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ABSTRACT

Decentralized constrained optimization problems arise in numerous real-world ap-
plications, where a major challenge lies in the computational complexity of pro-
jecting onto complex sets, especially in large-scale systems. The projection-free
method, Frank-Wolfe (FW), is popular for the constrained optimization problem
with complex sets due to its efficiency in tackling the projection process. How-
ever, when applying FWmethods to decentralized constrained finite-sum optimiza-
tion problems, previous studies provide suboptimal incremental first-order oracle
(IFO) bounds in both convex and non-convex settings. In this paper, we propose
a stochastic algorithm named Decentralized Variance Reduction Gradient Track-
ing Frank-Wolfe (DVRGTFW), which incorporates the techniques of variance re-
duction, gradient tracking, and multi-consensus in the FW update to obtain tight
bounds. We present a novel convergence analysis, diverging from previous decen-
tralized FW methods, and demonstrating Õ(n +

√
n
mLε

−1) and O(
√

n
mL

2ε−2)
IFO complexity bounds in convex and non-convex settings, respectively. To the
best of our knowledge, these bounds are the best achieved in the literature to date.
Besides, in the non-convex case, DVRGTFW achieves O( L2ε−2√

1−λ2(W )
) communi-

cation complexity which is closed to the lower bound Ω( Lε−2√
1−λ2(W )

). Empirical

results validate the convergence properties of DVRGTFW and highlight its superior
performance over other related methods.

1 INTRODUCTION

Decentralized optimization has gained substantial popularity in applications such as coordinated
control, machine learning, and power systems(Latafat et al., 2017; Xin et al., 2020; Dass et al.,
2019; Yang et al., 2019). It offers several advantages, including reduced computational burdens
for individual agents, enhanced efficiency for system-wide coordination, and the ability to preserve
privacy for each participant (Yang et al., 2019; Li et al., 2020b; Xu et al., 2021). Finite-sum op-
timization problems, which involve minimizing the sum of multiple individual functions, can also
benefit from decentralized computation. By distributing the computational effort across multiple
agents, decentralized finite-sum optimization could alleviate the computational burden on the cen-
tral node, which is particularly important for large-scale models (Xin et al., 2022; Hendrikx et al.,
2021; Metelev et al., 2024).

In this paper, we focus on the constrained decentralized finite-sum optimization problem with m
agents that form a connected network:

min
x∈X

f(x) =
1

m

m∑
i=1

fi(x)

with fi(x) =
1

n

n∑
j=1

fi,j(x),

(1)

where each agent i has a local objective function fi(x), composed of n multiple smooth, potentially
non-convex functions fi,j(x), and X ⊂ Rd denotes a convex set. The overall objective is to find a

1
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Table 1: Summary of the results on projection free methods for decentralized stochastic con-
strained minimization problems.

Target case Method #IFO #LMO #Comm.

convex

DeFW (Wai et al., 2017)(1) O(Lε−1

1−λ ) O(Lε−1

1−λ ) O(Lε−1

1−λ )

DMFW (Hou et al., 2022)(2) O(Lε−2

1−λ ) O(Lε−2

1−λ ) O(Lε−2

1−λ )
I-PDS (Nguyen et al., 2024) O(Lε−1 + σ2Lε−2) O(Lε−2) O(Lε−1)

DstoFW (Jiang et al., 2022)(2) O(n5/4 + n3/4Lε−1

1−λ ) O(Lε−1

1−λ ) O(Lε−1

1−λ )

DVRGTFW (Algorithm 1)(2) Õ(n+
√

n
mLε

−1) Õ(
√
mn+ Lε−1) Õ(

√
mn+Lε−1

√
1−λ

)

non-convex

DeFW (Wai et al., 2017)(1) O(nL
2ε−2

1−λ ) O(L
2ε−2

1−λ ) O(L
2ε−2

1−λ )

DMFW (Hou et al., 2022)(2) O( L2

(1−λ) exp(ε−1) ) O( L2

(1−λ) exp(ε−1) ) O( L2

(1−λ) exp(ε−1) )

DstoFW (Jiang et al., 2022)(2) O(n4/3 + n2/3L2ε−2

1−λ ) O(L
2ε−2

1−λ ) O(L
2ε−2

1−λ )

DVRGTFW (Algorithm 1)(2) Õ(n+
√

n
mLε

−2) O(L2ε−2) O(L
2ε−2

√
1−λ

)

(1) DeFW is a fully-deterministic algorithm, and the rest are stochastic algorithms.
(2) In fact, their bounds concerning λ are worse than those indicated in the table.
Notation: ε = accuracy of the solution, n = size of the dataset assigned to single node, σ2 is the variance of the
gradient, L = global function’s smoothness, λ = the second largest eigenvalue of the communication graph, IFO
= incremental stochastic first-order oracle, LMO = linear minimization oracle, Comm = Communication.

point x∗ that minimizes the average of local functions acrossm agents within the convex set X . This
formation in Eq.(1) plays a crucial role in various real-world applications, especially those requiring
large-scale, distributed, and privacy-preserving solutions, such as electric vehicle charging (Zhang
et al., 2016) and traffic assignment (Fukushima, 1984).

To solve Eq.(1), the classical approaches, such as the Projection Gradient Descent (PGD) algo-
rithm, are projection-based methods. However, when dealing with complex constraint sets X or
high-dimensional problems, the projection step becomes computationally intensive, making these
projection-based methods less efficient and costly (Wai et al., 2017). In contrast, the projection-
free methods (i.e., the Frank-Wolfe (FW) algorithm and its variants) address this issue by solving
a constrained linear optimization problem instead of performing direct projections (Jaggi, 2013).
Wai et al. (2017) propose the first decentralized deterministic FW method based on average consen-
sus. However, this deterministic approach requires a large number of Incremental First-order Oracle
(IFO) calls, which significantly increases computational costs. Consequently, subsequent research
has focused on developing stochastic decentralized FW methods to reduce the number of IFO calls.
For instance, Gao et al. (2021); Xie et al. (2019) propose decentralized FW methods, incorporating
variance reduction techniques, for the DR-submodular optimization problem to reduce computation
overhead. Nguyen et al. (2024) propose a communication-efficient decentralized FW method by
combining with the conditional gradient sliding technique (Lan & Zhou, 2016). Hou et al. (2022)
utilizes the momentum technique (Nesterov, 1983) to improve the convergence rate for the decen-
tralized stochastic FW method. (Jiang et al., 2022) also adopt the variance reduction technique to
develop computation and communication efficient decentralized FW method for both convex and
nonconvex optimization problems. Notably, compared to the best IFO bounds in centralized set-
tings (Beznosikov et al., 2024) (Õ(n+ 1

ε ) and Õ(n+
√
n

ε2 ) for convex and non-convex optimization,
respectively), the current decentralized FW methods achieve the suboptimal IFO complexity. We
summarize representative decentralized FW methods and their key characteristics in Table 1.

