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Figure 1. We leverage human videos to learn visual affordances that can be deployed on multiple real robot, in the wild, spanning several
tasks and learning paradigms. Videos available at https://robo-affordances.github.io/.

Abstract
Building a robot that can understand and learn to inter-

act by watching humans has inspired several vision prob-
lems. However, despite some successful results on static
datasets, it remains unclear how current models can be used
on a robot directly. In this paper, we aim to bridge this gap
by leveraging videos of human interactions in an environ-
ment centric manner. Utilizing internet videos of human
behavior, we train a visual affordance model that estimates
where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly en-
ables the robot to perform many complex tasks. We show
how to seamlessly integrate our affordance model with four
robot learning paradigms including offline imitation learn-
ing, exploration, goal-conditioned learning, and action pa-
rameterization for reinforcement learning. We show the ef-
ficacy of our approach, which we call VRB, across 4 real
world environments, over 10 different tasks, and 2 robotic
platforms operating in the wild.

The meaning or value of a thing consists of what it
affords... what we perceive when we look at objects are
their affordances, not their qualities.

J.J. Gibson (1979)

1. Introduction
Imagine standing in a brand-new kitchen. Before taking

even a single action, we already have a good understand-
ing of how most objects should be manipulated. This un-
derstanding goes beyond semantics as we have a belief of
where to hold objects and which direction to move them
in, allowing us to interact with it. For instance, the oven
is opened by pulling the handle downwards, the tap should
be turned sideways, drawers are to be pulled outwards, and
light switches are turned on with a flick. While things don’t
always work as imagined and some exploration might be
needed, but humans heavily rely on such visual affordances
of objects to efficiently perform day-to-day tasks across en-
vironments [35, 36]. Extracting such actionable knowledge
from videos has long inspired the vision community.

More recently, with improving performance on static
datasets, the field is increasingly adopting a broader ‘active’
definition of vision through research in egocentric visual
understanding and visual affordances from videos of human
interaction. With deep learning, methods can now predict
heatmaps of where a human would interact [39, 80] or seg-
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Figure 2. VRB Overview. First, we learn an actionable representation of visual affordances from human videos: the model predicts contact
points and trajectory waypoints with supervision from future frames. For robot deployment, we query the affordance model and convert its
outputs to 3D actions to execute.

mentation of the object being interacted with [107]. Despite
being motivated by the goal of enabling downstream robotic
tasks, prior methods for affordance learning are tested pri-
marily on human video datasets with no physical robot or
in-the-wild experiments. Without integration with a robotic
system, even the most basic question of how the affordance
should be defined or represented remains unanswered, let
alone evaluating its performance.

On the contrary, most robot learning approaches,
whether imitation or reinforcement learning, approach a
new task or a new environment tabula rasa. At best, the vi-
sual representation might be pretrained on some dataset [69,
84, 96, 106, 122, 124]. However, visual representations are
only a small part of the larger problem. In robotics, es-
pecially in continuous control, the state space complexity
grows exponentially with actions. Thus, even with perfect
perception, knowing what to do is difficult. Given an im-
age, current computer vision approaches can label most of
the objects, and even tell us approximately where they are
but this is not sufficient for the robot to perform the task. It
also needs to know where and how to manipulate the object,
and figuring this out from scratch in every new environment
is virtually impossible for all but the simplest of tasks. How
do we alleviate this clear gap between visual learning and
robotics?

In this paper, we propose to rethink visual affordances as
a means to bridge vision and robotics. We argue that rich
video datasets of humans interacting can offer a lot more
actionable information beyond just replacing ImageNet as
a pretrained visual encoder for robot learning. Particularly,
human interactions are a rich source of how a wide range of
objects can be held and what are useful ways to manipulate
their state. However, several challenges hinder the smooth
integration of vision and robotics. We group them into three
parts. First, what is an actionable way to represent affor-

dances? Second, how to learn this representation in a data-
driven and scalable manner? Third, how to adapt visual af-
fordances for deployment across robot learning paradigms?
To answer the first question, we find that contact points and
post-contact trajectories are excellent robot-centric repre-
sentations of visual affordances, as well as modeling the
inherent multi-modality of possible interactions. We make
effective use of egocentric datasets in order to tackle the sec-
ond question. In particular, we reformulate the data to focus
on frames without humans for predicting contact points and
the post-contact trajectories. To extract free supervision for
this prediction, we utilize off-the-shelf tools for estimating
egomotion, human pose, and hand-object interaction. Fi-
nally, we show how to seamlessly integrate these affordance
priors with different kinds of robot learning paradigms. We
thus call our approach Vision-Robotics Bridge (VRB) due
to its core goal of bridging vision and robotics.

We evaluate both the quality of our affordances and their
usefulness for 4 different robotic paradigms – imitation and
offline learning, exploration, visual goal-reaching, and us-
ing the affordance model as a parameterization for action
spaces. These are studied via extensive and rigorous real-
world experiments on physical robots which span across 10
real-world tasks, 4 environments, and 2 robot hardware plat-
forms. Many of these tasks are performed in-the-wild out-
side of lab environments (see Figure 1). We find that VRB
outperforms other state-of-the-art human hand-object affor-
dance models, and enables high-performance robot learning
in the wild without requiring any simulation. Finally, we
also observe that our affordance model learns a good visual
representation for robotics as a byproduct. We highlight that
all the evaluations are performed in the real world span-
ning several hundred hours of robot running time which
is a very large-scale evaluation in robotics.



2. Related Work

Affordance and Interaction Learning from Videos.
Given a scene, one can predict interactions using geometry-
based rules for objects via 3D scene understanding [43, 78,
79, 134], estimating 3D physical attributes [8, 26, 41, 137]
or through segmentation models trained on semantic inter-
actions [102, 104], and thus require specialized datasets.
More general interaction information can be learned from
large human datasets [18, 19, 21, 40, 62, 67], to predict
object information [30, 136] (RGB & 3D) [10], graphs
[24] or environment information [28, 81] such as heatmaps
[39, 80]. Approaches also track human poses, especially
hands [14, 18, 65, 66, 101, 107, 127]. Similarly, in action an-
ticipation and human motion forecasting, high-level seman-
tic or low level actions are predicted using visual history [1,
11,19,22,31–33,37,40,46–48,55,58,72,75,100,119,120].
Since our observations only have robot arms and no human
hands, we adopt a robot-first formulation, only modeling
the contact point and post-contact phase of interaction.

