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ABSTRACT
In recent years, immersive communication has emerged as a com-
pelling alternative to traditional video communication methods.
One prospective avenue for immersive communication involves
augmenting the user’s immersive experience through the trans-
mission of three-dimensional (3D) talking heads (THs). However,
transmitting 3D THs poses significant challenges due to its com-
plex and voluminous nature, often leading to pronounced distortion
and a compromised user experience. Addressing this challenge, we
introduce the 3D Talking Heads Quality Assessment (THQA-3D)
dataset, comprising 1,000 sets of distorted and 50 original TH mesh
sequences (MSs), to facilitate quality assessment in 3D TH transmis-
sion. A subjective experiment, characterized by a novel interactive
approach, is conducted with recruited participants to assess the
quality of MSs in THQA-3D dataset. Leveraging this dataset, we also
propose amultimodal Quality-of-Experience (QoE)method incorpo-
rating a Large Quality Model (LQM). This method involves frontal
projection of MSs and subsequent rendering into videos, with qual-
ity assessment facilitated by the LQM and a variable-length video
memory filter (VVMF). Additionally, tone-lip coherence and silence
detection techniques are employed to characterize audio-visual co-
herence in 3D MS streams. Experimental evaluation demonstrates
the proposed method’s superiority, achieving state-of-the-art per-
formance on the THQA-3D dataset and competitiveness on other
QoE datasets. Both the THQA-3D dataset and the QoE model have
been publicly released at https://github.com/zyj-2000/THQA-3D.
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1 INTRODUCTION
After years of persistent efforts, significant advancements have
been achieved in image and video-related domains [17, 28, 35].
Video communication, offering not only audio transmission but
also real-time visual presentation, has substantially enhanced user
experiences during communication, emerging as a pivotal achieve-
ment in societal interaction. Nevertheless, traditional video com-
munication is constrained by viewpoint limitations, restricting the
visual information conveyed to users. Consequently, the growing
demand for immersive communication methods underscores the
need for advancements in communication and media technolo-
gies. Within this context, three-dimensional (3D) talking head (TH)
sequences are considered as a viable and promising technical solu-
tion to further enhance the immersion and interactivity of face-to-
face communications. 3D THs offer users a wider array of viewing
angles compared to traditional video communication, fostering a
more immersive communication experience. However, the inherent
voluminous nature of 3D THs necessitates artificial compression
before transmission. Furthermore, the real-time dynamics of the
transmission channel introduce delays, latency, and code stream
transformations, exacerbating the challenges associated with 3D
TH transmission. Both artificial processing and channel dynam-
ics impact the communication experience of users significantly.
Consequently, effective assessment and monitoring of 3D TH com-
munication quality at user terminals hold paramount importance
for optimizing communication system designs and enhancing user
experiences.

However, conducting related quality assessment tasks poses sig-
nificant challenges. On one hand, the production and collection of
3D THs entail substantial time and financial resources, resulting in
few relevant datasets being available and impeding further devel-
opment. On the other hand, the intricate data structures and large
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Table 1: The comparison of 3D quality assessment databases and proposed database.

Database Type Models Distortions Description
BASICS [1] PCQA 1,494 GPCC, VPCC, GeoCNN [31] Humans, Animals, Architectures, Landscapes
WPC [21] PCQA 740 GPCC, VPCC, Gaussian noise, Downsampling Fruit, Vegetables, Tools

SJTU-PCQA [49] PCQA 420 Octree, Downsampling, Noise Humans, Statues
LS-PCQA [23] PCQA 1,080 Downsampling, Noise, GPCC, VPCC Animals, Humans, Vehicles, Daily objects
DHH-QA [63] MQA 1,540 Noise, JPEG, Downsampling, Quantization Scanned Real Human Heads
DDHQA [62] MQA 800 Noise, JPEG, Downsampling, Quantization, Motion Distortions Dynamic 3D Digital Human
SJTU-H3D [58] MQA 1,120 Noise, JPEG, Downsampling, Quantization Static 3D Digital Humans
6G-DTQA [66] MQA (QoE) 400 JPEG, Downsampling, Quantization, Stall, Rebuffer Digital Twins Transmitted Under 6G Networks

THQA-3D (Proposed) MQA (QoE) 1,000 Quantization, Stall, Rebuffer, Conversion, Synchronization Scanned Real Human Heads

data volumes characterizing 3D data impose rigorous demands on
existing communication systems, computational processing infras-
tructure, and algorithmic frameworks.