In this paper, we focus on developing a decentralized stochastic Frank-Wolfe algorithm that is both
computationally and communication efficient, aiming to minimize the computational and commu-
nication overhead in decentralized settings. Inspired by the existing loopless variance reduction
technique (Li et al., 2021; Beznosikov et al., 2024) and decentralized optimization methods (Wai
et al., 2017; Pu & Nedić, 2021), we propose a decentralized variance reduction gradient tracking
method (DVRGTFW) to solve Eq.(1). We present a different proof compared to Wai et al. (2017);
Jiang et al. (2022), and demonstrate the best rates of DVRGTFW in both convex and non-convex
settings. The contributions of this paper are summarized as follows:

• The best-known IFO complexity both in the convex case and the non-convex case.
For convex case, DVRGTFW achieves an improved IFO complexity of Õ(n +

√
n
mLε

−1),
which represents a significant advancement compared to the decentralized stochastic meth-
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ods proposed by (Jiang et al., 2022) with respect to the dataset size n. Furthermore, the
theoretical convergence rates of our method outperform those reported in (Hou et al., 2022;
Nguyen et al., 2024) in terms of the accuracy ε. For non-convex case, DVRGTFW attains
an improved IFO complexity of O(

√
n
mL

2ε−2). This significantly improves the result re-
ported in (Jiang et al., 2022) with respect to the dataset size n. Additionally, the theoretical
convergence rates of our methodology surpass those reported in (Hou et al., 2022; Nguyen
et al., 2024) in terms of the accuracy ε. When the number of nodes m is set to 1, both
results align with the optimal outcome reported in (Beznosikov et al., 2024).

• Nearly optimal in non-convex communication complexity. For non-convex case,
DVRGTFW has the first near-optimal communication perplexity O( L2ε−2√

1−λ2(W )
), where

λ2(W ) is the second-largest eigenvalues of the gossip matrix W . This result is close to the
lower bound of communication complexity (Lu & De Sa, 2021), which is Ω( Lε−2√

1−λ2(W )
)

for finding an ε-stationary point of smooth non-convex function via a first-order algorithm.

2 RELATED WORK

Below we provide a review of related literature that shapes our study.

Variance Reduction Variance reduction techniques leverage the control variate technique (Rubin-
stein & Marcus, 1985) to reduce inherent sampling variance in stochastic methods, thereby achiev-
ing the same convergence rate as the deterministic methods. The classic SVRG method (Johnson &
Zhang, 2013) adopts a double-loop structure, maintaining a snapshot of model parameters to com-
pute the full gradient in the outer loop and constructing an unbiased gradient estimate in the inner
loop. Moreover, Nguyen et al. (2017); Fang et al. (2018) admits a simple recursive framework and
demonstrates the best IFO complexity for non-convex optimization problems. Besides, Li et al.
(2021) proposes a novel and practical loopless variance-reduced technique.

Gradient Tracking In the decentralized setting, the heterogeneity in agents’ local data distribu-
tions increases the communication cost. To enhance communication efficiency, Nedic et al. (2017);
Pu & Nedić (2021); Qu & Li (2020) propose the gradient tracking technique. This technique
achieves communication efficiency by maintaining the accuracy of first-order information through
tracking the average of local gradients. Moreover, Ye et al. (2023a) demonstrated that combining
gradient tracking with multi-consensus (Arioli & Scott, 2014; Li et al., 2020a) makes the analysis
of decentralized algorithms closer to their centralized counterparts, making it particularly useful for
decentralized convex optimization.

Variance Reduction in Frank-Wolfe Building upon variance reduction techniques, an increasing
number of centralized stochastic FW-type methods have been proposed to address the variance intro-
duced by stochastic gradients (e.g., (Hazan & Kale, 2012; Hazan & Luo, 2016; Reddi et al., 2016;
Yurtsever et al., 2019; Weber & Sra, 2022; Beznosikov et al., 2024)). For convex finite-sum opti-
mization, to achieve an ε-solution, Beznosikov et al. (2024) combined a stochastic recursive gradient
technique (Nguyen et al., 2017) with the classical Frank-Wolfe algorithm to achieve the best-known
IFO complexity Õ(n +

√
n
ε ) and LMO complexity Õ(

√
n + 1

ε ). For non-convex finite-sum opti-
mization, Yurtsever et al. (2019) utilized a stochastic path integrated differential estimator technique
(Fang et al., 2018) with the classical FW method to attain the best IFO and LMO complexity both at
O(

√
n

ε2 ), matching the result of Beznosikov et al. (2024).

3 NOTATION AND ASSUMPTIONS

Let ⟨x, y⟩ =
∑d

i=1 xiyi denote the standard inner product of vectors x, y ∈ Rd, with this notation
we can introduce the standard l2-norm in Rd in the following way: ∥x∥ =

√
⟨x, x⟩. The notation

[m] is the abbreviation of the set {1, . . . ,m}. 1 denotes a column vector with all elements of 1.

3
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Moreover, we define aggregate variables for all agents as

x =

x
⊤
1
...

x⊤
m

 ∈ Rm×d,

where each xi ∈ Rd are the local variable on the i-th agent. We use the lower case with the bar to
represent the mean vector, such that x̄ = 1

m

∑m
i=1 xi ∈ Rd. Furthermore, we define the matrix of

aggregate gradients as

∇f(x) =

 ∇f1(x1)
⊤

...
∇fm(xm)⊤

 ∈ Rm×d.

Then we introduce the following assumptions on the constrained decentralized finite-sum optimiza-
tion problem 1

Assumption 1 The global function f is convex. i.e., for any x, y ∈ X ,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

Assumption 2 The individual function {fi,j}nj=1 on each agent are L-average smooth for some
L ≥ 0. i.e., for any x, y ∈ X ,

1

n

n∑
j=1

∥∇fi,j(x)−∇fi,j(y)∥2 ≤ L2∥x− y∥2,

in addition, the global function f is bounded below, i.e., f∗ = infx∈Rd f(x) > −∞.

Assumption 3 The set X is convex and compact with a diameter D, i.e., for any x, y ∈ X ,

∥x− y∥ ≤ D.

Note we consider both convex and non-convex cases of the global function f , but even if f is
convex, we do not additionally assume that each individual function is convex, hence, it can be
used in a wider range of applications, for example, the sub-problem of Fast PCA (Gang & Bajwa,
2022) by the shift-invert method is non-convex. Assumption 2 and Assumption 3 are standard in the
optimization literature and widely used in the analysis of Frank-Wolfe-type methods.

For decentralized optimization, we use the gossip matrixW ∈ Rm×m to characterize the behavior of
agents updating local variables by the weighted sum of information from the neighbors. Moreover,
we use λ2(W) to denote its second largest singular value, and we assume the matrix W satisfies

Assumption 4 The gossip matrixW ∈ [0, 1]n×n is doubly stochastic, that isW1 = 1, and 1⊤W =
1⊤.