Visual Robot Learning. Learning control from visual in-
puts directly is an important challenge. Previous works have
leveraged spatial structures of convolutional networks to di-
rectly output locations for grasping and pushing from just an
image of the scene [92, 130, 131], which can limit the type
of tasks possible. It is also possible to directly learn control
end-to-end [52,61] which while general, is quite sample in-
efficient in the real world. It has been common to introduce
some form of prior derived from human knowledge, which
could take the form of corrective interactions [23, 42, 68],
structured policy spaces [2, 7, 7, 17, 50, 85, 94, 99, 108, 125],
offline robotics data [25, 56, 57, 71, 97], using pretrained vi-
sual representations [84,89,106,123,124] or human demon-
strations [6, 15, 105, 108, 109, 113].

Learning Manipulation from Humans. Extensive work
has been done on Learning from Demonstrations (LfD)
where human supervision is usually provided through tele-
operation (of a joystick or VR interface) [77, 115, 133] or
kinesthetic teaching, where a user physically moves the
robot arm [13, 16, 27, 70, 94].With both these approaches,
collecting demonstrations is tedious and slow. Recently,
works have shown alternate ways to provide human demon-
strations, via hand pose estimation and retargeting [5, 95,
110, 112, 126] in robot hands, but are mostly restricted to
tabletop setups. First and third person human demonstra-
tions have been used to train policies directly, transferred
either via a handheld gripper [87, 114, 128] or using online
adaptation [6]. In contrast to directly mimicking a demon-
stration, we learn robot-centric affordances from passive
human videos that provide a great initialization for down-
stream robot tasks, unlike previous work which require in-
domain demonstrations.

3. Affordances from Human Videos (VRB)

Our goal is to learn affordance priors from large-scale
egocentric videos of human interaction, and then use them
to expedite robot learning in the wild. This requires ad-
dressing the three questions discussed in Sec. 1 about how
to best represent affordances, how to extract them and how
to use them across robot learning paradigms.

3.1. Actionable Representation for Affordances

Affordances are only meaningful if there is an actor to
execute them. For example, a chair has a sitting affordance
only if it is possible for some person to sit on it. This prop-
erty makes it clear that the most natural way to extract hu-
man affordances is by watching how people interact with
the world. However, what is the right object-centric rep-
resentation for affordances: is it a heatmap of where the
human makes contact? Is it the pre and postcondition of the
object? Is it a description of the human interaction? All
of these are correct answers and have been studied in prior
works [43, 66, 80]. However, the affordance parameteriza-
tion should be amenable to deployment on robots.

If we want the robot to a priori understand how to manip-
ulate a pan (Fig. 1, 4) without any interaction, then a seem-
ingly simple solution is to exactly model human movement
from videos [66], but this leads to a human-centric model
and will not generalize well because human morphology is
starkly different from that of robots. Instead, we take a first-
principles approach driven by the needs of robot learning.
Knowledge of a robot body is often known, hence reach-
ing a point in the 3D space is feasible using motion plan-
ning [53, 59, 60]. The difficulty is in figuring out where to
interact (e.g. the handle of the lid) and then how to move
after the contact is made (e.g., move the lid upwards).

Inspired by this, we adopt contact points and
post-contact trajectories as a simple actionable repre-
sentation of visual affordance that can be easily transferred
to robots. We use the notation c for a contact point and τ
for post-contact trajectory, both in the pixel space. Specif-
ically, τ = f(It, ht), where It is the image at timestep t,
ht is the human hand location in pixel space, and f is a
learned model. We find that our affordance representation
outperforms prior formulations across robots. Notably, the
c and τ abstraction makes the affordance prior agnostic to
the morphological differences across robots.

3.2. Learning Affordances from Egocentric Videos

The next question is how to extract c and τ from human
videos in a scalable data-driven manner while dealing with
the presence of human body or hand in the visual input.
VRB tackles this through a robot-first approach.
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Figure 3. Robot Learning Paradigms : (a) Offline Data Collection – Used to investigate the quality of the collected data. (b) Exploration
– The robot needs to use intrinsic rewards to improve (c) Goal-Conditioned Learning – A desired task is specified via a goal image, used
to provide reward. (d) Action Spaces – Reduced action spaces are easier to search and allow for discrete control.

3.2.1 Extracting Affordances from Human Videos

Consider a video V , say of a person opening a door, consist-
ing of T frames i.e. V = {I1, ..., IT }. We have a twofold
objective — find where and when the contact happened, and
estimate how the hand moved after contact was made. This
is used to supervise the predictive model fθ(It) that out-
puts contact points and post-contact trajectories. To do so,
we utilize a widely-adopted hand-object detection model
trained on human video data [107]. For each image It, this
produces 2D bounding boxes of the hand ht, and a discrete
contact variable ot. Using this information, we filter for
frames where ot indicates a contact in each video, and find
the first timestep where contact occurs, tcontact.

The pixel-space positions of the hand {ht}t
′

tcontact
consti-

tute the post-contact trajectory (τ ). To extract contact points
c, we use the corresponding hand bounding box, and apply
skin color segmentation to find all points at the periphery
of the hand segment that intersect with the bounding box
of the object in contact. This gives us a set of N contact
points {ci}N , where N can differ depending on the im-
age, object, scene and type of interaction. How should the
contact points be aggregated to train our affordance model
(fθ)? Some options include predicting the mean of {ci}N ,
or randomly sampling ci. However, we seek to encourage
multi-modality in the predictions, since a scene likely con-
tains multiple possible interactions. To enable this, we fit a
Gaussian mixture model (GMM) to the points. Let us de-
fine a distribution over contact points to be p(c). We fit the
GMM parameters (µk, Σk) and weights αk.

p(c) = argmax
µ1,...,µK ,Σ1,...,ΣK

N∑
i=1

K∑
k=1

αkN (ci|µk,Σk) (1)

We use these parameters of the above defined GMM with
K clusters as targets for fθ. To summarize, 1) we find
the first timestep where contact occurs in the human video,
tcontact 2) For c, we fit a GMM to the contact points around
the hand at frame Itcontact , parameterized by µk, Σk and 3)
we find the post-contact trajectory of the 2D hand bounding
box {ht}t

′

tcontact
for τ .

