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Abstract

The success of Large Language Models (LLMs) establishes that machines trained1

for next-token prediction can acquire language proficiency. What are the mecha-2

nisms behind this acquisition and how much data do they require? We show that3

these questions can be partially answered by studying the correlations between4

the input tokens. Specifically, using scaling concepts of physics, we formulate a5

conjecture on the relationship between correlations, size of the training set and6

effective context window, i.e. the input tokens that are actually used by the model7

when predicting the next. Interestingly, when the correlations decay as a power of8

the distance between tokens, our conjecture connects to neural scaling laws and9

predicts how the scaling of test loss with dataset size should depend on the length10

of the context window. We confirm our conjecture and predictions on two datasets,11

consisting of Wikipedia articles and Shakespeare’s lines.12

1 Introduction13

The question of how language is acquired is central for linguistics as well as machine learning. For14

instance, the success of LLMs trained for next-token prediction [1, 2] establishes that a language15

can be acquired from examples alone—albeit with a training set much larger than what humans16

are exposed to. Furthermore, empirical studies of LLMs’ representations showed that they learn17

a hierarchy of contextual information, including notions of linguistics such as word classes and18

syntactic structure [3, 4, 5]. Recent studies have begun revealing the inner workings of LLMs by19

using synthetic data generated via context-free grammars [6, 7, 8], determining, in particular, the20

algorithm that these models follow when predicting the next token. However, there is no consensus21

on the mechanisms behind language acquisition [9, 10]. As a result, empirical phenomena such as the22

scaling of the test loss with dataset size and number of parameters [11] and the emergence of specific23

skills at certain scales [12, 13] remain unexplained.24

In this work, we explore the idea that LLMs leverage data correlations to learn. This idea was25

introduced in the context of deep vision models trained for image classification [14]. In particular,26

assuming non-zero correlations between the class label and the input features leads to learnability with27

an iterative clustering algorithm that mimics the structure of deep convolutional networks [15, 16].28

Further developments led to a demonstration of how deep networks leverage these correlations to29

efficiently learn hierarchical and compositional data, both in the classification [17] and the next-30

token prediction[18] settings. Here we test this idea empirically, by focusing on the pretraining31

phase of language models and consider two datasets, consisting of English Wikipedia articles and32

Shakespeare’s lines, respectively. We find that:33

• Token-token correlations C decay as a power of the distance between tokens t, C(t) ∼ t−β ;34
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• A finite training set size P induces a sampling noise of order P−1/2, thus limiting the35

resolution of correlations to an effective context window of size t(P ) ∼ P 1/(2β);36

• The relationship between t and P predicts the training set size at which the performance of37

language models trained on a finite context window saturates.38

2 Notation and setup39

Data and Correlations. We define a text datum, or sentence, as a sequence x=(x1, . . . , xd) of40

d tokens belonging to a finite vocabulary V . Denoting with v the vocabulary size, each token xi is41

represented as a v-dimensional one-hot vector (xi,µ)µ=1,...,v
1:42

xi,µ =

{
1, if xi ≡ µ-th element of V,
0, otherwise.

(1)

A dataset, or corpus, consists of a probability distribution over sequences, which measures the43

frequency at which a given combination of tokens appears within the text. Assuming that all44

sequences have length d, the data distribution is a joint probability over d-dimensional sequences with45

elements in V , PX(x) := P {X1 = x1, . . . , Xd = xd}. We measure correlations between tokens via46

the token co-occurrences matrix, 247

Ci,j(µ, ν) := P {Xi = µ,Xj = ν} − P {Xi = µ}P {Xj = ν} , (2)
where µ and ν are arbitrary elements of the vocabulary V and P refers to the data distribution PX.48

Last-token prediction. We consider a simplified language modelling setup where the last token of49

the sequence is masked and a machine-learning model is trained to predict it. In other words, the50

model takes the context window (x1, . . . , xd− 1) as input and outputs a parametric approximation pθ51

of the conditional probability of the last token,52

pθ(xd|x1, . . . , xd−1) ≈ P {Xd = xd|X1 = x1, . . . , Xd−1 = xd−1} . (3)
pθ is obtained by updating the parameters θ via gradient descent on the empirical cross-entropy loss,53

computed from a set of P training examples drawn from PX . The architectures we consider have the54

same structure as BERT [1]: They consists of multiple blocks, where each block includes a standard55

