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Abstract

Query-focused summarization (QFS) aims to
produce summaries that answer particular ques-
tions of interest, enabling greater user con-
trol and personalization. The advent of large
language models (LLMs), shows their impres-
sive capability of textual understanding through
large-scale pretraining, which implies the great
potential of extractive snippet generation. In
this paper, we systematically investigated two
indispensable characteristics that the LLMs-
based QFS models should be harnessed, Ef-
ficiently Fine-grained Query-LLM Alignment
and Lengthy Document Summarization, re-
spectively. Correspondingly, we propose two
modules called Query-aware HyperExpert and
Query-focused Infini-attention to access the
aforementioned characteristics. These innova-
tions pave the way for broader application and
accessibility in the field of QFS technology.
Extensive experiments conducted on existing
QFS benchmarks indicate the effectiveness and
generalizability of the proposed approach.

1 Introduction

In today’s world, where we are constantly bom-
barded with vast amounts of text, the ability to
efficiently summarize information has become cru-
cial. Textual summarization (Gambhir and Gupta,
2017) is the process of condensing a lengthy docu-
ment into a succinct and digestible version while
preserving the most crucial information, enabling
quicker understanding and better management of
information. As everyone has unique needs and
interests in real-life scenarios, necessitating sum-
marizers that succinctly address the information
needed for a specific query by extracting essential
information from documents, i.e., Query-Focused
Summarization (QFS) (Daumé III, 2009). This
task involves analyzing the content to identify key
themes and then highlighting these in the summary,
which attracts increasing attention in the textual
summarization community.
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Figure 1: Our Query-aware HyperExperts outperform
the corresponding PEFT methods on QFS tasks using a
comparable amount of trainable parameters.

Traditionally, QFS has used extract-then-
summarize methods (Zhong et al., 2021; Wang
et al., 2022; Amar et al., 2023) that rely on the most
relevant spans of text from a candidate document
based on the prevalence of query terms. However,
real-world QFS tasks require a comprehensive and
in-depth understanding of complex and lengthy
documents to generate high-quality, relevant sum-
maries. Further onwards, the triumph of Large
Language Models (LLMs) such as the GPT se-
ries (Achiam et al., 2023), LLaMA (Touvron et al.,
2023), and other open-source LLMs showcased the
power of large-scale pretraining in understanding,
reasoning and generating intricate textual patterns,
the great potential of LLMs offering new opportu-
nities for QFS.

However, there has been relatively little investi-
gation into LLMs-based QFS methods (Yang et al.,
2023a). Our primary goal in this paper is to close
this gap correspondingly by proposing two indis-
pensable characteristics that should be harnessed
by LLMs while dealing with QFS: (i) Efficiently
Fine-grained Query-LLM Alignment, as com-



monly known, the pre-trained LLMs are powerful
when transferred to downstream tasks with instruc-
tion tuning (Ouyang et al., 2022), this also applies
to the QFS task when the LLMs specialized for
user’s interests. However, as the parameter number
grows exponentially to billions or even trillions,
training the fully fine-tuned model for each down-
stream task becomes very inefficient. Moreover,
the simple approach of concatenating the query
to the input document proves insufficient for ef-
fectively guiding the model to focus on the query
while generating the summary. Due to the small
proportion of the query length in the overall input
(e.g., in the QMSum (Zhong et al., 2021) dataset,
the average token counts for queries and documents
are 15 and 13,227, respectively), the query’s con-
trol over the model tends to be relatively weak in
attention-based models during summary generation.
Therefore, the foundation of more effective LLM-
based QFS lies in achieving fine-grained query-
LLM alignment through efficient learning. (ii)
Lengthy Document Summarization, QFS tasks
usually involve long documents. However, self-
attention-based LL.Ms have been shown to strug-
gle with handling such long text inputs due to the
quadratic complexity of the attention mechanism
in terms of both memory usage and computation
time. How to process lengthy documents under lim-
ited memory is also an important characteristic of
LLMs-based QFS approaches. Summing up, these
characteristics necessitate a thorough reevaluation
of QFS and its corresponding solutions with LLMs.

Based on the aforementioned insights, we pro-
pose Infinite and Dynamic largE languA ge modeL-
based framework, abbreviated as IDEAL ! for
ideal QFS, which consists of two modules: Query-
aware HyperExpert and Query-focused Infini-
attention, achieving the two indispensable charac-
teristics, respectively.

The Query-aware HyperExpert (Figure 2) lever-
ages the parameter-efficient fine-tuning (PEFT)
(Mangrulkar et al., 2022) strategies that enable
a pre-trained LLM to perform a new QFS task
with minimal parameter updates. Innovatively,
we tailor the previous PEFT approaches to QFS
tasks with a HyperNetwork (Ha et al., 2016),
which can dynamically generate the strongly cor-
related instance-level PEFT Adapter’s parame-
ters according to users’ queries. Such dynamic

!Code:https://anonymous.4open.science/r/IDEAL-
Summary-04EA

characterization allows us to achieve the best of
both worlds by adjusting the LLM’s parameters
while encouraging the model to adapt to each in-
stance. By doing so, efficient and fine-grained
query-LLM alignment can be achieved. Notably,
we develop three types of HyperExpert, include
IDEAL Prompt» IDEAL P Adapter> and IDEAL LoRA
based on Prompt-tuning (Lester et al., 2021), Par-
allel Adapter (He et al., 2022a), and Low-Rank
Adaptation (LoRA) (Hu et al., 2021) respectively.

To enable Transformer-based LLMs to handle
extremely long inputs for QFS tasks under limited
memory constraints, we propose a Query-focused
Infini-Attention (Figure 3) module that can be
seamlessly integrated into the Query-aware Hy-
perExpert framework. The Query-focused Infini-
Attention builds upon the Infini-Attention mecha-
nism (Munkhdalai et al., 2024), which enhances the
standard Transformer architecture by introducing
compressive memory and a long-term linear atten-
tion mechanism. Specifically designed for QFS
tasks, the Query-focused Infini-Attention incorpo-
rates a Query-focused memory block to preserve
critical query-related document details, effectively
mitigating the loss of essential information dur-
ing the compression of query instructions and ex-
tremely long input documents.