Accounting for Camera Motion over Time: Consider a per-
son opening a door. Not only do the person’s hands move
but their body and hence their head also move closer to the
handle and then away from it. Therefore, we need to com-
pensate for this egomotion of the human head/camera from
time tcontact to t′. We address this by using the homogra-
phy matrix at timestep t, Ht to project the points back into
the coordinates of the starting frame. We obtain the ho-
mography matrix by matching features between consecu-
tive frames. We then use this to produce the transformed
trajectory τ = Ht ◦ {ht}t

′

tcontact
.

Addressing Human-Robot Visual Domain Shift: The train-
ing videos contain human body or hand in the frame but
the human will not be present in downstream robotics task,
generating domain shift. We deal with this issue with a sim-
ple yet elegant trick: we extract affordances in the frames
with humans but then map those affordances back to the
first frame when human was yet to enter the scene. For
videos in which a human is always in frame, we either crop
out the human in the initial frame if there is no interaction
yet or discard the frame if the human is always in contact.
We compute the contact points and post-contact trajectories
with respect to this human-less frame via the same homog-
raphy procedure described above. This human-less frame is
then used to condition our affordance model.



3.2.2 Training Affordance Model

Conditioned on the input image, the affordance model is
trained to predict the extracted labels for contact points and
post-contact trajectories. However, naive joint prediction
does not work well as the learning problem is inherently
multi-modal. For instance, one would pick up a cup differ-
ently from a table depending on whether the goal is to pour
it into the sink or take a sip from it. We handle this by pre-
dicting multiple heatmaps for interaction points using the
same model, building a spatial probability distribution.

For ease of notation, we use (·)θ as a catch-all for all
parameterized modules and use fθ to denote our complete
network. Fig. 2 shows an overview of our model. Input im-
age It is encoded using a ResNet [45] visual encoder gconv

θ

to give a spatial latent representation zt, i.e., gconv
θ (It) = zt.

We then project this latent zt into K probability distribu-
tions or heatmaps using deconvolutional layers; concretely,
Ht = gdeconv

θ (zt). Using a spatial softmax, σ2D, we get
the estimation of the labels for GMM means, i.e., µk. We
found that keeping the covariance matrices fixed gave better
results. Formally, the loss for contact point estimation is:

Lcontact =
∥∥µi − σ2D

(
gdeconv
θ (gconv

θ (It))
)∥∥

2
(2)

To estimate post-contact trajectory, we train a trajec-
tory prediction network, Tθ, based on the latent represen-
tation zt. We find that it is easier to optimize for rela-
tive shifts, i.e., the direction of movement instead of ab-
solute locations, assuming that the first point ŵ0 is 0, since
the contact points are already spatially grounded. Based
on the success of Transformers for sequential prediction,
we employ self-attention blocks [118] and train to optimize
Ltraj = ‖τ − Tθ(zt)‖2. In a given scene, there are many
objects a human could interact with, which may or may not
be present in the training data. We tackle this uncertainty
and avoid spurious correlations by sampling local crops of
It around the contact points. These serve as the effective
input to our network fθ and enables better generalization.

3.3. Robot Learning from Visual Affordances

Instead of finding a particular way to use our affordance
model for robotics, we show that it can bootstrap existing
robot learning methods. In particular, we consider four dif-
ferent robotics paradigms as shown in Fig. 3.

A. Imitation Learning from Offline Data Collection
Imitation learning is conventionally performed on data col-
lected by human demonstrations, teleoperation, or scripted
policies – all of which are expensive and only allow for
small-scale data collection [4, 6, 12, 61, 109, 129]. On the
other hand, using the affordance model, fθ(·) to guide the
robot has a high probability of yielding ‘interesting’ inter-
actions.

Given an image input It, the affordance model produces
(c, τ) = fθ(It), and we store {(It, (c, τ))} in a dataset D.
After sufficient data has been collected, we can use imita-
tion learning to learn control policies, often to complete a
specific task. A common approach for task specification
is to use goal images that show the desired configuration
of objects. Given the goal image, the k-Nearest Neighbors
(k-NN) approach involves filtering trajectories in D based
on their distance to the goal image in feature space. Fur-
ther, the top (filtered) trajectories can be used for behavior
cloning (BC) by training a policy, π(c, τ |It). We run both
k-NN and behavior cloning on datasets collected by differ-
ent methods in Sec. 4.1. Using the same IL approach for
different datasets is also useful for comparing the relative
quality of the data. This is because higher relative success
for a particular dataset implies that the data is qualitatively
better, given that the same IL algorithm achieves worse per-
formance on a different dataset. This indicates that the goal
(or similar images) were likely seen during data collection.

B. Reward-Free Exploration The goal of exploration is
to discover as many diverse skills as possible which can aid
the robot in solving downstream tasks. Exploration meth-
ods are usually guided by intrinsic rewards that are self-
generated by the robotic agent, and are not specific to any
task [9, 49, 51, 64, 73, 86, 90, 93, 98, 117]. However, start-
ing exploration from scratch is too inefficient in the real
world, as the robot can spend an extremely large amount of
time trying to explore and still not learn meaningful skills to
solve tasks desired by humans. Here our affordance model
can be greatly beneficial by bootstrapping the exploration
from the predicted affordances allowing the agent to focus
on parts of the scene likely to be of interest to humans. To
operationalize this, we first use the affordance model fθ(.)
for data-collection. We then rank all the trajectories col-
lected using a task-agnostic exploration metric, and fit a
distribution h to the (c, τ) values of the top trajectories. For
subsequent data collection, we sample from h with some
probability, and otherwise use the affordance model f . This
process can then be repeated, and the elite-fitting scheme
will bootstrap from highly exploratory trajectories to im-
prove exploration even further. For the exploration met-
ric in our experiments, we maximize environment change
EC(Ii, Ij) = ||φ(Ii)− φ(Ij)||2, (similar to previous explo-
ration approaches [6, 88]) between first and last images in
the trajectory, where φ masks the robot and the loss is only
taken on non-masked pixels.

