

with the prompts of the last 15 layers are generated. 831

For IDEALPAdapter, adapters are applied to the 832
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Type Dataset Domain #Instances #Input Tk #Output Tk #Queries

Query
QMSum Meeting 1808 13227(2670∗) 88 1566

SQuALITY Story 625 8071 306 437
Aspect CovidET Reddit 7122 228 32 7

Table 6: Statistics of query/aspect-based summarization datasets. #Instances represents the total number of
(document, summary) pairs in the corresponding dataset. #Input Tk and #Output Tk denote the number of input
and output token lengths under the LLaMA2 tokenizer, respectively. #Queries indicate the number of unique queries
or aspects appearing in the dataset respectively. 2670∗ represents the number of input tokens for QMsum(Golden).

first 16 layers and generated for the last 16 layers.833

For IDEALLoRA, only the A matrix in the LoRA834

module is generated for the last 16 layers.835

All LLaMA-based models in our experiments836

use Automatic Mixed Precision, with 16-bit for837

frozen parameters and 32-bit for trainable parame-838

ters to conserve memory. Additionally, we employ839

Flash-Attention2 (Dao, 2024) to accelerate model840

training and inference for LLaMA-based models.841

All models in our experiments can be trained on842

at least a single 24GB Nvidia GeForce RTX 3090,843

except for the large local context size setting for844

long documents.845

For the BART model baselines, we use the Hug-846

gingFace Transformers library and the AdamW847

optimizer. We set the batch size, learning rate,848

and weight decay to 32, 0.0001, and 0.1 respec-849

tively, and used the validation set to find the opti-850

mal epochs for each dataset.851

B.3 Ablation Study852

The layers to generate parameters. Table 7853

presents the results of IDEALLoRA on the QM-854

sum (Golden) dataset when generating LoRA pa-855

rameters for different numbers of layers using a856

hypernetwork. The results indicate that generating857

parameters for the last 16 layers achieves the best858

performance.859

Layers R-1 R-2 R-L R-Lsum BScore Params(M)
8-32 40.04 16.56 29.06 35.71 87.77 24.55
16-32 40.85 16.89 29.67 36.66 87.83 23.76
24-32 40.73 16.36 28.96 36.22 87.76 22.98

- 40.69 16.11 28.84 36.18 87.71 23.07

Table 7: Different number of layers that the LoRA
parameters are generated of IDEALLoRA on QM-
sum(Golden) dataset. 16-32 indicates that the LoRA
parameters from layers 16 to 32 are generated by the
Hypernetwork. - indicates no generated parameters.

Different configuration of HyperExpert. Ta-860

ble 8 shows the experimental results for four861

adapter parameter generation configurations: paral- 862

lel versus sequential generation, and using different 863

or shared encoders within HyperExpert. Parallel 864

generation with different encoders yields the best 865

performance. 866

Gen Enc R-1 R-2 R-L R-Lsum BScore Params(M)
Para Diff 40.85 16.89 29.67 36.66 87.83 23.76
Seq Diff 40.49 16.56 28.95 35.99 87.70 23.76
Seq Share 40.57 16.40 29.01 36.25 87.76 19.83
Para Share 40.43 16.62 28.82 36.18 87.76 19.83

Table 8: Four configurations for generating adapter
parameters on QMsum (Golden) are evaluated: Para
denotes parallel generation, while Seq refers to sequen-
tial generation. Diff indicates that the encoder in Hyper-
Expert corresponds to the number of transformer layers
generating parameters, whereas Share represents the
use of a single shared encoder layer.

The diversity of generated parameters. To in- 867

tuitively illustrate the diversity of parameters gen- 868

erated by the IDEAL model, we applied the t-SNE 869

algorithm to visualize the adapter parameters of a 870

selected layer in two dimensions on the QMSum 871

and SQuALITY test sets. As shown in Figure 5, the 872

generated parameters exhibit distinct distributions 873

across the two datasets, with clearly identifiable 874

clusters. This demonstrates that IDEAL can dy- 875

namically generate adapter parameters conditioned 876

on the query. 877
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(b) SQuALITY.