4 METHOD

Based on the classic Decentralized Frank-Wolfe Algorithm (Wai et al. (2017)) and SARAH (specif-
ically the loopless version (Li et al. (2021))), we propose Decentralized Variance Reduction Frank-
Wolfe Algorithm named DVRGTFW, as outlined in Algorithm 1. The centralized FW algorithm for
constrained problem can be proceeded by the following iteration:

dt = argmin
d∈X

⟨∇f(xt),d⟩, (2a)

xt+1 = xt + ηt(dt − xt), (2b)

where ηt ∈ (0, 1] is a step size to be determined. Given that xt+1 is a convex combination of xt

and dt, it follows that xt+1 also lies in the convex set X . We note that the linear optimization in
Eq.(2a) can be solved more efficiently than the projection operation. In the decentralized setting, our
method (i.e., DVRGTFW) follows the spirit and avoids the complex projection operation by having

4
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each agent perform a linear minimization over the constraint set X . Each agent then takes a convex
combination of the optimal di,t and xi,t. Finally, agents communicate with neighbours to update
and obtain a feasible variable estimate xi,t+1 within the constraint set X .

Algorithm 1 Decentralized variance reduction gradient tracking Frank-Wolfe (DVRGTFW)

1: Input:initial parameter x̄0 ∈ Rd, step size {ηt}t≥0,
probability p ∈ (0, 1], mini-batch size b, numbers of communication rounds Kin and K.

2: x0 = 1x̄0, v0 = ∇f(x0)
3: y0 = FastMix(v0,Kin)
4: for t = 0, . . . , T − 1 do
5: γt ∼ Bernoulli(p)
6: dt = argmind∈X ⟨yt, d⟩
7: xt+1 = FastMix(xt + ηt(dt − xt),K)
8: parallel for i = 1, . . . , n do vi,t

9: vi,t+1 =


∇fi(xi,t+1), if γt = 1,

vi,t +
1

b

b∑
j=1

(
∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

)
, otherwise,

where each ξi,ξj is uniformly and independently sampled from {1, . . . , n}
10: end parallel for
11: yt+1 = FastMix(yt + vt+1 − vt,K)
12: end for

Algorithm 2 FastMix(u(0),K)

1: Initialize: u(−1) = u(0), ηu =
1−

√
1−λ2

2(W )

1+
√

1−λ2
2(W )

.

2: for k = 0, 1, . . . ,K do
3: u(k+1) = (1 + ηu)Wu(k) − ηuu

(k−1)

4: end for

To accelerate the decaying rate of consensus error, we use the subroutine FastMix (Algorithm 2)
and gradient tracking, FastMix can help variable communicate with neighbours faster, and gradi-
ent tracking step can take advantage of the gradient information from the last step to estimate the
gradient of global function f , so the update of local variables can be written as{

xt+1 = FastMix(xt + ηt(dt − xt),K),

yt+1 = FastMix(yt + vt+1 − vt,K).
(3)

Lemma 2 in Appendix A demonstrates that x̄t+1 can be interpreted as a convex combination of x̄t
and d̄t. Furthermore, Lemma 3 in the same Appendix indicates that each xi,t and vi,t is approxi-
mately close to x̄t and v̄t respectively, and with an increase in the number of communications, the
consensus error is expected to decrease.

To address the variance on gradient caused by random samples, we use a kind of variance-reduced
method named SARAH (Nguyen et al., 2017) which changes the deterministic gradient in the condi-
tional gradient method to some stochastic gradient vt+1 as:

vt+1 =


∇fi(xt+1), with probability p,

vt +
1

b

∑
i∈Sk

(
∇fi(xt+1)−∇fi(xt)

)
, with probability 1− p, (4)

where Sk is a random batch sampled from dataset with size b, as noted in the original paper on
SARAH, this method has better convergence guarantees and smoother convergence paths with fewer
oscillations than SVRG, making SARAH preferred in both theory and practice. As a result, the
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construction of vi,t follows the probabilistic recursive way like (Li et al., 2021) which is more
general for DVRGTFW to switch between the exact gradient and batch gradient.

Remark 1 The multi-consensus step in our algorithm can analog the decentralized SARAH Frank-
Wolfe algorithm more efficiently and leads the convergence analysis to be the same as standard
analysis (Beznosikov et al., 2024), In contrast, DstoFW (Jiang et al., 2022) does not have such a
good property and it can not achieve near-optimal computation complexity nor near-optimal com-
munication complexity.

5 CONVERGENCE ANALYSIS

5.1 CONVEX CASE

First, we give the convergence of DVRGTFW in the convex case.

Theorem 1 Under Assumption 1, 2, 3 and 4, we run DVRGTFW with

b =

⌈
3

√
2n

m

⌉
, p =

2b

n+ 2b
, Kin =


log

(
∥v0 − 1v̄0∥2 /L2

)
√
1− λ2(W )

 , K =

⌈
3√

1− λ2(W )

⌉
,

and for any T one can choose {ηt}t≥0 as follows:

if T ≤ 2

p
, ηt =

p

2
,

if T >
2

p
and t <

⌈
T

2

⌉
, ηt =

p

2
,

if T >
2

p
and t ≥

⌈
T

2

⌉
, ηt =

2

(4/p+ t− ⌈T/2⌉)
,

For the setting of b, p, Kin, K and the choice of ηt, we have the following convergence:

E[f(x̄T )− f(x∗)] = O
(
f(x̄0)− f(x∗) + 1

6

p
exp

(
−pT

4

)
+

8LD2

T

)
.

The complete proof is provided in Appendix C. Since DVRGTFW estimates the gradient recursively
by using the mini-batch gradient with high probability 1− p and computing the exact gradient with
low probability p, one can note that for each iteration, we on average compute the stochastic gradient
(pn + (1 − p) · 2b) ∗ m times. If we take p close to 1, the guarantees in Theorem 1 gives faster
convergence, but the oracle complexity per iteration increases. For instance, if we take p = 1,
we simply obtain a deterministic method, and the estimates for convergence and the number of
gradient calculations reproduce the results for the classic decentralized Frank-Wolfe algorithm, on
the other hand, if we take p = 0, the number of stochastic gradient calls per iteration decreases,
but the iterative convergence rate drops. It is optimal to choose p based on the condition: pn =
2(1−p)b, i.e.p = 2b

n+2b , also it is optimal to set b = O(
√

n
m ) and set the step size ηt as above. Note

that each agent need to use the same seed to generate the Bernoulli distributed variable γt, which
enforces all agents always share the identical γt. Then we show that under the above settings, we
can obtain the following result.

Corollary 1 Under the conditions of Theorem 1, for each node i ∈ [m], DVRGTFW achieves an ϵ
suboptimality with

O(
√
mn log

1

ϵ
+
LD2

ϵ
) LMO calls,

O(n log
1

ϵ
+

√
n

m

LD2

ϵ
) IFO calls, and

O(

√
mn log 1

ϵ +
LD2

ϵ√
1− λ2(W )

) rounds of communication.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Under the setting in Theorem 1, the required number of the stochastic gradient computations is
O(n log 1

ϵ +
√

n
m

LD2

ϵ ), and the LMO complexity is O(
√
mn log 1

ϵ + LD2

ϵ ), when reduce to cen-
tralized setting (m = 1), the result match the optimal result in Beznosikov et al. (2024), and the

communication rounds K at each iteration is deterministic which equals to
⌈

3√
1−λ2(W )

⌉
, and com-

bining with the initial communication roundsKin =

⌈
log(∥v0−1v̄0∥2/L2)√

1−λ2(W )

⌉
, the total communication

complexity is O(
√
mn log 1

ϵ+
LD2

ϵ√
1−λ2(W )

) in expectation.