Our contributions can be summarized as follows:

* We explored query-focused PEFT methods
and proposed a method, IDEAL, that tunes
instance-level PEFT approaches according to
query instructions, enhancing the model’s fine-
grained instruction-following capabilities.

* We propose to incorporate a query-focused
infini-attention module to process long text un-
der low memory resources for QFS tasks. For
example, IDEAL with the backbone model
LLAMA2-7B can process datasets where the
average length of input tokens is 13,000 on
a single 24GB Nvidia GeForce RTX 3090.

* We performed extensive and rigorous experi-
ments across multiple QFS datasets. IDEAL
significantly outperforms other baselines.

2 Methodology
2.1 Query-aware HyperExpert Module

Given a dataset with input text pairs containing
a query and a document, outputs in the form of
a summary, and a pre-trained LLaMA with an N-
layer transformer, IDEAL used three kinds of PEFT
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Figure 2: Overview of IDEAL. We place a regular (non-generated) PEFT Adapter layer in the first [ layers, and then
use the hidden states of the query instruction to generate the Adapter’s parameters of the last /N-I layers.

adapters to fine-tune LLaMA to generate query-
focused summaries respectively. For example,
IDEAL,rA, we place a regular (non-generated)
LoRA module in the first [ layers, then we use
the hidden representation H éuery of query in [-th
layer as the input of a Hypernetwork to generate

the LoRA parameters for the last NV — [ layers.

2.1.1 PEFT approaches

As shown in Figure 2(a), Prompt tuning can add
soft prompts to the hidden states in attention layers
to guide model learning and adapt to new tasks,
where only the soft prompts are updated during
training. LLaMA-Adapter-v1 (Zhang et al., 2023)
introduces a zero-initialized attention mechanism
into prompt tuning, which adaptively incorporates
the knowledge from soft prompts. We use this
LLaMA-Adapter-v1 as our prompt tuning baseline.

Parallel adapters (He et al., 2022a) aim to in-
corporate additional learnable networks in paral-
lel with distinct sublayers in the backbone model.
To reduce the number of parameters, small bottle-
neck networks are used as parallel adapters. In
transformer-based LL.Ms, parallel adapters can be
applied to both the feedforward and self-attention
modules in each transformer block. Hu et al.
(2023) conducted experiments showing that ap-
plying parallel adapters only to the feedforward
module achieves the best results on math reasoning
datasets. As shown in Figure 2(c), we also apply
parallel adapters only to feedforward modules in
LLaMA’s transformer block.

LoRA (Hu et al., 2021) adds trainable low-
rank decomposition matrices in parallel to existing

weight matrices (Figure 2(b)). For a pre-trained
weight matrix W € R%** LoRA constrains its
update by adding low-rank matrix pairs, resulting
in W+ AW = W + BA, where B € R¥",
A € R"™ and the rank r < min(d, k). During
training, W is frozen while B and A are trainable.
LoRA initializes A randomly and B to zero, en-
suring that AW = BA starts from zero at the
beginning of training, thereby preserving the pre-
trained knowledge as much as possible.

2.1.2 Adapter-based HyperExpert

Previous works (Ivison and Peters, 2022; Zhao
et al., 2024) indicate that hypernetworks can learn
the parameter information of the main neural net-
work under different input scenarios and efficiently
adjust the target network’s parameters to adapt to
this information. We propose leveraging a Hyper-
network to generate adapters conditioned on query
instructions, enhancing the model’s query-focused
capabilities.

Our HyperExpert is a Hypernetwork that con-
sists of an encoder that transforms the mean-
pooling of the query representation H ¢,y into
a low-dimensional representation h € R®, and a
decoder that converts h into the parameters of the
target PEFT adapters. The encoder is consistent
across all three types of HyperExpert and is com-
puted as follows:

h = D, (ReLU(W gmean(H guery) + bo)) (1)

where D, denotes dropout.
The decoder of HyperExpert varies based on the
structure of the target PEFT adapters.



Decoder of IDEAL; ,r4. The decoder uses lin-
ear layers to transform the compressed represen-
tation h into the LoRA matrix for self-attention.
For instance, the computations of LoRA matrix for
W, and W in self-attention are as follows:

A, =Wih+b,Ay=Wsh+by (2

We only generate the A matrix in the LoORA mod-
ule, initialize B to zero, and update it during train-
ing as the original LoRA setup. This ensures that
AW = BA starts from zero at the beginning of
training.

Decoder of IDEALp, ;. Prompt tuning in-
cludes an additional prompt embedding E €&
RE* in each attention layer. The decoder is a
linear layer that generates the prompt embedding
FE from the compressed query representation h as
E = W, h + b, where W, € RUE*®*b_ Here,
K is the prompt embedding length, and d is the
dimension of the transformer’s hidden states.

Decoder of IDEALpagqpter. The parallel
adapter is a bottleneck network composed of two
linear layers. Therefore, our decoder uses two
linear layers to generate the weights for the parallel
adapter as follows:

Ly =W, h+by,Ly =Wph+bs (3)

In terms of implementation details, adapter pa-
rameters can be generated in two ways: parallel
generation and sequential generation. Parallel
generation utilizes the query representation of the
[-th layer to produce the parameters for the sub-
sequent N — [ layers in one step. In contrast, se-
quential generation uses the query representation
of the [-th layer to generate the adapter parameters
for the (I 4 1)-th layer iteratively. In HyperExpert,
the number of encoder layers can correspond to the
number of layers that parameters are generated or
a single shared layer can be used. For the decoder
layers, we adopt a shared-layer approach to reduce
the parameter overhead.

