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Summary
The present article studies RL methods for supply chain optimization, one of the most

natural real-world applications of RL. A lot of attempts appeared during the past years in the
operations research community. We approach the problem more from the RL point of view.
To this end we design an abstraction that covers features of real-life supply chains typical in
the process industry. Our abstraction can be implemented as a gymnasium environment to be
trained with standard algorithms. It is proposed to combine optimization heuristics from oper-
ations research in combination with imitation learning to pre-train the algorithm. We compare
experimentally PPO with and without pre-training to the optimization heuristic. In particular,
we give a zero-shot comparison to show that deep RL agents generalize better to disruptions in
the supply chain.

Contribution(s)
1. This paper proposes an abstraction of typical real-world multi-echelon supply chain prob-

lems from the process industry (e.g. the chemical or pharmaceutical industries) in the form
of an RL environment. Our supply chain MDP uses order-based actions to be realistic and
reduce the complexity of the action-space. We explain how to use action-shaping and -
masking in different ways and apply PPO to the problem.
Context: Without getting the attention it deserves, supply chain optimization has always
been one of the prime examples for the use of reinforcement learning in real-world. Many
recent articles have tackled the problem, mostly from the operations research perspective.
A main caveat is often a simplified view on supply chain planning, not capturing real-world
restrictions. We try to give an implementable and more realistic MDP formulation that tries
to stay close to today’s real-life supply chain planning.

2. The paper shows how to use classical optimization heuristics in combination with imitation
learning to pre-train deep RL agents. The numerical advantage is shown on typical multi-
echelon supply chain problems.
Context: It is always desirable to start deep RL training in reasonably well-trained policies.
For the supply chain problem, we do not have access to known pre-trained agents but can use
optimization heuristics to create reasonable rollouts that can be fed into imitation learning
algorithms to obtain reasonable policies.

3. The paper compares experimentally the deep RL to a classical planning heuristic. We show
that deep RL agents can be more robust, in our experiments, they improve heuristics in
zero-shot learning on changing demand.
Context: Since the pandemic, the question of supply chain robustness gets a lot of at-
tention. A question of large practical importance is the understanding of robustness of
planning algorithms used in suddenly changed environments, such as suddenly increased
or decreased demand. We show experimentally that deep RL agents are more robust than
typical planning heuristics that are run in standard supply chain planning software.
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Abstract
The present article studies RL methods for multi-echelon inventory optimization, one1
of the most natural real-world applications of RL. A lot of attempts appeared during2
the past years in the operations research community; we approach the problem from the3
RL point of view. To this end, we design an abstraction that covers features of real-4
life supply chains typical in the process industry. Our abstraction can be implemented5
as a gymnasium environment to be trained with standard algorithms. We propose to6
combine MRP optimization heuristics from operations research in combination with7
imitation learning to pre-train the RL algorithms. We compare experimentally PPO8
with and without pre-training to the MRP heuristic. In particular, we give a zero-shot9
comparison to show that deep RL agents generalize better to disruptions in the supply10
chain.11

1 Introduction12

The field of deep RL has seen remarkable success in various fields. Breakthroughs range from13
games Silver et al. (2016), over the optimization of fusion reactors Degrave et al. (2022), to various14
topics in the training of LLMs. A field that has seen relatively little progress given its tremendous15
industry importance, is multi-echelon (also called multi-level) optimization, see e.g. Barbosa-Povoa16
et al. (2017). In supply chain optimization, decisions are made (in real life by teams of supply chain17
planners) that range from the procurement of materials, over manufacturing steps, to the distribution18
in a logistic network. In this article, we are interested in problems that are typical for the process19
manufacturing industry (e.g. the chemical or pharmaceutical industries). Process industry have the20
challenge of manufacturing ingredients via multiple processing, with long lead times, shared and21
constraint resources, with typically global supply via 1-2 plants.22

A typical real-world situation is displayed in Figure 1.

Figure 1: Real-world logistics network
over continents. Black is a factory,
gray warehouses have customer de-
mand, and white intercompany distri-
bution centers.

