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Abstract

Recent works have shown that generative models leave traces of their underlying
generative process on the generated samples, broadly referred to as fingerprints
of a generative model, and have studied their utility in detecting synthetic images
from real ones. However, the extent to which these fingerprints can distinguish
between various types of synthetic images and identify the underlying generative
process remain under-explored. In particular, the very definition of a fingerprint
remains unclear, to our knowledge. To that end, in this work, we formalize the
definition of artifact and fingerprint in generative models, propose an algorithm for
computing them in practice, and study how different design parameters affect the
fingerprints and their attributability. We find that using our proposed definitions
can significantly improve the performance on the task of identifying the underlying
generative process from samples (model attribution) compared to existing methods.
Additionally, we study the structure of the fingerprints and observe that it is very
predictive of the effect of different design choices on the generative process.

1 Introduction

Recent years have seen rapid developments of generative models and their integration into our society.
However, there is still a big gap in understanding what makes these models behave the way they
do and, in particular, how different choices in designing generative models (e.g. model architecture,
training data, training objectives and optimization parameters) contribute to their different behaviors.
In this work, we address this question by considering generative models’ behaviors through the lens
of artifacts and fingerprints they leave on their samples. In other words, we investigate how different
design parameters affect model fingerprints and their attributability back to the design choices. Our
work focuses on three key design parameters: model architecture, learning algorithm, and training
datasets. We evaluate their effects on model attribution by measuring the attributability of a generated
image to the underlying design factors. We consider the following three cases:

• Effects of model-type: how the choice of models – as a combination of model architecture
and learning algorithm, e.g. StyleGAN3 vs. NVAE – affects fingerprints and attribution

• Effects of training data on fingerprints, independently of the choice of model-type
• Effects of layer types (e.g. type of upsampling, non-linearity, normalization) on fingerprints

We systematically explore these questions by (1) proposing formal definitions of artifacts and
fingerprints of generative models, (2) formulating a manifold-based attribution process using our
definitions to predict the design factors of generated samples (i.e. images), and (3) conducting
extensive experiments on a large array of generative models, including state-of-the-art models.

In summary, our contributions are as follows:
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(a) Original RGB (b) Pretrained ResNet50 (c) Dzanic et al [9]

(f) Ours (artifactRGB)(d) Durall et al [8] (e) Wang et al [64]

Figure 1: Features learned using our definition of artifacts(f) achieve better separation between samples from
different generative models (shown in different colors). (a) shows tSNE of generated samples in pixel space,
(b) in the feature space of ResNet50 pretrained on ImageNet, and (c-f) in the penultimate layer of the classifier
proposed by each baseline method trained on the task of model-type attribution.

• We propose formal definitions of artifacts and fingerprints of generative models that have
been missing in the literature, and provide an algorithm to compute them from finite samples.

• We theoretically justify our definition by relating it to two prominent metrics for generative
models: Precision and Recall (39; 25) and Integral Probability Metrics (IPMs) (33; 41).

• We use our definitions to evaluate the effects of three main factors in designing generative
models (model architecture, learning algorithms, training dataset) on model fingerprints.

• We conduct extensive experiments to show the effectiveness of our fingerprints in distin-
guishing generative models, outperforming existing attribution methods. In particular, our
experiments consider a large array of generative models from all four main families (GAN,
VAE, Flow, Score-based) as opposed to a small number of GANs or VAEs in exiting works.

• Our results show that each design factor (dataset, learning algorithm and model architecture)
independently contributes to identifiable artifacts in generated images and, in particular,
the type of loss function and upsampling has the most significant effect on the fingerprints.
These findings confirm the general intuition in the research community about the sources of
limitations in generative models (6; 7), thereby supporting the utility of our definitions.

2 ManiFPT: manifold-based fingerprints of generative models

We approach the study of generative models’ behaviors and their attribution to underlying design
factors by looking at the artifacts the models leave on their samples. However, as discussed in Sec. 1
and Sec. B, despite the existing works that suggest evidence for their existence, concrete definitions of
these terms remain unclear. Therefore, in this section, we first motivate and propose formal definitions
for the artifacts and fingerprints of generative models, and describe an algorithm for computing them
from observed samples. We then use our definitions to formulate a new manifold-based attribution
that predicts the design factors of generative models from their samples.