2.2 Query-focused Infini-attention Module

The Query-focused Infini-Attention mechanism
consists of several key steps. The first step is Fixed-
length Local Attention, designed to maximize the
utilization of the capabilities of the self-attention
mechanism. The input tokens are segmented for
long context documents to perform standard causal
dot-product attention within each segment. In both
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Figure 3: Query-focused Infini-attention has a long-
term context memory and a query-focused memory with
linear attention for processing infinitely long contexts.
KV,_1 and KV are attention keys and values for pre-
vious and current input segments, respectively. () repre-
sents the attention queries for the current input segment,
while Q;,,s refers to the attention queries for the input
query instruction. PE signifies position embeddings.

training and inference, we cache the previous seg-
ment’s key-value (KV) attention states to pad the
local attention KV states to a fixed length. The next
step is Compression and Retrieval of Memory.
Before completing the local attention for the cur-
rent segment, the cached KV attention states are
compressed into two memory blocks: one preserv-
ing the entire historical context and another retain-
ing query-related information. These compressed
memories are subsequently used to retrieve relevant
context for the following segments. The final step is
Repeated Query Instruction, which ensures accu-
rate query-focused summarization during inference.
To achieve this, we prepend and append the query
instruction to the document. The prepended query
instruction facilitates the compression of historical
memory, while the appended query instruction en-
sures that local attention adheres to the full query
instruction. For a detailed description of the Query-
focused Infini-attention implementation, we refer
the reader to Appendix A.

3 Experiments

3.1 Datasets

We evaluate our approach on three query-focused
summarization datasets: CovidET (Zhan et al.,
2022), QMsum (Zhong et al., 2021), SQUALITY
(Wang et al., 2022). Detailed dataset statistics are



provided in the Appendix B.1.

3.2 Evaluation Metrics

Reference-based Evaluation Metric We eval-
uate the summaries using ROUGE metrics (Lin,
2004), including ROUGE-1, ROUGE-2, the
sentence-level ROUGE-L, and the summary-level
ROUGE-Lsum. Additionally, we use a Roberta-
large version of BERTScore (Zhang et al., 2020),
which leverages Roberta-large to compute the sim-
ilarity between the references and the model’s out-
puts. Specifically, since SQUALITY includes mul-
tiple summaries for each question, we report multi-
reference scores for all metrics following Wang
et al. (2022). We calculate the metrics for each pair
of a generated summary and multiple references,
then choose the maximum score.

LLM-based Evaluators Recent studies, such as
G-Eval (Liu et al., 2023) and GPTRank (Liu et al.,
2024), demonstrate that LLM-based evaluators out-
perform reference-based metrics with higher align-
ment to human judgments. Using GPTRank, we
evaluate our method by prompting the LLM to first
generate an explanation and then provide a rank-
ing for a list of candidate summaries corresponding
to the same source article.

3.3 Implementation Details

We use the pre-trained LLaMA (2-7B, 3.1-8B)
(Touvron et al., 2023) with N = 32 transformer
layers as the backbone model. LLaMA3.1-8B
served as our primary baseline model. How-
ever, for low-memory experiments with Query-
focused Infini-attention, the more memory-efficient
LLaMAZ2-7B was employed. Additional details can
be found in Appendix B.2.

3.4 Comparison of Methods

Our approach is compared against several fully fine-
tuned pre-trained language models frequently em-
ployed for summarization, including BART-large
(Lewis et al., 2019), LED-base-OASum (Yang
et al., 2023b), and HMNet (Zhu et al., 2020) (with
results reported by Zhong et al. (2021)). We fur-
ther evaluate the latest iteration of LLaMA (3.1
8B) and three corresponding PEFT-based baselines:
Prompt, PAdapter, and LoRA. Comparisons are
also conducted with ChatGPT (Yang et al., 2023a)
and, using 50 randomly sampled instances per
dataset, with GPT-40 (version of 2024-08-06).

For long document datasets, we compare our
methods against several Retrieval-Augmented Gen-
eration (RAG) approaches, including BART-large +
DPR (Wang et al., 2022), HMNet + Locator (Zhong
et al., 2021), and Qontsum (Sotudeh and Goharian,
2023). We also include the abstractive summarizer
SegEnc (Vig et al., 2022), its pre-training frame-
work Socratic Pretraining (Pagnoni et al., 2023),
and Unlimiformer (Bertsch et al., 2024), a retrieval-
based method for handling unlimited-length inputs.

3.5 Main Results of IDEAL

Models LC R-1 R-2 R-L R-Lsum BScore
CovidET Dataset

Bart-large 1K 2754 7.72 21.66 2224 88.61
LED-base-

OASum* 4K 25.61 6.58 - 20.45 -
ChatGPT* - 20.81 399 1535 15.36 -
GPT-40 1K 16.57 2.59 1246 12.67 87.06
Llama3.1-8B 1K 12.85 2.12 932 11.04 84.55
Prompt 1K 29.18 8.77 23.64 24.15 89.20
PAdapter 1K 29.37 8.84 2320 23.86 89.06
Lora 1K 29.00 8.43 22.79 2343 89.00
IDEALpromp: 1K 29.10 9.01 23.65 24.18 89.26
IDEALp Adapter 1K 29.51 878 2321 23.80 89.07
IDEALLorA 1K 29.62 8.84 2340 24.06 89.12

QMsum(Golden) Dataset

Bart-large 1K 38.49 1426 2525 33.75 86.38
HMNet* - 36.06 11.36 - 31.27 -
ChatGPT* - 36.83 12.78 24.23 24.19 -
GPT-40 3K 33.31 9.01 19.88 28.80 85.01
Llama3.1-8B 3K 20.51 6.76 13.94 18.44 82.39
Prompt 3K 34.81 13.33 2499 30.73 86.69
PAdapter 3K 39.41 15.77 28.18 3498 87.54
Lora 3K 40.69 16.11 28.84 36.18 87.71
IDEALpromp: 3K 3558 13.75 25.33 31.52 86.73
IDEALP Adapter 3K 40.79 17.24 29.64 36.55 87.80
IDEALLorA 3K 40.85 16.89 29.67 36.66 87.83

Table 1: Comparison with baselines on CovidET and
QMsum(Golden). LC denotes the local context size
of the model. R-L, R-Lsum, and BScore denote
ROUGE-L, ROUGE-Lsum, BERTSCore, respectively.
* indicates that experimental results are obtained from
related work. We color each row as the best and

second best .