23
The example has a single factory and a number of ware-24
houses distributed over several continents. Customer de-25
mand is fulfilled only by gray warehouses, while white26
warehouses are inter-company distribution centers. The27
lead times in replenishment vary a lot depending on inter-28
continental or local replenishment.29

The topic we are interested in is multi-echelon inventory30
optimization (MEIO). How to make optimal manufactur-31
ing/replenishment decisions that fulfill customer demand32
at minimal cost (storage, shipment, and backorder costs).33
In this article, we introduce an order-based RL framework34
that imitates real-world supply chain planning by placing35
orders into an order book. Our framework is implemented36
as a gymnasium environment to be trained with standard37
deep RL algorithms. It turns out that training the environments is delicate, fast PPO training requires38
a reasonable initial policy to avoid metastability effects. We introduce a new trick to deep RL train-39
ing in supply chain optimization by combining deep RL and standard optimization heuristics. Using40
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some heuristic (good or bad), we use imitation learning to imitate a policy network that is used to41
initiate the PPO training. We show experimentally that pre-training through imitation improves the42
training a lot. Previous work on deep RL in supply chain optimization has shown that beating known43
rule-based optimization heuristics is not easy, see e.g. Gijsbrechts et al. (2022). This is similar for44
our order-based MDP problem. Still, learning (near) optimal policy networks has the big advantage45
that the evaluation is much cheaper compared to rule-based heuristics and additionally one can ex-46
pect generalization effects of the neural networks. The latter might turn out powerful for future deep47
RL applications in supply chain problems as recent years have shown that disruptions in the supply48
chain cause major challenges, more robust supply chain planning is key.49

Related work: Despite the challenges, industry solutions and a huge body of operations research50
literature give approximate solution methods to various optimization problems in inventory man-51
agement, production planning, and logistics operations. Problems often fall into the category of52
NP-hard problems, where finding optimal solutions becomes computationally infeasible as the scale53
and intricacy of the supply chain increase (Gayon et al., 2017). Consequently, traditional systems54
rely on heuristic algorithms to provide approximate solutions (Marklund & Rosling, 2012; Zhao &55
Zhang, 2020). While many methods offer computational efficiency and simplicity, they are limited56
by their simple nature, they tend to struggle to solve the optimization problems if the complexity57
is high, and they do not generalize to changing conditions. There is a growing body of research58
towards deep learning and RL for supply chain optimization. Q-learning was used, for instance, for59
the beer game (Oroojlooyjadid et al., 2022), PPO was used, for instance, on a small toy problem in60
Vanvuchelen et al. (2020). Inventory management for a single-node problem has been studied in Qi61
et al. (2023). Hubbs et al. (2020) provide a gym environment for simpler supply chain problems.62
Perez et al. (2021) trained PPO and compared it to perfect information oracles. A comparison of63
A3C with classical operations research methods has been provided in Gijsbrechts et al. (2022).64

In contrast to the present articles, all these articles have in common that their focus is less on the65
specifics of RL training on supply chain problems but much more on the comparison to different66
heuristics from operations research. For a recent article that contributed to the RL specifics of67
(rather different) supply chain problems we refer to Madeka et al. (2022).68

Main contributions:69

• Modeling: An order-based MDP formalism is set up with main features of industry supply chains.70

• RL techniques: Action-shaping and -masking are used to deal with huge action-spaces. Imitation71
learning is used to leverage simple optimization heuristics for PPO training.72

• Experiments: Different learning strategies are compared experimentally for learning efficiency,73
cost vs. backorder performance, and zero-shot generalization to demand changes.74