In this study, we address the challenge of data acquisition by
leveraging existing resources. Specifically, we utilize 10 TH mod-
els sourced from the MultiFace dataset [48] introduced by Meta,
employing subsequent processing to generate 1,000 distorted and
50 original mesh sequences (MSs). This endeavor culminates in
the establishment of the 3D Talking Heads Quality Assessment
(THQA-3D) dataset. Subsequently, we conduct a series of subjec-
tive and objective experiments on THQA-3D dataset for further
research and analysis. The subjective evaluation entails the partici-
pation of volunteers in a well-organized manner, where the mean
opinion score (MOS) serves as the definitive metric for assessing
MSs’ quality. On the other hand, we introduce a projection-based
Quality-of-Experience (QoE) approach for the objective evalua-
tion, simplifying the processing and quality assessment of mesh
streams. Furthermore, the proposed method augments multimodal
quality sensing capabilities through the incorporation of tone-lip
coherence features and a large quality model (LQM). Experimen-
tal results demonstrate the superior performance of the proposed
method compared to existing objective evaluation techniques on the
THQA-3D dataset and representative QoE dataset. Consequently,
the contributions of this paper are threefold:

• The THQA-3D dataset is established for quality assessment
for the 3D THs. This dataset simulates 7 common types of
distortion during 3D streaming media transmission, provid-
ing a total of 1000 distorted MSs. Besides, the 50 original
MSs are also provided in the proposed dataset.

• A user-interactable subjective quality evaluation method is
designed for 3D streaming media containing audio. Under
the condition of using a 2D monitor, the user can shift the
viewpoint to observe the 3D streaming media by using the
mouse.

• A multimodal QoE method assisted by LQM is proposed. In
addition, the variable-length video memory filter (VVMF)
proposed in this paper can effectively improve the visual
perception of 3D MSs.

2 RELATEDWORK
2.1 Video Communication
In recent decades, advancements in communication technologies
have significantly facilitated both industrial production and daily
life activities. Particularly noteworthy is the refinement of video
communication technology, which has enabled seamless real-time

interactions, ranging from individual video calls to group web con-
ferences. However, despite these advancements, certain limitations
inherent to video communication have become increasingly ap-
parent. Primarily, the 2D nature of video media fails to capture
the depth and 3D information present in face-to-face interactions,
thereby limiting the fidelity of visual experiences during video
communication. Additionally, the constrained viewpoint of video
capture devices restricts users to passive reception of content from
specific angles, precluding the provision of truly immersive commu-
nication experiences. Furthermore, the limited interactivity options
offered by traditional video communication platforms further di-
minish user engagement and satisfaction levels. Consequently, con-
temporary communication expectations extend beyond real-time
interaction, with users now seekingmore immersive and interactive
experiences.

In response to these evolving demands, immersive real-time
video communication has emerged as a prominent trend in the field
[12, 29, 50]. Although still in its nascent stage, immersive video com-
munication is commonly associated with the transmission of 3D
data, representing a departure from conventional 2D video streams.
Within this context, two prevalent 3D data structures, namely point
clouds and meshes, hold particular promise for immersive video
applications. While point clouds offer a simpler data representation
using discrete points to convey the position and color of 3D objects
[55, 57, 65, 70], meshes provide a more detailed characterization,
delineating each polygonal facet through vertices, edges, and nor-
mals [5, 64, 69]. Consequently, meshes are chosen in this study as
the preferred data structure for modeling 3D THs, enabling a more
accurate depiction of facial features and expressions.

2.2 3D Quality Assessment & QoE
The exploration of 3D data has emerged as a focal point of con-
temporary research [2, 39, 53, 59]. High-fidelity 3D data not only
enhances subjective visual experiences for users but also facilitates
computational processing in critical downstream tasks such as 3D
detection and segmentation. Consequently, the evaluation of 3D
data quality has become imperative. Presently, quality assessment
methodologies for 3D data are categorized based on the type of data,
including point cloud quality assessment (PCQA) [54, 55, 57, 60, 65]
and mesh quality assessment (MQA) [61, 64, 69]. Table 1 summa-
rizes relevant datasets in this domain, yielding several notable ob-
servations. Firstly, both point clouds and meshes are susceptible
to various quality degradations during transmission and process-
ing. Notably, noise, compression, and downsampling are prevalent
distortions encountered in point clouds, whereas meshes exhibit
a broader spectrum of distortion types. Besides, existing quality
assessment datasets predominantly focus on single static point
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Figure 1: Overview of the selected humanheads. The ID below
the model remains the same as in MultiFace.

Table 2: Speech ID and the corresponding sentences.

Speech ID Total Sentences
DTMC Do They Make Class biased decisions
GCYS Go Change Your Shoes before you turn around
IDCT If Dark Came They would lose her
IHTC Its Healthier To Cook without sugar
TSBP The Small Boy Put the worm on the hook

clouds or meshes, with limited consideration given to dynamic 3D
sequences.

On the other hand, while many streaming media datasets and
QoE quality evaluation algorithms have been proposed, QoE qual-
ity evaluation for 3D streaming media has received little attention.
Although Zhang et al. introduced the 6G-DTQA dataset [66] for
dynamic digital twin QoE assessment under 6G network communi-
cation conditions, its scope remains constrained, featuring a small
number of personas and a limited dataset volume. Moreover, the
synthetic nature of the dynamic digital twin images, generated
using artificial intelligence (AI), introduces discrepancies compared
to real captured character dynamics. Notably, crucial distortion
types such as code-stream transformation and audio-visual syn-
chronization are overlooked in the 6G-DTQA dataset, despite their
substantial impact on user experience. In contrast, the proposed
THQA-3D dataset presented in this study leverages real-time dy-
namic THs captured through sensors, comprehensively simulating
major distortion types affecting QoE. This includes quantization
distortion, jamming, buffering, code-stream transformations, and
audio-video synchronization. Through comparative analysis with
existing datasets, the THQA-3D dataset emerges as a comprehensive
resource for guiding QoE quality assessment in 3D data transmis-
sion scenarios.