Tables 1- 2 present the results on QFS datasets.
Our approaches achieve the best results overall.
IDEAL consistently outperforms the correspond-
ing PEFT Adapters. For instance, on the QM-
sum(Golden) dataset, IDEAL p gqqpter SUrpasses
PAdapter by 1.46 (5.2%) ROUGE-L points and
1.57 (4.5%) ROUGE-Lsum points with the same
input size of 3K.

For the two long document datasets shown in
Table 2, IDEAL,r4 with an input length of 8K



R-L R-Lsum BScore on ROUGE-L and BERTScore and even surpasses

Models LC R-1 R-2

SQUALITY Dataset
Bart-large 1K 3858 9.81 2097 36.11 84.81
LED-base-
OASum* 4K 37.6 8.81 - 35.14 -
Bart-Large+
DPR* 1/-K 415 114 21.0 - 85.5
ChatGPT* - 37.02 8.19 1845 2256 -
GPT-40 8K 40.04 9.59 20.85 36.68 85.79
Llama3.1-8B 8K 36.84 934 20.14 34.17 84.39
SegEnc”* - 4568 14.51 2247 - 85.86
+ Socratic Pret.” - 4631 1480 22.76 - 86.04
Qontsum™ - 4576 1427 24.14 - 86.07
Prompt 8K 36.81 10.72 23.69 33.26 85.23
PAdapter 8K 43.86 13.13 24.21 40.83 86.55
Lora 8K 44.47 1323 2432 41.46 86.63
IDEAL prompt 8K 37.40 1123 2393 3444 85.56
IDEALp adapter 8K 44.37 1343 24.76 4147 86.66
IDEALLorA 8K 43.87 13.86 25.54 40.99 86.86

QMSum Dataset

Bart-large 1K 31.76 7.76 20.02 27.52 8522
LED-base-
OASum* 4K 30.30 7.56 - 26.67 -
HMNet+Locator® - 32.29 8.67 - 28.17 -
ChatGPT* - 2834 874 17.81 18.81 -
GPT-40 16K 29.53 7.51 17.50 25.67 84.48
Llama3.1-8B 16K 21.34 6.26 1439 19.03 82.69
Bart+ K 309 80 199
Unlimiformer™ ) ) ’ B )
SegEnc” - 37.05 13.03 - 32.62 87.44
+ Socratic Pret.” - 38.06 13.74 - 33.51 87.63
Qontsum™ - 3842 1350 - 34.03 87.72
Prompt 8K 30.52 9.77 2150 2633 85.89
PAdapter 8K 36.03 12.61 24.64 31.74 86.96
Lora 8K 36.40 12.10 2398 31.87 86.66
IDEAL prompt 8K 31.41 10.60 2227 27.19 86.08
IDEALpAdapter 8K 37.27 1390 26.32 32.73 87.19
IDEALL,rA 8K 38.67 14.42 26.28 34.24 87.29

Table 2: Comparison with baselines on SQUALITY and

QMSum.

achieved the best ROUGE-L and BERTScore on
SQUALITY, and the best ROUGE-L on QMSum.

3.6 LLM-based Evaluation

The results on reference-based metrics indicate that
our method achieves a certain level of effectiveness.
However, while these metrics are simple and fast,
they suffer from poor correlation with human evalu-
ators, lack interpretability, and fail to capture high-
level semantic qualities of summaries. To address
this, we employ GPTRank (gpt-40-2024-08-06) to
compare our method with the open-source state-of-
the-art (SOTA) approach, Socratic Pret (Pagnoni
et al., 2023), for evaluating the high-level semantic
qualities of summaries.

As shown in the table 3, while Socratic Pret
achieves comparable performance to IDEAL} k4

IDEAL},r4 on ROUGE-Lsum, the comparison
using GPTRank reveals a different perspective.
Across 254 test samples, IDEAL,r 4 outperforms
Socratic Pret in 214 cases, achieving an 84% win
rate. This indicates that although the SOTA non-
LLM method performs similarly to LLM-based
methods on certain metrics, it lags significantly
in terms of high-level semantic qualities. Further-
more, analysis of the GPTRank evaluations reveals
that summaries generated by Socratic Pret exhibit
more inconsistencies with the original article com-
pared to those generated by IDEAL; 4. Addi-
tionally, IDEAL,r4 produces more concise and
fluent summaries.

Models Win Lose Tie R-L R-Lsum BScore
SQUALITY Dataset

Socratic Pret 39 214 1 23.14 4228 85.86

IDEALL,ra 214 39 1 2554 4099  86.86

Table 3: GPTRank comparison between Socaric Pret.
and IDEALLORA .

Table 4 presents a comprehensive example com-
paring IDEAL,r4 and Socratic Pret using GP-
TRank, including the full prompt and GPT’s evalu-
ation response, except the full article due to space
consideration. We evaluate the quality of the two
summaries via prompt engineering with GPT, pro-
viding an explanation, a one-word reason for infe-
rior summaries, and an indication of the superior
summary (or a tie). To mitigate potential bias from
summary ordering, the order of the two summaries
was randomized in our experiments.

3.7 Ablation Study

IDEAL,r4 vs LORA by different training se-
quence length. To evaluate the effectiveness of
our approach under varying training sequence
lengths, we compared IDEAL,r4 and LoRA on
the SQUALITY dataset across training lengths rang-
ing from 1500 to 8000. Figure 4 illustrates the re-
sults in terms of ROUGE-L, ROUGE-Lsum, and
BERTScore metrics. The results demonstrate that
our method consistently improves performance on
the QFS task across different sequence lengths.

Performance vs Parameter Budget. As shown
in Figure 1, our Query-aware HyperExperts out-
perform the corresponding PEFT methods on the
QMSum (Golden) dataset while utilizing a compa-
rable amount of trainable parameters. Both LoORA



Prompt:

You will be provided with an article along with a query instruction and two summaries that respond to the query instruction,
numbered as follows: 1. Summary 1, 2. Summary 2. Please compare the quality of these two summaries and determine which
one is better (a tie is also possible). First, provide an explanation for your decision. Then, specify a one-word reason for why the
less favorable summary is inferior. Finally, give your decision in the format: 1, 2, or tie. Response format: Explanation: “Your
explanation here”. Reason: “One word reason”. Decision: 1 or 2 or tie.