Figure 5: t-SNE Visualization of Query-based Parame-
ters’ Dynamic Characterizations.
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The input representation of HyperExpert. Our878

HyperExpert takes the representation of the query879

instruction as input. For comparison, we conducted880

experiments using the representations of the doc-881

ument and the combined query and document as882

inputs. The results in table 9 show that using only883

the query representation as input achieves the best884

performance, while using the combined query and885

document representation yields the second-best re-886

sults.887

Input R-1 R-2 R-L R-Lsum BScore
Query 40.85 16.89 29.67 36.66 87.83

Document 40.17 16.10 28.84 35.84 87.70
Query&Document 40.23 16.47 29.14 35.84 87.60

Table 9: Different input representation of IDEALLoRA

on QMsum(Golden).

The effectiveness of each module in888

IDEALQF_Inf
LoRA . In Table 5, we evaluated889

the effectiveness of Query-focused Infini-attention890

through comparative testing. First, we im-891

plemented Infini-attention based on LoRA as892

Lora+Inf and observed significant improvements893

compared to LoRA alone under the same GPU894

memory constraints, with increases of 1.55 and895

1.33 points in ROUGE-L and ROUGE-Lsum896

on QMSum dataset, respectively. These results897

indicate that compressing the key-value states of898

historical segments enables the summarization899

of long documents within limited GPU memory.900

Furthermore, we enhanced IDEALLoRA with901

Infini-attention, achieving better results than902

Lora+Inf in ROUGE-L. The IDEALQF_Inf
LoRA903

outperformed both IDEALLoRA+Inf and Lora+Inf904

in all metrics, demonstrating that our proposed905

Query-focused Infini-attention effectively com-906

presses query-related information. For the907

IDEALLoRA+Inf method, we observed a sig-908

nificant decline in all metrics after removing909

the repeated query instruction at the end of the910

input document, demonstrating the necessity of911

repeating the query instruction.912

Local context size of IDEALQF_Inf
LoRA . Figure 6a913

presents the performance of IDEALQF_Inf
LoRA un-914

der varying local context sizes (LC). On the QM-915

Sum dataset, the model exhibits stable performance916

when LC exceeds 400, achieving nearly the best917

overall performance at LC=800. Similarly, on the918

SQuALITY dataset, the optimal LC is observed at919

1.6K. These findings indicate that IDEALQF_Inf
LoRA920

differs from IDEALLoRA, the limited memory for 921

the former is enough to handle extremely long in- 922

puts. 923

Max input length of IDEALQF_Inf
LoRA . Figure 6b 924

presents the optimal max input length for 925

IDEALQF_Inf
LoRA on the QMsum and SQuALITY 926

datasets. 927
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Figure 6: Local and max input length of IDEALQF _Inf
LoRA .