C. Goal-Conditioned Learning While exploring the
environment can lead to interesting skills, consider a robot
that already knows its goal. Using this knowledge (e.g. an
image of the opened door), it supervise its policy search.
Goal images are frequently used to specify rewards in RL
[3, 34, 38, 74, 82, 83, 91, 121, 138]. Using our affordance



Figure 4. Qualitative affordance model outputs for VRB, HOI [66], Hotspots [39] and HAP [39], showing the predicted contact point
region, and post-grasp trajectory (green arrow for VRB, red for HOI [66]). We can see that VRB produces the most meaningful affordances.

model can expedite the process of solving goal-specified
tasks. Similar to the exploration setting, we rank trajec-
tories and fit a distribution h to the (c, τ ) values of the top
trajectories, but here the metric is to minimize distance to
the goal image Ig . The metric used in our experiments is
to minimize EC(IT , Ig), where IT is the last image in the
trajectory, or to minimize ||ψ(Ig)− ψ(IT )||22, where ψ is a
feature space. Akin to exploration, subsequent data collec-
tion involves sampling from h and the affordance model f .

D. Affordance as an Action Space Unlike games with
discrete spaces like Chess and Go where reinforcement
learning is deployed tabula rasa, robots need to operate
in continuous action spaces that are difficult to optimize
over. A pragmatic alternative to continuous action spaces
is parameterizing them in a spatial manner and assigning
a primitive (e.g. grasping, pushing or placing) to each lo-
cation [111, 131, 132]. While this generally limits the type
of tasks that can be performed, our affordance model al-
ready seeks out interesting states, due to the data it is trained
on. We first query the affordance model on the scene many
times to obtain a large number of predictions. We then fit a
GMM to these points to obtain a discrete set of (c, τ) values,
and now the robot just needs to search over this space.

4. Experimental Setup and Results
Through the four robot learning paradigms, shown in

Fig. 3, we seek to answer the following questions: (1) Does
our model enable a robot to collect useful data (imitation
from offline data)?, (2) How much benefit does VRB pro-

vide to exploration methods?, (3) Can our method enable
goal-conditioned learning?, and (4) Can our model be used
to define a structured action space for robots? Finally, we
also study whether our model learns meaningful visual rep-
resentations for control as a byproduct and also analyze the
failure modes and how they differ from prior work.

Robotics Setup We use two different robot platforms -
the Franka Emika Panda arm and the Hello Stretch mobile
manipulator. We run the Franka on two distinct play kitchen
environments and test on tasks that involve interacting with
a cabinet, a knife and some vegetables, and manipulation
of a a shelf and a pot. The Hello robot is tested on multi-
ple in-the wild tasks outside lab settings, including opening
a garbage can, lifting a lid, opening a door, pulling out a
drawer, and opening a dishwasher (Fig. 1). We also provide
support for a simulation environment on the Franka-Kitchen
benchmark [29]. Details can be found in the Appendix.

Observation and Action space For each task, we esti-
mate a task-space image-crop using bounding boxes [135],
and pass random sub-crops to fθ. The prediction for
contact points c and post-contact trajectory τ is in pixel
space, which are projected into 3D for robot control using
a calibrated robot-camera system (with an Intel RealSense
D415i). The robot operates in 6DOF end-effector space –
samples a rotation, moves to a contact point, grasps, and
then moves to a post-contact position (see Sec. 3.1).
Baselines and Ablations: We compare against prior work
that has tried to predict heatmaps from human video : 1)
Hotspots [80] 2) Hands as Probes (HAP) [39], a modified
version for our robot setup of Liu et al. [66] that predicts



Cabinet Knife Veg Shelf Pot Door Lid Drawer
k-Nearest Neighbors:

HOI 0.2 0.1 0.1 0.6 0.0 0.4 0.0 0.6
HAP 0.3 0.0 0.3 0.0 0.1 0.2 0.0 0.1
Hotspots 0.4 0.0 0.1 0.0 0.5 0.4 0.3 0.5
Random 0.3 0.0 0.1 0.3 0.4 0.2 0.1 0.2
VRB (ours) 0.6 0.3 0.6 0.8 0.4 1.0 0.4 1.0
Behavior Cloning:

HOI 0.3 0.0 0.3 0.0 0.1 0.2 0.0 0.1
HAP 0.5 0.0 0.4 0.0 0.3 0.1 0.0 0.1
Hotspots 0.2 0.0 0.0 0.0 0.8 0.1 0.0 0.7
Random 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0
VRB (ours) 0.6 0.1 0.3 0.3 0.8 0.9 0.2 0.9

Table 1. Imitation Learning: Success rate for k-NN and Behavior
Cloning on collected offline data using various affordance models.
We find that VRB vastly outperforms prior approaches, indicating
better quality of data.

contact region and forecast hand poses: 3) HOI [66] and 4)
a baseline that samples affordances at random (Random).
HAP and Hotspots only output a contact point, and we
randomly select a post-contact direction. More details are
available in the Appendix.