Query Instruction: What is Gurn’s role in the story?

Article: Produced by Greg Weeks, Mary Meehan and the Online Distributed Proofreading Team at http://www.pgdp.net Raiders
of the Second Moon By GENE ELLERMAN A strange destiny had erased Noork’s memory,and had brought him to this tiny
world to write ...

Summary 1: Gurn is the leader of the wild Vasads of the jungle. He is a renegade from the walled city of Grath, and the
city rulers call him a traitor because he has spoken against the making of slaves of the captured Zurans from other valleys.

, and he has told _, Gurn, has told him the reason for the

exile. The reason is that the Zurans are no longer making slaves of other valleys, and Gurn believes that they should no longer

make them slaves. and tell him that the Misty Ones can be trapped and skinned.

Summary 2: Gurn is the leader of the Vasads, a group of people who live in the jungles of Sekk. He is a tall, golden-skinned man
with a bracelet of golden discs linked together with human hair. He is an exile from the walled city of Grath, and is considered a
traitor by the city rulers. He is Noork’s friend, and Noork tells Sarna that he has been friends with Gurn. Gurn is also the one
who gave Noork his short powerful bow.

GPT Response:

Explanation: Summary 2 provides a more accurate and concise depiction of Gurn’s role in the story. It highlights his leadership
position among the Vasads, his physical description, his exile status from Grath, his friendship with Noork, and his contribution
to Noork by gifting him a bow. On the other hand, Summary 1 contains factual inaccuracies, confuses Gurn’s relationship with
other characters, and includes irrelevant information, such as exiles and slavery, that is not central to understanding Gurn’s role.
Reason: “Inaccuracy”. Decision: 2.

Table 4: An example comparing summaries generated by IDEAL,r4 and Socratic Pret using GPTRank on
SQUuALITY dataset. The red-highlighted text indicates significant errors. In this example, Summary 1 is generated
by Socratic Pret, and Summary 2 is generated by IDEAL g 4.

memory consumption. Table 5 illustrates this trade-
g off, showcasing IDEAL,r4 performance on in-
L I J - et T ,LE‘)’;‘LLDRA put lengths of 1.6K, 3.8K, and 8K, requiring 24G,
c 2L e 40G, and 80G of memory, respectively. In con-
> 23 /,/ trast to IDEAL},r4, our proposed IDEAL%%I{‘"JC
n ;Z P ——— that integrated with Query-focused Infini-attention
§37 o ,L;::LLoRA exhibits memor;llv f}fﬁciency when handling long
o 361+ inputs. IDEAL%O 7 A"f maintains a consistent mem-
s s ory footprint of 24G regardless of the input length.
S 86 - QF_Inf
o e S — Notably, on the QMsum dataset, IDEAL} 7~
% e IDEAL,op outperforms IDEAL,r 4 with an input length of

851 =

1.6K on all metrics within the same 24GB mem-
ory constraint. Moreover, it surpasses IDEAL,r 4
with an input length of 3.8K in 40GB memory on
the ROUGE-L metric.

2000 3000 4000 5000 6000 7000 8000
Training Length

Figure 4: A comparison of LoRA and IDEAL,ra
under different training sequence lengths on SQUALITY
dataset.

4 Related Works

and PAdapter significantly underperform compared
to IDEAL,r4 and IDEAL p Aqqpter, respectively,

Query-focused Summarization. Tan et al.
(2020) and Yang et al. (2023b) address QFS by

even with the same or a greater number of train-
able parameters, underscoring the effectiveness of
HyperExperts.

3.8 Performance of Low Memory IDEAL

IDEAL k4 consistently demonstrates improved
performance as training input length increases.
However, this comes at the cost of increased GPU

prepending the query or aspect to the input doc-
ument and fine-tuning pre-trained models in an
end-to-end manner. Zhong et al. (2021), Wang
et al. (2022), and Amar et al. (2023) employ extract-
then-summarize strategies that use a filter model
to extract key parts of the document based on the
query, then fitting the shorter text into a summa-
rize. Vig et al. (2022) use an encoder to compute



Models H

QMSum Dataset

SQUALITY Dataset

LC R-L  R-Lsum BScore LC R-L  R-Lsum BScore
Lora 1.6K  19.58 25.25 84.93 1.6K  20.73  34.41 85.31
IDEAL;orA 1.6K 19.71 26.27 85.29 1.6K 21.16  34.73 85.52
38K 21.62 2846 85.94 38K 2254 37.54 85.83
8K 2628 34.24 87.29 8K 25.54  40.99 86.86
LoRA+Inf 0.8/6K 21.13  26.58 86.00 | 1.6/9K 20.59 34.76 85.02
IDEAL; pa+Inf || 0.8/6K 21.76  26.16 86.02 | 1.6/9K 21.68 34.81 85.28
w/o ReQ 0.8/6K 16.57 20.40 84.37 | 1.6/9K 17.89  30.62 84.13
IDEAL%f}gj"f 0.8/6K 22.16 27.05 86.16 | 1.6/9K 2149  34.86 85.54

Table 5: Comparing IDEAL%fﬁfl"f with Infini-attention based methods and IDEAL,r4 with different input
size. LORA+Inf and IDEAL 1,5 4+Inf denote the incorporation of Infini-attention into LoRA and IDEAL g4,
respectively. w/o ReQ indicates that the query instruction is not repeated at the end of the input document.

the local attention of a segmented document. The
resulting encodings are then concatenated into a
single embedding sequence and passed to a de-
coder model to generate the summary. Pagnoni
et al. (2023) introduce a question-driven, unsuper-
vised pre-training objective, specifically designed
to improve controllability in summarization tasks.
Sotudeh and Goharian (2023) propose a contrastive
learning method aimed at improving the relevance
of summaries to a given query. Yang et al. (2023a)
reveal that the performance of ChatGPT is compa-
rable to traditional fine-tuning methods in terms of
ROUGE scores on QFS tasks.