Remark 2 According to the setting in Theorem 1, increasing the batch size b leads to a higher
probability p of obtaining the full gradient. Guaranteed by Theorem 1, this enhancement results in
faster convergence, thereby reducing communication costs. However, it also leads to an increase in
the oracle complexity per iteration. Therefore, it is essential to select an appropriate batch size b to
balance computational complexity with communication complexity.

5.2 NON-CONVEX CASE

Then we give the convergence of DVRGTFW in the non-convex case. Note that in the centralized
setting, Jaggi (2013) gives the Frank-Wolfe gap function as a criterion for convergence:

gap(y) = max
x∈X

⟨∇f(y), y − x⟩,

Lacoste-Julien (2016) notes that the Frank-Wolfe gap is a meaningful measure of non-stationarity
and serves as an affine-invariant generalization of the more standard convergence criterion ∥∇f(y)∥
which is used for unconstrained non-convex problems. In the decentralized setting, Frank-Wolfe gap
is slightly modified which is defined as follows:

gap(x̄t) = max
x∈X

⟨∇f(x̄t), x̄t − x⟩,

from the definition, when gap(x̄t) = 0, the iterate x̄t will be a stationary point to Eq.(1), thus we
regard gap(x̄t) as a measure of the stationarity of the iterate x̄t. Follow the assumption in (Wai et al.,
2017), we define the set of stationary point to (1) as:

X ⋆ =

{
x ∈ X : max

x∈X
⟨∇F (x), x− x⟩ = 0

}
.

We consider the following technical assumption:

Assumption 5 The set X ⋆ is non-empty. Moreover, the function f(x) takes a finite number of values
over X ⋆, i.e., the set f(X ⋆) = {f(x) : x ∈ X ⋆} is finite.

It is reasonable to assume that Eq.(1) has a finite number of stationary points since the set X is
bounded, thus Assumption 5 is satisfied. Then the following theorem is valid.

Theorem 2 Under Assumption 2, 3 and 4, we run DVRGTFW with

b =

⌈
3

√
n

2m

⌉
, p =

2b

2b+ n
, Kin =


log

(
∥v0 − 1v̄0∥2 /L2

)
√
1− λ2(W )

 , K =

⌈
3√

1− λ2(W )

⌉
,

and if we set ηt = 1√
T

, we have the following convergence:

E
[

min
0≤t≤T−1

gap(x̄t)
]
= O(

f(x̄0)− f(x∗) + 2
√
2

7√
T

+
7LD2

√
T

).

The proof can be found in Appendix D. When the set X ⋆ satisfy Assumption 5, like proof in Wai
et al. (2017), according to we can apply Nurminskii’s sufficient condition (Theorem 1 from Zangwill
(1969)) to prove that for DVRGTFW, every limit point of {x̄t}t≥1 belongs to X ∗. Similar to the
analyse in convex case, under the setting of p, b, ηt in Theorem 2, we now have
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Corollary 2 Under the conditions of Theorem 2, for each node i ∈ [n], DVRGTFW achieves an ϵ
suboptimality with

O(
[g0
ϵ

]2
+

[
LD2

ϵ

]2
) LMO calls,

O(

√
n

m

[g0
ϵ

]2
+

√
n

m

[
LD2

ϵ

]2
) IFO calls, and

O(

[
g0
ϵ

]2
+
[
LD2

ϵ

]2
√
1− λ2(W )

) rounds of communication,

where g0 = f(x̄0)− f(x∗) + 2
√
2

7 .

Under the setting in Theorem 2, the required number of the stochastic gradient computations is

O(
√

n
m

[
g0
ϵ

]2
+

√
n
m

[
LD2

ϵ

]2
), and the LMO complexity is O(

[
g0
ϵ

]2
+

[
LD2

ϵ

]2
), when reduce to

centralized setting (m = 1), the result match the optimal result in (Beznosikov et al., 2024), and the

communication rounds K at each iteration is deterministic which equals to
⌈

3√
1−λ2(W )

⌉
, and com-

bining with the initial communication roundsKin =

⌈
log(∥v0−1v̄0∥2/L2)√

1−λ2(W )

⌉
, the total communication

complexity is O(
[ g0ϵ ]

2
+
[

LD2

ϵ

]2
√

1−λ2(W )
) in expectation.

Remark 3 Corollary 1 and Corollary 2 shows that FastMix can eliminate IFO complexity’s de-
pendence on λ2(W ), which means that the structure of the communication graph will not influence
the IFO complexity and LMO complexity. Compared with the existing decentralized Frank-Wolfe al-
gorithms, our algorithm obtain the optimal bound in IFO and LMO complexity, and for non-convex
finute-sum problem, our communication bound O( L2ε−2√

1−λ2(W )
) is nearly optimal to the lower bound

O( Lε−2√
1−λ2(W )

) in (Corollary 1, Lu & De Sa (2021)).

6 EXPERIMENT

We evaluate the performance of our algorithms on logistic regression with different settings, in-
cluding the situation in which each fi(x) is convex and the local function fi(x) is non-convex. In
our experiment, the constrained set is set as an l1 norm ball constraint ω = {x|∥x∥1 ≤ R}, for
simplicity, we constantly take R = 20 of the constrained set in the following experiments.

6.1 EXPERIMENT SETTINGS

6.1.1 THE SETTING OF NETWORKS

In our experiments, we consider random networks where each pair of agents has a connection with
a probability of p. We set W = I − L/λ1(L), where L is the Laplacian matrix associated with
a weighted graph, and λ1(L) is the largest eigenvalue of L. We also set the number of agents as
n = 100. In our experiments, we run the algorithms on the setting of p = 0.1 and p = 0.5, which
correspond to 1− λ2(W ) = 0.05 and 1− λ2(W ) = 0.81 respectively.

6.1.2 THE CHOICE OF DATASET

We conduct our experiments on two real-world binary classification datasets from LIBSVM data
repository1, one of the two datasets we deliberately selected have more data points and fewer fea-
tures, leading to high computation complexity, while the other has relatively fewer data points but
more features, making it more challenging to converge. We summarize it in Table 2.