2 Modeling order-based supply chain environments75

As a first approximation for a multi-echelon supply chain problem, the reader might want to think76
of a multi-graph G in which nodes represent material-storage-locations (different materials at the77
same location are different nodes) and edges their abstract relations. In a logistics network for one78
material, the nodes might just represent warehouses, in manufacturing, nodes might also be different79
materials at the same location. Our modeling allows both. A relation could be a shipment from one80
location to another, but also a production step involving multiple materials manufactured into a new81
material at the same location. With regards to real-world supply chain planning we distinguish82
between procurement, buying materials from suppliers, manufacturing, producing new materials83
from other materials, and replenishment, transporting materials between storage locations. To have84
a joint modeling of actions we introduce the concept of value creation objects. These are supply85
chain planning steps that add value to the supply chain. A value creation is based on a labeled finite86
weighted sub-graph of the supply chain graph G and performs a typical supply chain step. This can87
be a shipment that only involves two nodes connected by an edge, or a production step that involves88
a sub-tree of G, where several materials are manufactured into a new material. Value creations v89
are executed through orders. If the order is feasible, the value creation specifies the quantities of90
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materials to be shipped or produced. Quantities are measured in integer multiples of a fixed lot size91
Lv . Each value creation has an associated (random) lead time τv , the time between placing the order92
and receiving the material. We assume that materials are consumed immediately at the source nodes,93
become available at the destination node after the lead time τv at a cost cv per lot size. Required real-94
world information needed for this setup is available in ERP (enterprise resource planning) systems,95
more precisely from master data such as BOM (bill-of-materials) files or from historic data. Each96
node n maintains an inventory level In,t at time t, representing the quantity of stored materials. For97
demand nodes (e.g. customers can buy at these locations), random customer demand dn,t specifies98
the demand at time t. When In,t ≥ dn,t, demand is fully met and inventory decreases accordingly.99
If dn,t > In,t, the unmet amount Bn,t is called a backorder. Both inventory levels and backorders100
are dynamically updated based on sequential order placements that trigger value creations.101

Supply chain environment: To create an MDP that models the order-based decision making in102
supply chain planning a number of quantities need to be defined. In the reality, most data from the103
table are either known from master data or can be estimated from historic data.104

Symbol Description
N Set of all material-storage-locations.
V Set of value creations, a set of weighted subgraphs of the complete graph with

N nodes. The edge weights determine the portions of each ingredient.
dv Destination of value creation v, the node that receives the material
sv Set of sources of value creation v, nodes that contributed to the value creation v
chn Storage cost per time unit and unit of material stored at node n.
cbn Backorder cost per time unit and unit of material stored at node n.
wn Maximum inventory capacity at node n.
w̃n Maximum allowed backorder at node n.
cv Cost per lot for orders of a value creation v.
qv Lot size for value creation v.
gv,n Input material quantity from node n per one lot size of value creation v.
kmax
v Maximum number of lots per order for a value creation v.
Dn Demand distribution for material at node n.
Qv Lead time distribution on value creation v.
In,t Inventory level at node n at time t.
Bn,t Backorder level at node n at time t.
Dn,t Demand for material at node n at time t (distributed according to Dn).
Lv Number of lots created in value creation v.
O Set of orders o = (v, t, τ, L), where v is a value creation, t the placement time,

τ the lead time (distributed according to Qv), and L the number of lot sizes.

Table 1: Definitions for constants, distributions and variables.

dvsv

qv , cv , kmax
v

dv

s1

s2

qv,s1

qv,s2

qv , cv , kmax
v

Figure 2: Schematic description of value creations. Left: Replenishment v with lot size qv , cost cv ,
maximal replenishment capacity kmax

v . Right: Manufacturing step using materials s1, s2 requiring
quantities qv,s1 , qv,s2 to create a lot of size qv at cost cv . kmax

v lots can be processed at once.

We define the problem as a discounted Markov Decision Process (MDP) with states, actions, and105
rewards. An MDP is defined by a tupleM = ⟨S,A, P,R, γ⟩, where S is the set of states, A is the106
set of actions, P is the transition probability function, R is the reward function, and γ is the discount107
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factor. The goal is to maximize the expected discounted total reward maxπ Eπ [
∑∞

t=0 γ
tR(st, at)]108

over all policies (kernels on A× S). Defining an MDP for supply chain problems is non-trivial, in109
particular caused by the complexity of allowed actions. An example to take into account is a planner110
that can only ship as much stock as is available.111

States: The state-space is S = R|N | × R|N | × O∞, where we denote by O∞ vectors of orders112
(triplets) of arbitrary finite length. States represent inventory levels and backorder levels for each113
node n and the current order book. The order book contains a finite number of tuples with start time,114
lead time, and number of lots demanded for a value creation.115
All actions: The formal action-space is A = NV . A finite action vector a represents the lot sizes of116
all action creations asked by the RL planner to be placed. If an action a is performed at time t, then117
new orders (v, t, τ, L) will be placed in the order book and used to update the environment.118
Feasible actions: Not all actions are allowed, actions are only allowed when they are possible. For119
example, a shipment order can only be placed if material is available at the source. The feasible set120
of actions is defined by three constraints: resource capacity, order capacity and material availability.121