Long-context Transformers. LED (Beltagy
et al., 2020) employs a more efficient self-attention
pattern that allows the model to scale to long doc-
uments. Unlimiformer (Bertsch et al., 2024) en-
hances pre-trained models like BART (Lewis et al.,
2019) to handle unlimited inputs without addi-
tional learned weights by employing a retrieval-
based long-context method. Infini-transformer
(Munkhdalai et al., 2024) integrates long-term con-
text compressive memory into vanilla transform-
ers, enabling Transformer-based LLMs to scale
to infinitely long contexts after full continual pre-
training. Unlike the Infini-transformer, we explore
the compressive memory method on adapter-based
PEFT of LLMs and design a query-focused Infini-
attention for QFS tasks.

Hypernetwork-based Methods. Ivison and Pe-
ters (2022) investigate input-conditioned hypernet-
works for multi-tasking in NLP, which generate
parameter-efficient adaptations for a decoder using
a hypernetwork conditioned on the output of an en-
coder. He et al. (2022b) incorporate hypernetworks

into prompt-based, task-conditioning Transformer
models in a multi-task setting, allowing the net-
work to learn task-specific feature maps. Zhang
et al. (2024) employ hypernetworks to generate
adaptive parameter shifts for a visual projector and
an LLM in multimodal tasks.

5 Conclusion

In this paper, we propose IDEAL, an efficient
query-aware adaptation method on LLMs for QFS
tasks, which consists of two modules: Query-aware
HyperExpert and Query-focused Infini-attention.
The two modules enable LLMs to achieve fine-
grained query-LLM alignment efficiently and have
the ability to handle lengthy documents. Exper-
imental results demonstrate that our method im-
proves performance on reference-based metrics.
Furthermore, in pairwise comparisons against the
SOTA fine-tuning method, Socratic Pret (Pagnoni
et al., 2023), using the LLM-based evaluator GP-
TRank, our method achieved a win probability of
0.84, demonstrating its effectiveness.

Limitations

Due to the absence of longer QFS datasets currently
available, we explored IDEAL only on datasets
with input lengths around 10k. However, it is nec-
essary to validate IDEAL on datasets with longer
input documents, such as performing QFS tasks
across entire books. Further validation and opti-
mization of the IDEAL method on book-length
inputs would be both interesting and meaningful.
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A The detailed Query-focused
Infini-attention.

Memory compression. For the s-th segment
with length L, before computing the local at-
tention, we update the full context memory
M, € Rtkey*dvatue and the query-focused mem-
ory M giielry € Rkey*dvatue and a normalization
term z,_; € R%ey is then used for memory re-
trieval as follows:

Mfﬂl — Mgﬁg + U(Kcache)TVcache 4)

ngielry — Mgzie;y + U(Kcache)TVcache )

L

t
Zs—1 ¢ Zs—2+ E J(Kcache)
t=1

(6)

where o is a nonlinear activation function. Follow-
ing the work of Katharopoulos et al. (2020) and
Munkhdalai et al. (2024), we employ element-wise
ELU+1 as the activation function (Clevert et al.,
2015). The term (K )TV on the right side of
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Equation 4 and 5 is referred to as an associative
binding operator (Schlag et al., 2020). The query-
focused memory M 1" differs from the full con-
text memory only in the value states Vmche used
within the associative binding operator. We uti-
lize the query states Q¢ Of query instruction to
scale the value states and keep only query-related
information Vcache as

. . mean(Qquery)( iache)T
a; = sigmoid
dmodel
(7
Vcache =a0 Vcache- )
Here, we use the mean pooling of @, and the

key states to compute a related score for each rep-
resentation.

Memory retrieval. After updating the memory,
we retrieve new content A,y € RE*dvaiue gnd
.Aque,«y € RLx*dvatue from the full context memory
M, and the query-focused memory M"Y re-
spectively. This retrieval is performed using the
query states Q € RE*%key as follows:

_ J(Q)Mgﬁl
Aall - m (9)
_ (@MY

Long-term context injection. First, we apply a
linear layer to aggregate A, and Agyery. Then,
we aggregate the retrieved content and the local
attention A;,.,; using a learned gating scalar 3:

v = sigmoid(W g Aquery) 1D

Aret :7®Aquery+(1_7)®Aall (12)
A = sigmoid(B) ® Arer+

(1 — sigmoid(B8)) © Aiocar  (13)

where W, € R!*dvatue ig a trainable weight that
dynamically merges the two retrieved contents. 3
contains a single scalar value per head as a training
parameter, enabling a learnable trade-off between
the long-term and local information flows in the
model.
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Repeated query instruction. To incorporate
query instructions into the model, we concatenate
the query instruction with the document as the
model input. During local attention, the query
states Q ¢, Of the query instruction are utilized
to compute query-focused memory within each seg-
ment. However, when generating summaries, the
retrieved information from memory fails to effec-
tively guide the model in producing summaries that
adhere to the query instructions. To address this
issue, we employ a straightforward approach: we
replicate the query instruction at the end of the doc-
ument. This ensures that the query instruction is
within the window of the local attention compu-
tation when generating summaries, enabling the
model to generate query-relevant summaries accu-
rately.

B Additional Experiments and Analyses

B.1 Dataset statistics

Table 6 shows the detailed statistics of the datasets
used in our experiments. QMsum is a multi-domain
dataset for meeting summarization, covering Prod-
uct, Academic, and Committee meetings. QM-
sum(Golden) is a shorter version of QMsum where
documents only contain sections relevant to the
queries. SQUALITY is a public-domain dataset
for story summarization. Unlike others, SQuAL-
ITY includes multiple summaries for each ques-
tion. The input documents in the CovidET and
QMSum (Golden) datasets have token counts of
228 and 2670, respectively, when tokenized using
the LLaMAZ2 tokenizer. In contrast, the QMSum
and SQUALITY datasets feature longer input token
lengths, with 8071 and 13227 tokens, respectively.