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Table 2: Real Datasets For Binary Classification

Dataset d mn
real-sim 20959 72309

covtype.binary 54 581014

6.2 EXPERIMENTS ON CONVEX LOGISTIC REGRESSION

We consider the convex logistic regression model in which the local objective function of logistic
regression is defined as

fi(x) =
1

n

n∑
j=1

log(1 + exp(−li,j⟨ai,j , x⟩)), (5)

where ai,j ∈ Rd is the feature vector of the jth local sample of agent i, li,j ∈ {−1, 1} is the
classification value of the jth local sample of agent i, we compare our algorithm (DVRGTFW) with
Decentralized Frank-Wolfe algorithm (DeFW) in Wai et al. (2017) and Decentralized Spider Frank-
Wolfe algorithm (DstoFW) in Jiang et al. (2022), The parameters of all algorithms are well-tuned
to achieve their best performances, and we set the batch size b as O(

√
n
m ) level and number of

communications per step K as O(1) level in DVRGTFW, note that in the experiment, we do not use a
extreme graph structure with a significantly big λ2(W ), so such communication setting accord with
our theoretical analyze. Futhermore, we initialize x0 = 0 for all the compared methods. In a convex
setting, we report the experimental results in Figure 1.
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Figure 1: Comparisons with convex logistic regression and random networks. Each local objective
fi(x) may be non-convex. In the top row, experiments on real-sim dataset for the agent i =
1 . . . ,m. In the bottom row, experiments on covtype.binary dataset for the agent i = 1 . . . ,m.
Random networks have 1 − λ2(W ) = 0.05 in the left two columns and 1 − λ2(W ) = 0.81 in the
right two columns. Objective Gap is defined as f(x̄t)−f(x∗), where f(x∗) is obtained by the PGD
algorithm (Bubeck et al., 2015).
Compared to DsgFW, DVRGTFW demonstrates superior computational efficiency across both
datasets, irrespective of the random graph’s structure. This advantage is particularly evident in
the covtype.binary dataset, which contains a larger number of data points, aligning well with
the theoretical computational complexity results of our algorithm. Moreover, our algorithm almost
achieves lower communication costs than both DstoFW and DeFW in all cases.

6.3 EXPERIMENTS ON NONCONVEX LOGISTIC REGRESSION

We consider the non-convex logistic regression model in which the local objective function of logis-
tic regression is defined as

fi(x) =
1

n

n∑
j=1

1

1 + exp(li,j⟨ai,j , x⟩)
, (6)

where ai,j and li,j are same as those in Eq.(5). The step size of DeFW, DstoFW and DVRGTFW
are 1√

t
. As same as the convex setting, the parameters of all algorithms are well-tuned to achieve
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their best performances, and in DVRGTFW, we set batch size b as O(
√

m
n ) level and number of

communications K as O(1) level. Moreover,we initialize x0 = 0 for all the compared methods. In
a non-convex setting, we report the experimental results in Figure 2.
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Figure 2: Comparisons with non-convex logistic regression and random networks. Each local
objective fi(x) may be non-convex. In the top row, experiments on real-sim dataset for the
agent i = 1 . . . ,m. In the bottom row, experiments on covtype.binary dataset for the
agent i = 1 . . . ,m. Random networks have 1 − λ2(W ) = 0.05 in the left two columns and
1− λ2(W ) = 0.81 in the right two columns. Objective Gap is defined as f(x̄t)− f(xmin), where
f(xmin) is the minimum value of the function obtained from multiple runs of PGD.

From Figure 2, it is clear that our algorithm demonstrates superior computational complexity for
the non-convex problem, aligning well with our theoretical findings. However, our algorithm per-
forms significantly worse than the DstoFW algorithm on the real-sim dataset, which contradicts
our theoretical expectations. Perhaps the large number of features in the real-sim dataset makes it
challenging for the Frank-Wolfe algorithm to converge. Additionally, the bounds analyzed by the
compared algorithms might not be sufficiently tight. Nonetheless, by increasing the batch size, com-
parable results can be achieved. Thus, for non-convex problems, adjusting the batch size allows us
to balance communication complexity and computation complexity. It is important to note that this
adjustment is made at a constant level.

7 CONCLUSION

In this paper, we propose DVRGTFW, a novel decentralized projection-free algorithm tailored for
constrained decentralized finite-sum optimization problems. Compared to existing decentralized
stochastic projection-free algorithms, our method eliminates the need for large batch computations,
thereby improving efficiency. Notably, DVRGTFW achieves the best-known IFO complexity for both
convex and non-convex scenarios, and it effectively reduces communication complexity to approach
theoretical lower bounds for non-convex problems. Besides, it can reduce to the optimal result in
a centralized setting. Comprehensive numerical experiments validate our theoretical analysis and
demonstrate the practical effectiveness of DVRGTFW.

The design of DVRGTFW is grounded in an innovative framework that integrates loopless variance-
reduced iteration, gradient tracking, and multi-consensus techniques. The proof of DVRGTFW uti-
lizes a Lyapunov function that captures the function value, global and local gradient estimation
errors, and consensus errors, yielding an intuitive and easy-to-follow analysis framework.
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A TECHNICAL LEMMAS

In this section, we will introduce several useful lemmas that will be used in our proofs. They are
easy to check or prove, so we omit the details of these lemmas.

Lemma 1 For any x1, . . . , xN ∈ Rd in the following inequality holds:∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ N

m∑
i=1

∥xi∥2 .

Lemma 2 (Lemma 2 from Ye et al. (2023b)). For Frank-Wolfe update in DVRGTFW, we have ȳt =
v̄t.

Lemma 3 (Lemma 2 from Liu & Morse (2011)). Under Assumption 4, FastMix holds that

1

n
1⊤uK = ū0 and

∥∥uK − 1⊤u0
∥∥ ≤

(
1−

√
1− λ2(W )

)K ∥∥u0 − 1ū0
∥∥,

where ū0 = 1
n1

⊤u0.

Lemma 4 (Lemma 3 from Ye et al. (2023b)). For any s ∈ Rn×d, we have ∥s − 1s̄∥ ≤ ∥s∥, where
s̄ = 1

m1⊤s

Lemma 5 (Lemma 4 from Luo & Ye (2022)).Under Assumption 2, we have ∥∇f(x) − ∇f(y)∥ ≤
L∥x− y∥ for any x, y ∈ Rn×d

Lemma 6 (Lemma 1.2.3 from Nesterov (2013)). Suppose that f is L-smooth. Then, for any x, y ∈
Rd,

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2
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Lemma 7 (Lemma 3 from Stich (2019)). Let {rk}k≥0 is a non-negative sequence, which satisfies
the relation

rk+1 ≤ (1− ηk)rk + cη2k.

Then there exists stepsizes ηk ≤ 1
d , such that:

rK = O
(
dr0 exp

(
−K

2d

)
+

c

K

)
.

In particular, the step size are chosen as follows:

if K ≤ d, ηk =
1

d
,

if K > d and k < k0, ηk =
1

d
,

if K > d and k ≥ k0, ηk =
2

(2d+ k − k0)
,

where k0 = ⌈K
2 ⌉.

B IMPORTANT LEMMAS RELATED TO OUR ALGORITHMS

First we define the variables ρ = (1−
√
1− λ2(W ))K to characterize the effect of FastMix. Note

that the setting of K in Theorem 1 and 2 means

ρ2 <
1

16
.

Then we introduce the following quantities:

• the global gradient estimation error: Ut =

∥∥∥∥∥ 1

m

m∑
i=1

(vi,t −∇fi(xi,t))

∥∥∥∥∥
2

;

• the local gradient estimation error: Vt =
1

m
∥vt −∇f(xt)∥2;

• the consensus error: Ct = ∥xt − 1x̄t∥2 and Yt =
1

m
∥yt − 1ȳt∥2.

At last we define two Lyapunov functions

Φt = ht +
2α

(2− p− 4ρ2)L
Yt +

4α

pL
Ut +

16ρ2α

(2− p− 4ρ2)mL
Vt.

Ψt = ht +
α

(1− 2ρ2)L
Yt +

2α

pL
Ut +

4ρ2α

(1− 2ρ2)mL
Vt.

where ht is defined as ht := f(x̄t)−f(x∗). We describe the decrease of function value in following
lemma.