Multi-Head Attention layer [19], a token-wise two-layer perception (MLPs), layer normalization56

operations before the attention layer and the MLP and residual connections. Transformers are trained57

with the Adam optimizer, with a warmup scheduler bringing the learning rate to 10−2 within the58

first 10 training epochs. The batch size is set to the minimal size allowing convergence, where we59

define convergence as the training cross-entropy loss reaching a threshold value of 10−2. We use a60

validation set of size 215 to select the model with the best validation loss over the training trajectory.61

3 Correlations, training set size and effective context window62

Since the masked token is always the last in our setup, we define a correlation function as follows.63

Take the left-hand side of Eq. 2, set j= d and define the distance t= |i− d| between the i-th and the64

masked token, then compute the root mean square over the vocabulary:65

C̃(t) :=

v−2
∑

µ,ν∈V
(Cd−t,d(µ, ν))

2

1/2

. (4)

C̃(t) measures the typical dependency between tokens as a function of their distance t. We denote66

the empirical correlation function, where correlations are measured from P samples of the data67

distribution, with C̃P (t). Examples of C̃P (t) are shown in the top-left panels of Fig. 1 (Wikipedia)68

and Fig. 2 (Shakespeare). The power-law decay is ubiquitous for text-like data [20], and observed69

empirically for different choices of tokenisation, including syllables [21], words [22] and part-of-70

speech tags [23]. This behaviour can be derived from the hierarchical and compositional structure of71

grammar [20], as show in [18] for a specific example of context-free grammar.72

1throughout the paper, Latin indices indicate the token position and Greek indices the vocabulary entry.
2Ci,j(µ, ν) is also equivalent to the covariance matrix of the one-hot representation,

E [(Xi,µ − E [Xi,µ]) (Xj,ν − E [Xj,ν ])]
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Saturation due to finite sample size. Notice that the empirical correlation functions of Fig. 173

and Fig. 2 saturate for large t. This saturation is caused by the sampling error: For large P , C̃P (t)74

converges to a Gaussian random variable having mean equal to the infinite-P correlation function C̃(t)75

and variance of order 1/(v2P ). 3 This characteristic size is highlighted by horizontal, coloured dashed76

lines in the figures. As t increases, the mean C̃(t) decreases and the sampling noise size emerges,77

resulting in an effective context window size t∗(P ), given by the value of t where C̃(t) ∼ t−β78

intersects the sampling noise scale ∼ P−1/2,79

(t∗)−β ∼ P−1/2 ⇒ t∗(P ) ∼ P 1/z, with z=2β. (5)

As shown in the top right panels of Fig. 1 and Fig. 2, the relationship between t and P can also be80

represented by the following scaling hypothesis for the empirical correlations,81

C̃P (t) = P−1/2c(t/P 1/z), (6)

with c(x) ∼ xβ for x≪ 1 and c(x) ∼ cost. for x≫ 1.82

Finite sample size equals effective context window. Eq. 5 suggests that a machine learning83

method that uses P examples can only extract information from the tokens within distance t∗(P )84

from the last, leading to the following85

Conjecture: “If the token correlation function decays with the token distance, then a language86

model trained to predict the next token from a training set of P examples can only extract relevant87

information from an effective context window of P -dependent size t∗(P ).”88

4 Test on real language data89

In this section, we report the results of the test of our conjecture in two datasets: a selection of90

lines from Shakespeare’s plays [25] and a collection of articles from English Wikipedia [24]. For91

both datasets we adopt a character-level tokenisation, resulting in over 106 tokens. We then extract92

sequences of t consecutive tokens and train BERT-like deep transformers in the setup of section 2.93

The results are reported in the bottom panels of Fig. 1 for Wikipedia and Fig. 2 of App. A for94

Shakespeare. First, as P increases, the test loss follows the empirical scaling law L ∼ P−α (bottom95

left ). However, the learning curve levels off at some characteristic scale P that grows with the size96

t of the context window. This phenomenon is qualitatively compatible with our conjecture, as it97

implies that the gains in performance observed when increasing P are entirely due to the ability of98

the model to leverage longer-range correlations.99

Furthermore, by inverting the function t∗(P ) of Eq. 5 we get a characteristic training set size100