• Available manufacturing capacity: Manufacturing orders can only be placed if the previous order122
o of the same value creation is processed, i.e. to + τo < t. There is no such constraint for123
procurement and replenishment, new shipment orders are always possible.124

• Order capacity: There is a maximal number kmax
v of lots that can be manufac-125

tured/replenished/procured. For replenishment e.g. the maximal number of containers on a vessel.126

• Material availability: The sum over all value creations placed by the action a must satisfy∑
gv,nLv ≤ In

for all nodes n. The constraint asks that all orders added to the orderbook can be satisfied imme-127
diately from the current inventory.128

Environment dynamics: The environment runs in discrete time-steps by fulfilling orders from the129
order book O that is filled by the actions. To see how states transition we need to identify new130
inventory and backorder values, as well as the change in the order book. Changes in the order book131
are simple. New orders are included, finished orders (i.e. to + τo < t) are removed. To describe the132
inventory and backorder update, we keep track of a single inventory variable (instead of inventory133
and backorder separately) that can have negative values, called the generalized inventory level. The134
generalized inventory level at time t at node n is denoted by Gn,t ∈ R. This is equal to either the135
inventory level In,t when it is positive or to the negative backorder −Bn,t when it is negative. The136
update rule for generalized inventory values is as follows:137

Gn,t = Gn,t−1 +
∑

o∈O:dvo=n

qvo Lvo 1to+τo=t︸ ︷︷ ︸
goods received by orders finished at time t

−
∑

o∈O:n∈svo

gvo,n Lvo,to 1to=t︸ ︷︷ ︸
goods issued to satisfy orders

− Dn,t︸︷︷︸
demand

, (1)

where the random demand dn,t is sampled from an iid distribution dn,t
i.i.d.∼ Dn at each time t. In the138

update formula 1 denotes the indicator function. Gn,t is then clipped to the range Gn,t ∈ [−w̃n, wn]139
to enforce the storage capacity and backorder capacity conditions. While the maximum inventory140
constraint wn is relevant to model maximum storage capacities, the maximal backorder constraint141
w̃n is mostly technical and will be set to a large number. Changes in generalized inventory level142
result from three factors: goods received from finished orders, goods issued due to started orders,143
and goods issued due to sales towards customers. In this model, unfulfilled demand is not erased,144
but is instead stored as backorder, eventually converting into fulfilled sales once inventory becomes145
available to clear the backlog. The assumption is unrealistic in B2C (business-to-customer) models146
but common in B2B models where customers cannot change easily their suppliers for regulatory147
reasons. Inventory level and backorder are deduced from Gn,t:148

In,t = max(0, Gn,t) and Bn,t = max(0,−Gn,t). (2)
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Reward function: For state-action pairs (s, a) described above, the reward is defined as149

R(s, a) = −
∑
n∈N

(
chn In︸ ︷︷ ︸

inventory holding cost

+w cbn Bn︸ ︷︷ ︸
backorder cost

)
−
∑
v∈V

cv Lv︸ ︷︷ ︸
value creation execution costs

, (3)

where inventory/backorder values are from the state and the lot sizes from the action. We introduce150
a backorder weight w > 0 that is not part of the model. This non-trivial weight allows the decision151
maker to adjust preferences between inventory/backorder (see Figure 5). We use w = 30 in our152
experiments (justified by the Pareto curve in Figure 5).153

3 RL training154

Training multi-echelon supply chain environments is challenging for a number of reasons. Other155
than the challenge of creating an efficient simulator, the action-spaces are too big for naive explo-156
ration to succeed. The action-space of a multi-echelon supply chain can grow exponentially with157
the size of the supply chain network, making it extremely hard for an RL agent to find a good policy158
through unguided exploration. To enable deep RL training with PPO, we built a gymnasium envi-159
ronment for the order-based supply chain management described above. To get hold of the large160
action-space, we introduce an action-shaping and -masking component. Finally, we propose a new161
pre-training concept for RL problems with known optimization heuristics.162

3.1 Action-shaping and -masking163

While our order-based modeling already gives

Action-space 2 Action-space 3Action-space 1

Figure 3: Independent action-spaces, dotted lines
represent parts of the supply chain.