Lemma 8 Suppose that each of fi and x ∈ X satisfy Assumption 1, 2, and 3. DVRGTFW holds that:

ht+1 ≤ (1− ηt)ht +
α

L
Yt +

2α

L
Ut +

2αL

m
Ct +

η2tLD
2(α+ 2)

2α
. (7)

where α is some positive constant and ht is defined as ht := f(x̄t)− f(x∗).

Proof. From the L-smoothness of global function f , we have:

f(x̄t+1) ≤ f(x̄t) + ⟨∇f(x̄t), x̄t+1 − x̄t⟩+
L

2
∥x̄t+1 − x̄t∥2,

where we use Lemma 6.

14
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We subtract f(x∗) in both sides, and by using the boundness of C we obtain the following inequality

ht+1 ≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t),di,t − x̄t⟩+
η2tLD

2

2

≤ ht +
ηt
m

m∑
i=1

⟨yi,t,di,t − x̄t⟩+
ηt
m

m∑
i=1

⟨∇f(x̄t)− yi,t,di,t − x̄t⟩+
η2tLD

2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x∗ − x̄t⟩+
ηt
m

m∑
i=1

⟨∇f(x̄t)− yi,t,di,t − x∗⟩+ η2tLD
2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x∗ − x̄t⟩+
1

m

m∑
i=1

⟨
√
α√
L
(∇f(x̄t)− yi,t),

√
Lηt√
α

(di,t − x∗)⟩+ η2tLD
2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x∗ − x̄t⟩+
α

2mL

m∑
i=1

∥∇f(x̄t)− yi,t∥2 +
Lη2t
mα

m∑
i=1

∥di,t − x∗∥2 + η2tLD
2

2

≤ ht − ηt(f(x̄t)− f(x∗)) +
α

2mL

m∑
i=1

(∇f(x̄t)− yi,t)
2 +

η2tLD
2(α+ 2)

2α

≤ (1− ηt)ht +
α

L
∥∇f(x̄t)− v̄t∥2 +

α

mL
∥yt − 1ȳt∥2 +

η2tLD
2(α+ 2)

2α
,

where we use the boundness of X and Lemma 3 in the first inequality; through the optimal choice
of dt which means that for each i ∈ [m], ⟨yi,t,di,t − x̄t⟩ ≤ ⟨yi,t, x

∗ − x̄t⟩, and rearrange terms we
get the third inequality; in the fifth inequality, we apply the Cauchy-Schwartz inequality to deduce
⟨
√
a√
L
(∇f(x̄t) − yi,t),

√
L√
α
ηt(di,t − x∗)⟩ ≤ α

2L∥∇f(x̄t) − yi,t∥2 +
Lη2

t

α ∥di,t − x∗∥2 with some
positive constant α; in the sixth inequality we use the boundness of X and Assumpition 1; we apply
Lemma 1 and Lemma 2 in the last inequality.

Now we consider decomposing the term ∥∇f(x̄t) − v̄t∥2. From the defination of ∇f(x̄t) and v̄t,
the following inequality holds

∥∇f(x̄t)− v̄t∥2

=

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x̄t)− vi,t)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x̄t)−∇fi(xi,t))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(xi,t)− vi,t)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(xi,t)− vi,t)

∥∥∥∥∥
2

+
2

m

m∑
i=1

∥∇fi(xi,t)−∇fi(x̄t)∥2

≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(xi,t)− vi,t)

∥∥∥∥∥
2

+
2L2

m

m∑
i=1

∥xi,t − x̄t∥2

= 2

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(xi,t)− vi,t)

∥∥∥∥∥
2

+
2L2

m
∥xt − 1x̄t∥2

= 2Ut +
2L2

m
Ct,

the first inequality uses Young’s inequality; the second inequality uses Lemma 1; the third inequality
based on the Assumption 2; in the last line we use the defination of Ut and Ct. □

Now we consider describe the decrease ofCt, Yt, Ut, Vt respectively. First, we provide the recursion
for variable consensus error.
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Lemma 9 Under the setting of Theorem 1, when ρ2 = 1
16 , the following inequality holds

Ct ≤
8mρ2D2

1− 8ρ2
η2t . (8)

Proof. From the update of xt+1 in Algorithm 1, the following inequality holds

Ct+1 = ∥xt+1 − 1x̄t+1∥2

=

∥∥∥∥FastMix((1− ηt)xt + ηtdt,Kt)−
1

m
11⊤FastMix(xt − ηtdt,Kt)

∥∥∥∥2
≤ ρ2

∥∥∥∥((1− ηt)xt − ηtdt)−
1

m
11⊤ ((1− ηt)xt − ηtdt)

∥∥∥∥2
= ρ2

∥∥(1− ηt)xt − ηtdt − (1− ηt)1(x̄t − ηtd̄t)
∥∥2

≤ 2ρ2(1− ηt)
2∥xt − 1x̄t∥2 + 2ρ2η2t ∥dt − 1d̄t∥2

≤ 2ρ2Ct + 2mρ2η2tD
2,

(9)

where we use Lemma 3 in the third inequality; in the fifith inequality we use Lemma 1; the last
inequality based on the boundness of X and the defination of Ct.

From the setting of DVRGTFW, the following equality holds
C0 = ∥x0 − 1x̄0∥2 = 0,

which satisfy Eq.(8), for the induction step, now we assume that ∀t ≥ 0, Eq.(8) still holds, then we
have the following inequality:

Ct+1 ≤ 2ρ2Ct + 2mρ2η2tD
2

≤ 2mρ2D2η2t
1− 8ρ2

≤
2mρ2D2η2t+1

1− 8ρ2
η2t
η2t+1

≤
8mρ2D2η2t+1

1− 8ρ2
,

the last inequality is because from setting in Theorem 1, we can easily obtain max
η2
t

η2
t+1

≤ 4, then
we finish the proof. □

Now we provide the recursion for gradient-tracking consensus error.

Lemma 10 Under the setting of Theorem 1, we have

E [Yt+1] ≤ 2ρ2E [Yt]+
4

m
ρ2pE [Vt]+

18

m

(
ρ2(1− p)

b
+ 2ρ2p

)
L2E [Ct]+18

(
ρ2(1− p)

b
+ 2ρ2p

)
L2η2tD

2.

Proof. From the update of vi,t in Algorithm 1, the following inequality holds

E
[
∥vi,t+1 − vi,t∥2

]
≤ pE ∥∇fi(xi,t+1)− vi,t∥2 +

(1− p)

b
E
∥∥∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

∥∥2
≤ 2pE ∥∇fi(xi,t+1)−∇fi(xi,t)∥2 + 2pE ∥∇fi(xi,t)− vi,t∥2

+
(1− p)L2

b
E ∥xi,t+1 − xi,t∥2

≤ 2pL2E ∥xi,t+1 − xi,t∥2 + 2pE ∥∇fi(xi,t)− vi,t∥2

+
(1− p)L2

b
E ∥xi,t+1 − xi,t∥2

= 2pE ∥∇fi(xi,t)− vi,t∥2 +
(
(1− p)

b
+ 2p

)
L2E ∥xi,t+1 − xi,t∥2 ,

(10)
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the second inequality based on Young’s inequality and the last inequality is due to Assumption 2.