4.1. Quality of Collected Data for Imitation
We investigate VRB as a tool for useful data collection.

We evaluate this on both our robots across 8 different en-
vironments, with results in Tab. 1. These are all unseen
scenarios (not in train set). Tasks are specified for each en-
vironment using goal images (eg - open door, lifted pot etc),
and we use the data collected (30-150 episodes) for two es-
tablished offline learning methods: (1) k-Nearest Neighbors
(k-NN) and (2) Behavior Cloning. k-NN [87] finds trajec-
tories in the dataset that are close (via distance in feature
space [84]) to the goal image. We run the 10-closest trajec-
tories to the goal image and record whether the robot has
achieved the task specified in the goal image. For behavior
cloning, we train a network supervised with (image, way-
point) pairs from the collected dataset, and the resulting pol-
icy is run 10 times on the real system. With both k-NN and
BC, our method outperforms prior tasks on 7 out of 8 tasks,
with an average success rate of 57 %, with the runner-up
method (Hotspots [80]) only getting 25 %. This shows that
VRB leads to much better data offline data quality, and thus
can lead to better imitation learning performance. We addi-
tionally test for grasping held-out rare objects such as VR
remotes or staplers, and find that VRB outperforms base-
lines. Details can be found in the Appendix.

4.2. Reward-Free Exploration

Here we study self-supervised exploration with no exter-
nal rewards. We utilize environment change, i.e., change
in the position of objects as a task-agnostic metric for ex-
ploration [6]. For improved exploration, we bias sampling

towards trajectories with a higher environment change met-
ric. To evaluate the quality of exploration data, we measure
how often does the robot achieves coincidental success i.e.
reach a goal image configuration without having access to
it. As shown in Fig. 5, we obtain consistent improvements
over HAP [39] and random exploration raising performance
multiple fold – from 3× to 10×, for every task.
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Figure 5. Exploration: Coincidental success of VRB in compari-
son to random exploration or the exploration based on HAP [39].

4.3. Goal-Conditioned Learning

The previous settings help robots improve their behav-
iors with data without an external reward or goal. Here
we focus on goal-driven robot learning. Goals are often
specified through images of the goal configuration. Note
that goal images are also used in Sec. 4.1 but as part of a
static dataset to imitate. Here, the robot policy is updated
with new data being added to the buffer. We sample this
dataset for trajectories that minimize visual change with re-
spect to the goal image. As shown in Fig. 6, VRB learns
faster and better HAP [39] and Random on this robot learn-
ing paradigm, over six diverse tasks.

4.4. Affordance as an Action Space

We utilize visual affordances to create a dis-
crete action space using a set of contact points and
post-contact trajectories. We then train a Deep Q-Network
(DQN) [76] over this action space, for the above goal-
conditioned learning problem.In Fig. 7, we see that with
VRB, the robot experiences more successes showing that a
greater percentage of actions in the discretized action space
correspond to meaningful object interactions.

4.5. Analyzing Visual Representations

Beyond showing better utility for robot learning
paradigms, we analyze the quality of visual representations
of the encoder learned in VRB. Two standard evaluations
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Figure 6. Goal-conditioned Learning: Success rate for reaching
goal configuration for six different tasks. Sampling via VRB leads
to faster learning and better final performance.
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Figure 7. Action Space: Success using DQN with the discretized
action space, for reaching a specified goal image.

for this are (1) if they can help for downstream tasks and (2)
how meaningful distances in their feature spaces are.

VRB R3M [84]

microwave 0.16 0.10
slide-door 0.84 0.70
door-open 0.13 0.11

Table 2. Behavior Cloning with
VRB vs. R3M [84] representation.

Finetuning To investi-
gate if the visual rep-
resentations are effective
for control, we directly
finetune a policy on top
of the (frozen) visual en-
coder. We evaluate on

three simulated Franka environments, as shown in Tab. 2,
and we see that VRB outperforms R3M on all tasks. (We
finetuned the policy only for 2K steps, instead of 20K in the
R3M paper). This demonstrates that VRB visual represen-
tations contain information that is useful for control.

Feature space distance We record the distance in feature
space between the current and goal image for every timestep
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Figure 8. Feature space distance: Distance to goal in feature
space for VRB decreases monotonically for door opening.

in the episode, for both VRB and R3M [84] on successful
cabinet opening trajectories. As shown in Fig. 8, the dis-
tance for VRB decreases almost monotonically which cor-
relates well with actual task progress.

4.6. Failure Modes

While VRB and the baselines see qualitatively similar
successes, VRB in general sees a larger number of them
and the average case scenario for VRB is much better.
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Figure 9. Failure mode analysis

For the cabinet opening
task, we classify each
collected episode into
three categories: “Fail-
ure”, “Partial Success”
and “Success”. While
VRB has a higher number
of successful trajectories

compared to the baselines (almost 2×), the number of
partial successes is more than 6× (Fig. 9).

5. Conclusion

We propose Vision-Robotics Bridge (VRB), a scalable
approach for learning useful affordances from passive hu-
man video data, and deploying them on many different
robot learning paradigms (such as data collection for imita-
tion, reward-free exploration, goal conditioned learning and
paramterizing action spaces). Our affordance representa-
tion consists of contact points and post-contact trajectories.
We demonstrate the effectiveness of this approach on the
four paradigms and 10 different real world robotics tasks,
including many that are in the wild. We run thorough exper-
iments, spanning over 200 hours, and show that VRB drasti-
cally outperforms prior approaches. In the future, we hope
to deploy on more complex multi-stage tasks, incorporate
physical concepts such as force and tactile information, and
investigate VRB in the context of visual representations.
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Appendix

A. Result Videos
Several qualitative rollout videos are available at the

VRB website.