2.1 Definitions of GM artifacts and fingerprints

Intuitively, the artifacts and fingerprints of generative models are the traces of their imperfection in
modeling the true data-generating process, which can be extracted from the samples they generate.
In the framework of manifold learning (2; 9), which hypothesizes that many high-dimensional real-
world datasets (e.g. images and videos) lie on a lower-dimensional manifold, we formalize such
imperfections of generative models as the deviation of generated samples from the true data manifold
(i.e. artifact). More concretely, consider a generative model G trained on a dataset X of samples that
lie on a true data manifold M. Let P denote the true data distribution and Q the induced probability
distribution of G with the support of SG. Let xG be a sample generated by G:
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Figure 2: Our attribution method. We propose an attribution method based on our definition of artifacts: Given
input images XG, we first map them to an embedding space (RGB, Frequency, feature space of a pretrained
supervised-learning (SL) network, or of a pretrained self-supervised learning (SSL) network), and compute their
artifacts a as defined in Sec. 2.1. We train the attributor (classifier) to predict the design factor of the source
generative model, under the standard cross-entropy loss.

Definition 2.1 (Artifact). An artifact of a model-generated sample xG with respect to the data
manifold M is defined as the difference between xG and its closest point on the data manifold (x∗).
That is, given a data manifold M equipped with a distance metric dM:

x∗ := argmin
x∈M

dM(xG, x) (1)

aM(xG) := xG − x∗ (2)

Definition 2.2 (Fingerprint). The fingerprint (FPT) of a generative model G, with respect to the
true data manifold M, is defined as the set of all its feasible artifacts:

FPTG = {aM(x)|x ∈ SG} (3)

2.2 Estimation of GM artifacts and fingerprints

Estimating the data manifold. Since in practice we have only finite samples, rather than the entire
manifold, we estimate the above definitions by taking a minimum over the set of observed samples:
we use real images in the training datasets of the generative models, and map them to a suitable
embedding space to construct a collection of features to be used as an estimated image manifold.
One key modeling decision in this step is the choice of an embedding space for the image manifold.
Ideally, the embedding space should capture meaningful fingerprint features of generative models.
We consider four spaces based on the previous works that suggest the existences of fingerprints
(31; 7) and visual features (42; 51) encoded in their representations: RGB, Frequency, and feature
spaces learned by a supervised-learning method (SL) (e.g. ResNet50 (13)) and by a self-supervised
learning method (SSL) (e.g. Barlow Twins (51)). See. Appendix. E.1 for more details.

Computing the artifacts An artifact of a model-generated sample xG is computed in two steps:

1. Estimate the projection x⋆ by minimizing the distance to xG over the points in XM . We use
the Euclidean distance, i.e. dM (x, xG) := ||x− xG||2

2. Compute the artifact as difference, a(xG) = xG − x∗

See Fig. 3 for examples of the artifacts computed in this way.

Fingerprint of a model Given a finite set of model generated samples XG = {xi}Ni=1 where xi ∼ Q,
we estimate its fingerprint by computing an artifact of each sample in XG.

2.3 Attribution of GM artifacts to design parameters

Based on our definitions, we now propose a new method for predicting the design parameters of
generative models from their samples (Fig.2). Our system consists of two modules, the artifact-
representation module and the attribution module. The first module represents an input image as an
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Table 1: Model-type attribution results. We evaluate artifact features on the task of predicting the model-types
of generated images. Separability of the feature spaces are measured in FD ratio (FDR). Higher FDR means
better separability. Our methods based on the proposed definition of artifacts outperform all baseline methods.