Summing over Eq.(10) over i ∈ [m], we obtain

E
[
∥vt+1 − vt∥2

]
≤ 2pE ∥∇f(xt)− vt∥2 +

(
(1− p)

b
+ 2p

)
L2E ∥xt+1 − xt∥2

≤ 2pE ∥∇f(xt)− vt∥2

+ 3

(
(1− p)

b
+ 2p

)
L2E

[
∥xt+1 − 1x̄t+1∥2 + ∥1x̄t+1 − 1x̄t∥2 + ∥xt − 1x̄t∥2

]
≤ 2pE ∥∇f(xt)− vt∥2

+ 3ρ2
(
(1− p)

b
+ 2p

)
L2(2E

[
∥xt − 1x̄t∥2

]
+ 2mη2tD

2)

+ 3

(
(1− p)

b
+ 2p

)
L2

(
mη2tD

2 + E ∥xt − 1x̄t∥2
)

≤ 2pVt + 9

(
(1− p)

b
+ 2p

)
L2Ct

+ 9m

(
(1− p)

b
+ 2p

)
L2η2tD

2,

(11)

where the second inequality based on Young’s inequality; the third inequality uses the result of
Eq.(9) and the boundness of X .

From the update of vt in DVRGTFW, we have

Yt+1 =
1

m
E
[
∥yt+1 − 1ȳt+1∥2

]
=

1

m
E

[∥∥∥∥FastMix(yt + vt+1 − vt,K)− 1

m
11⊤FastMix(yt + vt+1 − vt,K)

∥∥∥∥2
]

≤ 1

m
E

[
ρ2

∥∥∥∥yt + vt+1 − vt −
1

m
11⊤(yt + vt+1 − vt)

∥∥∥∥2
]

≤ 2

m
E

[
ρ2 ∥yt − 1ȳt∥2 + ρ2

∥∥∥∥vt+1 − vt −
1

m
11⊤(vt+1 − vt)

∥∥∥∥2
]

≤ 2

m
E
[
ρ2 ∥yt − 1ȳt∥2

]
+

2

m
E
[
ρ2 ∥vt+1 − vt∥2

]
≤ 2ρ2Yt +

4

m
ρ2pVt +

18

m

(
ρ2(1− p)

b
+ 2ρ2p

)
L2Ct

+ 18

(
ρ2(1− p)

b
+ 2ρ2p

)
L2η2tD

2,

(12)

where we use Lemma 3 in the first inequality; in the second inequality we use Young’s inequality;
we apply Lemma 4 in the third inequality; combine the result in Eq.(11) and the defination of Yt,
then we finish the proof. □

Now we provide the recursion for local and global error of gradient estimation.

Lemma 11 Under the setting of Theorem 1, we have

Vt+1 ≤ (1− p)E
[
Vt +

3L2(1 + 2ρ2)

mb
Ct +

3L2(1 + 2ρ2)η2tD
2

b

]
.
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Proof. The update of vi,t means

E ∥vi,t −∇fi(xi,t+1)∥2

= pE ∥∇fi(xi,t+1)−∇fi(xi,t+1)∥2

+ (1− p)E

∥∥∥∥∥∥vi,t +
1

b

b∑
j=1

(
∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

)
−∇fi(xi,t+1)

∥∥∥∥∥∥
2

=(1− p)E ∥vi,t −∇fi(xi,t)∥2

+ (1− p)E

∥∥∥∥∥∥1b
b∑

j=1

(
∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

)
−∇fi(xi,t+1) +∇fi(xi,t)

∥∥∥∥∥∥
2

≤ (1− p)E ∥vi,t −∇fi(xi,t)∥2 +
1− p

b
E
∥∥∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

∥∥2
≤ (1− p)E ∥vi,t −∇fi(xi,t)∥2 +

(1− p)L2

b
E ∥xi,t+1 − xi,t∥2 ,

(13)

where the first inequality based on the update of vi,t in DVRGTFW; the second equality uses the
property of Martingale (Proposition 1 from Fang et al. (2018)); the first inequality use the property
of variance and independence of ξ1, . . . , ξb; the last step based on Assumption 2.

Taking the average over on above result over i = 1, . . . ,m, we obtain

E[Vt+1] =
1

m
E ∥vt+1 −∇f(xt+1)∥2

≤ 1− p

m
E
[
∥vt −∇f(xt)∥2

]
+

(1− p)L2

mb
E
[
∥xt+1 − xt∥2

]
≤ 1− p

m
E ∥vt −∇f(xt)∥2

+
3(1− p)L2

mb
E
[
∥xt+1 − 1x̄t+1∥2 + E ∥1x̄t+1 − 1x̄t∥2 + E ∥xt − 1x̄t∥2

]
≤ (1− p)E

[
Vt +

3L2(1 + 2ρ2)

mb
Ct +

3L2(1 + 2ρ2)η2tD
2

b

]
.

(14)

□

Lemma 12 Under the setting of Theorem 1, we have

E[Ut+1] ≤ (1− p)E
[
Ut +

3L2(1 + 2ρ2)

m2b
Ct +

3(1 + 2ρ2)L2η2tD
2

mb

]
.

Proof. The update of vi,t means

E[Ut+1]

= pE

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(xi,t+1)−∇fi(xi,t+1)))

∥∥∥∥∥
2

+ (1− p)E

∥∥∥∥∥∥ 1

m

m∑
i=1

vi,t +
1

b

b∑
j=1

(
∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

)
−∇fi(xi,t+1)

∥∥∥∥∥∥
2

= (1− p)E

∥∥∥∥∥ 1

m

m∑
i=1

(vi,t −∇fi(xi,t))

∥∥∥∥∥
2

+ (1− p)E

∥∥∥∥∥∥ 1

mb

m∑
i=1

b∑
j=1

((
∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

)
−∇fi(xi,t+1) +∇fi(xi,t)

)∥∥∥∥∥∥
2

(15)
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≤ (1− p)E[Ut] +
1− p

m2b2

m∑
i=1

b∑
j=1

E
∥∥∇fi,ξj (xi,t+1)−∇fi,ξj (xi,t)

∥∥2
≤ (1− p)E[Ut] +

(1− p)L2

m2b2

m∑
i=1

b∑
j=1

E ∥xi,t+1 − xi,t∥2

= (1− p)E[Ut] +
(1− p)L2

m2b
E ∥xt+1 − xt∥2

≤ (1− p)E[Ut] +
3(1− p)L2

m2b
E[∥xt+1 − 1xt+1∥2 + ∥1xt+1 − 1xt∥2 + ∥xt − 1xt∥2]

≤ (1− p)E
[
Ut +

6ρ2L2

m2b
Ct +

6ρ2L2η2tD
2

mb
+

3L2

mb
∥x̄t+1 − x̄t∥2 +

3L2

m2b
Ct

]
≤ (1− p)E

[
Ut +

3L2(1 + 2ρ2)

m2b
Ct +

3(1 + 2ρ2)L2η2tD
2

mb

]
,

(16)

where the second equality use the property of Martingale; the first inequality based on the prop-
erty of variance and independence of ξ1, . . . , ξb; the second inequality based on Assumption 2; the
third inequality use Young’s inequality; the fourth inequality use Eq.(9), the last two steps use the
boundness of X and the defination of Ct, then we finish the proof. □