3 DATABASE CONSTRUCTION
3.1 Source Models Collection
The THQA-3D dataset proposed in this study draws its original
TH models from the MultiFace dataset [48] introduced by Meta.
Thus, a succinct overview of the MultiFace dataset is provided
as follows. The MultiFace dataset comprises 13 distinct identities,
each represented by high-quality textured mesh heads. Utilizing
a multi-camera capture studio named Mugsy, facial expressions
and details are captured from multiple perspectives at a frame

Figure 2: Phonetic attributes of the selected audio.

Table 3: Summary of the generated distortions.

Type Distortions Description

Discontinuity BU Buffer at the Beginning
ST Stuck in the Middle

Encoding Parameters PQ Position Quantization
TQ Texture Coordinate Quantization

Code Rate BR Bit Rate Change
Synchronicity AO Audio Overdrive Video

VO Video Overdrive Audio

rate of 30 frames per second (FPS). Notably, MultiFace offers high-
fidelity streams of MSs and texture streams, each texture with a
resolution of 1024×1024, for the 13 identities. These sequences
depict individuals narrating 50 sentences of speech, accompanied
by corresponding audio files. As depicted in Fig. 1, ten individuals
(comprising 5 males and 5 females) are selected as raw data to
construct the THQA-3D dataset. It is pertinent to mention that each
talking head model is characterized by 6,172 vertices and 12,294
facets.

Furthermore, for each person, as delineated in Table 2, five fixed
voices are chosen from a total of 50 voices for the QoE quality
assessment study. To ensure the representativeness of the selected
voices, a phonological analysis is conducted on the 50 selected
voices. Specifically, the cepstrum method is employed to estimate
formant frequencies for each speech, the results of which are de-
picted in Fig 2. The analysis reveals several key insights: Firstly,
the first formant frequencies of the 50 speech sounds range from
750Hz to 1050Hz, while the second formant frequencies range from
2750Hz to 3450Hz, indicating comprehensive distribution across
both formant frequencies and rich phonological features. Moreover,
across different subjects, the speech of the same sentence exhibits
greater similarity in formant frequencies, reflecting a certain degree
of pronunciation consistency. However, variations in pronunciation
consistency are observed across different sentences, indicative of
individual idiosyncrasies in pronunciation habits. Overall, the 50
selected speech sounds exhibit rich phonological features, encom-
passing individual differences while maintaining consistency in
word pronunciation, thus affirming their representativeness.

3.2 Distortion Generation
As indicated in Table 3 and Fig. 3, during the establishment of the
THQA-3D dataset, we systematically consider potential distortions
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Figure 3: An overview of the effects produced by generat-
ing distortion. On the left is a visualization of the effects of
encoding parameter distortion, and the effects of streaming-
related distortion are depicted on the right.

affecting the MSs from four distinct perspectives: namely, the con-
tinuity of the MSs, the different encoding parameters, the random
change of the code stream, and the audio-visual consistency.

3.2.1 Discontinuity. Prior research [16, 30, 36] has elucidated buffer-
ing and lagging as prominent factors impacting the quality of video
streaming. Consequently, these distortions are equally pertinent in
modeling discontinuities within 3D MSs. Specifically, to simulate
initial buffering effects, a buffering time parameter 𝑇𝑟 ∈ [1, 2] is
introduced, indicating the duration of buffering preceding the on-
set of the 3D MSs. Subsequently, the first mesh model is replicated
𝑇𝑟 × 𝐹𝑃𝑆 times to emulate the buffering period. Similarly, for stuck
incidents, a parameter 𝑇𝑠 ∈ [1, 2] denotes the duration of stuck
episodes. Given that the shortest speech segment lasts only 3 sec-
onds, all stuck events are introduced after the initial 2 seconds to
ensure uniform addition. Thus, mesh models at the 2-second mark
are replicated 𝑇𝑠 × 𝐹𝑃𝑆 times and inserted following the 2-second
mark to simulate stuck effects consistently.

3.2.2 Encoding Parameters & Code Rate. Similar to conventional
communication systems, the encoding and decoding processes are
indispensable for transmitting 3D MSs, inevitably subjecting 3D
contents to varying degrees of distortion. Notably, the choice of
encoding parameters holds significant sway over user experience,
particularly in the case of mesh representations. To explore this
phenomenon, this study selects two common distortions of coding
parameters: position quantization and texture coordinate quantiza-
tion. These distortions are simulated using the Draco1, generating
four distinct levels of coding parameter distortion. Specifically, the
position quantization level is set as 𝑞𝑝 ∈ [6, 7, 8, 9] while the texture
quantization level is set as 𝑞𝑡 ∈ [4, 5, 6, 7]. Besides, in most adaptive
code rate systems, the transmitting end adjusts coding parameters
in real time based on the system’s instantaneous state, resulting in
fluctuations in code rates. To capture these dynamics, this study
models two variations: code rate boost and code rate drop. Initially,
a coding parameter configuration of 𝑞𝑝 = 8 and 𝑞𝑡 = 6 serves as the
baseline code rate. Combining the two types of coding parameters,
1https://github.com/google/draco

Figure 4: Illustration of 3D Mesh Streaming Media Delivery.