GM-CelebA GM-CHQ GM-FFHQ
Methods Acc.(%)↑ FDR↑ Acc.(%)↑ FDR↑ Acc.(%)↑ FDR↑
McClo18(31) 62.6± 2.314 70.2 57.4± 2.013 36.3 50.8± 0.341 26.3
Nataraj19 (34) 61.1± 2.203 74.0 56.3± 1.325 37.9 51.3± 0.581 35.3
Durall20 (6) 62.2± 2.243 75.5 59.1± 1.301 38.8 60.9± 0.255 37.9
Dzanic20 (7) 61.6± 2.029 88.1 56.9± 1.215 38.2 55.7± 0.324 30.3
Wang20 (47) 62.2± 1.203 89.8 59.5± 1.252 30.3 64.2± 0.310 37.9
Marra18 (29) 63.1± 1.103 83.4 51.3± 1.281 20.5 53.2± 0.218 30.4

Marra19 (30) 61.1± 1.729 101.4 59.1± 1.27 34.9 51.8± 0.233 30.9
Yu2019 (50) 60.6± 1.103 111.4 61.1± 1.122 74.5 60.5± 0.105 35.1

OursRGB 70.5± 1.565 115.3 63.7± 1.238 64.2 65.3± 0.125 50.1
OursFREQ 72.8± 1.321 120.9 64.8 ± 1.124 70.1 66.1 ± 0.207 57.6
OursSL 73.6± 1.102 168.0 62.3± 1.221 77.2 63.2± 0.305 49.8
OursSSL 74.7 ± 1.121 125.9 61.9± 1.351 63.3 63.8± 0.203 40.9

artifact feature by following the algorithm in Sec 2.2.The second module passes the artifact features
to a classifier and predicts the design factors of the source generative models.

Training our attribution network We use the pretrained ResNet50 (13) as the backbone of our
classifier, attach a new softmax layer and fine-tune it under the standard cross-entropy loss.

2.4 Theoretical properties of GM artifacts and fingerprints

Our proposed definitions of GM artifacts and fingerprints are closely related to two prominent
metrics on generative models: Precision and Recall (P&R) (39; 25) and integral probability metrics
(IPMs)(33; 41). The most fundamental relation is that under our definition, the fingerprint is non-zero
if and only if two distributions have unequal supports. See Appendix A for full proofs and discussions.

3 Experiments and Results
We evaluate the attributability of generated images and their artifacts to the design parameters by
varying the following parameters independently: model-type (Sec. 3.1,F.1), training data (Sec. F.2),
and layer type (Sec. F.3). See Appendix. E for details on our experimental setup (E.2) and results(F).
3.1 Effect of model-type on fingerprints and their attributability

We investigate how the model-type (i.e. a combination of model architecture and learning algorithm)
affects model fingerprints and their attributability. To do so, we measure the accuracy of attributing
artifacts of generative models, trained on the same training data, to the model-type of the source
models (e.g. StyleGAN2 vs. VQ-GAN vs Latent Diffusion Model vs etc.). To complement the
accuracy, we measure the separability of fingerprint representations using the ratio of inter-class and
intra-class Fréchet Distance (FDR) (5). The larger the ratio, the more attributable the fingerprints
are to their model-type. See Appendix F.4 for the definition of FDR and how to compute it. Results.
Tab. 1 shows the results of model-type attribution in accuracy and FDR. First, the choice of model-
type (BigGAN vs. StyleGAN2 vs. NVAE etc.) makes attributable artifacts in both color (McClo18,
Nataraj19) and frequency (e.g. Durall20, Dzanic20), as well as in our artifact representations. This
result is consistent with the exiting observations in the literature and suggests our proposed definitions
capture the notion of artifacts as desired. Furthermore, our proposed methods outperforms all
baselines by meaningful margins: 11.6%, 3.7%, 1.9% in each dataset, and 5.73% on average. This
indicates that our methods better capture features that differentiate one generative model from another,
further supporting our definitions’ usefulness as fingerprints of generative models.

See Appendix. F for experiments on the effects of training data and layer types on model attribution.

4 Conclusion
Our work addresses the problem of understanding generative models and the design factors that
contribute to their different behaviors. To do so in a principled way, we formally define artifacts and
fingerprints and study the effects of model-types, training data and layer types on the fingerprints via
attribution tasks. Importantly, we show that our proposed definition outperforms existing methods on
model attribution and provides a useful feature space for differentiating various generative models.
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A Proofs on relationships between fingerprints and P&R and IPMs

Our proposed definitions of GM artifacts and fingerprints are closely related to two prominent metrics
for distinguishing generative models: Precision and Recall (P&R) (39; 25) and integral probability
metrics (IPMs)(33; 41). The most fundamental relation is that under our definition, the fingerprint is
non-zero if and only if two distributions have unequal supports. From this fact several properties of
fingerprints under our definition readily follow:

(A) Relation to Precision and Recall (P&R) Let P denote the true data distribution, Q the generator
G’s distribution, and FPT(Q;P ) the fingerprint of G w.r.t. P as defined in 2.1 Let dFPT(Q;P ) be the
size of a largest artifact vector in FPT(Q;P ) defined as,

dFPT(Q;P ) := sup
xG∼Q

{||a||2 : a ∈ FPT (Q;P )} (4)

Informally, dFPT(Q;P ) is one way to quantify the maximal deviation of the generator’s manifold
(i.e., Supp(Q)) from the data manifold (i.e., Supp(P )). Note that dFPT(Q;P ) ≥ 0. First of all, the
following equivalences hold:

"All images xG from G lie on the true data manifold"
⇔ ∀xG ∼ Q : xG ∈ Supp(P ) ⇔ x⋆ = xG (5)

⇔ ∀xG ∼ Q : a(xG) = 0⃗ (by Eqn.2) (6)

⇔ FPT(Q;P ) = {⃗0} (7)
⇔ dFPT(Q;P ) = 0 (8)

By the definition of P&R in Defn (2) of (25),

∀xG ∼ Q : xG ∈ Supp(P ) ⇔ Precision(Q,P ) = 1 (9)

Therefore, dFPT(Q;P ) = 0 ⇔ Precision(Q,P ) = 1, and the minimum achievable deviation of Q
from P based on our definitions of artifacts and fingerprints corresponds to the maximal achievable
precision.

Similarly, by considering FPT of P with respect to Q where Q is now the reference distribution,

FPT(P ;Q) = {⃗0} ⇔ dFPT(P ;Q) = 0 (10)
⇔ Recall(Q;P ) = 1 (11)

In other words, the minimum achievable deviation of P from Q corresponds to the maximal recall.

In summary, the following relationships between our definition of fingerprint and P&R hold:

FPT(Q;P ) = {⃗0} ⇔ Precision(Q,P ) = 1 (max precision) (12)

FPT(P ;Q) = {⃗0} ⇔ Recall(Q,P ) = 1 (max recall) (13)

Additionally, we have the property of equal supports:

FPT(Q;P ) = {⃗0} and FPT(P ;Q) = {⃗0}
⇔ Supp(P) = Supp(Q) (equal supports) (14)

The property of equal supports implies the degree to which our fingerprint is able to capture the
difference between P and Q: as long as there is at least one generated datapoint that does not lie on
the data manifold, our fingerprint (either Q w.r.t P or P w.r.t Q) can encode that difference by having
at least one non-zero element and its dFPT strictly greater than zero.

(B) Relation to integral probability metrics (IPMs) Our definition of Fingerprint is related to
integral probability metrics (IPMs)(33; 41), which include MMD and Wasserstein distance, in the
following way: By the property of equal supports above,

Supp(P ) ̸= Supp(Q) ⇔ ∃a ∈ FPT(Q;P ) ̸= 0⃗ (15)

By the definition of IPMs (33; 41),

Supp(P ) ̸= Supp(Q) ⇒ ∃IPM(Q,P ) ̸= 0 (16)
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Table 2: Our dataset of generation models. We create three new benchmark datasets for (generative
model) attribution task by collecting samples from a large variety of models, trained on CelebA (26),
CelebA-HQ (CHQ) (17) and FFHQ (17).

Family GM-CelebA GM-CHQ GM-FFHQ

Real CelebA (26) CelebA-HQ (256) (17) FFHQ (256) (19)
GAN plain GAN (10) BigGAN-Deep (1) BigGAN-Deep (1)

DCGAN (37) StyleGAN2 (20) StyleGAN2 (20)
LSGAN (28) StyleGAN3 (18) StyleGAN3 (18)

WGAN-gp/lp (11) VQ-GAN (8) VQ-GAN (8)
DRAGAN-gp/lp (24) StyleSwin (52)

DDGAN (49)
VAE β-VAE (14)

DFC-VAE (16) StyleALAE (36)
NVAE (43) NVAE (43) NVAE (43)

VAE-BM (48) VAE-BM (48)
Eff-VDVAE (12) Eff-VDVAE (12) Eff-VDVAE (12)