164
a lot of structure and reduction in size to the165
action-space, two more ingredients are used.166
Multi-discrete action shaping: In the order-167
based modeling above, we introduced the con-168
cept of value creations to structure dependent169
sub-actions in the supply chain. Value cre-170
ations allow us to simplify the action-space171
enormously, as not all combinations of actions at all nodes must be taken into account when placing172
an order. Additionally, we use multi-discrete action shaping, see Kanervisto et al. (2020). The il-173
lustration shows that we do not need to consider all combinations of value creation orders possible,174
but only those with dependencies through their sources. Structuring the actions into independent175
components and utilizing multi-discrete action-spaces, we improve computational efficiency.176
Invalid action masking: A substantial portion of actions is typically invalid due to constraints such177
as limited material availability. If no products exist in the supply chain, production must precede178
any other action, rendering nearly all actions initially invalid. We utilize invalid action masking, see179
e.g. Huang & Ontañón (2020), in the policy network that outputs probabilities for all actions. To180
implement masking, we adjust the logits before applying a final softmax function. Invalid actions181
are assigned a large negative number to ensure invalid actions have near zero probabilities in the182
softmax output.183

3.2 Reward optimized MRP heuristic184

Material Requirements Planning (MRP) is a dynamic programming inspired rule-based heuristic185
used to determine the quantity and timing of production and replenishment orders, more details in the186
Appendix 7 for a very simple variant of MRP. Based on a number of checks, MRP suggests times and187
quantities for value creations. It can be interpreted as a policy which is inefficient to evaluate and is188
not designed to maximize a particular reward function. What makes the MRP algorithm unpleasant189
is not only the effort in computing the action but also that the algorithm requires so-called safety190
stock levels Sn as a hyperparameter. For our experiments, we use a novel safety stock approach that191
is promising in its own rights, as it can be used for complex supply chains. This is in contrast to192
safety stock policies (such as based on Gaussian tail bounds for estimated one-step workloads) used193
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in real-life systems that are optimal in very small examples but can fail badly for complex systems.194
Interpreting safety stocks as a hyperparameter to the "MRP policy" we use Bayesian optimization195
(scikit-optimize library) to maximize the value function V (S) = EMRP(S)[

∑∞
t=0 γ

tR(st, at)]. The196
approach can be seen as a combination of standard MRP and reward optimization. The maximal197
safety stock vector is denoted by S∗, the reward optimized MRP policy by MRP(S∗).198

3.3 Online imitation learning199

We will show below that standard RL training using PPO is delicate for multi-echelon supply chain200
problems and propose two fixes. The most effective one is to imitate an MRP heuristic and use201
the imitated policy network as a pre-training for PPO. For the imitation we use DAgger (dataset202
aggregation), a popular imitation learning algorithm for online learning (Ross et al., 2011). DAgger203
is an improvement on Behavior Cloning (BC) (Pomerleau, 1991) that replaces the static dataset of204
BC with a dynamic dataset, containing trajectories generated by the training agent and the expert205
together and annotated by the expert. DAgger training consists of N iterations, generating new206
training data each iteration while increasing the influence of the learned agent on the generated207
trajectories. At iteration t, a mixed policy πt is used to generate environment interactions:208

πt =

{
π∗ : with probability βt

πθi : with probability 1− βt

,

where βt ∈ [0, 1] is a mixing parameter that controls the probability of following the expert policy209
π∗ versus the learned policy πθt . Here πθ is a policy parametrized by a neural network with fixed210
architecture and weight vector θ. The collected dataset Di = {(s, πt(s))} of visited states and211
corresponding actions is added to an aggregated dataset: D =

⋃N
i=1Di and a new policy πθi+1

is212
then trained on D. We follow the typical method of linearly annealing βi from 1 to 0.213

3.4 Training214

Standard PPO: Training is performed using PPO with random (Glorot) initialization. We use the215
maskable-PPO implementation of Stable Baselines3 available in SB3-Contrib (Raffin et al., 2021),216
see appendix for details. It turns out that the training is extremely slow, multi-echelon supply chain217
training is very much prone to metastability effects (see appendix). What happens is the following:218
the agent learns quickly to optimize all nodes except the last, where all material exceeding the219
storage capacity is discarded. Leaving this local maximum is delicate for gradient-based algorithms.220
To learn to optimize the terminal node, earlier sub-decisions become suboptimal so the algorithm221
must first worsen before improving. Orange learning curves in the experiments below show the222
metastability, the agent is stuck in suboptimal strategies for millions of interactions and suddenly223
improves (when inventory of the last node is decreased).224
Modified reward function: A first mitigation of the metastability problem is to modify the reward225
function to penalize the waste of excess material. We change the reward function R into226