C PROOF OF THEOREM 1

Proof. From the defination of ϕt and combing results of Lemma 8, 10, 11 and 12, we have

E [Φt+1]

= E
[
ht+1 +

2α

(2− p− 4ρ2)L
Yt+1 +

4α

pL
Ut+1 +

16ρ2α

(2− p− 4ρ2)mL
Vt+1

]
≤ E

[
(1− ηt)ht + (1− p

2
)

2α

(2− p− 4ρ2)L
Yt + (1− p

2
)
4α

pL
Ut + (1− p

2
)

16ρ2α

(2− p− 4ρ2)mL
Vt

]
+ (

2αL

m
+

36αL

(2− p− 4ρ2)n
(
ρ2(1− p)

b
+ 2ρ2p) +

3(1− p)L(1 + 2ρ2)(8α− 4pα− 16ρ2α+ 16ρ2pα)

(2− p− 4ρ2)m2bp
)E [Ct]

+ (
L(α+ 2)

2α
+

36αL

2− p− 4ρ2
(
ρ2(1− p)

b
+ 2ρ2p) +

3(1− p)L(1 + 2ρ2)(8α− 4pα− 16ρ2α+ 16ρ2pα)

(2− p− 4ρ2)mbp
)D2η2t

≤ max{1− ηt, 1−
p

2
}E

[
ht +

2α

(7− 4p)L
Yt +

1

pL
Ut +

α

(7− 4p)mL
Vt

]
+ 16αLD2η2t +

LD2η2t
α

.

The second inequality based on Lemma 9 and the settings of p, b and K in Theorem 1. If we choose
ηt ≤ p

2 and α = 1
4 , then we will have

E[Φt+1] ≤ (1− ηt)E[Φt] + 8LD2η2t .

It remains to use Lemma 7 with c = 8LD2, d = 2
p and then we obtain

E[f(x̄t)− f(x∗)+
1

2(7− 4p)mL
Yt +

1

pL
Ut +

1

(7− 4p)mL
Vt]

= O
(
1

p

(
f(x̄0)− f(x∗) +

1

2(7− 4p)mL
E [Y0]

)
exp

(
−pT

4

)
+

8LD2

T

)
.

From DVRGTFW, it is easy to obtain E [V0] = 0 and E [U0] = 0. Using the setting of Kin in
Theorem 1, we can deduce

1

2(7− 4p)L
E [Y0] ≤

1

2(7− 4p)L
(1−

√
1− λ2(W ))2Kin∥v0 − 1v̄0∥2

≤ 1

2(7− 4p)
≤ 1

6
.
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Then we obtain

E[f(x̄t)− f(x∗)] = O
(
1

p

(
f(x̄0)− f(x∗) +

1

6

)
exp

(
−pT

4

)
+

8LD2

T

)
.

□

D PROOF OF THEOREM 2

Proof. According to Assumption 2 and Lemma 6, we have

f(x̄t+1) ≤ f(x̄t) + ⟨∇f(x̄t), x̄t+1 − x̄t⟩+
L

2
∥x̄t+1 − x̄t∥2.

Subtracting f(x∗) from both sides, we get

ht+1 ≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t),di,t − x̄t⟩+
η2tLD

2

2

≤ ht +
ηt
m

m∑
i=1

⟨yi,t,di,t − x̄t⟩+
ηt
m

m∑
i=1

⟨∇f(x̄t)− yi,t,di,t − x̄t⟩+
η2tLD

2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x− x̄t⟩+
ηt
m

m∑
i=1

⟨∇f(x̄t)− yi,t,di,t − x∗⟩+ η2tLD
2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x− x̄t⟩+
1

m

m∑
i=1

⟨
√
α√
L
(∇f(x̄t)− yi,t),

√
Lηt√
α

(di,t − x∗)⟩+ η2tLD
2

2

≤ ht +
ηt
m

m∑
i=1

⟨∇f(x̄t), x− x̄t⟩+
α

2L

m∑
i=1

∥∇f(x̄t)− yi,t∥2 +
Lη2t
mα

m∑
i=1

∥di,t − x∗∥2 + η2tLD
2

2

≤ ht + ηt⟨∇f(x̄t), x− x̄t⟩+
α

L
∥∇f(x̄t)− v̄t∥2 +

α

mL
∥yt − 1ȳt∥2 +

η2tLD
2(α+ 2)

2α

≤ ht + ηt⟨∇f(x̄t), x− x̄t⟩+
α

L
Yt +

2α

L
Ut +

2αL

m
Ct +

η2tLD
2(α+ 2)

2α
.

(17)

We omit the explanation of the proof because it’s similar to the proof of Lemma 8, then we rearrange
the term in Eq.(17), we obtain

ηt⟨∇f(x̄t), x̄t − x⟩ ≤ ht − ht+1 +
α

L
Yt +

2α

L
Ut +

2αL

m
Ct +

η2tLD
2(α+ 2)

2α
.

Maximizing over all x ∈ X and take the full mathematical expectation, we get

E
[
max
x∈X

⟨∇f(x̄t), x̄t − x⟩
]
≤ E [ψt − ψt+1]

+ (
2αL

m
+

18αL

(1− 2ρ2)m
(
ρ2(1− p)

b
+ 2ρ2p) +

3(1− p)L(1 + 2ρ2)(4ρ2αp− 4ρ2α+ 2α)

m2bp(1− 2ρ2)
)E [Ct]

+ (
L(α+ 2)

2α
+

18αL

1− 2ρ2
(
ρ2(1− p)

b
+ 2ρ2p) +

3(1− p)L(1 + 2ρ2)(4ρ2αp− 4ρ2α+ 2α)

mbp(1− 2ρ2)
)D2η2t .

≤ E[ϕt − ϕt+1] + 8αLD2η2t +
LD2η2t
α

+
L

2
≤ E[ϕt − ϕt+1] + 7LD2η2t .

In the first inequality we use the defination of ψt; the second inequality based on Lemma 9 and the
settings of p, b and K in the Theorem 2; We obtain the last inequality with the choice of α = 1

2
√
2

.
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Summing over all t from 0 to T − 1, we have

T−1∑
t=0

ηtE
[
max
x∈X

⟨∇f(x̄t), x̄t − x⟩
]
≤ E [ψ0 − ψT ] + 7LD2

T−1∑
t=0

η2t

≤ E [ψ0] + 7LD2
T−1∑
t=0

η2t

≤ E

[
f(x̄0)− f(x∗) +

2
√
2

7

]
+ 7LD2

T−1∑
t=0

η2t .

The last inequality based on the setting of Kin in Theorem 2. If we take ηt = 1√
T

and devide both

sides by
√
T , then

E

[
1

T

T−1∑
t=0

max
x∈X

⟨∇f(x̄t), x̄t − x⟩

]
≤
f(x̄0)− f(x∗) + 2

√
2

7√
T

+
7LD2

√
T

.

□
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