Flow GLOW (23) MaCow (27)
Residual Flow (4)

Score DDPM (15)
NCSN++ (40) NCSN++ (40)

RVE (22) RVE (22)
LSGM (45)
LDM (38) LDM (38)

From Eqn.15 and Eqn.16, we have:

∃a ∈ FPT(Q;P ) ̸= 0⃗ (i.e. dFPT ̸= 0)

⇒ ∃IPM(Q,P ) ̸= 0 (17)

Conversely,

∀IPM : IPM(Q,P ) = 0 ⇒ FPT(Q;P ) = {⃗0}
(i.e. dFPT(Q;P ) = 0) (18)

This means if all IPMs vanish to zero, our fingerprint also vanishes to a trivial set that only contains a
zero vector.

B Related Work

Generative models and their fingerprints. Despite the recent advancement in generative models,
recent works on their artifacts and biases have shown that model-generated samples contain features
that can be used to identify the source models. For example, in the color space, the histogram of
saturated and under-exposed pixels (31) and the co-occurrence matrix of color-bands (34; 35) have
been shown to capture the fingerprints. In the frequency space, the power spectrum (6) and the
decay rate of high-frequency contents (7) were able to distinguish real and GAN-generated images.
More recently, supervised learning methods (47; 50) were used to capture fingerprints of CNN or
GAN-based generators. Yet, still, there are only notions of model behaviors and their fingerprints,
and a formal definition and method of computing the fingerprints are missing, which hinders a more
principled study of the behaviors of generative models and the underlying factors that control their
behaviors. We address this important gap in this work.

C Dataset Creation

As discussed in Sec. B, existing datasets designed for the binary discrimination of real vs. synthetic
samples are not suitable for the task of model attribution (i.e. discriminating among multiple different
generative models) in two aspects: (i) the diversity of generative models (GMs) is limited, and (ii) the

9



variability of the models’ training datasets makes the study of model fingerprint – independent of
their training datasets – difficult. Rather, a proper benchmark dataset for model attribution should
satisfy the following desiderata:

1. It should include GMs from various families, covering VAEs, GANs, Flows and Score-based
(i.e. Diffusion) models

2. It should contain state-of-the-art models, in addition to the more standard models that
existing works have focused on (e.g. ProGAN, CycleGAN, StyleGAN)

3. The generative models in the dataset should be trained on the same training set in order for
the analysis on the fingerprint features to be directly attributed to the characteristics of the
generative models, without confounding effects from the variability in the models’ training
datasets.

To this end, we designed three new datasets (GM-CelebA, GM-CHQ and GM-FFHQ; See Tbl. 2)
that carefully satisfy these three desiderata. GM-CelebA contains images from generative models
trained on CelebA (26), GM-CHQ from models trained on CelebA-HQ (256) (17), and GM-FFHQ
from models trained on FFHQ (256) (17). To complement the existing datasets, our datasets include
GMs that achieve state-of-the-art results on unconditional image synthesis, such as DDGAN(49) and
StyleSwin(52) for GAN, NAVE (43) and Efficient-VDVAE (12) for VAE, and LDM (38) and LSGM
(45) for diffusion models.

Fig. 6, Fig. 7 and Fig. 8 show samples from our GM256 dataset. The images are randomly sampled
from each of the GMs following the process detailed in each work or codebase.

D Details on baseline fingerprinting methods

Tab. 3 summarizes baseline fingerprinting methods that we compared against our proposed definitions
in Sec. 3.

Table 3: Features and datasets used in the baseline methods

Paper Input domain Representation Classifiers Metric(best) Datasets

McCloskey18 (31) RGB Histogram of saturated,
under-exposed pixels SVM AUC (0.7) NIST MFC2018

Nataraj19 (34) RGB Co-occurrence matrix
of pixels CNN EER (12.3%) 100k-Faces (StyleGAN)

Durall20 (6) Freq. 1D power spectrum
(azimuthal integral) SVM Binary Acc

(96%)

Own
(DCGAN, DRAGAN,
SGAN, WGAN-gp)

Dzanic20 (7) Freq. Fourier spectrum
(norm. by DC gain) KNN Binary Acc

(99.2%)