Table 4: Details of the selected TH MSs.

ID Gender Number of Meshes
DTMC GCYS IDCT IHTC ISBP

#002421669

Male

93 115 124 113 99
#002643814 89 93 79 82 96
#5372021 149 165 123 141 139
#6674443 107 131 75 113 122
#6795937 142 117 135 118 130
#002645310

Female

144 134 127 137 146
#002914589 104 102 100 98 96
#5067077 111 101 109 109 135
#7889059 116 123 118 116 101
#8870559 163 140 114 122 140

𝑞𝑝 and 𝑞𝑡 , four code rate change levels are devised and expressed
by𝐶𝑟 ∈ [−2,−1, +1, +2], where a positive sign indicates an increase
in both types of coding parameters, while a negative sign indicates
a decrease in both types of coding parameters.

3.2.3 Synchronicity. Due to potential blocking and delays inherent
in the communication process, instances of audio-visual asynchrony
may manifest in transmitted MSs. However, human perceptual sen-
sitivity to such audio-visual misalignments is notably high. Conse-
quently, this study endeavors to simulate two types of audio-visual
misalignment effects: video overdrive and audio overdrive. These
two forms of misalignment are characterized by two distinct levels,
denoted by 𝑇𝑣 ∈ [0.5, 1] and 𝑇𝑎 ∈ [0.5, 1] separately.

3.3 3D Mesh Streaming Preparation
In the absence of a standardized protocol for 3D MSs transmission,
it is imperative to delineate a communication model tailored to 3D
MSs. Leveraging insights from conventional video transmission
paradigms, we conceptualize each TH model as an individual 3D
frame as shown in Fig. 4. Each 3D frame comprises a mesh, hous-
ing geometric information exclusively, and a texture map compo-
nent, encapsulating texture and color. The sequential arrangement
of these 3D frames imparts temporal continuity to the otherwise
static mesh. Notably, for 3D MSs incorporating audio, such as THs,
inclusion of an audio file containing voice information alongside
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Figure 5: Blender interface for subjective experiments. The
timestamp at the bottom can be adjusted at will.

the corresponding 3D frames is necessitated. Consequently, the
mesh, texture map, and audio file are treated as distinct entities,
subject to separate compression and transmission processes during
communication transfer. To this end, Google’s Draco is employed
for mesh compression, while JPEG [24, 44] serves as the compres-
sion algorithm for texture maps, and MP3 [3] is utilized for audio
compression.
On the receiving end, the transmitted stream of 3D meshes can be
reconstructed through decoding of the 3D frames and audio files.
The data listed in Table 4 illustrates the number of encoded 3D
frames for each subject when speaking different sentences. Notably,
we adhere to the original parameter configuration outlined in Mul-
tiface [48], maintaining 30 FPS during the transmission of 3D mesh
streams. As a consequence, the number of 3D frames in this dataset
is contingent solely upon the duration of speech segments.

3.4 Subjective Experiment
Given the unique characteristics of mesh streaming, a multimodal
3D streaming subjective experiment is devised, adhering to es-
tablished experimental methodologies in terms of experimental
settings and equipment. The subjective assessment is conducted
in a meticulously controlled laboratory environment, following
the guidelines outlined in ITU-R BT.500-13 [4]. An iMac monitor
supporting a resolution of 4096 × 2304 pixels is utilized for the
presentation of MSs, while wired headphones of superior sound
quality are employed for audio perception, ensuring both a serene
testing atmosphere and real-time audio.

Specifically, as illustrated in the Fig. 5, a total of 1,000 groups of
distorted MSs are imported into Blender2 using the Stop-motion-
OBJ plugin3 in advance. Additionally, the corresponding audio files
are integrated into the Blender via added speakers, resulting in
1,000 Blender project files housing complete MSs. Subsequently,
26 male and 24 female participants are recruited to take part in
the subjective quality assessment experiment. Different Blender
projects are randomly accessed and showcased on the monitor,
affording participants the freedom to manipulate viewing angles
using the mouse, thereby observing the flow of MSs from diverse
perspectives. Moreover, participants are afforded the flexibility to
adjust timestamps for playback of themesh stream or halt at specific
3D frames for detailed scrutiny. Throughout the playback session,

2https://www.blender.org/
3https://github.com/neverhood311/Stop-motion-OBJ

(a) (b)

(c) (d)

Figure 6: Distributions of the MOSs.

audio playback is facilitated through wired headphones. Ultimately,
participants are tasked with evaluating the quality of each mesh
stream in tandem with audio-visual perception. It is worthwhile
to additionally note that this subjective experiment uses Absolute
Category Rating (ACR) for quality assessment.