B.4 The performance under LLaMA2 and 928

LLaMA3 backbones. 929

Table 10 shows the comparison of IDEALLoRA 930

under LLaMA2-7B and LLaMA3-8B, LLaMA3.1- 931

8B backbones with the same 24GB GPU mem- 932

ory. Due to the higher memory consumption of 933

IDEALLoRA with the LLaMA 3 series backbone, 934

resulting in a smaller local context size, evaluations 935

show that it performs better with the LLaMA2-7B 936

backbone given the same GPU memory. There- 937

fore, in the low-memory experiments presented in 938

Table 5, LLaMA2-7B was used for all models ex- 939

cept IDEALLoRA with an 8K context length, which 940

used LLaMA 3.1-8B. 941

B.5 Training Time Comparison 942

Table 11 shows the comparison between our meth- 943

ods and baselines. IDEALLoRA doesn’t increase 944

training time compared to LoRA. IDEALQF_Inf
LoRA 945

slightly increases training time compared to 946

IDEALLoRA+Inf and LoRA+Inf. 947

B.6 Human Evaluation 948

To ensure a fair evaluation, we conducted a human 949

evaluation of the summaries generated by BART- 950

Large, LoRA (LLaMA2-7B), and IDEALLoRA 951

(LLaMA2-7B) on the QMSum (Golden) dataset, 952

all using identical computational resources. Each 953

model was tested using a 3090 (24GB) GPU. We 954

recruited three well-educated evaluators and ran- 955

domly selected 50 samples to evaluate the summary 956

13



Models Backbone LC R-1 R-2 R-L R-Lsum BScore Params(M)
IDEALLoRA LLaMA2-7B 1.6K 40.82 16.61 29.00 36.08 87.68 24.5
IDEALLoRA LLaMA3-8B 1K 39.99 15.63 27.89 35.34 87.54 23.8
IDEALLoRA LLaMA3.1-8B 1K 39.90 16.06 28.55 35.57 87.48 23.8

Table 10: The comparison under LLaMA2 and LLaMA3, LLaMA3.1 backbones on QMsum(Golden) dataset with
24GB GPU memory.

Models LC Time/Epoch
Lora 1.6K 11min
IDEALLoRA 1.6K 11min
LoRA+Inf 0.8/6K 45min
IDEALLoRA+Inf 0.8/6K 46min
IDEALQF_Inf

LoRA 0.8/6K 50min

Table 11: Training time per epoch with 2 Nvidia
GeForce RTX 3090 GPUs in data parallel mode on
the QMSum dataset.

quality of the three models from two aspects: Cor-957

rectness and Coverage (Wang et al., 2022). For958

each sample, the evaluators read the document and959

the corresponding question, then selected the best960

and worst summary among the three. In each case,961

we randomized the order of the summaries from962

the three models. The task instruction are detailed963

in Figure 7.964

As shown in table 12, although the BART-Large965

model did not lag far behind the other two models966

in terms of the ROUGE-L metric, it received signif-967

icantly fewer "Best" summary votes and the most968

"Worst" votes. This may be because the LLaMA-969

based methods benefit from the understanding and970

reasoning capabilities of LLMs. IDEALLoRA re-971

ceived 13 more "Best" votes compared to LoRA972

and had the fewest "Worst" votes, far less than973

LoRA’s 46 and BART-Large’s 75. This demon-974

strates that our proposed Query-focused PEFT975

method is indeed effective for QFS tasks.976
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Models LC Best Worst Correctness Coverage Rouge-L
Bart-Large 1K 33 75 3.3 2.9 25.25
LoRA(LLaMA2-7B) 1.6K 52 46 3.6 3.4 27.36
IDEALLoRA(LLaMA2-7B) 1.6K 65 29 3.7 3.6 29.00

Table 12: The human evaluation results of model-generated summaries obtained using the same 24G memory GPU
on the QMSum (Golden) dataset. We summed the votes of the three evaluators for the Best and Worst metrics. For
Correctness and Coverage, we first calculated the average for all samples, and then computed the mean across the
three evaluators.

Task Instructions 

You are required to complete the evaluation of 50 documents within two days. Each document is 

accompanied by a question and three different summary responses. Your task is to score each of 

the three summaries based on Correctness and Coverage using a scale from 1 to 5. After 

scoring, you need to select the best and worst summary for each document based on your 

evaluations of these two criteria. 

To ensure the quality of your assessments, please take breaks during the process. 

Definitions: 

• Correctness: Evaluates the presence of factual errors in the summary. A factual error is

defined as a statement that contradicts the document, is not directly stated, or is not

heavily implied or logically entailed by the document.

• Coverage: Measures how comprehensively the summary includes all relevant

information and details from the document that are necessary to answer the question.

Example Evaluation: For Document 15, the scores might look like this: 

• A: 3 (Correctness), 4 (Coverage)

• B: 5 (Correctness), 3 (Coverage)

• C: 2 (Correctness), 4 (Coverage)

• Best: B

• Worst: C

Format your results in one line per document as shown in the example: 

Doc 15, A:3 4, B:5 3, C:2 4, Best:B, Worst:C 

Figure 7: Task instructions of Human evaluation.
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