Own
(StyleGAN,StyleGAN2,

PGGAN,VQ-VAE2,ALAE)

Wang20 (47) Freq. 2D average spectra CNN LOMO, Binary Acc
(84.7%) Own (10 GANs)

Marra18 (29) Learned Supervised Pretrained CNN + Finetuned
(Inception-v3/XceptionNet)

LOMO2, Binary Acc
(94.49%)

Own
(Real, CycleGAN per category)

Marra19 (30) Learned Supervised CNN + IL Binary Acc
(99.3%)

Own
(4 GANs, 1 Flow)

Yu2019 (50) Learned Supervised CNN Multi Acc
(98.58%)

Own
(ProGAN, SNGAN

CramerGAN, MMDGAN)

E Experiment Details

E.1 Modeling choice for our fingerprints

Choice of the embedding space One main modeling decision to make when computing our
fingerprints (Sec. 2.2) is the choice of the embedding space in which the true data manifold (i.e.
natural image manifold) sit. We consider four representation spaces based on the previous works that
suggest the existences of fingerprints (31; 7) and visual features (42; 51) encoded in them: RGB,
Frequency, and feature spaces learned by a supervised-learning method (SL) (e.g. ResNet50 (13))
and by a self-supervised learning method (SSL) (e.g. Barlow Twins (51)). To map images to each
space, we apply the following transformations (Tab. 4).
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• For RGB space, we use the RGB images as is.
• For frequency space, we transform the RGB images to 2D spectrum by applying the Fast

Fourier Transform (FFT) on each channel.
• For the embedding space of a supervised-learning method (SL), we use the encoder head of

ResNet50 (13) pretrained on ImageNet.
• For the embedding space of a self-supervised learning method (SSL), we use the encoder

head of the pretrained Barlow Twins (51).

Table 4: Our representation spaces. We apply the following transformations to estimate the data manifold in
each embedding space.

Representation Embedding map

RGB Identity
FREQ Channelwise FFT
SL Pretrained ResNet50
SSL Pretrained BarlowTwin

E.2 Experimental Setup
Datasets To study the effects of model architecture, learning algorithms and training data on
fingerprints independently, we propose three new datasets – GM-CelebA, GM-CHQ and GM-FFHQ –
each constructed from generative models trained on CelebA-64 (26), CelebA-HQ (17) and FFHQ (19),
respectively. Our datasets address the absence of benchmark datasets for studying the attribution of
generative models by including a variety of models from GAN, VAE, Flow and Score-based family.
Tab. 2 summarizes our datasets, organized in column by the training datasets. We collect 100k images
from each model. See Appendix C for details on our dataset creation process.

Baselines Existing methods of fingerprinting generative models can be categorized into three groups:
color-based, frequency-based and supervised-learning. We consider key methods from each group
and compare them to our proposed attribution method. See details on the baselines in Appendix D.

• Color-based: Histogram of saturated, under-exposed pixels (31), Co-occurrence matrix (34)
• Frequency-based: azimuthal-integrated power spectrum (6), high-frequency decay rate (7)
• Learned features: InceptionNet-v3 (29), XceptionNet (29), Yu19 (50), Wang20 (47)

Evaluation In the following experiments, we vary one design parameter from {model-type, training
dataset, type of layers}, while fixing the other two to study the effect of that parameter independently.
The varying parameter becomes the target variable in each classification task: given an input of a
model-generated image, predict the varying parameter.

F Experiment Results and Discussions

F.1 Effect of model-type on fingerprints and their attributability

We first investigate how the model-type (i.e. a combination of model architecture and learning
algorithm) affects model fingerprints and their attributability.

Metrics: To do so, we measure the accuracy of attributing artifacts of generative models, trained
on the same training data, to the model-type of the source models (e.g. StyleGAN2 vs. VQ-GAN
vs LDM vs ...). Since we have three datasets, each consisting of models trained on the same data
(GM-CelebA, GM-CHQ, GM-FFHQ; See Tab. 2 column-wise), we evaluate the attributability on
each separately. Note GM-CelebA has 13 model-types to predict, GM-CHQ 18, and GM-FFHQ 9.