To mitigate potential discomfort [8, 37, 67] arising from pro-
longed exposure to 3D content, the experiment is divided into 10
phases, each comprising 100 MSs. Participants are restricted to one
phase per day to prevent overexertion. Consequently, a total of
50,000 = 50 × 1,000 subjective ratings are collected upon conclusion
of the experiment.

3.5 Subjective Data Processing
Based on previous work [56, 58, 62, 63, 66, 68], the commonly used
z-scores are computed through the collection of subjective ratings.
This process can be represented as:

𝑧𝑖 𝑗 =
𝑟𝑖 𝑗 − 𝜇𝑖

𝜎𝑖
, (1)

where 𝑟𝑖 𝑗 denotes the quality rating provided by the 𝑖-th subject on

the 𝑗-th 3DTH stream, 𝜇𝑖 = 1
𝑁𝑖

∑𝑁𝑖

𝑗=1 𝑟𝑖 𝑗 ,𝜎𝑖 =
√︃

1
𝑁𝑖−1

∑𝑁𝑖

𝑗=1
(
𝑟𝑖 𝑗 − 𝜇𝑖

)
,

and 𝑁𝑖 is the number of 3D TH MSs assessed by subject 𝑖 . Fur-
thermore, quality ratings from unreliable subjects are discarded
following the subject rejection procedure recommended in [4]. Sub-
sequently, the obtained z-scores undergo linear rescaling to the
range [0, 5]. The MOS of 3D TH stream 𝑗 is then computed by
averaging the rescaled z-scores.

3.6 Subjective Data Analysis
To provide a more visual representation of the subjective experi-
ment outcomes, a histogram is generated for the processed z-scores,
as depicted in Fig. 6(a). Furthermore, to delve deeper into the in-
fluence of various factors such as the 3D head models, selected
speech, and different distortion types on subjective human per-
ception, Fig. 6(b-d) are plotted, respectively. Upon examination of
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Figure 7: The framework of the proposed QoE model.

Fig. 6(a), it is discernible that the MOSs of the 3D TH sequences ex-
hibit a concentration around 2.0, with fewer instances of sequences
exhibiting exceptionally low or high quality. This observation im-
plies that the distortions endured by the 3D TH sequences within
the THQA-3D dataset do indeed impact human audiovisual per-
ception to varying degrees. Conversely, the analogous distribution
patterns depicted in Fig. 6 (b) and (c) suggest that subjective audiovi-
sual perception of the 3D TH sequences exhibits no significant cor-
relation with either the selected head models or the speech content.
This finding underscores the versatility of the THQA-3D dataset,
which can be effectively applied across different 3D head images
and corresponding speech segments. Finally, Fig. 6(d) illustrates
that distinct distortion types manifest differing quality distributions,
implying that disparate forms of distortion exert distinct effects on
subjective perception. This underscores the critical importance of
conducting quality assessment on streaming sequences of 3D THs.

4 PROPOSED QOE MODEL
In this section, a novel QoE approach is proposed and details are
given. The comprehensive model framework is illustrated in Fig. 7,
encompassing three primary components: video quality assessment
aided by the Large Quality Model (LQM), detection of audio-video
consistency, and identification of discontinuities.

4.1 Frontal Projection
Firstly, a 3D TH composed of mesh can be represented according
to prior research [69] as:

𝑀 ∈ {{𝑣 |𝑣 ∈ 𝑉 }, {𝑛𝑣 |𝑛𝑣 ∈ 𝑁𝑉 }, {𝑒 |𝑒 ∈ 𝐸}}, (2)
where 𝑉 , 𝑁𝑉 , 𝐸 represent the sets of vertices, normal vectors, and
edges of the mesh, respectively. Furthermore, a set of 3D TH MSs
can be denoted as:

𝑀𝑆 = {𝑀𝑖 |𝑖 = 1, 2, ...,𝑇𝑑 }, (3)

where 𝑇𝑑 denotes the duration of the MS. As observed from the
equations above, 𝑀𝑆 constitutes a chronological stream of MSs

composed of 𝑀𝑖 . Given the complex data structure of the mesh,
direct computational operations on a stream of 3DMSs entail signif-
icant overhead. Utilizing a projection method, as demonstrated in
prior studies [63, 69], offers a viable alternative. These research also
indicates that the frontal aspect of a face encompasses rich facial
details and expressive movements. Thus, by rendering a frontal
projection of a 3D TH, it is possible to preserve the effective infor-
mation contained within the 3D mesh. Consequently, the center
position 𝐶 can be calculated for each TH:

𝐶 = 1
𝑁𝑣

𝑁𝑣∑
𝑖=1

𝑣𝑖 , (4)

where 𝑣𝑖 represents the position of the 𝑖th vertex comprising the
mesh, and 𝑁𝑣 denotes the total number of vertices contained within
a mesh. Utilizing𝐶 , a 3D coordinate system can be established with
the frontal face direction serving as the x-axis. Subsequently, a
virtual camera is positioned at a suitable location along the x-axis
to capture successive frontal projections within a mesh sequence,
which are then consolidated into a single video file. Finally, audio
is integrated to generate the complete video of the projected TH.
The overall process can be described as:

𝑉2𝐷 = 𝐹𝑝 (𝑀𝑆) ⊕ 𝐴, (5)

where 𝐹𝑝 (·) signifies the process of front projection for each 3D
frame, 𝐴 denotes the corresponding audio, ⊕ indicates the con-
catenation of audio and video, and 𝑉2𝐷 denotes the resultant 2D
projected video with accompanying speech obtained through ren-
dering.