B.2 Implementation Details

All IDEAL models are trained by the AdamW op-
timizer with a cosine annealing schedule after the
warmup starts. The warmup epochs, batch size,
learning rate, and weight decay are set to 1, 32,
0.006, and 0.02, respectively. We use the validation
set to find the optimal epochs for each dataset. Dur-
ing the generation stage, we adopt top-p sampling
as the default decoding method with a temperature
of 0.1 and a top-p value of 0.75.

For IDEAL pyompt, we follow LLaMA-Adapter-
vl (Zhang et al., 2023), adopting a prompt length
K = 10 and applying prompts to the last 30 layers,
with the prompts of the last 15 layers are generated.
For IDEAL p gqapter, adapters are applied to the



Type Dataset Domain #Instances #Input Tk  #Output Tk #Queries
Query QMSum  Meeting 1808 13227(2670%) 88 1566
SQuALITY  Story 625 8071 306 437
Aspect  CovidET Reddit 7122 228 32 7

Table 6: Statistics of query/aspect-based summarization datasets. #Instances represents the total number of
(document, summary) pairs in the corresponding dataset. #Input Tk and #Output Tk denote the number of input
and output token lengths under the LLaMA2 tokenizer, respectively. #Queries indicate the number of unique queries
or aspects appearing in the dataset respectively. 2670* represents the number of input tokens for QMsum(Golden).

first 16 layers and generated for the last 16 layers.
For IDEAL,r4, only the A matrix in the LoORA
module is generated for the last 16 layers.

All LLaMA-based models in our experiments
use Automatic Mixed Precision, with 16-bit for
frozen parameters and 32-bit for trainable parame-
ters to conserve memory. Additionally, we employ
Flash-Attention2 (Dao, 2024) to accelerate model
training and inference for LLaMA-based models.
All models in our experiments can be trained on
at least a single 24GB Nvidia GeForce RTX 3090,
except for the large local context size setting for
long documents.

For the BART model baselines, we use the Hug-
gingFace Transformers library and the AdamW
optimizer. We set the batch size, learning rate,
and weight decay to 32, 0.0001, and 0.1 respec-
tively, and used the validation set to find the opti-
mal epochs for each dataset.

B.3 Ablation Study

The layers to generate parameters. Table 7
presents the results of IDEALz,r4 on the QM-
sum (Golden) dataset when generating LoRA pa-
rameters for different numbers of layers using a
hypernetwork. The results indicate that generating
parameters for the last 16 layers achieves the best
performance.

Layers R-1 R-2 R-L R-Lsum BScore Params(M)
8-32 40.04 16.56 29.06 3571 87.77 24.55
16-32 40.85 16.89 29.67 36.66 87.83 23.76
24-32 40.73 1636 28.96 3622 87.76 22.98

- 40.69 16.11 28.84 36.18 87.71 23.07

Table 7: Different number of layers that the LoRA
parameters are generated of IDEAL;,r4 on QM-
sum(Golden) dataset. 16-32 indicates that the LoRA
parameters from layers 16 to 32 are generated by the
Hypernetwork. - indicates no generated parameters.

Different configuration of HyperExpert. Ta-
ble 8 shows the experimental results for four
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adapter parameter generation configurations: paral-
lel versus sequential generation, and using different
or shared encoders within HyperExpert. Parallel
generation with different encoders yields the best
performance.

Gen Enc R-1 R-2 R-L R-Lsum BScore Params(M)
Para Diff 40.85 16.89 29.67 36.66 87.83 23.76
Seq Diff 40.49 16.56 28.95 35.99 87.70 23.76
Seq Share 40.57 16.40 29.01 36.25 87.76 19.83
Para Share 40.43 16.62 28.82 36.18 87.76 19.83

Table 8: Four configurations for generating adapter
parameters on QMsum (Golden) are evaluated: Para
denotes parallel generation, while Seq refers to sequen-
tial generation. Diff indicates that the encoder in Hyper-
Expert corresponds to the number of transformer layers
generating parameters, whereas Share represents the
use of a single shared encoder layer.

The diversity of generated parameters. To in-
tuitively illustrate the diversity of parameters gen-
erated by the IDEAL model, we applied the t-SNE
algorithm to visualize the adapter parameters of a
selected layer in two dimensions on the QMSum
and SQUALITY test sets. As shown in Figure 5, the
generated parameters exhibit distinct distributions
across the two datasets, with clearly identifiable
clusters. This demonstrates that IDEAL can dy-
namically generate adapter parameters conditioned
on the query.
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Figure 5: t-SNE Visualization of Query-based Parame-
ters’ Dynamic Characterizations.



The input representation of HyperExpert. Our
HyperExpert takes the representation of the query
instruction as input. For comparison, we conducted
experiments using the representations of the doc-
ument and the combined query and document as
inputs. The results in table 9 show that using only
the query representation as input achieves the best
performance, while using the combined query and
document representation yields the second-best re-
sults.

Input R-1 R-2 R-L R-Lsum BScore
Query 40.85 16.89 29.67 36.66 87.83
Document 40.17 16.10 28.84 35.84 87.70
Query&Document 40.23 1647 29.14 3584 87.60

Table 9: Different input representation of IDEAL g4
on QMsum(Golden).

The effectiveness of each module in
IDEAL%féi”f . In Table 5, we evaluated

the effectiveness of Query-focused Infini-attention
through comparative testing.  First, we im-
plemented Infini-attention based on LoRA as
Lora+Inf and observed significant improvements
compared to LoRA alone under the same GPU
memory constraints, with increases of 1.55 and
1.33 points in ROUGE-L and ROUGE-Lsum
on QMSum dataset, respectively. These results
indicate that compressing the key-value states of
historical segments enables the summarization
of long documents within limited GPU memory.
Furthermore, we enhanced IDEAL;,r4 with
Infini-attention, achieving better results than
Lora+Inf in ROUGE-L. The IDEALY -\
outperformed both IDEAL} g 4+Inf and Lora+Inf
in all metrics, demonstrating that our proposed
Query-focused Infini-attention effectively com-
presses query-related information. For the
IDEALr,rA+Inf method, we observed a sig-
nificant decline in all metrics after removing
the repeated query instruction at the end of the
input document, demonstrating the necessity of
repeating the query instruction.