Separability (FD ratio): To complement the accuracy, we measure the separability of fingerprint
representations using the ratio of inter-class and intra-class Fréchet Distance (FDR) (5). The larger
the ratio, the more attributable the fingerprints are to their model-type. See Appendix F.4 for the
definition of FDR and how to compute it.

Results. Tab. 1 shows the results of model-type attribution in accuracy and FDR. First, the choice
of model-type (BigGAN vs. StyleGAN2 vs. NVAE etc.) makes attributable artifacts in both
color (McClo18, Nataraj19) and frequency (e.g. Durall20, Dzanic20), as well as in our artifact
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Table 5: Effect of training datasets.
SG: StyleGAN3 (18)

Methods SG NVAE LDM
RGB(31) 0.701 0.683 0.711
Freq.(6) 0.688 0.631 0.704

OursRGB 0.622 0.612 0.645
OursFREQ 0.645 0.571 0.637
OursSL 0.609 0.629 0.621
OursSSL 0.615 0.631 0.626
Avgours 0.623 0.611 0.632

Table 6: Layer type vs. artifacts. Upsampling and loss type best
align with the clustering of artifacts. NL: Non-linearity

Layer Types (NMI ↑) Optim.
Method Up NL Norm Down Skip Loss
OursRGB 0.625 0.453 0.647 0.432 0.541 0.563
OursFREQ 0.654 0.354 0.534 0.692 0.317 0.631
OursSL 0.613 0.452 0.481 0.546 0.434 0.677
OursSSL 0.680 0.477 0.465 0.615 0.357 0.573
Average 0.643 0.434 0.465 0.532 0.571 0.611

representations. This result is consistent with the exiting observations in the literature and suggests
our proposed definitions capture the notion of artifacts as desired. Furthermore, our proposed methods
outperforms all baselines by meaningful margins: 11.6%, 3.7%, 1.9% in each dataset, and 5.73%
on average. This indicates that our methods better capture features that differentiate one generative
model from another, further supporting our definitions’ usefulness as fingerprints of generative
models. We also note that the accuracy on GM-CelebA is higher than the accuracies on GM-CHQ
and GM-FFHQ. We hypothesize this is because GM-CHQ and GM-FFHQ contain more advanced
models like StyleGAN3 and NCSN++ that remove artifacts from their precedent models (18; 40):
they leave less evident fingerprints, which makes the attribution more difficult. We also qualitatively
compare the feature spaces using t-SNE (46) in Fig. 1. While both the original RGB and learned
features (Fig. 1.(a-e)) show no clear clustering, our features (Fig. 1.(f)) show well-separated clusters.

F.2 Effect of training datasets on fingerprints and their attributability

Next, we study how the choice of training set affects the fingerprints of generative models and
their attributability. To do so, we fix a generative model and vary its training sets. We evaluate the
attribution of artifacts to the correct training sets. We consider three cases based on the availability of
models (See Tab. 2 row-wise): (i) StyleGAN3 trained on {CelebA-HQ, FFHQ} (ii) NVAE trained on
{CelebA, CelebA-HQ, FFHQ} (iii) LDM trained on {CelebA-HQ, FFHQ}.

Results. Tab. 5 shows the accuracy of attribution to the training datasets. Lower accuracy means
the traces of training data are harder to be identified in the generated images. First of all, the results
show that the choice of training data makes attributable traces on both color and frequency domain,
as evidenced by the high accuracies on the first two rows. This suggests that existing fingerprint
methods are sensitive not only to the choice of model types (as shown in Sec. F.1), but also to the
choice of their training data. On the other hand, our artifact representations achieve lower accuracies,
indicating they are less sensitive to the choice of training data. We argue that given our intention to
capture unique features of a model, independent of is training dataset, this result is more desirable.
We also note that this result is an expected outcome of the way we constructed our definition of
fingerprints, as the difference between the true data manifold and the generated samples, which has
the effect of “subtracting away” the fingerprints’ dependence on the choice of training datasets.

F.3 Relation between artifacts of generative models and layers used in neural networks

We study the clustering of artifacts and explore the possibility of relating the clustering pattern to
the types of layers. To do so, we group the layers into the following categories: Type of upsampling,
non-linearity in the last layer (NL), normalization, downsampling, skip connection, and loss function.
They are chosen based on previous works(6; 7; 3) that suggested them to be the causes of artifacts.
We measure the clustering alignment between the clustering in a fingerprint representation and the
clustering based on the type of layers using Normalized Mutual Information (NMI) (32). A higher
index indicates the chosen layer parameter is more aligned with the clustering of artifacts.