4.2 Video Quality Assessment
With the increasing popularity and efficacy of large vision models
(LVMs) in computer vision, these models are perceived to possess
a comprehensive understanding of images surpassing that of tradi-
tional depth models. Consequently, in this study, a Large Quality
Model (LQM) is employed for quality perception of video frames.
Specifically, Q-Align [47] is chosen as the LQM for image qual-
ity perception. This paper selects the extracted video frames and
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presents them to Q-Align with the prompt as illustrated in Fig. 7.
Q-Align then returns the probability distribution across five grades:
"excellent", "good", "fair", "poor", and "bad". The overall process is
articulated as follows:

𝐼𝑚𝑠 = 𝑆 (𝑉2𝐷 ),
𝑃𝑚𝑐 = 𝐿𝑄𝑀 (𝐼𝑚𝑠 ),

(6)

where 𝑆 (·) signifies the frame extraction process, 𝐼𝑚𝑠 represents
the𝑚th extracted frame sensed by the LQM to obtain the proba-
bility vector 𝑃𝑚𝑐 encompassing five categorical probabilities. Sub-
sequently, a fixed weight𝑤𝑐 is applied to the probability vector to
assess the quality of the extracted video frame:

𝑄𝑚
𝐼𝑠 = 𝑤𝑐 · 𝑃𝑚𝑐 , (7)

where 𝑄𝐼𝑠
𝑚 denotes the predicted quality for the extracted frame,

and · denotes the vector inner product. This process is iterated until
all the extracted frames in the video are evaluated, resulting in a
sequence of assessed frame qualities denoted as𝑄𝑉𝑠 . To better align
with human subjective perception during video viewing, a variable-
length video memory filter (VVMF) incorporating an Hermann
Ebbinghaus forgetting curve [10] is employed to process the quality
of each frame in 𝑄𝑉𝑠 . Specifically, the simplest exponential decay
is sampled discretely according to the length 𝐿 of 𝑄𝑉𝑠 as:

𝑤 𝑓 (𝑛) = 𝑒−𝑛, (8)

where 𝑛 = 0, 1, ..., 𝐿 − 1 denotes the discrete sampling time. Addi-
tionally, to constrain the filtering result, 𝑤 𝑓 (𝑛) must satisfy the
following condition:

𝐿−1∑︁
𝑛=0

𝑤 𝑓 (𝑛) = 1. (9)

Finally, the filtering process of the VVMF is employed to derive the
video quality 𝑞1 using operations similar to a linear filter:

𝑞1 =
𝐿−1∑︁
𝑛=0

𝑄𝑛
𝐼𝑠𝑤 𝑓 (𝐿 − 1 − 𝑛) . (10)

This equation can be equivalently understood as a sampling of
the linear convolution of 𝑄𝑛

𝐼𝑠
and 𝑤 𝑓 (𝑛) at the (𝐿 − 1) moment,

expressed as 𝑞1 = [𝑄𝑛
𝐼𝑠
∗𝑤 𝑓 (𝑛)]𝛿 (𝑛 − (𝐿 − 1)).

4.3 Synchronisation Detection
The consistency between audio and video, particularly concerning
mouth movements and speech, significantly influences the user’s
audiovisual experience. Hence, detecting synchronization between
audio and video is crucial. In this study, we employ SyncNet [6],
a classical feature extractor, for audio-lip consistency detection.
Specifically, SyncNet conducts mouth cropping on the rendered
frontal video and performs Mel Frequency Cepstral Coefficient
(MFCC) feature extraction on the audio. Subsequently, consistency
metrics are computed utilizing a siamese network. Within this
component, the audio-video bias and confidence scores serve as
features 𝑞2 and 𝑞3 characterizing audio-lip consistency.

4.4 Stuttering & Buffering Detection
During streaming, buffering or stuck events often manifest as silent
intervals in the audio signal, with its amplitude remaining at zero.

This temporal pattern in the audio signal is distinctive and ob-
servable. Hence, by analyzing short-time energy and short-time
over-zero rate metrics of the audio signal and setting suitable thresh-
olds, silent intervals can be identified. Compared to traditional
video-level discontinuity detection methods, this approach is more
straightforward and intuitive. The onset and duration of these silent
intervals are recorded as 𝑞4 and 𝑞5, respectively, effectively charac-
terizing buffering or stuck during media transmission.

4.5 Quality Regression
Following the extraction of five features from the 3D TH frontal
projection video, support vector regression (SVR) is employed for
final quality assessment to streamline the algorithmic process and
enhance efficiency. It is pertinent to note that the SVR model uti-
lized in this method is based on the scikit-learn package in Python,
employing a radial basis function.