R̄(s, a) = R(s, a)− c
∑
n∈N

chn · en,t, (4)

where en,t is the amount of excess material discarded from node n at time t when it exceeds the227
capacity wn. c is a penalty weight, set to 100 in the experiments. We note that the change of R228
to R̄ does not change the optimal solution, since the capacities wn are typically much higher than229
the optimal inventory levels. However, our experiments show that the use of R̄ speeds up training230
significantly and allows the agent to escape suboptimal local maxima.231
MRP pre-trained PPO: We now propose a novel approach to drastically improve PPO training.232
The idea is to make the PPO agent start in a favorable parameter valley, a valley that represents233
policies that do not sacrifice optimality at single nodes (typically the last). For the pre-training234
we imitate the MRP(S) policy. We learn a neural network that mimics the same action making as235
MRP(S). Every evaluation of the MRP(S) policy is costly, the entire rule-based algorithm needs236
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to be performed. We run DAgger for ten iterations only, generating a single trajectory of 3600 (10237
years) time-steps in each iteration. For the ith iteration of DAgger the expert policy π∗ := MRP(S)238
is chosen in every step with decreasing probabilty βi. This is enough to bring the policy above 80%239
accuracy predicting MRP’s actions. Even though the evaluation of the MRP policy is costly, a few240
thousand evaluations are neglegible compared to millions of iterations needed for PPO. The MRP241
pre-trained policy is then used to initialize the PPO training. It is important to note that the choice242
of safety-stock vector S is not crucial, every reasonable choice improves the PPO training a lot.

Algorithm 1 MRP pre-trained PPO for multi-echelon inventory optimization

Step 1 (Safety stocks): Determine good safety stock vector S, e.g. using Bayesian opt.
Step 2 (Imitation learning): Perform DAgger using expert policy π∗ = MRP(S):
for for i = 1, ..., N do

Obtain rollout using in every step MRP(S) (resp. πθi ) with probability βi (resp. (1− βi)).
Add rollout state-action pairs to buffer D, use supervised imitation on D to obtain θi+1.

end for
Step 3 (PPO): Run PPO with initial policy network obtained in Step 2. =0

243

4 Experiments244

The algorithms are compared on a simple three-nodes example and the more complex ten-nodes245
example from Figure 1.246

The simple problem consists of a factory (black) and two

Example, gray nodes have demand

247
warehouses (gray) with random customer demands (negative248
binomial with means 367 (middle) and 172 (right)). Replen-249
ishment from factory to warehouse and from warehouse to250
warehouse have random lead times (Poisson auto-regressive251
with means 6 (resp. 15)). Variants of the simple toy example are often used in the supply chain252
literature. They also appear in industry, parameters for our experiment (see Appendix) stem from a253
real-world problem in the process manufacturing industry.254

To show that the choice of S is not crucial to have a well-performing MRP pre-trained PPO agent255
we used a decent safety stock vector S instead of the optimal S∗.256

Learning curves: MRP value functions are plotted as horizontal lines. RL agents are evaluated257
every 2.5 · 104 environment interactions, value functions are evaluated on 80 episodes of length258
3600 (representing ten years). The training curves are smoothed with a Gaussian filter with σ = 2.259
Standard PPO struggles to learn the optimal policy. Further investigation of single node inventories260
shows that the algorithm is stuck in local maxima of strategies that sacrifice the final warehouse261
which is kept at maximal capacity. The PPO agent takes millions of interactions to find a param-262
eter region that reduces the inventory at the final warehouse. PPO with modified rewards is much263
worse at the beginning (due to the penalization) and then improves much quicker, as expected the264
metastable behavior dissapeared. MRP pre-trained PPO clearly beats PPO without pre-training.265