B. Affordance Model Setup
Data Extraction: Our training setup involves learning
from EpicKitchens-100 Videos [20]. This dataset con-
tains many hours of videos of humans performing different
kitchen tasks. We use each sub-action video (such as ‘open
door’ or ‘put cup on table’) as training sequences. Con-
sider a video (V ) consisting of T frames, V = {I1, ..., IT }.
Using 100 DOH annotations [107] (available alongside the
dataset), we find all of the hand-object contact points and
frames for each hand in the video. As mentioned in Section
3, let model output fhand(It) = {hlt, hrt , olt, ort}, where ol,
or are the contact variables and hl, hr are the hand bound-
ing boxes. We find the first contact timestep and select the
active hand (left or right) as the hand side to consider for
the whole trajectory. This is found by first binning ot and
looking for all types that have contact with ‘Portable’ or
‘Fixed’ objects. These are assigned 1, while all others are
assigned 0. We smooth the set of contact variables using a
Savitzky–Golay filter [103] using a threshold of 0.75 (with
window size 7). This should eliminate any spurious detec-
tions. We use the skin segmentation approach from [66],
to find the contact points, {ci}N , at the contact timestep
around the active hand. We then fit a GMM with k = 5 to
the set of contact points to determine µ1, ..., µ5. We found
that learning without a covariance, Σ, was more stable thus
we only aim to learn the µ1. The input image becomes the
first image before the contact where the hand is not visible.
If the contact points or trajectory are not in the frame of this
initial image (if the camera has moved), we then discard the
trajectory. We use crops of size 150x150 (full image size
is 456 x 256), which improves robustness at test time. We
train on around 54K image-trajectory-contact point tuples.
We include visualizations of the affordance model outputs
on the VRB website.
Architecture: We use the ResNet18 encoder from [84]
as gφ, as our visual backbone. Our model has two heads, a
trajectory head and a contact point head. We use the spa-
tial features from the ResNet18 encoder (before the average
pooling layer) as an input to three deconvolutional layers
and two convolutional blocks with kernel sizes of 2 and 3
respectively, and channels: [256, 128, 64, 10, 5]. We use
a spatial softmax to obtain m̂uk for where k = 1, ..., 5.
Our trajectory network is a transformer encoder with 6 self-
attention layers with 8 heads each, and uses the output of the
ResNet18 encoder (flattened), which has dimension 512.

?equal contribution

The output of the transformer encoder is used to predict a
trajectory of length 5, using an MLP with two layers with
hidden size 192.
Training: We train our model for 500 Epochs, using
a learning rate of 0.0001 with cosine scheduling, and the
ADAM [54] optimizer. We train on 4 GPUs (2080Ti) for
about 18 hours.

C. Robotics Setup
Hardware setup: For all the tasks we assume the follow-
ing structure for robot control for each trajectory. We first
sample a rotation configuration for the gripper. The arm
then moves to the contact point c, closes its gripper, and
moves to the points in the post-contact trajectory τ . For the
initial rotation of the Franka, joints 5 and 6 can take values
in [0, 30, 45] degrees, while joint4 is fixed to be 0 degrees.
For the Hello-Robot, the roll of the end-effector is varied
in the range of [0, 45, 90] degrees. Once the orientation
is chosen for the trajectory, we perform 3DOF end-effector
control to move between points. Given two points a and
b, we generate a sequence of waypoints between them to be
reached using impedance control for the Franka. The Hello-
Robot is axis aligned and has a telescoping arm, thus we did
not need to build our own controller. We do not constrain
the orientation to be exactly the same as what was selected
in the beginning of the trajectory, since this might make
reaching some points infeasible. For all tasks and methods
we evaluate success rate by manual inspection of proximity
to the goal image after robot execution (for imitation learn-
ing, goal reaching and affordance as an action space), and
evaluate coincidental success for exploration using manual
inspection of whether the objects noticeably move over the
course of the robot’s execution trajectory. We provide larger
versions of the result plots of successes presented in the
main paper in Figures 11 and 12.
Affordance Model to Robot Actions: Reusing terminol-
ogy from Section 3, the affordance model output is fθ(It) =

p̂c, τ̂ , where p̂c =
∑K
k=0 αkN (µ̂k, Σ̂k), and τ̂ = {wi}M .

We can convert this into a 3D set of waypoints using a hand-
eye calibrated camera, and obtain a 3D grasp point from p̂c,
and a set of 3D waypoints from τ̂ .
Imitation from Offline Data Collection: We use our af-
fordance model to collect data for different tasks, and then
evaluate whether this data can be used to reach goal images
using k-NN and Behavior cloning. As mentioned in Sec
3.3.1, given an image It, the affordance model produces
(c, τ) = fθ(I). In addition to storing It, c and τ , we also
store the sequence of image observations (queried at a fixed
frequency) seen by the robot when executing this trajectory
O1:k, where k is the total number of images in the trajec-
tory. k varies across different trajectories (since it depends
on c and τ ). These intermediate images Oi enable us to de-
termine how close a trajectory is to the given goal image.

https://robo-affordances.github.io
https://robo-affordances.github.io/


Object VRB Hotspots

VR Controller 0.27 0.13
Chain 0.33 0.20
Hat 0.07 0.20
Tape 0.13 0.00
Cube 0.00 0.00

Sanitizer 0.27 0.20
Stapler 0.53 0.20
Shoe 0.33 0.13

Mouse 0.27 0.00
Hair-Clip 0.47 0.20

Table 3. VRB for grasping held-out “rare” objects

Cabinet Knife Veg Shelf Pot Door Lid Drawer
N0 150 100 50 50 50 50 30 40
Ns 50 50 30 30 30 50 30 40

Table 4. Number of trajectories collected for various tasks, for Ini-
tial Data Collection (N0) and for each subsequent fitting iteration
for either goal reaching or exploration (Ns)

For each trajectory, the distance to goal image Ig is given
by mini ||ψ(Ig) − ψ(Oi)||22, where ψ is the R3M embed-
ding space. We then use this distance to produce a set of
K trajectories with smallest distances to the goal Ig . For
k-NN, we simply run (c, τ) from each of these filtered tra-
jectories. For Behavior cloning, we first train a policy that
predicts (c, τ) given image I using this set of trajectories,
and then run the policy π on the robot. We summarize this
is Algorithm 1. We fix the number of top trajectories K to
be 10 for k-NN and 20 for behavior cloning. The number
of trajectories for initial data collection used for each task
is listed in 4. For k-NN, the success is averaged across all
K runs on the robot. For behavior-cloning, we parameterize
the policy π using a CVAE, where the image is the context,
the encoder and decoder are 2 layer MLPs with 64 hidden
units and the latent dimension is 4. During inference, we
sample from the CVAE given the current image as context,
and report success averaged across 10 runs. The quality of
data collected by the robot using VRB which is used for
imitation can be in seen in the videos on the VRB website.