5 EXPERIMENTS
5.1 Experiment Details
To validate the efficacy of the proposed Quality of Experience (QoE)
model, 23 representative quality assessment methods are selected
as competing algorithms. These methodologies encompass image
quality assessment (IQA), video quality assessment (VQA), point
cloud quality assessment (PCQA), and quality of service assess-
ment (QoS) methods. Notably, all evaluation methods across these
categories assess video quality, except for PCQA, which evaluates
quality after converting meshes into point clouds. Furthermore,
based on the presence or absence of reference information, the
evaluation methods utilized in this experiment can be classified
into full reference (FR) and no reference (NR) quality evaluation
methods.

All competing algorithms are evaluated on both the proposed
THQA-3D dataset and the classic Waterloo-III dataset [9]. For data
partitioning, a five-fold cross-validation strategy is employed. Be-
sides, there is no overlap in the content of all divided folds. Particu-
larly for the THQA-3D dataset, it is important to note that Q-Align
is fine-tuned with low-rank decomposition (LoRA) [14] using video
frames within the coded parameter-distorted videos in each train-
ing set. However, for the Waterloo-III dataset, given the absence of
audio in the Waterloo-III dataset, audio-lip consistency is replaced
with video bitrate, which is a common feature in traditional QoE
methods. Furthermore, experiments regarding buffering and stuck
characteristics are conducted directly using the provided dataset in-
formation. Additionally, the Q-Align is fine-tuned with LoRA using
all video frames in each training set. During performance testing
on both datasets, the average performance over five iterations is
computed to represent the algorithm’s performance. Finally, it is
worth stating that all methods use the source code provided by the
authors and keep the original parameter settings.

5.2 Experiment Criteria
In order to quantify the performance of each algorithm, four widely
used performance metrics are utilized, namely Spearman Rank Cor-
relation Coefficient (SRCC), Kendall’s Rank Correlation Coefficient
(KRCC), Pearson Linear Correlation Coefficient (PLCC), and Root
Mean Squared Error (RMSE). SRCC and KRCC primarily measure
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Table 5: Performance results on the proposed database. Best
in RED, second in BLUE. NaN means not a number, which
indicates that the method predicts a fixed constant mass
result, indicating that the method is invalid.

Type Models Ref THQA-3D Waterloo-III
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

IQA

PSNR FR 0.3485 0.4203 0.2493 0.7838 0.2001 0.4502 0.1271 14.6370
SSIM [45] FR 0.5438 0.6012 0.4140 0.6862 0.2413 0.4467 0.1556 14.6662
NIQE [26] NR 0.2243 0.4741 0.1232 0.7707 0.2983 0.5274 0.2070 12.9010

IL-NIQE [52] NR 0.2293 0.4871 0.1537 0.7600 0.1931 0.4097 0.1298 13.8712

VQA

VMAF [20] FR 0.2598 0.2907 0.1920 0.8322 0.4672 0.6231 0.3338 11.0234
VIIDEO [25] NR 0.1056 0.2308 0.0721 0.8387 0.1448 0.1164 0.1189 14.9789
TLVQM [15] NR 0.1887 0.3112 0.1272 0.8240 0.0452 0.1352 0.0321 15.2116
VIDEVAL [42] NR 0.2252 0.3544 0.1556 0.8118 0.1822 0.1284 0.1317 16.2566
RAPIQUE [43] NR 0.3748 0.4680 0.2660 0.7643 0.0390 0.2828 0.0305 15.1513
SimpVQA [38] NR 0.6321 0.7258 0.4717 0.5983 0.6083 0.6207 0.4096 10.4651
VSFA [19] NR 0.7463 0.7811 0.5596 0.5726 0.4177 0.3669 0.3664 11.8469

FAST-VQA [46] NR 0.7778 0.7984 0.5964 0.5503 0.7515 0.7332 0.5469 10.0576
BVQA [18] NR 0.7871 0.8298 0.6081 0.5983 0.7682 0.7126 0.5602 10.6440

PCQA
PSNRyuv [41] FR 0.2810 0.0739 0.2063 0.8673 - - - -
MSE-p2po [7] FR 0.0374 0.3060 0.0256 0.8284 - - - -
MSE-p2pl[40] FR 0.0371 0.2710 0.0257 0.8703 - - - -

QoS

P.1203 [32, 33] NR 0.0808 0.1186 0.0502 0.8597 0.2504 0.2966 0.1741 14.5293
FTW [13] NR 0.0515 0.0658 0.0356 0.8586 0.2238 0.4106 0.1572 13.9931

Liu2012 [22] NR 0.0562 0.0425 0.0465 0.8606 0.5082 0.6461 0.3645 11.5858
Mok2011 [27] NR 0.0518 0.0853 0.0416 0.8762 0.2399 0.3252 0.1887 14.2519
Yin2015 [51] NR 0.0416 0.0624 0.0255 0.8582 0.4502 0.4104 0.3250 13.8739
VsQM [34] NR 0.0490 0.0613 0.0412 0.8583 0.2504 0.2966 0.1741 14.5293
PXNR [11] NR 0.2482 0.4352 0.1671 0.7823 NaN NaN NaN 15.3660

Proposed NR 0.8411 0.8434 0.6567 0.4501 0.7888 0.8147 0.6053 10.2825

the monotonicity of prediction quality, while PLCC assesses the lin-
earity and consistency of the algorithm’s prediction quality. RMSE
is employed to evaluate the accuracy of the prediction results.When
SRCC, PLCC and KRCC approach 1, and RMSE approaches 0, it
indicates excellent performance of the algorithm.