Performance - cost vs. backorder: In Figure 5 we provide experiments to see the effects on cost vs.266
backorder when varying inventory/backorder preferences. The graphs show that MRP pre-trained267
PPO agents slightly outperform the reward-optimized MRP policy. It is natural to ask why it might268
be interesting to prefer RL policies to the simple (reward optimized) MRP policy. First, it is timely269
to evaluate for every decision the rule-based MRP policy, see Appendix 7. In contrast to evaluating270
a neural network for RL policies, it requires a number of algorithmic steps that in real-life large271
supply chains is an important problem. Secondly, as our next result shows, the RL agent generalizes272
better to changes in the environment, one of the key topics in current supply chain organizations.273

Robustness: In Figure 6 we provide zero-shot experiments, where the trained policies are compared274
on unseen demand distributions with changed customer demand. For decreased demadn the RL275
agent generalizes better than reward-optimized MRP, the inventory/backorder situation improves.276
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Figure 4: Learning curves for three PPO trained agents compared to the (constant) value function
of MRP agents (green with reward optimized S∗, red with suboptimal S used for DAgger training).
DAgger pre-training (blue) enables better performance than optimized MRP. Without pretraining,
adding the capacity penalty of Eq. (4) helps to avoid overstocking material (purple vs. orange).

Figure 5: Pareto curves (backorder vs. inventory costs) of RL agents and MRP. We fix all RL
training parameters but scale the backorder weight w of Eq. (3). Similarly, for MRP we change
inventory/backorder preferences by scaling all safety stock values a factor x.

Figure 6: Zero-shot performance for new demand. Changing magnitude of demand, for lower de-
mand RL agent generalizes clearly better.

5 Conclusion277

In the present article we introduced an MDP modeling for order-based supply chain management.278
Combining action-shaping and -masking to reduce the action-space we created a gymnasium envi-279
ronment to run RL algorithms. Since plain vanilla PPO is slowed down by metastability effects we280
introduced supply chain specific patches, in particular using imitation learning on a rule-based MRP281
heuristic. The approach has potential to be used in other RL approaches to classical OR problems.282

Due to its enormous importance in supply chain management it would be very beneficial in future283
work to understand how policy networks can be improved on zero-shot learning by training the284
agent on more and different extreme scenarios. The generalization ability of neural networks has a285
potential huge benefit to supply chain robustness for sudden changes in real-life.286
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Supplementary Materials344

The following content was not necessarily subject to peer review.345
346

6 Experimental details347

6.1 Environment348

Here are the paramters for the 3-node example, the exact parameters for the 10-node example must349
be kept confidential.350

node chn cbn wn w̃n demand
middle 26.7 34 170093 12465 NB(0.11, 0.0003)
right 29.5 42 127646 8025 NB(0.081, 0.00047)

replenishment qv kmax
v kmax

v lead time
left 4180 2 0 ARPois(6, 20, 0.98)
right 4100 2 1500 ARPois(15, 20, 0.98)

351

Both demand distributions are Negative Binomial, NB(r, p). To reflect realistic fluctuating lead352
times, we use an autoregressive variant of the Poisson distribution, ARPois(λ0, h, ϕ). This distribu-353
tion produces each time-step t a lead time τt which is drawn from the distribution Pois(λt), where354
λt depends on the previously h drawn lead time values τ according to the formula:355

λt = max

(
0, ϕ ·

∑
t′∈[t−h,t] τ

′
t

h
+ (1− ϕ)λ0

)
(5)

This produces a time-correlated Poisson distribution which retains an expected value of 0.356

6.2 Details on PPO training357

We train feedforward neural nets with PPO. We add skip connections (He et al., 2016) every two358
layers to enable training deep networks, effectively using 2 residual blocks in both the value and359
policy networks.360

Hyper-parameter parameter value
no. of environment interactions 107

policy network width 256, depth 4
actor network width 256, depth 4
activation function ReLU
discount factor γ 0.99
GAE paramter 0.95
Adam learning rate 2.5 · 10−4

batch size 64

6.3 Metastability361

The learning curves in Figure 4 highlight the difficulty of deep RL training for multi-echelon supply362
chain optimization if the reward function is not chosen carefully. Metastability effects occur as there363
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Figure 7: 3-node example, inventory during training at middle node (left) and right node (right)

are suboptimal strategies that manifest local maxima for the parameter vectors of the policy network.364
As a consequence, gradient based algorithms struggle to improve the suboptimal strategy. To explain365
what happens we plotted the inventory levels of the 3-node example during training (inventory plots366
look similar for the 10-node example). The learning curve of Figure 4 shows a sudden improvement367
after 2.5M environment interactions, preceded by a return drop. This is reflected in Figure 7. The368
agent finds quickly the suboptimal strategy to optimize the inventory at the middle node while com-369
pletely sacrificing the terminal right node, running at maximal inventory 127646. At 2.5M iterations370
the RL agent deviates from the local maximum and explores a new strategy, reducing inventory at371
the terminal node and increasing inventory at the middle node.372