Local context size of IDEAL?f éj"f . Figure 6a
presents the performance of IDEALCL2 f éi"f
der varying local context sizes (LC). On the QM-
Sum dataset, the model exhibits stable performance
when LC exceeds 400, achieving nearly the best
overall performance at LC=800. Similarly, on the
SQUALITY dataset, the optimal LC is observed at

1.6K. These findings indicate that IDEAL%J P:i"f

un-
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differs from IDEAL,r4, the limited memory for
the former is enough to handle extremely long in-
puts.

Max input length of IDEALY' 1"/, Figure 6b
presents the optimal max input length for
IDEAL(gf P:inf on the QMsum and SQuUALITY
datasets.

QMSum
SQUALITY

QMSum
SQUALITY

2000 4000 6000 8000 10000 12000
Max input size

500 1000 1500

Local context size

200

(b) Performance with respect
to the different max input
length of IDEALY 17

(a) Performance with respect
to the different local context
size of IDEALY 2007

Figure 6: Local and max input length of IDEAL%%Q""C

B.4 The performance under LLaMA?2 and
LLaMA3 backbones.

Table 10 shows the comparison of IDEAL,r4
under LLaMA2-7B and LLaMA3-8B, LLaMA3.1-
8B backbones with the same 24GB GPU mem-
ory. Due to the higher memory consumption of
IDEAL [ ,r4 with the LLaMA 3 series backbone,
resulting in a smaller local context size, evaluations
show that it performs better with the LLaMA2-7B
backbone given the same GPU memory. There-
fore, in the low-memory experiments presented in
Table 5, LLaMA2-7B was used for all models ex-
cept IDEAL,r 4 with an 8K context length, which
used LLaMA 3.1-8B.

B.5 Training Time Comparison

Table 11 shows the comparison between our meth-
ods and baselines. IDEAL,r4 doesn’t increase
training time compared to LoRA. IDEAL%(%I{‘"JC
slightly increases training time compared to
IDEAL,pa+Inf and LoORA+Inf.

B.6 Human Evaluation

To ensure a fair evaluation, we conducted a human
evaluation of the summaries generated by BART-
Large, LoRA (LLaMA2-7B), and IDEAL;,ra
(LLaMA2-7B) on the QMSum (Golden) dataset,
all using identical computational resources. Each
model was tested using a 3090 (24GB) GPU. We
recruited three well-educated evaluators and ran-
domly selected 50 samples to evaluate the summary



Models Backbone LC R-1 R-2 R-L R-Lsum BScore Params(M)

IDEAL;,r4a LLaMA2-7B 1.6K 40.82 16.61 29.00 36.08 87.68 24.5
IDEAL;,r4a LLaMA3-8B 1K 3999 15.63 27.89 3534 87.54 23.8
IDEAL;,r4 LLaMA3.1-8B 1K 3990 16.06 28.55 35.57 87.48 23.8

Table 10: The comparison under LLaMA?2 and LLaMA3, LLaMA3.1 backbones on QMsum(Golden) dataset with
24GB GPU memory.

Models LC Time/Epoch
Lora 1.6K 11min
IDEAL,rA 1.6K 1 1min
LoRA+Inf 0.8/6K 45min

IDEAL,z+Inf 0.8/6K  46min
IDEALY S0 0.8/6K  50min

Table 11: Training time per epoch with 2 Nvidia
GeForce RTX 3090 GPUs in data parallel mode on
the QMSum dataset.

quality of the three models from two aspects: Cor-
rectness and Coverage (Wang et al., 2022). For
each sample, the evaluators read the document and
the corresponding question, then selected the best
and worst summary among the three. In each case,
we randomized the order of the summaries from
the three models. The task instruction are detailed
in Figure 7.

As shown in table 12, although the BART-Large
model did not lag far behind the other two models
in terms of the ROUGE-L metric, it received signif-
icantly fewer "Best" summary votes and the most
"Worst" votes. This may be because the LLaMA-
based methods benefit from the understanding and
reasoning capabilities of LLMs. IDEAL},r4 re-
ceived 13 more "Best" votes compared to LoRA
and had the fewest "Worst" votes, far less than
LoRA’s 46 and BART-Large’s 75. This demon-
strates that our proposed Query-focused PEFT
method is indeed effective for QFS tasks.
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Models LC Best Worst Correctness Coverage Rouge-L

Bart-Large 1K 33 75 33 29 25.25
LoRA(LLaMA2-7B) 1.6K 52 46 3.6 34 27.36
IDEAL;,ra(LLaMA2-7B) 1.6K 65 29 3.7 3.6 29.00

Table 12: The human evaluation results of model-generated summaries obtained using the same 24G memory GPU
on the QMSum (Golden) dataset. We summed the votes of the three evaluators for the Best and Worst metrics. For
Correctness and Coverage, we first calculated the average for all samples, and then computed the mean across the
three evaluators.

Task Instructions

You are required to complete the evaluation of 50 documents within two days. Each document is
accompanied by a question and three different summary responses. Your task is to score each of
the three summaries based on Correctness and Coverage using a scale from 1 to 5. After
scoring, you need to select the best and worst summary for each document based on your
evaluations of these two criteria.

To ensure the quality of your assessments, please take breaks during the process.
Definitions:

o Correctness: Evaluates the presence of factual errors in the summary. A factual error is
defined as a statement that contradicts the document, is not directly stated, or is not
heavily implied or logically entailed by the document.

e Coverage: Measures how comprehensively the summary includes all relevant
information and details from the document that are necessary to answer the question.

Example Evaluation: For Document 15, the scores might look like this:
e A: 3 (Correctness), 4 (Coverage)
e B:5 (Correctness), 3 (Coverage)
e C: 2 (Correctness), 4 (Coverage)
e Best:B
e Worst: C

Format your results in one line per document as shown in the example:

Doc 15, A:3 4, B:5 3, C:2 4, Best:B, Worst:C

Figure 7: Task instructions of Human evaluation.
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