Although many of our household object categories might
be present in the videos of Epic-Kitchens [20], specific in-
stances of objects do not appear in training, thus every ob-
ject our approach is evaluated on is new. To test generaliza-
tion to “rare” (held-out) objects and evaluate the grasping
success using VRB’s affordances, see Table 3. VRB consis-
tently outperforms our most competitive baseline, Hotspots
[80].
Exploration & Goal Reaching: We apply our affordance
model in the paradigms of exploration as well as goal reach-

Algorithm 1 Imitation from Offline Data Collection

Require: Dataset of trajectories {(It, O1:k, c, τ )}
Require: Number of top trajectories K
Require: Goal Image Ig
Require: R3M embedding space ψ

1: For each trajectory T , compute
dT = mini ||ψ(Ig)− ψ(Oi)||22

2: Rank trajectories in ascending order of dT . Create set
K = {(c, τ)} of the top K ranked trajectories.

3: if k-NN then
4: Execute K on the robot.
5: else
6: Assert behavior cloning
7: Train a policy π(c, τ |I) using K.
8: Execute c, τ ∼ π(.|I) on the robot.
9: end if

Algorithm 2 Exploration / Goal Reaching

Require: Number of iterations J
Require: Number of top trajectories K
Require: Number of initial trajectories N0,

and for subsequent fitting iterations Ns
Require: Affordance model fθ
Require: Tradeoff probability p
Require: Visual change model Φ (only for exploration)
Require: R3M embedding ψ (only for goal reaching)
Require: Goal Image Ig (only for goal reaching)

1: initialize: World modelM, Replay buffer D,
2: Execute (c, τ) = fθ(I) on the robot forN0 iterations to

collect initial dataset D = {(I , O1:k, c, τ )}
3: for iteration 1:J do
4: For each trajectory T0:k, compute
5: if exploring then
6: compute ECT = ||φ(O1)− φ(Ok)||2
7: Rank trajectories in descending order of ECT
8: else
9: Assert goal reaching

10: compute dT = mini ||ψ(Ig)− ψ(Oi)||2
11: Rank trajectories in ascending order of dT
12: end if
13: Create set K = {(c, τ)} of top K ranked trajectories.
14: Compute ĉ, τ̂ = mean(K)
15: For Ns iterations, set (c, τ) = fθ(I) with probability

p, otherwise set (c, τ) = (ĉ, τ̂).
16: Execute (c, τ) on the robot and append data to D
17: end for

ing, where the robot uses the collected data to improve its
behavior. As described in Section 3.3, we use a environment
change visual model to obtain intrinsic reward for explo-
ration, while for goal-reaching we use distance to the goal
in a feature space like the R3M embedding space. For ex-

https://robo-affordances.github.io/


(a) VRB - Cabinet (b) HAP - Cabinet (c) VRB - Veggies (d) HAP - Veggies

Figure 10. Visualization for Affordance as an Action Space for VRB and HAP [39], on the Cabinet and Veggies Tasks

Algorithm 3 Affordance as Action Space

Require: Affordance Model fθ
Require: Number of initial queries q
Require: Number of clusters for c, Nc and for τ , Nτ
Require: Goal Image Ig
Require: RL algorithm with discrete action-space RLA
Require: R3M embedding space ψ

1: Query fθ on the image of the scene q times
to obtain a dataset {(c, τ}

2: Fit a GMM Gc with Nc centers to {c}, and
a GMM Gτ and Nτ centers to {τ}

3: Create mappingM from A = [1..Nc*Nτ ] to values in
the cross-product space of the centers of Gc and Gτ

4: Initialize DatasetD = {}, andRLAwith discrete action
space A and random policy π.

5: Run Sampling and Training asynchronously
6: while Sampling do
7: Run π on the image to get ad.
8: (c, τ) = M(ad), execute on the robot and collect

initial and final images I0 and IT
9: Compute reward r = ||ψ(IT )− ψ(Ig)||2.

10: Store (ψ(I0), ad, ψ(IT ), r) in D
11: end while
12: while Training do
13: Sample data ∼ D, pass to RLA for

training and updating π.
14: end while

ploration, we want to maximize the change between the first
and last images of the trajectory, since greater perturbation
of objects can lead to the discovery of useful manipulation
skills. For goal-reaching, we minimize the distance between
the trajectory and the goal image, since this achieves the
desired object state. In each case (exploration and goal-
reaching), we rank the trajectories in the dataset using the
appropriate metric, and then fit (ĉ, τ̂) to the {(c, τ)} values
of the top ranked trajectories. For subsequent data collec-
tion iterations, we use the affordance model fθ with some

probability p, but otherwise use (ĉ, τ̂) for execution on the
robot. The newly collected data is then aggregated with the
dataset, and the entire process repeated. We present this
procedure in Algorithm 2. The number of initial trajectories
N0 and trajectories for subsequent iterations Ns for differ-
ent tasks are listed in 4. For all experiments, we set p =
0.35, K = 10, J = 2. We include videos on the VRB website,
which show that as our system sees more data, its perfor-
mance improves for both exploration and goal-reaching.