7 Material requirements planning (MRP)373

The main algorithmic invention of this article is to combine off-the-shelf RL training (PPO) through374
imitation learning with rule-based heuristics from operations research (OR). There are several OR375
algorithms to solve approximately different supply chain problems. For the multi-echelon inventory376
optimization (MEIO) problem studied in the present article we use a dynamic programming inspired377
rule-based algorithm that is (with various modifications) implemented in many industry supply chain378
solutions. We now give a quick overview for the interested RL researcher.379

The rule-based algorithm implements a time-phased Material Requirements Planning (MRP I) sys-380
tem to maintain inventory levels above safety stock thresholds across all nodes in the supply chain.381
Rooted in the foundational work Orlicky (1975), the process begins by exploding dependencies from382
downstream nodes (e.g., retailers or finished goods) to upstream suppliers, following the hierarchical383
structure of the multi-echelon supply chain. Inventory projections are calculated in daily time buck-384
ets over a fixed H = 150 planning horizon. Starting from the current day t, the system computes the385
projected available balance (PAB) for each subsequent day s ∈ [t, t+H], accounting for scheduled386
receipts, planned orders, and demand forecasts. If the PAB is projected to fall below the safety stock387
level at time T , a planned order is generated to replenish the deficit. Orders are offset by lead times388
using backward scheduling: for an order requiring τ days of lead time, the release date is set to389
T − τ . If this calculated release date precedes the current day t, the order is flagged as overdue and390
scheduled for immediate release. This daily recalibration ensures alignment with the core principle391
of time-phased net requirement calculation, where material plans are dynamically adjusted to reflect392
real-time demand and supply conditions. Rule-based MRP algorithms are dynamic-programming,393
heuristic-based algorithms. It implements a safety-stock approach to managing the supply chain,394
meaning it predicts the future inventory levels of all nodes in the chain and tries to ensure inventory395
never falls below the "safety stock" that must be given to the algorithm.396

Since we use the MRP algorithm in our examples without multi-material manufacturing steps, we397
give pseudo-code for a simplified version of MRP. It should be noted that the algorithm is a very398
simple MRP variant that does not estimate demand expectations and lead times on the run. We do399
this for a fair comparison to the RL agents, otherwise demand distributions should also be included400
in the MDP state-space and not be given as part of the model.401

There are two novel ideas we add on the standard OR literature.402
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Algorithm 2 MRP Algorithm (without multi-material manufacturing steps)
Input: expected demands E(d) and lead times E(l), safety stocks Sn for all nodes, current gen-
eralized inventories Gn,t and running orders set O.
for each node n in topological order do

for each time-step s ∈ [t, t+H] do
gen(n, τ)← amount of additional material by finished orders
Gn,s ← Gn,s−1 + gen(n, s)− E (d(n))
if Gn,s+1 < Sn then

Set number of lots L to minimal number containing at least amount Sn −Gn,s+1.
if procurement is possible then

Add to O an order from a source node. L lots, start time: max(t, s− E(l))
else

Choose source node n′ that maximizes Gn′,s+1

num_outgoing(n′) , where num_outgoing(n′) de-
notes the number of nodes supplied by node n′.
Add to O an order from node n′ to node n. L lots and start time max(t, s− E(l))

end if
end if

end for
end for
Output: all orders in O that start at time t. =0

• We interpret MRP(S) =: π as a policy. The action (orders) in the state S (inventory level and403
current order book) are the output orders of the algorithm given above (the orders suggested by404
the algorithm to be placed at initial time t).405

• The safety stock vector S is a required input to the algorithm. We define the reward-based optimal406
safety stock vector S∗ by maximizing the expected reward R under the MRP run defined by407
the MRP algorithm: V (S) = EMRP(S)[

∑∞
t=0 γ

tR(st, at)]. Since S is a hyperparameter to the408
algorithm, it is natural to use a Bayesian optimization algorithm to do so.409
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