P ∗(t) where the training set allows for resolving correlations at all distances t′ <t, P ∗(t) ∼ tz .101

In other words, the relationship between t and P measured from the correlation functions predicts102

quantitatively the training set size where learning curves level off. Paired with the empirical power-103

law scaling with P , this result leads to the following context-dependent scaling hypothesis for the104

test loss:105

L(P, t) = t−αzf

(
P

tz

)
, (7)

with f(x) ∼ x−α for x≪ 1 and constant for x≫ 1. This scaling hypothesis could also be formulated106

so as to highlight the dependence on the training set size,107

L(P, t) = P−αg

(
P

tz

)
, (8)

with g(x) constant for x≪ 1 and g(x) ∼ xα for x≫ 1. The collapse observed in the bottom right108

panels of Fig. 1 and Fig. 2 confirms Eq. 7 and our conjecture.109

3While this is techinically true only if the token entries appear with the same frequency, it remains approxi-
mately true as long as the freuencies are not too dissimilar.
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Figure 1: Top, Left: Empirical correlation functions ĈP (t) of 16-character blocks from the WikiText-103
dataset [24], with P as in the key. All curves display an initial, approximately power-law decay, followed by
saturation due to the sampling noise. The scales of the sampling noise are indicated by coloured, dashed lines.
Top, Right: The empirical curves ĈP (t) collapse when rescaling the correlations by the sampling noise size
P−1/2 and t by the characteristic distance t∗(P ) ∼ P 1/z , with z=2β ≃ 3.1. Bottom, Left: Test losses of
6-layers transformers trained on (t+1)-characters blocks of the WikiText-103 [24] (t as in the key). The number
of heads is set to nh =8, the embedding dimension to de =512 and the size of the MLP hidden layer to 4de.
Increasing the number of layers or the number of heads does not affect the results presented in the figure. Notice
the saturation of the loss to some t-dependent value after reaching a characteristic training set size. Bottom,
Right: As predicted by our conjecture, the losses collapse when rescaled according to Eq. 7 with the same z as
the correlation functions and α ≃ 0.095.

5 Conclusions110

We proposed a conceptual framework for understanding the performance-vs.-data scaling laws of111

language models trained for next-token prediction. In our picture, increasing the number of data112

allows for the resolution of a longer range of correlations. These correlations, in turn, can be113

exploited to improve the next-token prediction performance. This scenario is consistent with the114

empirical phenomenology of language models [11]. Furthermore, our analysis predicts a fundamental115

relationship between the effective context window captured by a language model trained with a116

finite training set and the decay of token-token correlations, which we confirmed empirically on two117

examples of text data. This finding suggests that the exponents entering scaling laws are influenced118

by intrinsic (and measurable) properties of the data. On the one hand, our predictions can be tested on119

state-of-the-art LLMs trained on larger datasets. On the other hand, our framework can be extended120

to shed light on other aspects of scaling laws of high practical relevance, such as the role of the121

number of parameters and the behaviour of performance when the model size and the number of data122

are optimised under a fixed compute budget.123
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Figure 2: Top, Left: Empirical estimates ĈP (t) for different training set sizes P as in the key. The curves
initially follow the true correlation C̃(t) (black dashed), but then saturate due to the sampling noise (coloured
dashed). Top, Right: The empirical curves ĈP (t) collapse when rescaling correlations by the sampling noise
size P−1/2 and t by the characteristic distance t∗(P ) ∼ P 1/z , with z ≃ 2.8. Bottom, Left: Test losses of
3-layers transformers trained on (t+1)-characters blocks of the tiny-Shakespeare dataset [25] (t as in the key).
The number of heads is set to nh =8, the embedding dimension to de =256, the size of the MLP hidden layer to
4de. The saturation of the loss to some t-dependent value indicates that performance improves with P because
the model can use information from a larger context window. Bottom, Right: As predicted by our conjecture,
the losses collapse when rescaled according to Eq. 7 with the same z as the correlation functions.

A Loss saturation and correlations for tiny Shakespeare188

In this section, we report the results of the test of our conjecture for the tiny Shakespeare dataset [25].189

The results are summarised in Fig. 2, which displays the same measures as Fig. 1 and, as Fig. 1,190

confirms our conjecture.191
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