Intrinsic Reward Model We train a visual model which
given a pair of images (Ii, Ij), produces a binary image that
captures how objects move, and is not affected by changes
in the robot arm or body position. Specifically, this model
comprises the following -

φ(Ii, Ij) = g(||m(Ii)−m(Ij)||2,
||Ψ(m(Ii))−Ψ(m(Ij))||2)

(3)

Here m is a masking network which removes the robot
from the image. We train this using around 100-200 hand-
annotations of the robot in various scenes, and use this data
to finetune a pretrained segmentation model Ψ [44]. We
evaluate the l2-losses above only on non-masked pixels.
Further, we also take into account distance in the feature
space of the segmentation model to reduce sensitivity to
spurious visual artifacts. The function g applies heurestics
including gaussian blurring to reduce effects of shadows,
and a threshold for the change at each pixel, to limit false
positives.
Affordance as an Action Space: For this learning setup,
we parameterize the action space for the robot with the out-
put distribution of our affordance model. We first query the
model a large number of times, and then fit Gaussian Mix-
ture Models (GMMs) separately to the c and τ predictions,
with Nc and Nτ centers respectively. We then define a dis-
crete action space of dimension Nc*Nτ , where each action
maps to a value in the cross-product space of the centers of
the two GMMs. We can now use discrete action-space RL
algorithms. We asynchronously sample from the discrete
action-space policy, and train it using the RL algorithm.

https://robo-affordances.github.io/
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Figure 11. Goal-conditioned Learning: Success rate for reaching goal configuration for six different tasks. Sampling via VRB leads to
faster learning and better final performance.
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Figure 12. Exploration and Action Space Parameterization: Coincidental success (stumbling onto goal configurations) increases multi-
ple folds with VRB in comparison to random exploration or the exploration based on HAP [39] in a-d. In e-f, we see the success numbers
of using DQN with the discretized action space, for reaching a specified goal image.

This procedure is described in Algorithm 3. We note that it
is important to reset the environment so that images the pol-
icy sees are close to the initial image for which the action
space was defined. Across experiments we setNc =Nτ = 4,

q = 2000. For the RL algorithm RLA we use the Deep Q-
Network (DQN) [76] implementation from the d3rlpy [116]
library. We include a visualization of the action space by
plotting the (c, τ ) values in the cross-product space of the



centers of the two GMMs, for VRB and HAP [39] in Figure
10. We see that for VRB a larger number of the discretized
actions are likely to interact with the objects.

D. Baselines and Ablations

Baselines The baselines we compare to include the ap-
proaches from from Liu et al. [66] (HOI), Goyal et al. [39]
(HAP) and Natarajan et al., (Hotspots) [80]. In each of these
baselines, we used the provided pretrained model. Spec-
ficially, for Hotspots [80], we employ the model trained
on EpicKitchens [20], as this is what our approach is also
trained on. Similarly, for HAP [39] we use the trained
model on EpicKitchens also. HOI predicts both a contact
point and trajectory, which we execute at test time. The
other two approaches predict likely contact regions, from
which we sample, as well as a random post contact trajec-
tory.
Visual Representation Analysis (Finetuning): For the
visual representation finetuning experiments we performed
in Section 4.5, we use the Imitation Learning Evaluation
Framework from R3M [84], which aims to evaluate the ef-
fectiveness of frozen visual representations for performing
behavior cloning for robotic control tasks. Following their
procedure, we evaluate on three simulated tasks from the
Franka Kitchen environment: (1) microwave, (2) slide-door,
and (3) door-open. We train the policy using left camera
images from their publicly available demonstration dataset,
which is collected by an expert state-based reinforcement
learning agent and then rendered as image observations.

For behavior cloning with the R3M encoder, we freeze
the pretrained R3M encoder (which uses a ResNet50 base
architecture) and finetune a policy on top of it. For behav-
ior cloning with the VRB encoder, we instead use an R3M
model which was finetuned for 400 steps with affordance
model training as in Section 3.2. Note that this finetun-
ing was performed separately from behavior cloning, and
during policy learning our representations are also frozen
before being used as input for the downstream policy. For
both R3M and VRB, we concatenate the visual embedding
and proprioceptive data for input to the downstream policy,
and then use a BatchNorm layer followed by a 2-layer MLP
to output an action. The downstream policy is trained with a
learning rate of 0.001 and a batch size of 32 for 2000 steps.
Visual Representation Analysis (Feature space dis-
tance): For the feature space distance experiments, we
compare an R3M model with a VRB model. Both use a
ResNet50 base architecture, and the VRB model is obtained
by finetuning an R3M model for 100 steps using affordance
model training as in Section 3.2. The distances in Figure
8 are computed as the (squared) L2 distances between the
features produced by each model for the goal image and
current image.

Figure 13. Simulation Environment from [29]

Method Light Microwave Kettle

Random 0.20 0.15 0.20
HAP 0.30 0.20 0.45
HOI 0.60 0.45 0.40

Hotspots 0.35 0.35 0.25

VRB 0.75 0.60 0.55

Table 5. VRB on simulation benchmarks.

E. Simulation
We also provide a simulation environment benchmark

to test our affordances. This is modeled after the Franka-
Kitchen environment from the D4RL [29]. In this bench-
mark, the robot observes images and predicts 3D positions
to manipulate, in the exact same way as we deploy the robot
in the real world. An image of this environment can be
seen in Figure 13. There are three different tasks: turning
the light on, opening the microwave and lifting the kettle.
These are standard tasks in the D4RL benchmark [29]. We
run Paradigm 1 (offline data collection) and provide the suc-
cess rates for VRB and baselines in Table 5. We can see that
VRB significantly outperforms the baselines.

F. Codebases
We use the following codebases:

• epic-kitchens/epic-kitchens-100-hand-object-bboxes
for extracting detections from 100 DOH [107] for
EpicKitchens [20].

• stevenlsw/hoi-forecast for Skin segmentation code and
HOI baseline [66].

• uiuc-robovision/hands-as-probes for HAP baseline
[39].

https://github.com/epic-kitchens/epic-kitchens-100-hand-object-bboxes
https://github.com/stevenlsw/hoi-forecast
https://github.com/uiuc-robovision/hands-as-probes


• Tushar-N/interaction-hotspots for Hotspots baseline
[80].

• facebookresearch/r3m for R3M visual features [84].

• wkentaro/labelme for getting masks for robot and

• Torchvision tutorial for a Mask-RCNN [44] imple-
mentation.

• takuseno/d3rlpy [116] for DQN [76] implementation.

• facebookresearch/polymetis [63] as the base for the
controller for the Franka Arm.

https://github.com/Tushar-N/interaction-hotspots
https://github.com/facebookresearch/r3m
https://github.com/wkentaro/labelme
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://github.com/takuseno/d3rlpy
https://github.com/facebookresearch/fairo/tree/main/polymetis
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