Results. Table 6 reports the alignment results. Overall, we observe that upsampling and loss types
best match the clustering behavior of the artifacts. First, the high NMI of the upsampling type agrees
with (3; 7; 6) that suggest the upsampling layer as teh cause of high-frequency discrepancies in the
model-generated images. Secondly, the high NMI for the loss type confirms the general consensus in
the research community that the training objective of a generative model is one of the key factors that
affect their model behaviors. Therefore, these findings experimentally confirm the general intuition
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Figure 3: We visualize artifacts in generated images under our manifold-based definition (Sec. 2.1).
Each row shows an original image generated by a generative model, followed by its projection to
data manifolds in RGB (x⋆

RGB), Frequency (x⋆
FREQ), and learned feature spaces of SL (x⋆

SL) and SSL
(x⋆

SSL). RGB and FREQ correspond to the artifacts in the RGB and frequency spaces, respectively.
The artifacts in SL and SSL feature spaces are not shown as they are 2048-long vectors (encoded by
a pretrained ResNet50).

about the sources of limitations in generative models and also supports the utility of our definitions in
studying the model behaviors.

F.4 Experiment: Feature space analysis

Metric: Fréchet Distance Ratio (FDR) We measure the separability of a fingerprint feature space
using the ratio of Fréchet Distance. This measure was also used in Yu et al (50) to evaluate the
learned feature space for GAN fingerprints. In our work, we use it to evaluate fingerprints in a more
generalized sense in that they are to identify more diverse set of GMs (not just GANs) including
many state-of-the-art models.

FDR is computed as the ratio of inter-class and intra-class Fréchet Distance (5):

FDR =
inter-class FD
intra-class FD

(19)

Intra-class FD aims to capture the average tightness of a feature distribution per class, and can be
measured as the FD between two disjoint sets of images in the same class. As in Yu et al (50), we
split, for each class, the fingerprint features into two disjoint sets of equal size, compute their Fréchet
Distance, and then average it over each class.

Inter-class FD aims to capture the average distance between feature distributions of different classes.
To compute this distance, we measure the FD between two feature sets from different classes and
take the average over every possible pair of (different) classes.

F.5 Visualization of artifacts of generative models

We visualize more examples of artifacts of generative models in GM-CelebA and GM-CHQ, computed
under our proposed definition in Sec. 2.1. Fig. 4 shows the triplets of (generated images (xG), its
closest point to the data manifold in RGB (x⋆) and the artifact (a)). Fig. 5 visualizes the artifacts in
the frequency domain from the GM-CHQ dataset.

F.6 Artifacts in RGB space (GM-CelebA)
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Figure 4: Visualization of artifacts in the RGB space (GM-CelebA). Each column corresponds to
the generated images (xG), their closest points on the data manifold (x⋆), and the artifacts (a). Each
artifact is computed as the difference between x⋆ and xG following the definition and algorithm in
Sec. 2.1.
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Figure 5: Visualization of artifacts in the frequency space (GM-CHQ). We show some examples
of triplets (model-generated image (imgg), closest point on the data manifold (imgp), artifact) from
GM-CHQ dataset by computing artifacts (as defined in Sec. 2.1) in frequency domain. imgp is the
point on the real data manifold that is closest to imgg in the frequency domain. Artifact is computed
as the difference between the two points, imgg and imgp, after applying channelwise-FFT.
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(a) DDGAN (49) (b) StyleGAN2 (21)

(c) StyleSwin (52) (d) VQ-GAN (8)

Figure 6: Samples from GAN models in GM-CHQ.
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(a) StyleALAE (36) (b) Efficient VDVAE (12)

(c) NVAE (44) (d) VAEBM (48)

Figure 7: Samples from VAE models in GM-CHQ.
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(a) DDPM (15) (b) LDM (38)

(c) LSGM (45) (d) NCSN++ (40)

Figure 8: Samples from score-based (a.k.a. diffusion) models in GM-CHQ.
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