5.3 Performance Analysis
The experimental results of the performance tests are presented
in Table 5. By analyzing Table 5, the following conclusions can be
drawn: 1) The proposed algorithm achieves state-of-the-art per-
formance on the THQA-3D dataset, significantly outperforming
the other algorithms involved in the experiments. 2) The perfor-
mance of the proposed method on the Waterloo-III dataset remains
competitive. However, considering the specific experimental setup
on the Waterloo-III dataset, the results simply demonstrate that
the large model-assisted QoE approach remains effective for clas-
sical QoE datasets. 3) Comparison of the experimental results on
the THQA-3D and Waterloo-III datasets shows that some of the
methods involved in the comparison are not stable, and even PXNR
shows a complete failure result. This also highlights that the pro-
posed method has stability. 4) The representative methods selected
in the experiments exhibit inadequate performance in handling the
challenge of streaming 3D TH MSs. This is mainly attributed to the
insensitivity of traditional IQA, VQA, PCQA, and QoS methods to
distortions caused by audio modalities, despite their comprehensive
assessment of stream quality from various perspectives.

5.4 Ablation Experiments
To further explore the individual contributions of each module,
ablation experiments are conducted on the THQA-3D dataset. The
results of these experiments are presented in Table 6. By analyz-
ing Table 6, the following conclusions can be drawn: 1) Large
model-assisted video quality sensing, audio-lip consistency detec-
tion, speech-based buffering and stuck detection, and VVMF all

Table 6: Ablation study results on THQA-3D database, where
‘w/o’ stands for ‘without’. Best in RED.

Model VVMF SRCC↑ PLCC↑ KRCC↑ RMSE↓
w/o 𝑞1 - 0.4176 0.5212 0.2967 0.7225

w/o 𝑞2∼3
✕ 0.6212 0.6984 0.4688 0.6117
✓ 0.6390 0.7114 0.4833 0.6003

w/o 𝑞4∼5
✕ 0.7320 0.7519 0.5462 0.5654
✓ 0.7578 0.7723 0.5701 0.5457

𝑞1
✕ 0.4761 0.6450 0.3358 0.6562
✓ 0.5198 0.6600 0.3730 0.6461

𝑞2∼3 - 0.3659 0.5019 0.2575 0.7388
𝑞4∼5 - 0.0974 0.2489 0.0742 0.8344

All ✕ 0.8225 0.8299 0.6351 0.4664
✓ 0.8411 0.8434 0.6567 0.4501

positively contribute to the overall algorithm performance, indicat-
ing the effectiveness of all modules. 2) From an importance stand-
point, video perception is the most crucial, followed by lip-sound
consistency, while buffering and stuck detection play a relatively
minor role. This is due to the intuitive nature of visual information
acquisition and its dominance in human sensory perception. Addi-
tionally, humans are highly sensitive to audio-visual asynchrony,
while buffering and lagging phenomena indirectly affect viewer
emotions. Thus, the proposed algorithm aligns with the principles
of human subjective perception. 3) Analyzing the image quality
level, the performance of the large model-assisted quality percep-
tion module surpasses that of existing NR IQA methods, indicating
the large model’s ability to perceive more in-depth image quality
features and laying a solid foundation for overall video quality
perception.

6 CONCLUSIONS
This paper contributes to the field of immersive video communi-
cation by introducing the 3D Talking Heads Quality Assessment
(THQA-3D) Dataset. This dataset encapsulates seven types of dis-
tortions commonly encountered in 3D streaming communication,
comprising 1,000 distorted 3D mesh sequence (MS) streams along-
side 50 original counterparts. Furthermore, a tailored subjective
experimental methodology is proposed for the quality assessment
of 3D MSs. This approach involves importing received 3D MSs and
speech audio into Blender, enabling subjects to assess quality from
various viewpoints and evaluate the overall audiovisual experience
subjectively. Moreover, we present a large model-assisted multi-
modal fusion method for objective quality assessment. The method
leverages Q-Align, a cutting-edge large quality model, for image
perception, and incorporates a variable-length video memory fil-
ter designed to integrate forgetting curves to derive video quality
scores. Additionally, features extracted from speech signals are em-
ployed for audio-lip coherence analysis, and buffering and stuck
detection in 3D streaming. These features are then fed into support
vector regression to obtain the final predicted quality of the 3D
streaming media. Experimental results demonstrate the superior
performance of the proposed method. This work is anticipated to
make significant contributions to the quality monitoring and evalu-
ation of 3D streaming media, offering valuable insights for future
research endeavors in this domain.
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